
VERSION: NOVEMBER 30, 2015 1

Directional Clustering through Matrix Factorisation
Thomas Blumensath Member, IEEE

Abstract—This paper deals with a clustering problem where
feature vectors are clustered depending on the angle between
feature vectors, that is, feature vectors are grouped together if
they point roughly in the same direction. This directional dis-
tance measure arises in several applications, including document
classification and human brain imaging. Using ideas from the
field of constrained low-rank matrix factorisation and sparse
approximation, a novel approach is presented that differs from
classical clustering methods, such as semi-Nonnegative Matrix
Factorisation (semi-NMF), K-EVD or k-means clustering, yet
combines some aspects of all of these. As in NMF and K-EVD,
the matrix decomposition is iteratively refined to optimise a data
fidelity term, however, no positivity constraint is enforced directly
nor do we need to explicitly compute eigenvectors. As in k-means
and K-EVD, each optimisation step is followed by a hard cluster
assignment. This leads to an efficient algorithm that is here
shown to outperform common competitors in terms of clustering
performance and/or computation speed. In addition to a detailed
theoretical analysis of some of the algorithm’s main properties,
the approach is evaluated empirically on a range of toy problems,
several standard text clustering data-sets and a high dimensional
problem in brain imaging, where functional MRI data is used
to partition the human cerebral cortex into distinct functional
regions.

Index Terms—Clustering, Iterative Hard Thresholding, K-
EVD, K-SVD, semi-NMF, k-means

I. INTRODUCTION

Clustering [1], [2], has a long history in statistics and

data analysis and a wide range of approaches have been

proposed over the years, from generic algorithms to problem

specific solutions. We are here interested in what we will call

directional clustering problems. In directional clustering, a set

of vectors is partitioned into several groups. Importantly, the

distance used to group the vectors is the angle between the

vectors, that is they are grouped depending on the direction

into which they point, but the overall feature vector length

does not influence the clustering result. The goal of directional

clustering is thus to find a partition in which clusters are

made up of vectors that roughly point in the same direction.

This type of clustering is important in applications in which

feature vectors are only given up to an unknown scaling. For

example, in text clustering, feature vectors are often made up

of the count of words in the document. Longer documents

T. Blumensath is with the ISVR Signal Processing and Control Group,
University of Southampton, SO17 1BJ, UK, Tel.: +44 (0) 23 8059 3224 ,e-
mail: thomas.blumensath@soton.ac.uk

This research was supported by EPSRC grants EP/K037102/1 and
EP/J005444/1 and through a Faculty of Engineering and the Environment
funded New Frontiers Fellowship.

Data and code generated during this study are openly
available from the University of Southampton repository at
http://dx.doi.org/10.5258/SOTON/384519. Third party datasets are available
following the links provided throughout the manuscript.

The author would like to thank the HCP consortium for the provision of
the pre-processed fMRI data.

have naturally more words and individual words are likely to

occur more often. As we want to compare documents in terms

of content but not length, the overall length of the feature

vectors is thus not important. Another example is functional

human brain imaging using functional Magnetic Resonance

Imaging data, which is the motivating application for the work

reported here. In this application, time-series of brain activity

are measured at different spatial locations within the brain

and these are used as the feature vectors, however, due to the

way in which neural function is measured, the scaling of these

features is arbitrary so that if we want to group brain areas

that have similar activity patterns, we need to ignore overall

feature scaling. More formally, assume that we are given a set

of M -dimensional feature vectors xi that we want to group

into disjoint sets, however, the features are only given up to

an unknown positive scaling si. Due to this unknown scaling,

in order to cluster the vectors xi, we can only rely on the

direction of the vector, but not its length.

To derive our approach to solve this problem, we formulate

the following optimisation problem, where features are mod-

elled as a perturbed instance of an unknown scaled cluster

centre dk

xi = si,kdk + ei, (1)

where one could think of ei as a ‘noise’ term. With this

formulation, unsupervised clustering can be achieved by an

estimation of the cluster centres dk together with the assign-

ment of each feature xi to one of these centres. One way

to achieve this would be based on traditional minimum mean

square error (MMSE) estimation under appropriate constraints.

The MMSE estimation problem can be formulated as

min
{dk},{si},{Ck}

K
∑

k=1

∑

i∈Ck

‖xi − si,kdk‖
2 (2)

where we introduce the sets Ck which partition the feature

vectors into the individual clusters, that is the sets Ck ⊂
[1, 2, . . . , N] are such that Ck

⋂

Ck̂ = ∅ for all k 6= k̂
and

⋃

Ck = [1, 2, . . . , N]. In words, we have to search

over all partitions of the input feature vectors and over all

possible vectors dk and scalars si to optimise the distance

between the cluster centres dk and the feature vectors assigned

to these centres. Our approach thus tries to find a cluster

assignment, cluster centres and weights that directly minimise

the euclidean error ei in (1).

This formulation can be seen as a matrix factorisation

problem [3]. Assume that the N column vectors xi are stacked

into a matrix X. Let the K centres be stacked into a matrix

D and let the errors ei make up the columns of a matrix E.

With this notation, we can then write

X = DS+E, (3)

VERSION: NOVEMBER 30, 2015 2

where S is a coefficient matrix, which, to be equivalent to the

model in (1), will have to be a matrix with 1-sparse columns,

that is each column is constrained to have a single non-zero

entry.

We thus consider the following optimisation problem:

min
D,S

‖X−DS‖F : S has 1−sparse columns, (4)

where the constraint on the sparsity of S enforces hard cluster

assignment. For directional clustering, we assume that the

columns of X are normalised to unit length1.

A. Relationship to spherical k-means

Our generative model (1) is a generalisation of the classical

approach used to deal with directional clustering, such as

spherical k-means [4], [5], [6], which is based around a feature

similarity measure

2− 2
〈xi,dk〉

‖xi‖‖dk‖
=

∥

∥

∥

∥

xi

‖xi‖
−

dk

‖dk‖

∥

∥

∥

∥

2

. (5)

This cost function is typically optimised by scaling features

and cluster centres to unit length as is done in spherical k-

means. Using a probabilistic approach, (5) is proportional to

the log-likelihood of the von Mieses-Fisher distribution. A

von Mieses-Fisher mixture model has thus been used together

with an Expectation Maximisation algorithm for directional

clustering in [7].

Figure 1 highlights the main differences between the two

cost functions. As can be seen, the cost function we propose

Fig. 1. Two vectors (x1 and x2) with the same distance from vector d as
measured in terms of the angle (left) and in terms of our measure (right). The
shaded regions indicate vectors with a smaller distance.

is closely related to subspace clustering [8] and, in particular,

to the one-dimensional subspace clustering problem. However,

in our method, we do not try to find a subspace but a one-

dimensional half-spaces defined through the vectors dk as

skdk for 0 ≤ sk ≤ ∞. The difference is best understood in

terms of a generative data model. Both cost functions model

each feature vector as a perturbed scaled version of the cluster

centre. However, the cost function on the right of figure 1 has a

perturbation that is independent from the scaling of the cluster

centre vector whilst the cost on the left has a perturbation

that grows with the scaling. The model on the right can be

1Having features xi to differ in length will giving more importance to
certain features during clustering.

understood as a model where each feature vector is a scaled

version of a cluster centre vector with added uniform Gaussian

noise. Obviously, if the scaled feature is very small, then the

addition of the noise means that there is a lot of uncertainty in

the angle of the original feature, whilst if the feature length is

large, then there is less uncertainty and it is easier to cluster

that feature.

Importantly, our approach reduces to the spherical k-means

cost function when we scale all features xi to unit length.

The advantage of our method however is that it allows us to

incorporate additional prior information. This can be down by

weighting certain features differently. In essence, by scaling

xi, we simultaneously scale the noise term cixi = sidk +
ciei, and, as our cost function penalises each feature equally,

this allows us to compensate for known differences in noise

variance.

B. Relationship to non-negative matrix factorisation

Formulating clustering problems as a matrix factorisation

as in (3) is not new [3]. To estimate both D and S several

constraints can be brought to bear, leading to different ap-

proaches. In many clustering problems, S can be constrained

to be a nonnegative matrix in which case clustering becomes a

semi-Nonnegative Matrix Factorisation (semi-NMF) problem

[9]. Semi-NMF is a relaxation of more classical Nonnegative

Matrix Factorisation (NMF)[10], [11]. In Semi-NMF, instead

of constraining both D and S to be positive [12], only S is

forced to be positive. Semi-NMF is used for clustering [13] by

first computing the decomposition DS and then, in a second

step, deriving a hard cluster assignment.

C. Relationship to subspace clustering

Sparsity constrained matrix factorisations are used in many

Independent Component Analysis (ICA) methods [14], which

are, for example, used in the fMRI literature for soft cluster

assignments [15]. For hard sparsity constraints, such as those

computed in the K-SVD algorithm and the related K-EVD

[16], [17], this becomes equivalent to subspace clustering [17],

[18].

Subspace clustering is an active research area. See for

example [19] for a review of model-based approaches. Our

approach is however more similar to K-SVD and K-EVD

approaches, which, given a set of feature vectors, try to

determine subspaces and cluster assignments such that the

distance between features and their assigned subspaces is

minimised. For one dimensional subspaces, both methods boil

down to the same two steps.

1) For fixed subspaces, assign each feature to the subspace

that is closest to the feature. If subspaces are defined

as the lines cidi, where ci can be both positive and

negative, then the distance of feature xk to the subspace

is proportional to 1− |〈di,xk〉|/(‖di‖‖xk‖).
2) For fixed cluster assignment, let Xi be the sub-matrix

of X with feature vectors in cluster i, then the new

subspace is defined through the vector di which is

parallel to the singular vector (or eigenvector) associated

VERSION: NOVEMBER 30, 2015 3

with the largest singular value of Xi (or eigenvalue of

X
T
i Xi).

The above steps try to solve the one-dimensional subspace

clustering problem. For directional clustering, step 1 would

instead need to use the distance measure:

1− 〈di,xk〉/(‖di‖‖xk‖), (6)

where the only difference is the missing | · | around the angle

between features and directions. The other difference is that

in the calculation of the new cluster centre, the direction has

to be chosen carefully.

II. OUR APPROACH

We use an approach that iterates through three main steps:

1) Update of D, 2) update of S without cluster assignment

and 3) hard cluster assignment.

A. Updating D, S and cluster assignment

For fixed S, the optimal choice of dk is calculated by

minimising (4)

D = XS
T (SST)−1. (7)

Note that S has 1-sparse columns, making the inversion trivial.

If there are rows in which all entries are zero (i.e. we have

empty cluster centres), we estimate all those columns in D for

which there are non-zero rows in S whilst the remaining rows

are re-instantiated. We here take an approach in which we set

these columns randomly to elements from X.

If we knew Dn and if we were to ignore the hard cluster

assignment requirement, then the optimal S that solves (4)

can be computed as Sn+1 = (DT
D)−1

D
T
X assuming that

(DT
D) is invertible. To avoid matrix inversion, an alternative

approach replaces the exact optimisation above with a single

gradient step [20].

Sn+1 = Sn + µnD
T
n (X−DnSn),

(8)

where µn is a step size chosen appropriately (see below and

the discussion in [21]).

To compute cluster assignment, we threshold S, that is,

we keeping only the largest entry of each column of S, thus

ensuring that S has 1-sparse columns. For simplicity, we write

this non-linear operation as S̄n = P (Sn), where the notation

S̄n reminds us that this matrix has 1-sparse columns.

Problem (2) has several indeterminacies, which are common

to most matrix factorisation problems. A re-scaling of dk can

always be counteracted by an appropriate inverse scaling of

the associated si,k, a direct consequence of our desire that

the cost is invariant to scaling. Due to this ambiguity, cluster

assignment (i.e. the thresholding step), which is based on a

comparison between the entries in S, also faces ambiguities.

To overcome this we use a re-scaling step that either nor-

malises the columns in D after each update or normalises the

rows in S.

B. Algorithm

The algorithm is summarised below.

1) INPUT: data matrix X, number of clusters K
2) initial decomposition of X into low rank factorisation

(e.g. using an SVD or some initial cluster assignment)

X = DS+E.

3) iterate until the change in the cost (2) is small

a) Calculate cluster assignment: S̄ = P (S)
b) Check for empty clusters and randomly re-initialise

c) Update cluster centres: D = XS̄
T (S̄S̄T)−1 (and

optionally normalise columns of D)

d) Update cluster weights: S = S + µDT (X −DS)
or S = (DT

D)−1
D

T
X (optionally normalise S)

C. Comparison to other approaches

Many matrix factorisation approaches, including semi-NMF,

do not produce hard cluster assignment and so, a two stage

approach is typically used in which the matrix decomposition

is followed by a single cluster assignment step. This is in

contrast to clustering approaches such as K-EVD and k-means,

which make this assignment in each iteration. Our approach

is similar in this respect to K-EVD. One important difference

is, however, the way in which clusters are assigned. Instead of

a k-means/k-EVD type approach that would pick the closest

element, we first calculate a least squares type estimate of S.

We thus not only look at how close one feature is to one cluster

centre, but take account of all cluster centres when assigning

feature vectors. As a simple example that highlights this dif-

ference, assume we have three 2 dimensional cluster centres,

d1 = [1 0]T , d2 = [0.999 0.1]T and d3 = [0.707 0.707]T

and a feature xi = [0.9239 0.3827]T . The closest cluster

centre in angle is actually d2, however, because d1 and d2

are very similar and d3 nearly orthogonal, if our method uses

the pseudo inverse of D to calculate S, then the feature will be

assign to cluster d3. Our method thus has a build in mechanism

that takes into account the fact that certain cluster centres

are similar and that there is thus higher uncertainty in the

assignment of a features to these centres as compared to more

isolated centres which are more distinct.

III. GLOBAL MINIMA, FIXED POINTS AND CONVERGENCE

We here concentrate on the analysis of one variant of the

algorithm. Assume we use the steps

Sn+1/2 = Sn + µnD
T
n (X−DnSn), (9)

S̄n+1/2 = P (Sn+1/2) (10)

and

Dn+1/2 = XS̄
T
n+1/2(S̄n+1/2S̄

T
n+1/2)

−1 (11)

and normalise Dn+1/2 and S̄n+1/2 after each update of

Dn+1/2. Let S̄n+1 and Dn+1 be the rescaled versions of

Dn+1/2 and S̄n+1/2, such that Dn+1 has unit norm columns

and such that Dn+1S̄n+1 = Dn+1/2S̄n+1/2.

VERSION: NOVEMBER 30, 2015 4

A. Notation

In this section we will make use of the following notation.

• Let si be a column-vector containing the non-zero entries

in S̄ for which the non-zero coefficient is in row i of S̄.

• Let Xk be the sub matrix of X containing those columns

for which the columns in S̄ have a non-zero entry in row

k.

• Let Φ be a positive, diagonal matrix.

• Let qi be the ith diagonal element of the matrix (S̄S̄T)−1

and define pi in the same way for matrix Φ. Note that

pi = 1/(‖qiXisi‖), so that qipi = 1/‖Xisi‖.

• Let Xi = UiΣiV
T
i be the singular value decomposition

(SVD) of Xi, which is a sub-matrix of X containing

those columns in X clustered into cluster i.
• Let sTi = αn

i V
T
i be the expansion of the cluster coeffi-

cients s
T
i in the svd basis Vi.

• For two matrices A and B, we will use the inner product

notation 〈A,B〉 =
∑

i,j ai,jbi,j , where the ai,j and bi,j
are the elements in the ith row and jth column of A

and B respectively. Note that this is the inner product

that induces the Frobenius norm, making the space of

matrices a Hilbert space.

With this notation, assume we have clustered X into some

decomposition DS, where S has one sparse columns. For the

ith cluster, the feature in that cluster are modelled with a single

cluster centre, the ith column in D. This column is multiplied

by all those elements in S that have a non-zero entry in row i.
Thus, if di is the ith column in D, then the features in cluster

i are approximated with scaled versions of di, i.e. Xi ≈ dis
T
i .

Furthermore, di itself is a function of Xi and s
T
i , that is

di =
Xisi

sTi si
, (12)

or, if we normalise di, then

di =
Xisi

‖Xisi‖
, (13)

However, as in the normalisation step, both D and S are

scaled, the normalisation constant cancels in the product dis
T
i ,

which we thus write as

dis
T
i = Xi

sis
T
i

sTi si
, (14)

B. Summary of main results

We start with a characterisation of the global minimum of

the clustering cost function. In fact, the minimum over D

and S is found for some partition of X into sub matrices Xi

such that the non-zero elements in S, that is, the s
T
i are right

singular vectors of the sub matrices Xi associated with the

largest singular value. We then show that fixed points of the

algorithm are also associated with s
T
i that are right singular

vectors of the feature matrix Xi.

We finally look at convergence and show that the algorithm

converges to some cluster assignment, where cluster weights

converge to the singular subspace of Xi associated with the

largest singular value. This convergence depends on the choice

of the step size µ.

C. The global minima

We start our analysis of the cost function by assuming that

the cluster assignment, and thus the position of the non-zero

elements in S is fixed. Under this condition, we have the

following result.

Lemma 1. For a fixed cluster assignment the minimal cost is

achieved for sTi which are scaled versions of the right singular

vector (or an element in the subspace spanned by the singular

vectors) associated with the larges singular value(s) of Xi.

Proof: Using the notation above we note that the cost

function

‖X−Dn+1/2Sn+1/2‖
2
F = ‖X−Dn+1Sn+1‖

2
F (15)

can be written as (dropping the iteration subscript n)

∑

i

∥

∥

∥

∥

Xi −Xi
sis

T
i

sTi si

∥

∥

∥

∥

2

F

. (16)

Importantly, we recognise that
sis

T
i

sT
i
si

is an orthogonal projec-

tion of the rows of X onto the one dimensional subspace

spanned by s
T
i , the minimum over all sTi is thus found if sTi

lies in the subspace spanned by the right singular vectors of

Xi associated with the largest singular values.

As there are only finitely many ways to assign features to

clusters, we have thus proven the following result.

Theorem 2. The global minima of the clustering cost function

is achieved for sTi that lie in the subspace spanned by the right

singular vectors of Xi associated with the largest singular

values, where the Xi are non-empty sub-matrices of X, such

that each column in X is in exactly one sub-matrix.

D. Stationary points

Let us next turn to the fixed points of the algorithm, that is,

to an analysis of those S that satisfy the following condition

ΦS̄ = P (S̄+µn((S̄S̄
T)−1

S̄X
T (X−XS̄

T (S̄S̄T)−1
S̄), (17)

where Φ is a diagonal matrix (a function of S̄) that normalises

the columns of the matrix XS̄
T (S̄S̄T)−1. Note that S̄S̄

T is

diagonal and so is Φ. Because S̄ is one-column sparse, it is

again instructive to re-write the above condition in terms of

the vectors s
T
i .

We then have the following stationarity condition

µ
s
T
i X

T
i

‖Xisi‖
Xk(I−

sks
T
k

sTk sk
)

{

= pis
T
i , if i = k

< (1 + pi)s
T
i , otherwise.

(18)

Here, the pi are scalars (the diagonal elements in Φ), PsT
k
=

sks
T
k

sT
k
sk

is a projection and P⊥
sT
k

= (I − sks
T
k

sT
k
sk
) its orthogonal

complement. The strict inequality is due to the fact that at

a stationary points, the thresholding operation must set all si
to zero apart from the largest one, which implies that before

thresholding, si+µ
s
T
i X

T
i

‖Xisi‖
Xk(I−

sks
T
k

sT
k
sk
) must be smaller than

pksk for k 6= i.

Because (I − sis
T
i

sT
i
si
) is a projection onto the row space

orthogonal to s
T
i , the row vectors of Xk(I − sks

T
k

sT
k
sk
) are

VERSION: NOVEMBER 30, 2015 5

orthogonal to s
T
i . Thus,

s
T
i X

T
i

‖Xisi‖
Xk(I −

sks
T
k

sT
k
sk
) is a sum over

vectors that are orthogonal to s
T
i , which implies that the

constant pi above has to be zero.

We have thus shown the following.

Lemma 3. The stationary points S satisfy the following

condition

µ
s
T
i X

T
i

‖Xisi‖
Xk(I−

sks
T
k

sTk sk
)

{

= 0, if i = k

< s
T
i , otherwise.

(19)

To get an even better understanding of the fixed point condi-

tion above, let us write X
s
T
i

i = Xi
sks

T
k

sT
k
sk

and let Ei = Xi−X
s
T
i

i .

Note that X
s
T
i

i and Ei have orthogonal rows. Thus, the above

lemma shows that sTi is a fixed point if and only if

〈Xisi,Ei〉 = 0 (20)

and

〈Xisi,Ek〉 < s
T
i , (21)

where the inequality must hold element wise and for all k 6= i.
Importantly, the first equality above can also be stated as

s
T
i X

T
i Xi = γis

T
i , (22)

for some ci. As this is a typical eigenvalue problem we have

proven the following lemma

Lemma 4. The stationary points of the algorithm provide a

partition of the data set such that the non-zero elements in S

associated with cluster i are eigenvectors of the matrix X
T
i Xi.

E. Convergence, preliminary results

To derive convergence results for the algorithm, we first

derive a range of results that show the convergence of several

related quantities. We first show that our algorithm is optimis-

ing the following majorized cost function, which is optimised

under the constraint that the columns of the solution have to

be 1 column sparse:

min
A

‖X−DnA‖2F +
1

µn
‖S̄n−A‖2F −‖Dn(S̄n−A)‖2F , (23)

where the minimisation is done over all matrices A that have

1-sparse columns. The argument for this basically follows that

in [22]. We can re-write this as

minA ‖X−DnA‖2F +
1

µn
‖S̄n −A‖2F

−‖Dn(S̄n −A)‖2F ,

= minA ‖X‖2F + ‖DnA‖2F − 2〈DT
nX,A〉

+
1

µn
‖S̄n‖

2
F +

1

µn
‖A‖2F −

1

µn
2〈S̄n,A〉

−‖DnS̄n‖
2
F − ‖DnA‖2F + 2〈DT

nDnS̄n,A〉

= minA −2〈DT
nX,A〉+

1

µn
〈A,A〉 −

1

µn
2〈S̄n,A〉+

2〈TDT
nDnS̄n,A〉

Thus, we need to minimise
〈

1

µn
A−

2

µn
S̄n − 2DT

n (X−DnS̄n),A

〉

.

Taking derivatives w.r.t. the elements in A and setting to zero,

we re-derive our update equation (8)

A = S̄n + µDT
n (X−DnS̄n), (24)

which, to impose the sparsity constraint on the columns of A

has to be thresholded appropriately.

For the majorised cost function to bound the original

clustering cost function, we need to choose µn such that for

all A with one sparse columns, the majorisation term

1

µn
‖S̄n −A‖2F − ‖Dn(S̄n −A)‖2F > 1/c‖S̄n −A‖2F (25)

for some constant c > 0 independent of n. As the columns of

Dn are normalised and as columns in (S̄n−A) are two sparse,

‖Dn(S̄n−A)‖2 ≤ 4‖(S̄n−A)‖2 so we can choose µ < 1/4.

In fact, equality only holds if there are two columns in Dn

that are equal in which case we can combine these two clusters

and re-initialise the empty cluster. W.l.g we can thus assume

that µ = 0.25. Also note that, if cluster assignment does not

change between iterations, then S̄n −A will have one sparse

columns, in which case we can choose µ < 1. This suggests a

line search approach as suggested in [21]. Where we initially

try µ < 1, which is used as long as the cluster assignment does

not change, but if it leads to a changing cluster assignment,

we instead use µ = 0.25.

Under this condition on µ, S̄n+1/2 satisfies

‖X−Dn+1S̄n+1‖
2
F = ‖X−Dn+1/2S̄n+1/2‖

2
F

≤ ‖X−DnS̄n+1/2‖
2
F

≤ ‖X−DnS̄n+1/2‖
2
F +

1

µn
‖S̄n − S̄n+1/2‖

2
F

−‖Dn(S̄n − S̄n+1/2)‖
2
F

≤ ‖X−DnS̄n‖
2
F . (26)

so that

1

µn
‖S̄n − S̄n+1/2‖

2
F − ‖Dn(S̄n − S̄n+1/2)‖

2
F

≤ ‖X−DnSn‖
2 − ‖X−Dn+1S̄n+1‖

2
F (27)

where we used the minimality of Dn+1/2 and the fact that

Dn+1S̄n+1 = Dn+1/2S̄n+1/2. This shows that our algorithm

reduces the cost function in each iteration

‖X−Dn+1S̄n+1‖
2
F ≤ ‖X−DnSn‖

2
F . (28)

Thus, the sequence X −Dn+1S̄n+1 is bounded and thus by

the Bolzano-Weierstrass theorem will have a convergent sub-

sequence. Note that boundedness holds also if we re-initialise

empty clusters in step b) of the algorithm, as long as we do

this as discussed above. Because X is fixed, boundedness of

X−Dn+1S̄n+1 also implies boundedness of Dn+1S̄n+1, i.e.

‖X‖F +M ≥ ‖X‖F + ‖X−Dn+1S̄n+1‖F

≥ ‖Dn+1S̄n+1‖F

= ‖Dn+1/2S̄n+1/2‖F

= ‖XS̄
T
n+1/2(S̄n+1/2S̄

T
n+1/2)

−1
S̄n+1/2‖F .

VERSION: NOVEMBER 30, 2015 6

Note that the last line also implies boundedness, as

S̄
T
n+1/2(S̄n+1/2S̄

T
n+1/2)

−1
S̄n+1/2 is a projection operator pro-

jecting the rows of X (the inverse always exists by construc-

tion). Thus

‖Dn+1/2S̄n+1/2‖F ≤ ‖X‖F (29)

and

‖X−Dn+1S̄n+1‖F

= ‖X(I− S̄
T
n+1/2(S̄n+1/2S̄

T
n+1/2)

−1
S̄n+1/2)‖F

≤ ‖X‖F (30)

Thus, using the Bolzano-Weierstrass theorem, we have

proven the following lemma.

Lemma 5. There exist an X
⋆ such that for all ǫ, we can

choose an Nǫ < ∞ such that

‖X⋆ −Dni
S̄ni

‖F ≤ ǫ, (31)

hold for infinitely many ni > Nǫ.

Assume the accumulation point X⋆ in the above lemma is

unique, that is, for all ǫ in the above lemma, let nj be the

indices such that ‖X⋆ −Dnj
S̄nj

‖ ≥ ǫ. If the set nj is finite,

then there will be a maximal nj and we can choose Nǫ > nj

and find that for all n > Nǫ ‖X
⋆ −DnS̄n‖ ≤ ǫ. This implies

convergence of DnS̄n to X
⋆. Thus, either DnS̄n converges

or there are at least two accumulation points.

We can also establish the following lemma.

Lemma 6. Assume that µn is chosen such that

1

µn
‖Sn−S̄n+1/2‖

2−‖Dn(Sn−S̄n+1/2)‖
2 >

1

c
‖Sn−S̄n+1/2‖

2

(32)

for some positive constant c. The matrix factorisation algo-

rithm then produces a sequence of estimates S̄n that satisfy:

‖S̄n+1/2 − S̄n‖
2 → 0.

Furthermore, the sum
∑N

n=1 ‖S̄n+1/2−S̄n‖
2 converges and

thus, by the Cauchy’s Convergence Criterion, so do the partial

sums
∑N+p

n=N ‖S̄n+1/2 − S̄n‖
2, where p ≥ 1 is arbitrary.

Proof: Convergence follows from the fact that the se-

ries
∑N

n=1 ‖S̄n+1/2 − S̄n‖
2 is monotonically increasing and

bounded. Monotonicity is obvious, to show boundedness, write

N
∑

n=1

‖S̄n+1/2 − S̄n‖
2

≤ c

N
∑

n=1

1

µ
‖S̄n+1/2 − S̄n‖

2 − ‖Dn(S̄n+1/2 − S̄n)‖
2

≤ c

N
∑

n=1

(

‖X−DnS̄n‖
2 − ‖X−DnS̄n+1‖

2
)

≤ c

N
∑

n=1

(

‖X−DnS̄n‖
2 − ‖X−Dn+1S̄n+1‖

2
)

= c
(

‖X−D1S̄1‖
2 − ‖X−DN+1S̄N+1‖

2
)

≤ c‖X−D1S̄1‖
2 (33)

where the first inequality is due to the choice of µn, the second

inequality is (26) and where the third inequality is due to

the optimality of Dn+1 (i.e. ‖X − Dn+1S̄n+1‖
2 ≤ ‖X −

DnS̄n+1‖
2).

Lemma 7. Assume that µn is chosen such that

1

µn
‖Sn−S̄n+1/2‖

2−‖Dn(Sn−S̄n+1/2)‖
2 >

1

c
‖Sn−S̄n+1/2‖

2

(34)

for some positive constant c. Assume there are no empty clus-

ters in S̄
n. The matrix factorisation algorithm then produces

a sequence of estimates DnS̄n that satisfy:

‖Dn+1S̄n+1 −DnS̄n‖
2 → 0. (35)

Proof:

Note that ‖S̄n+1/2 − S̄n+‖
2 → 0 implies that

‖S̄T
n+1/2(S̄n+1/2S̄

T
n+1/2)

−1
S̄n+1/2 − S̄

T
n (S̄nS̄

T
n)

−1
S̄n‖

2 →

0, [23], which in turn implies that ‖Dn+1S̄n+1 −
DnS̄n‖

2 → 0 (Remember, Dn+1S̄n+1 = Dn+1/2S̄n+1/2 =
XS̄

T
n+1/2(S̄n+1/2S̄

T
n+1/2)

−1
S̄n+1/2).

F. Convergence

We have the following theorem.

Theorem 8. The algorithm produces a sequence of DnS̄n,

such that either ‖X −DnS̄n‖F → 0 or such that S̄n → S̄
⋆,

where the nonzero elements in row i converge to an element

in the space spanned by the right singular vectors associated

with the largest singular values of the feature vector matrix

Xi containing those columns in X for which the ith row in

S̄
⋆ has non-zero entries.

In other words, the algorithm either finds K vectors di such

that each feature xi is a multiple of one di or it partitions

the features into distinct clusters such that the feature vectors

of each cluster are modelled with left and right eigenvectors

associated to the largest eigenvalue of the feature sub matrix.

To proof this theorem, we distinguish three cases and proof

convergence for each of these cases independently..

• After some n, cluster assignment does not change.

• Cluster assignment changes infinitely often due to

changes in sparsity pattern in S̄ni
, that is, there is an

infinite sequence of S̄ni
such that S̄ni

and S̄ni+1/2 have

different cluster assignments.

• Cluster assignment changes infinitely often due to empty

clusters appearing after thresholding.

G. Case 1: Convergence for fixed cluster assignment

Assume that cluster assignment does no longer change after

some iteration. In this case, we can treat the algorithm for each

cluster independently. To do this, let us write the algorithm in

terms of singular values of Xi. In this case, we can re-write

the update as

(sn+1
i)T = (sni)

T + µ
(sni)

T
X

T
i

‖(sni)
TXT

i ‖
Xi

(

I−
s
n
i (s

n
i)

T

(sni)
T sni

)

(36)

as (dropping the subscript i from α and Σ)

αn+1 = αn + µ
αn

‖αnΣ‖
Σ2

(

I−
(αn)Tαn

‖α‖2

)

, (37)

VERSION: NOVEMBER 30, 2015 7

where we have right multiplied the equation by V and used

the fact that due to orthonormality of U, ‖αnΣ‖ = ‖αnΣU‖.

Writing this update element wise, we see that the kth element

in αn (i.e. αk) is updated as

αn+1
k = αn

k + µ

(

σ2
k

‖αnΣ‖
−

αnΣ2(αn)T

‖αnΣ‖‖αn‖2

)

αn
k . (38)

i.e.

αn+1
k =

(

1 + µ

(

σ2
k

‖αnΣ‖
−

‖αnΣ‖

‖αn‖2

))

αn
k . (39)

Let σj be the diagonal elements of Σi, which we will assumed

are ordered σj ≥ σk whenever j < k. For each cluster,

the algorithm produces a cluster centre di and cluster weight

vectors s
T
i such that Xi ≈ dis

T
i , where di ∝ Xisi/(s

T
i si). In

the svd basis, this can be expressed as s
T
i = αVT

i such that

di = UiΣiα
T /(ααT) and Xi ≈ UiΣiα

T /(ααT)αVT
i . That

is, α is the representation of the cluster weights sTi in the right

singular vector basis Vi. Also, let αj be the jth element of

α. We then have the following important result

Theorem 9. Assume there is an iteration N , such that the

cluster assignment stays fixed for all iterations n > N . Assume

that at iteration N + 1 the vectors αN+1 are such that the

element αN+1
imax

6= 0. Let I be the index set of the largest

singular values, that is, σImax
> σj whenever imax ∈ I

and j /∈ I. The algorithm then converges to a representation

with
∑

i∈I αi 6= 0 and αj = 0 for all j /∈ I. In other

words, if the algorithm reaches an iteration after which cluster

assignment no longer changes, and if at that iteration, the

cluster weight vector s
T
i is not orthogonal to the subspace

spanned by the right singular vectors of the feature matrix Xi

associated with the largest singular values, then the weight

vector s
T
i will converge to a vector that lies in this subspace.

In particular, if the largest singular value is unique, then the

algorithm converges to a vector collinear to the associated

singular vector with αimax
= σimax

.

Proof: Let us first recall that, due to normalisation of

di and s
T
i , we have

‖αΣ‖
‖α‖2 = 1. Thus, the update of the kth

element in vector α

αn+1
k =

(

1− µ
‖αnΣ‖

‖αn‖2
+ µ

σ2
k

‖αnΣ‖

)

αn
k (40)

simplifies to

αn+1
k =

(

1− µ+ µ
σ2
k

‖αnΣ‖

)

αn
k (41)

Without loss of generality assume that αn
k > 0 (Note that

the update does not change the sign of αk so we can repeat

the same argument for negative αk. Note however (see also

below) that αn
k = 0 is not allowed as αk will then remain

constant.). Let us use the shorthand ck =
(

1− µ+ µ
σ2
k

‖αnΣ‖

)

.

Note that 0 < µ ≤ 1 implies that ck is positive. Looking at

the normalised update we then have

(αn+1
k)2

‖αn+1
k ‖2

=
c2k

∑

i c
2
i (α

n
i)

2
(αn

k)
2, (42)

which can be rewritten as

(αn+1
k)2

‖αn+1
k ‖2

=
c2k

∑

i λ
nc2i

(αn
k)

2

‖αn‖2
, (43)

where λi = (αn
i)

2/‖αn‖2, so that
∑

i λic
2
i is a convex

combination of the positive values c2i (i.e.
∑

i λi = 1, λi ≥ 0).

We have thus shown that, for all i for which c2i >
∑

i λic
2
i , the

normalised αi increase (i.e.
c2k∑

i
λnc2

i

> 1), whilst for those

c2i <
∑

i λic
2
i , we have a relative decrease. Furthermore,

if all ai 6= 0, then the largest relative increase is for the

αi associated with the largest singular values (as for those

elements c2i is maximal and as the maximum value of a set of

positive numbers must be larger than any convex combination

of the elements).

If we write c̃ni =
c2k∑

i
λnc2

i

, then we have the recursion

(αn+1
k)2

‖αn+1
k ‖2

= c̃ni
(αn

k)
2

‖αn‖2
=

n
∏

N=0

c̃Nk
(α0

k)
2

‖α0‖2
, (44)

Assume the singular values σi are ordered such that σ1 ≥
σ2 ≥ · · · ≥ σM . This implies the same ordering on the cni ,

i.e. cn1 ≥ cn2 ≥ · · · ≥ cnM for all n.

Note that
(αn+1

k
)2

‖αn+1‖2 ≤ 1 and thus, the sequences
(αn+1

k
)2

‖αn+1‖2 are

bounded. Furthermore, for those k associated with the largest

singular values, the sequence is increasing, as for those k

c̃nk ≥ 1. This implies that for those k, the sequence
(αn+1

k
)2

‖αn+1‖2

converges.

If α0
k 6= 0, then for µ < 1 c̃nk 6= 0. Alternatively, for µ = 1,

if there are singular values that are zero (i.e. σm = 0), then

αn
m = 0 for all n > 1. In this case, we apply the following

argument only to those αi for which σi 6= 0. Thus, without

loss of generality assume that αn
k 6= 0 and that c̃nk 6= 0. In

this case, for all i for which σi is maximal, 1 ≥ (αn
i)

2

‖αn‖2 ≥
(α0

i)
2

‖α0‖2 for all n. Convergence of
(αn

i)
2

‖αn‖2 then also implies that

the sequences c̃ni converge to 1. (Because limn→∞
(αn

i)
2

‖αn‖2 =

limn→∞ c̃ni
(αn

i)
2

‖αn‖2 = (limn→∞ c̃ni)(limn→∞
(αn

i)
2

‖αn‖2).) Thus in

the limit, c̃n1 =
(cn1)

2

∑
i
λn
i
(cn

i
)2 → 1. However, as

∑

i λ
n
i = 1, we

also have the requirement that

c̃n1 =
(cn1)

2

∑

i λ
n
i (c

n
i)

2
=

1
∑

i λ
n
i (c

n
i /c

n
1)

2
>

1
∑

i λ
n
i

= 1 (45)

unless λn
i = 0 for all cni < cn1 . Thus convergence of c̃ni to

zero implies convergence of λn
i to zero for all i other than

those i associated with the largest singular values. But this

implies that λn
i = (αn

i)
2/‖αn‖2 → 0 for those i which in

turn implies that
∑

k(α
n
k)

2/‖αn‖2 → 1, where we sum over

those k associated with the largest singular values.

H. Case 2: infinite changes in sparsity pattern

By Lemma 6 there is an N such that ‖S̄ni
− S̄ni+1/2‖ ≤ ǫ

for all ǫ > 0. Let ni > N be an infinite sequence of indices

such that S̄ni
has a different support to S̄ni+1/2. Let I be the

set of indices of columns in S that have elements that change

infinitely often from zero to a non-zero value and vice versa.

As the difference ‖S̄ni
− S̄ni+1/2‖

2
F → 0, this implies that

‖SI‖
2
F → 0, where SI is the sub matrix made of columns of

S indexed by I. Thus, SI → 0, whilst the columns in S̄ not

indexed by I, say S̄Ic will converge to right singular vectors

of the feature vector matrix using arguments that mirror those

described above.

VERSION: NOVEMBER 30, 2015 8

I. Case 3: infinitely many empty clusters

Assume there is an infinite sequence of S̄ni
for which

S̄ni
has empty clusters. We know that after empty cluster re-

initialisation and normalisation,

‖X−Dni+1S̄ni+1‖F

≤ ‖X(I− S̄
T
ni+1/2(S̄ni+1/2S̄

T
ni+1/2)

−1
S̄ni+1/2)‖F

≤ ‖X‖F (46)

(where we set the inverse of the zero element in

S̄ni+1/2S̄
T
ni+1/2) to zero) so that there is an infinite se-

quence ‖X −Dni+1S̄ni+1‖F that is bounded. The Bolzano-

Weierstrass theorem then implies the existence of an infinite

convergent subsequence. ‖X⋆ − Dñi
S̄ñi

‖F → 0, where the

S̄ñi−1 have empty clusters.

As our arguments are independent of exactly which of the

columns in X we use to re-initialise the empty cluster (as

long as we don’t choose one from a cluster with a single

element), we assume that w.l.g. we take that element for which

‖xi − disj‖ is maximal. But the fact that ‖X − DnS̄n‖F
converges for all n then implies that ‖xi − disj‖ → 0, that

is, ‖X−DnS̄n‖F → 0.

IV. NUMERICAL RESULTS

The performance of our new approach was evaluated using

artificial data as well as real data-sets. We evaluated our results

using a selection of popular metrics (maximum cluster overlap

(as in [9]), Dice similarity (DICE) [24], Normalised Mutual

Information (NMI) [25] and Adjusted Rand Index (RI) [26]).

All of these measure show qualitatively similar results. We

thus report most of our results in terms of normalised mutual

information. Only the results on brain parcellation will be

reported in terms of Dice similarity as this is the more common

measure in the brain imaging literature.

Dice’s similarity is defined as DICE(A,B) = 2|A
⋂

B|
|A|+|B| .

The notation |A| refers to the number of elements in set A.

Dice’s similarity only measure similarity between two clusters

and to compute a measure that can compare entire clusterings,

we 1) calculate the similarity between any pair of clusters

taken from the two clusterings 2) permute this similarity

matrix greedily, so that each entry along the diagonal is no

smaller than any other entry in the sub-matrix formed from

the elements that are below and to the right of that diagonal

element, 3) average over the matrix diagonal.

Normalised Mutual Information (NMI) compares cluster-

ings directly. Let C1 be a partitioning of a set of N features into

k1 distinct clusters and C2 a partitioning of the same features

into k2 clusters. Let n1
i be the number of features in cluster i

in clustering 1 and n2
j the number of features in cluster j in

clustering 2. Similarly, let ni,j be the number of features that

are both, in cluster i in partition 1 and in cluster j in partition

2. The NMI is then

NMI(C1, C2) =

∑k1

i=1

∑k2

j=1 ni,j log
(

Nni,j

n1
i
n2
j

)

√

(

∑k1

i=1 n
1
i log

n1
i

N

)(

∑k1

i=1 n
2
j log

n2
j

N

)

(47)

A. Comparison of Different Versions of Our Approach using

a Synthetic Data Set

The synthetic data sets in the first set of test problems were

generated by randomly generating matrices D
⋆ and binary S

⋆

from which the observations were constructed as X = D
⋆
S
⋆+

E, where E is an i.i.d. Gaussian noise term. D was a 1000 by

10 matrix (i.e. we generated 10 cluster centres) and S was of

dimension 10 by 100 (that is, we generated 100 observations).

We varied the standard deviation of E from 0.01, 0.1, 1 and

10 and contrasted two different regimes, one, in which the

average number of features in each cluster were identical and

one in which one cluster had 91 features and all other clusters

had a single feature.

We compared our method with several variations and av-

eraged the results over 1000 random problem instances. The

results are shown in Tables I and II, where, for each noise level,

we have highlighted the best performing algorithm version

in bold. Results are here reported in terms of NMI, as the

other measures gave qualitatively similar results (see also the

comparison of performance metric in the next subsection).

TABLE I
PERFORMANCE WITH EQUALLY SIZED CLUSTERS IN TERMS OF NMI.

Update of S: S+ µDT (X−DS) (DTD)−1DTX

normalisation:

std 0.01, 0.1, 1, 2 0.01, 0.1, 1, 2

D 0.951, 0.939, 0.841, 0.564 0.984, 0.965, 0.861, 0.577
S 0.948, 0.931, 0.841, 0.587 0.989, 0.976, 0.872, 0.584
NONE 0.951, 0.936, 0.842, 0.571 0.982, 0.967, 0.866, 0.584

TABLE II
PERFORMANCE WITH VARYING CLUSTER SIZES IN TERMS OF NMI.

Update of S: S+ µDT (X−DS) (DTD)−1DTX

normalisation:

std 0.01, 0.1, 1, 2 0.01, 0.1, 1, 2

D 0.445, 0.388, 0.329, 0.270 0.876, 0.730, 0.408, 0.260
S 0.491, 0.367, 0.325, 0.266 0.834, 0.665, 0.308, 0.252
NONE 0.616, 0.378, 0.334, 0.273 0.57, 0.679, 0.343, 0.256

From these results we see that, apart from the condition with

very high noise, an update of S based on the pseudo-inverse

of D is advantageous. If cluster size is roughly equal between

clusters, then a pre-thresholding normalisation of the rows of

S seems to perform better, whilst for clusters of varying size,

normalisation of columns of D works best. Interestingly, if

we use the gradient type update S+ µDT (X−DS), then an

algorithm without column normalisation seems to be the best

choice in both conditions.

B. Comparison of Different Algorithms on Synthetic Data Sets

Synthetic data sets were again generated by randomly

generating matrices D⋆ and binary S
⋆ and i.i.d. Gaussian noise

E. Three different datasets were generated simulating different

clustering scenarios:

1) Dataset 1: D ∈ R
M×K was generated with i.i.d

Gaussian zero-mean unit-variance entries. S ∈ R
K×N

was generated with each column set to zero apart from

one entry whose location was chosen at random and

VERSION: NOVEMBER 30, 2015 9

whose value was set to 1. For this data-set, all clusters

had thus roughly the same number of observations per

cluster.

2) Dataset 2: As dataset 1, but with S generated so that

each cluster had different numbers of observations xi.

We here used an extreme example, where there were

3 clusters with only 1 observation, 2 clusters with 3

observations, and 1 cluster each with 6, 10, 14, 24 and

36 observations respectively.

3) Dataset 3: As dataset 2, but with cluster centres in D

each scaled by a random scaling drawn uniformly from

0 to 1. Thus each cluster did have a different level of

noise compared to the size of the cluster centre (or, after

normalisation of each xi each cluster had a different

amount of within cluster variance).

To each of these datasets, four different levels of noise were

added with the entries in E having a variance of 0 (no noise,

i.e. the xi are cluster centres), a variance of 1, a variance

of 4 and a variance of 9 (See figures (2) to (4) for average

SNR values for each condition). Noise was added before

normalisation of the observations and results are averaged over

500 different realisations of each condition.

The results for the three datasets are shown in Figures 2, 3

and 4, where we compare our method to a range of alternative

approaches. The k-means and spherical k-means are standard

implementations of the algorithms, where empty clusters are

re-initialised with randomly selected feature vectors. Semi-

NMF clustering uses the semi-Nonnegative Matrix Factorisa-

tion method of [9], followed by a hard cluster assignment

based on the magnitude of the entries in the Nonnegative

matrix in the matrix decomposition. The next two approaches,

CLUTO [27] and gmeans [28], are advanced, bespoke spher-

ical clustering algorithms developed for text clustering. We

used CLUTO’s vcluster command with default settings and

gmeans with the spherical clustering flag. All algorithms were

initialised with the same initial cluster assignment. When

analysing the results, the following should be kept in mind.

CLUTO uses a ”randomized incremental optimization algo-

rithm” [27] and by default compares 10 solutions to report the

result with the minimal cost, whilst gmeans uses an additional

refinement step that uses a local search strategy to further

refine an initial spherical k-means clustering result. Both of

these refinement approaches, Monte Carlo search and local

refinement, are potential strategies that might be combined

with our approach also. This will increase computational

complexity but is likely to increase performance in the same

way in which these strategies are able to increase performance

of, for example, spherical k-means.

It is clear that for the experiments reported here, our

approach outperforms all other reproaches over all datasets and

noise conditions in terms of computation time and outperforms

most other methods in terms of clustering performance. Only

CLUTO, gmeans and K-EVD perform better in some of the

experiments, though they are also much slower. For CLUTO

and gmeans some of the difference in speed are due to file i/o

overhead required by the standalone algorithms, but this does

not explain all of the difference in speed as CLUTO uses ten

independent cluster runs and gmeans adds an additional local

Inf 0 −14 −22
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

N
o
rm

al
is

ed
 M

u
tu

al
 I

n
fo

rm
at

io
n

Average algorithm performance

Inf 0 −14 −22
10

−3

10
−2

10
−1

10
0

10
1

SNR

ti
m

e

Average algorithm run−time

Our approach

spherical k−means

k−means

semi−NMF

CLUTO

gmeans

K−EVD

Fig. 2. Performance for artificial dataset 1 and for 4 noise levels. Performance
is shown in terms of NMF (left) and computation time (right).

Inf 7 −7 −15
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

N
o
rm

al
is

ed
 M

u
tu

al
 I

n
fo

rm
at

io
n

Average algorithm performance

Inf 7 −7 −15
10

−3

10
−2

10
−1

10
0

10
1

SNR

ti
m

e

Average algorithm run−time

Our approach

spherical k−means

k−means

semi−NMF

CLUTO

gmeans

K−EVD

Fig. 3. Performance for artificial dataset 2 and for 4 noise levels. Performance
is shown in terms of NMF (left) and computation time (right).

Inf 0 −17 −30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

N
o
rm

al
is

ed
 M

u
tu

al
 I

n
fo

rm
at

io
n

Average algorithm performance

Inf 0 −17 −30
10

−3

10
−2

10
−1

10
0

10
1

SNR

ti
m

e

Average algorithm run−time

Our approach

spherical k−means

k−means

semi−NMF

CLUTO

gmeans

K−EVD

Fig. 4. Performance of our algorithm, spherical k-means, k-means, semi-
NMF, CLUTO, gleans and K-EVD clustering for artificial dataset 3 and for 4
noise levels. Performance is shown in terms of NMF (left) and computation
time (right).

search procedure. K-EVD only outperforms our approach for

two noise conditions in experiment one, but this comes at the

cost of substantially increase computation cost (two orders of

magnitude), due to the repeated requirement to estimate the

singular vector associated with the largest singular value. Other

observations worth pointing out include

1) The semi-NMF algorithm sometimes performs better

than k-means and sometimes it performs worse.

2) Spherical k-means performs better than non-spherical k-

means run on normalised vectors but the difference is

small.

3) Unsurprisingly, increasing the noise clearly reduces per-

VERSION: NOVEMBER 30, 2015 10

formance.

4) There is a clear performance decrease when going from

dataset 1 to dataset 2, though going from dataset 2 to

dataset 3 only reduces performance slightly.

We also tried two EM algorithms, one based on a Gaussian

mixture model and one based on a von Mises-Fisher Mixture

model (using the code on http://suvrit.de/work/progs/movmf/),

but these methods performed poorly2 and we do not show the

results here.

C. Synthetic functional Brain Data

We developed the approach for a specific problem in brain

imaging and the next artificial data sets simulate this. We

are interested in the clustering of a spatial data-set, where

each spatial location has an associated time-series (the feature

vector). The aim is then to cluster the time-series or features

to recover the spatial clusters. To simulate such a data-

set, we generated a spatial grid (64 × 64) and split this

grid into 40 spatially connected regions. This was done by

randomly selecting 40 cluster seed locations on the grid. The

seeds are then grown by adding one randomly chosen spatial

neighbourhood point to one randomly chosen cluster. This is

repeated until the entire spatial grid is covered. An example

can be seen in the top left of Figure 5. Whilst these clusters

have clear spatial structure, this was not used in the clustering

itself, where features were grouped based on the similarity of

their time-series (or feature vector).

For each cluster, these feature vectors were drawn from dif-

ferent distributions. We thus generated three different datasets.

1) Features within each cluster were generated from an

i.i.d. Gaussian, with a mean that was itself drawn from

an i.i.d. zero-mean, unit variance Gaussian. The within

cluster variance was varied between 1 and 3, producing

SNR values of 0dB, -3 dB and -9dB respectively. This

is intended as a very rough simulation of a functional

Magnetic Resonance Imaging dataset (see below).

2) The data was generated as in 1) above, but additional

spatial smoothing was applied to simulate spatial corre-

lation between features as observed in real brain imaging

data. Smoothing was achieved by averaging spatially

close feature vectors using a Gaussian smoothing kernel.

The amount of smoothing varied within each data-set

and the Gaussian kernel had a standard deviation that

varied from 0.2 to 5 pixels.

3) Cluster centres were generated from a Beta distribution

with both parameters set to 2. For each of the clusters,

observations were then drawn from a Beta distribution

whose parameters were calculated such that the distri-

bution had a variance of 0.2 and a mean equal to the

cluster’s mean. Each observation xi thus had entries

between 0 and 1. This data is a rough approximation

simulating brain connectivity data as estimated using

2This was mainly due to the methods difficulty in estimating within-cluster
variance, a problem that could potentially be overcome with a full Bayesian
model, though this would further increase the computational burden for this
rather slow approach.

diffusion Magnetic Resonance Imaging techniques (see

below).

We again evaluate the cluster assignment using Normalised

Mutual Information (the other measures again show similar

differences between approaches). The results for the three

different datasets are shown in figure 6, with a visual repre-

sentation of the spatial clusters and their estimates for the data

set (1) with -3dB of SNR shown in figure 5. Figure 6 plots the

Normalised Mutual Information agains computation time (on

a logarithmic scale). We here compared our approach to semi-

NMF, CLUTO, gmeans and K-EVD. In general, our approach

outperforms the other approaches, especially for moderate

to low noise. Only the -9dB SNR condition does not show

our method as a clear winner, with the gmeans algorithms

performing slightly better and working faster.

We also run our method on the same datasets using a

recursive scheme in which we changed the number of clusters

to optimise the Akaike information Criterion (AIC). This

method was able to correctly estimate the number of clusters

(±2) and AIC optimal clusters were found to have a NMI

similarity to the original clusters comparable to those observed

when specifying the correct number of clusters.

Original Our approach semi NMF

CLUTO gmeans K−EVD

Fig. 5. Example of spatial distribution of feature vectors (top left) and
estimates calculated with different methods.

D. Application to brain parcellation

Our third experiment evaluates our new clustering method

on actual brain imaging data. Neuroscientists are interested in

a detailed understanding of connections in the human brain and

modern Magnetic Resonance Imaging (MRI) techniques offer

two complementary methods to study these brain connections

[29], [30]. Diffusion MRI [30] methods allow estimates of

major fibre bundles to be computed and, by tracking individual

fibres, the connection between distant brain parts can be

studied (so called structural connectivity). An alternative view

of brain connectivity is offered by functional MRI studies. For

example, by measuring blood oxygenation changes in the brain

during rest, statistical relationships between the activation of

different brain regions can be estimated [29]. If brain activation

in distinct regions shows statistical dependancy, then these

regions must exchange information and must therefore be

connected in some way (so called functional connectivity).

MRI studies often measure brain properties on three dimen-

sional spatial grids of 2 to 4 millimetres and, for the average

VERSION: NOVEMBER 30, 2015 11

10
0

0.6

0.8

1

N
o

rm
al

is
ed

 M
u

tu
al

In
fo

rm
at

io
n

Computation time

Gaussian features (SNR=0dB)

10
0

0.2

0.4

0.6

0.8

1

Computation time

Gaussian features (SNR=−3dB)

10
0

0

0.2

0.4

N
o

rm
al

is
ed

 M
u

tu
al

In
fo

rm
at

io
n

Computation time

Gaussian features (SNR=−9dB)

10
0

0.2

0.4

0.6

0.8

1

Computation time

Beta features

10
0

0.4

0.5

0.6

Computation time

Gaussian features with
spatial smoothing (SNR=0dB)

Our approach

semi−NNMF

CLUTO

gmeans

K−EVD

Fig. 6. Computation time vs. Normalised Mutual Information between original and estimated spatial cluster assignments (using Gaussian distributed feature
vectors with 3 different levels of variance, using Gaussian distributed feature vectors and spatial Gaussian smoothing with spatially varying variance and
additional noise leading to an SNR of 0 and using Beta distributed feature vectors).

human brain, this leads to very high dimensional problems,

where the connection between hundreds of thousands of brain

areas has to be estimated. This cannot be done reliably and a

fundamental first step is the decomposition of the brain into a

smaller set of brain areas. Whilst regions can be defined based

on neural anatomy found in post-mortem studies, or through

the agglomeration of large brain imaging studies that use

specific cognitive tasks to study a specific brain region, there

are many reasons (such as the large variability in functional

brain anatomy between people) why these partitions are not

ideal substrates on which to base connectivity analysis. There

is thus now an extensive literature on the development of

algorithms to partition the human brain based on functional

MRI data acquired during rest [31], [32], [33], [34], [35], [36],

[37], [38], [39]. We test our algorithm on the same problem.

We used fMRI and structural MRI data from 66 subjects,

collected during the initial stages of phase 2 of the human

connectome project (http://humanconnectome.org/). The data

had 2mm isotropic spatial resolution and a temporal resolution

of 1.4 seconds. The data was processed using a preliminary

version of the Human Connectome Project’s structural and

functional minimal preprocessing pipelines, final versions to

be published separately (Glasser et al. unpublished). Briefly,

this involved brain extraction, registration of different MRI

modalities, bias field correction, registration to a standard brain

template and cortical surface modelling. Functional data were

motion corrected, distortion corrected, mean normalized and

resampled to the cortical surface. Standard surface smoothing

and temporal filtering was applied and ICA based noise

reduction used.

For each of the 66 subjects, the dataset consisted of a

set of approximately 64000 functional MRI time series, each

with approximately 1000 temporal samples each. We split the

dataset into two, with 33 subjects each. For each of these

splits, we combined the data across subjects by estimating the

1000 left singular vectors of the spatio-temporal data matrix

(concatenated in the temporal direction over the 33 subjects).

We thus produced two sets of feature vectors, where each

vector had a length of 1000 and was associated with one of

the vertex locations on the cortical grid representation.

As there is no ground truth available for this experiment, we

estimate the performance based on the ability of an algorithm

to reliably identify clusters in each of the two split datasets.

The results are compared visually in figure 7, where we show

an inflated representation of the left and right cortical surface

and the estimated clusters from the two data-sets (left vs.

right). Grey levels were matched to ease visual comparison.

A numerical evaluation in terms of the Dice3 similarity

between the clusters derived form each of the two datasets is

shown in Figure 8. The results obtained for different number

of clusters and different methods is shown. Before calculating

dice similarity, we split all clusters we estimated into spatially

contiguous regions and then discarded very small clusters

(we here removed clusters that had less than 20 features,

though the flavour of the results does not vary much if we

use another threshold). Also shown are results directional k-

means and a recently developed region growing based method

that explicitly enforces clusters to be spatially connected [39].

We also tried the normalised cuts spectral clustering method

of [40] on this problem. As it is not feasible to calculate

and save the entire similarity matrix for all features, we here

generated sparse versions by thresholding the correlation at

0.5 and 0.4. However, the results did not compare well to the

other methods tested and are thus omitted.

We can see that our method performs much better than

the region growing approach and better than the semi-NMF

3We used dice similarity here, as this is a common measure used in the
field

VERSION: NOVEMBER 30, 2015 12

Fig. 7. Repeatability of clustering of the cortical surface based on resting-
state fMRI data. Clusters derived from two different groups of 33 subjects
each are shown on the left and right on an inflated rendering of the cortical
surface. Right hemisphere (top) and left hemisphere (bottom).

50 100 150 200 250 300 350 400
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Our approach

semi−NMF

k−means

region growing

Our approach

semi-NMF

k-means

region growing

D
IC

E
 s

im
il
a
ri

ty

Number of clusters

Fig. 8. Comparison of four different approaches for clustering of the cortical
surface based on resting-sate fMRI data. Repeatability measured in terms of
average Dice similarity between cluster regions plotted for different numbers
of clusters. For each approach, the clusters were derived from two different
groups of 33 subjects. Before the calculation of Dice similarity, clusters were
split into spatially homogeneous regions and small clusters were removed.

algorithm. To interpret these results, it must be remembered

that the region growing algorithm enforces clusters to be

spatially connected. This is known to introduce additional

biases into the estimated clusters, which in turn generally

means that clusters are more repeatable. Our approach does

not include such an additional spatial constraint and is thus

not affected by the associated bias and is thus a more reliable

indicator of intrinsic data-structure.

E. Performance on standard data sets

We conclude this section with an analysis of more general

data-sets used elsewhere in the clustering literature. In partic-

ular, we used the following 3 datasets:

• Data set 1 WAVE: This data-set, generated for [41, p.

49-55, 169] can be retrieved from

http://archive.ics.uci.edu/ml/datasets/Waveform+Database

+Generator+(Version+1)). The data-set consisted of 5000

features each with 21 elements. Features were form 3

different classes and contained gaussian noise.

• Data set 2a,b NEWS: is a text analysis data-set consisting

of bag of words feature vectors, generated originally

for [42]. We used the version of the database in which

there are 20 Newsgroups sorted by date (retrieved from

http://qwone.com/ jason/20Newsgroups/). We used sub-

sets of this data with 500 features of length 53975 and

clustered these into the 20 classes. Different subsets

were used with version (a) of the dataset generated by

randomly taking 25 features from each newsgroup whilst

dataset (b) was generated by randomly taking subsets

of varying size from each news group (the number of

features varied exponentially between 1 and 102).

• Data set 3 MXM: was a subset of the bag of

word features generated for [43], (retrieved from

http://labrosa.ee.columbia.edu/millionsong/musixmatch).

This dataset contains bag of words representations for

the lyrics from a music database. We extracted a subset

of the BoW features, corresponding to music from

6 different musical genres (techno, rock, pop, punk,

country and hip hop). There were 5000 BoW features

in this data-set of length 12921. We used these features

to see if we could use a blind clustering approach to

distinguish the different musical genres based on the

lyrics alone.

The result of the analysis of the three data-sets are shown in

table III, measured using Normalised Mutual Information and

contrasting our approach to semi-NMF and spherical k-means.

Whilst overall performance on these data-sets is low (they are

difficult data-sets to cluster), it is evident that our approach

outperforms the other approaches.

TABLE III
COMPARISION OF DIFFERENT METHODS ON DIFFERENT DATA SETS

MEASURED IN NMI

WAVE NEWS(a) NEWS(b) MXM

Our approach 0.3676 0.1864 0.1447 0.0545

semi-NMF 0.3466 0.1148 0.0947 0.0489
spherical k-means 0.2801 0.1636 0.1253 0.0507

V. CONCLUSIONS

We have here proposed a simple and fast algorithm that

can efficiently cluster feature vectors based on their direction.

The approach is based on matrix factorisation ideas and these

allowed us to design an algorithm that is applicable to rela-

tively large, non-sparse clustering problems where hundreds

of thousands of feature vectors are clustered into hundreds of

clusters, even in settings where features are not sparse. Our

method was shown to outperform a wide range of competing

techniques. Only three other algorithms were found to some-

times perform better, but these were also much slower. Two

of these approaches used either Monte Carlo search strategies

or additional local search post-processing, two approaches

which are likely to also improve the performance of our

method, though at similar computational costs. There remain

several aspect of the method that require further investigation.

Of theoretical interest are conditions on the original cluster

features that would guarantee the algorithm to cluster the

features correctly. Of interest to our brain imaging work is

another extension that uses of additional constraints in cluster

assignment. Here additional spatial neighbourhood constraints

VERSION: NOVEMBER 30, 2015 13

might be of particular relevance. Whilst we tried to evaluate

our approach on a large set of clustering problems from

different application domains, there remain many application

areas that we did not evaluate. Whether or not our approach

is beneficial in these settings remains to be seen.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

[2] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Proceedings of 5th Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley, CA, Jun. 1967, pp.
281–297.

[3] R. Arora, M. R. Gupta, A. Kapila, and M. Fazel, “Similarity-based
clustering by left-stochastic matrix factorization,” Journal of Machine

Learning Research, vol. 14, pp. 1715–1746, 2013.

[4] I. S. Dhillon and D. S. Modha, “Concept decompositions for large sparse
text data using clustering,” Machine Learning, vol. 42, no. 1, pp. 143–
175, 2001.

[5] S. Zhong, “Efficient online spherical k-means clustering,” in Proc. IEEE

Int. Joint Conf. Neural Networks (IJCNN 2005), Montreal, QC, Canada,
Aug. 2005, pp. 3180–3185.

[6] K. Hornik, I. Feinerer, M. Kober, and C. Buchta, “Spherical k-means
clustering,” Journal of Statistical Software, vol. 50, no. 10, pp. 1–22,
2012.

[7] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra, “Clustering on the
unit hypersphere using von Mises-Fisher distributions,” The Journal of

Machine Learning Research, vol. 6, pp. 1345–1382, Jun. 2005.

[8] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 35, pp. 2765–2781, Nov. 2013.

[9] C. Ding, L. T., and M. Jordan, “Convex and semi-nonnegative matrix
factorizations,” IEEE Trans. on Pattern Analysis and Machine Intelli-

gence, vol. 32, pp. 45–55, Jan. 2010.

[10] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons, “Document
clustering using nonnegative matrix factorization,” Information Process-

ing and Management: an International Journal archive, vol. 42, no. 2,
pp. 373–386, 2006.

[11] C. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative
matrix factorization and spectral clustering,” in Proc. SIAM Data Mining

Conf., Newport Beach, CA, Apr. 2005, pp. 606–610.

[12] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,”
Environmetrics, vol. 5, no. 2, pp. 111–126, 1994.

[13] C. Li and C. Ding, “The relationships among various nonnegative
matrix factorization methods for clustering,” in Proceedings of the sixth

International Conference on Data Mining, Hong Kong, China, Dec.
2006, pp. 362–371.

[14] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-

ysis. New York: John Wiley & Sons, 2001.

[15] C. Beckmann and S. Smith, “Probabilistic independent component
analysis for functional magnetic resonance imaging,” IEEE Trans. on

Medical Imaging, vol. 23, pp. 137–152, Feb. 2004.

[16] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE

Trans. on Signal Processing, vol. 54, pp. 4311–4322, Nov. 2006.

[17] Z. He and A. Cichocki, “K-EVD clustering and its applications to sparse
component analysis,” in Proceedings of the 6th international conference

on Independent component analysis and signal separation, Charleston,
CS, Mar. 2006, pp. 90–97.

[18] P. Georgiev, F. Theis, and A. Ralescu, “Identifiability conditions and sub-
space clustering in sparse BSS,” in Proceedings of the 7th international

conference on Independent component analysis and signal separation,
London, UK, Sep. 2007, pp. 357–364.

[19] C. Bouveyron and C. Brunet-Saumard, “Model-based clustering of high-
dimensional data: A review,” Computational Statistics & Data Analysis,
vol. 71, pp. 52–78, Mar. 2014.

[20] T. Blumensath and M. Davies, “Iterative hard thresholding for com-
pressed sensing,” Applied and Computational Harmonic Analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[21] ——, “Iterative hard thresholding for compressed sensing,” IEEE Jour-

nal of Selected Topics in Signal Processing, vol. 4, pp. 298 – 309, Feb.
2010.

[22] ——, “Iterative thresholding for sparse approximations,” Journal of

Fourier Analysis and Applications, vol. 14, pp. 629–657, 2008.
[23] G. W. Stewart, “On the perturbation of pseudo-inverses, projections and

linear least squares problems,” SIAM Review, vol. 19, pp. 634–662, 1977.
[24] L. R. Dice, “Measures of the amount of ecologic association between

species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.
[25] A. Strehl and J. Ghosh, “Cluster ensembles - a knowledge reuse frame-

work for combining multiple partitions,” Journal of Machine Learning

Research, vol. 3, pp. 583–617, Dec. 2002.
[26] L. Hubert and P. Arabic, “Comparing partitions,” Journal of Classifica-

tion, vol. 2, pp. 193–218, 1985.
[27] G. Karypis, “Cluto: A clustering toolkit,” Department of Computer

Science, University of Minnesota, Tech. Rep. 02-017, 2003. [Online].
Available: http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/manual.pdf

[28] I. S. Dhillon, Y. Guan, and J. Kogan, “Iterative clustering of high
dimensional text data augmented by local search,” in Proceedings of the

2002 IEEE International Conference on Data Mining, Maebashi City,
Japan, Dec. 2002.

[29] B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional
connectivity in the motor cortex of resting human brain using echo-
planar mri,” Magn Reson Med, vol. 34, no. 4, pp. 537–541, 1995.

[30] J. C. Klein, T. E. Behrens, M. D. Robson, C. Mackay, D. J. Higham,
and H. Johansen-Berg, “Connectivity-based parcellation of human cortex
using diffusion mri: Establishing reproducibility, validity and observer
independence in ba 44/45 and sma/pre-sma,” Neuroimage, vol. 34, no. 1,
pp. 204–211, 2007.

[31] J. A. Mumford, S. Horvath, M. C. Oldham, P. Langfelder, D. H.
Geschwind, and R. A. Poldrack, “Detecting network modules in fmri
time series: a weighted network analysis approach,” Neuroimage, vol. 52,
no. 4, pp. 1465–1476, 2010.

[32] R. C. Craddock, G. A. James, P. E. Holtzheimer, X. P. Hu, and H. S.
Mayberg, “A whole brain fmri atlas generated via spatially constrained
spectral clustering,” Hum. Brain Mapp., vol. 33, no. 8, pp. 1914–1928,
2012.

[33] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A.
Church, A. C. Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar, and
S. E. Petersen, “Functional network organization of the human brain,”
Neuron, vol. 72, pp. 665–678, 2011.

[34] J. Zhang, X. Tuo, Z. Yuan, W. Liao, and H. Chen, “Analysis of fmri
data using an integrated principal component analysis and supervised
affinity propagation clustering approach,” IEEE Trans. on biomedical

engineering, vol. 58, pp. 3184–3196, Nov. 2011.
[35] D. Lashkari, E. Vul, N. Kanwisher, and P. Golland, “Discovering

structure in the space of fmri selectivity profiles,” NeuroImage, vol. 50,
pp. 1085–1098, 2010.

[36] P. Bellec, P. Rosa-Neto, O. C. Lyttelton, H. Benali, and A. C. Evans,
“Multi-level bootstrap analysis of stable clusters in resting-state fmri,”
NeuroImage, vol. 51, pp. 1126–2239, 2010.

[37] X. Shen, X. Papademetris, and R. T. Constable, “Graph-theory based
parcellation of functional subunits in the brain from resting-state fmri
data,” NeuroImage, vol. 50, pp. 1027–1035, 2010.

[38] B. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari,
M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zllei, J. R. Polimeni,
B. Fischl, H. Liu, and R. L. Buckner, “The organization of the human
cerebral cortex estimated by intrinsic functional connectivity,” J. Neu-

rophysiol., vol. 106, no. 3, pp. 1125–1165, 2011.
[39] T. Blumensath, S. Jbabdi, M. F. Glasser, D. C. Van Essen, K. Ugurbild,

T. E. J. Behrens, and S. M. Smith, “Spatially constrained hierarchical
parcellation of the brain with resting-state fmri,” NeuroImage, vol. 76,
pp. 313–324, 2013.

[40] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Trans. on Pattern Analysis and Machine Learning, vol. 22, pp. 888–905,
Aug. 2000.

[41] L. Breiman, J. H. Friedman, A. Olshen, and J. Stone, Classification and

Regression Trees. Boca Raton: Chapman and Hall/CRC, 1984.
[42] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings

of the Twelfth International Conference on Machine Learning, Kittilä,
Finland, Aug. 1995, pp. 331–339.

[43] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” in Proceedings of the 12th International Society

for Music Information Retrieval Conference (ISMIR 2011), Miami, FL,
Oct. 2011.

