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Directional Control Schemes for
Multivariate Categorical Processes

JIAN LI and FUGEE TSUNG
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

CHANGLIANG ZOU

Nankai University, Tianjin, China

We consider statistical process control of multivariate categorical processes and propose a Phase |l
log-linear directional control chart that exploits directional shift information and integrates the monitoring
of multivariate categorical processes into the unified framework of multivariate binomial and multivariate
multinomial distributions. We also suggest a diagnostic scheme for identifying the shift direction. Both the
control chart and the diagnostic approach are simple and easily computed. Numerical simulations and real
applications are presented to demonstrate their effectiveness.

Key Words: Contingency Table; EWMA; Generalized Likelihood-Ratio Test; Muitivariate Multinomial Dis-

tribution; Statistical Process Control.

Introduction

HE OVERALL quality of most modern processes is

best described in terms of multiple characteris-
tics. Multivariate statistical process control (SPC)
is applied in practical situations where several qual-
ity characteristics must be monitored simultaneously.
Much effort has been devoted to the monitoring
problem in settings where all the observed variables
are numerical and continuous. For instance, tensile
strength and diameter, which have been assumed to
follow a bivariate normal distribution, are two im-
portant quality characteristics of a textile fiber that
must be jointly controlled. Refer to Lowry and Mont-
gomery (1995) and Bersimis et al. (2007) for thor-
ough reviews of monitoring multivariate continuous
processes.
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In manufacturing and especially in service indus-
tries, however, it is increasingly common to have
quality characteristics that cannot be measured nu-
merically. Although obtaining their precise continu-
ous values may be expensive, unnecessary, or even
impossible, collecting some attribute data related to
them may be quite feasible. Such rough classification
levels do not require precise measurements. Exam-
ples include items on a production line of which sev-
eral quality characteristics are each evaluated as con-
forming or nonconforming according to predefined
specifications and multiple indexes in a service flow
that may be assessed as excellent, acceptable, or un-
acceptable. The characteristics all have two or more
attribute levels, so that the data are multivariate cat-
egorical. Note that this is similar to having multiple
factors in design of experiments (DOE), where each
factor has several specific levels. Here, for simplicity,
we use “factor” to designate a categorical character-
istic.

The p-chart and the mp-chart for binomial dis-
tributed variables, together with the c-chart and the
u-chart for Poisson processes, are typical statisti-
cal process control (SPC) tools used with univariate
categorical processes. To monitor multiple factors,
we may employ multiple univariate categorical con-
trol charts as a multichart (see Woodall and Ncube
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(1985)). However, this may be an unattractive ap-
proach for two reasons: First, it is difficult to deter-
mine the control limit to achieve a desired average
run length (ARL), which is defined as the average
number of samples until the control chart signals.
The control limits of the separate univariate charts
must be set such that each chart achieves a specific
individual in-control (IC) ARL, so that the overall IC
ARL of the multichart is the desired value. Determin-
ing these control limits is nontrivial even for the low-
dimensional case of a small number of categorical fac-
tors, let alone for a general multivariate categorical
distribution. This complexity also increases dramati-
cally when the marginal distributions of the categor-
ical factors are not identical, because the individual
charts have different run-length distributions. Also,
a multichart considers individual categorical factors
in parallel and therefore is unable to account for any
correlations among them. Naturally, it is desirable to
introduce multivariate categorical control charts that
can appropriately describe and exploit the relation-
ships among multiple categorical factors.

Woodall (1997) summarized many aspects of the
control charts for attribute data, but mostly consid-
ered univariate categorical charts. In the literature,
some efforts have been devoted to monitoring multi-
nomial and multiattribute processes. See Topalidou
and Psarakis (2009) for a good overview. Among
others, Patel (1973) suggested a x*-chart for multi-
variate binomial or multivariate Poisson populations,
which is based on the assumption that the joint dis-
tribution of the correlated binomial or Poisson vari-
ables can be approximated by a multivariate nor-
mal distribution given a sufficiently large sample size.
More recent developments include the Shewhart-type
mnp-chart proposed by Lu et al. (1998), which uses
the weighted sum of the number of nonconforming
units for each quality characteristic. There is also the
mp-chart designed by Chiu and Kuo (2008) for multi-
variate Poisson count data. However, as with Patel’s
x2-chart, these two charts can only deal with factors
having two levels. On the other hand, some meth-
ods focus on monitoring multinomial processes that
have only one factor having more than two levels,
such as the generalized p-chart developed by Mar-
cucci (1985). This chart extends the traditional p-
chart by adopting the Pearson chi-square statistic.
The multinomial cumulative sum (CUSUM) chart
proposed by Ryan et al. (2011) can also deal with this
problem and is based on the likelihood-ratio statistic
equipped with a CUSUM scheme. Note that the prior
approaches for monitoring multinomial processes are
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actually univariate charts because only one factor is
involved. With several factors, at least one of which
has more than two levels, there are no appropriate
approaches available. In addition to this deficiency,
most of the existing methods focus entirely on the
marginal sums with respect to each categorical fac-
tor, neglecting the cross-classifications between fac-
tors. Because of this, if some cross-classification prob-
abilities shift to out-of-control (OC) states, these
charts may not detect them quickly. In summary,
a general monitoring methodology for multivariate
categorical processes is needed.

Multi-way analysis of variance (ANOVA) models
in DOE may provide some assistance if the observa-
tions are assumed to be linearly dependent on the
levels of several factors (i.e., if they depend on main-
factor effects and interaction effects). As with the
observations in an ANOVA model, the logarithms
of the cross-classification probabilities may also de-
pend linearly on the levels of these multiple factors,
as in a log-linear model (see Bishop et al. (2007)).
The log-linear model effectively characterizes the as-
sociation and interaction patterns among the cate-
gorical factors and therefore can be used to develop
multivariate categorical control charts. Our paper is
not the first application of log-linear models in SPC.
Qiu (2008) dealt with distribution-free monitoring
schemes for multivariate continuous processes by di-
chotomizing continuous multivariate data into cate-
gorical data. He then estimated the IC factor distri-
bution using log-linear models in Phase I SPC and
proposed a Phase II multivariate CUSUM chart by
employing the Pearson chi-square statistic.

In our study, a systematic directional monitoring
mechanism and a diagnostic scheme for multivariate
categorical processes were developed based on log-
linear models. By analogy with multiway ANOVA,
the cross-classification probabilities are expressed in
terms of main-factor effects and factor-interaction ef-
fects. The log-linear model can then be equivalently
rewritten as a regression model, leading to a one-to-
one correspondence between factor effects and coeffi-
cient subvectors. Potential shifts to OC states in the
factor effects therefore appear in their corresponding
coefficient subvectors, which constitutes prior infor-
mation on the potential shift directions. To moni-
tor a process as efficiently as possible, such practi-
cal information on the shift directions should be ex-
ploited. For these purposes, we develop a Phase II
control chart based on the log-likelihood function of
the log-linear model and an exponentially-weighted
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138 JIAN LI, FUGEE TSUNG, AND CHANGLIANG ZOU

moving average (EWMA) scheme. The proposed con-
trol chart provides a unified framework for handling
multiple factors when at least one has more than two
levels. Using certain approximations, the resulting
chart is easy to construct and convenient to imple-
ment. Furthermore, we present a diagnostic scheme
to identify the shift direction following an OC signal.
Some implementation guidelines are provided and
illustrated using a practical example. Monte Carlo
simulations were performed to demonstrate the ef-
fectiveness of the proposed chart and the diagnostic
approach.

Multivariate Categorical
Processes and Conventional
Monitoring Approaches

Multivariate Categorical Processes

We first illustrate the multivariate categorical pro-
cess with two motivating examples. Aluminium elec-
trolytic capacitor (AEC) manufacturing is a multi-
stage process, and the quality of the semi-finished
AECs is inspected immediately after each stage.
Here, for illustration, we concentrate on the qual-
ity after the aging stage, which is assessed mainly
in terms of leakage current (LC), dissipation fac-
tor (DF), and capacity (CAP). Each characteristic
is classified automatically as conforming or noncon-
forming to the specifications by an electronic device
at a very high speed, and engineers are reluctant to
obtain their precise continuous or numerical values
(which is costly but not impossible). Consequently,
this is a multivariate categorical process with three
factors (LC, DF ,and CAP), each with two levels and
therefore 23 = 8 level combinations. Without loss of
generality, for each factor, —1 represents “conform-
ing” and 1 “nonconforming”. For example, the com-
bination (—1, 1, —1) means an AEC with conforming
LC and CAP and nonconforming DF.

Another example is the quality control of welding
rods. One of the key aspects of welding-rod inspec-
tion is their appearance, which directly reflects the
integrated level of welding-rod manufacturing and in-
fluences the welding performance. The welding rod
is composed of a cylindrical metallic core wire and
a coating composition (flux) covering the circumfer-
ence of the metallic core wire. Its appearance has
some important characteristics, such as eccentricity
of the core wire, moisture resistance of the coating,
strength of the coating, and rod bend. During test-
ing, each is simply evaluated as either conforming or
nonconforming, and their (latent) continuous values
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are not considered. With the four factors (eccentric-
ity, moisture resistance, strength, and bend), each
with two attribute levels, this is also a multivariate
categorical process with 2* = 16 cross-classification
level combinations.

Now we turn to a general multivariate categorical
process. Suppose that there are p factors, Cy, ..., Cp,
and that each classification factor C; has h; possi-
ble levels. The overall cross-classifications among all
the level combinations of these factors form a p-way
hi X ... x h, contingency table with h = [T%_, h;
cells. Each cell corresponds to one-level combination
of the p factors and stores the count under this level

combination.

For a simple hy X hg x hz three-way table, de-
note the observed count by n;ji in cell(z, 7, k) (i =
1,...,h;;5=1,...,hg; k=1,...,h3) and its expec-
tation by m;. If the observations are made over a
period of time, it is reasonable to assume that each
cell count follows an independent Poisson distribu-
tion (see Bishop et al. (2007)). During the Phase II
SPC monitoring process, the total sum of observa-
tions is usually fixed. Conditional on the total sum of
cell counts, a series of independent Poisson distribu-
tions result in a multinomial distribution. So in one
sample of size N, the cell counts in the three-way con-
tingency table therefore follow the multinomial dis-
tribution MN(N;p;;r) (i = 1,...,h1; j = 1,..., ho;
k = 1,...,h3). Here p;jx = m,jx/N is the proba-
bility of an observation falling into cell(i, j, k), and
these probabilities must sum to 1.

To generalize the three-way table to a general p-
way hy x ... X h, contingency table (see Johnson et
al. (1997)), let the probability of obtaining the com-
bination of factor levels ai,...,a, be pq,..q, (a; =
1,...,h; and i = 1,...,p). Furthermore, denote the
count of observations among a sample of size N with
the combination a; ... ap by na,...4,. Clearly, the cell
counts 7,,...q, jointly follow an MN(N;pal_,_ap) dis-
tribution. Furthermore, consider, for example, the
group of marginal counts n;), : v = 1,..., h; of the
factor C;, where n;), is defined as the sum of the cell
counts 7y, ..., over all levels of all factors other than
C; and for C; at level v. It follows that this group
of marginal sums follows the multinomial distribu-
tion MN(N; p(iy1, - - -, P, )- Here paya, - . -, piiyn, are
the marginal probabilities of the factor C;, which
can be calculated in a similar way to ngy1,- - ., g,
based on the cell probabilities py; ...a,,- The joint dis-
tribution of the p groups of variables ng;y, ..., nu),
(i=1,...,p), each being a multinomial distribution,
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is defined to be a multivariate multinomial distribu-
tion (see Johnson et al. (1997)). When each factor
has two levels, this reduces naturally to the multi-
variate binomial distribution. So by applying multi-
variate binomial or multivariate multinomial distri-
butions and a cross-classified contingency table, mul-
tivariate categorical processes can be studied.

Conventional Monitoring Approaches

Generally, statistical process control involves two
phases (Montgomery (2009)). In Phase I, a set of
process data are collected and examined. Any un-
usual patterns in the data are identified and, based
on this, the data and the process may be adjusted,
resulting in a clean dataset collected from stable pro-
cess conditions. This dataset is called the IC dataset
and used for estimating the IC parameters represen-
tative of the IC operating conditions. Phase I analysis
primarily assists in bringing the data into a state of
statistical control. Given the IC parameters, in Phase
I1, the process is monitored with control charts to de-
tect and diagnose any deviations from the IC state.
We review some typical methods for monitoring mul-
tivariate binomial and multivariate multinomial pro-
cesses. Hereafter, we use the superscript “(0)” and
“(1)” to denote the IC and OC states, respectively.

In a multivariate binomial process, each factor has
two levels, giving rise to a p-way contingency table
with 2P cells for p factors. Denote the two levels of
each factor by 1 and 0. Given a sample size N in
Phase II, if the process is IC, the level 1 count of
the factor C; (i = 1,...,p) is binomially distributed
with the total size N and its IC level 1 probabil-
ity. So the IC mean of this count is known, and the
IC covariance between any two factors C; and Cj
(¢, = 1,...,p and i # j) can also be calculated,
which gives the IC mean vector and the IC covariance
matrix of the level 1 counts of the p factors. Based
on these, Patel (1973) constructed the x? charting
statistic of the Hotelling’s T2 form, the expression for
which can be found in Appendix A in the supplemen-
tal file (available at http://www.asq.org/pub/jqt/).

Factors with three or more levels are also com-
mon in production and service applications and they
can be treated as multivariate multinomial processes.
Consider customer attitudes toward a service, for in-
stance. Suppose that there are four indexes, each of
which may take the values of excellent, acceptable, or
unacceptable. This forms a four-way contingency ta-
ble with 34 cells. No appropriate monitoring methods
exist that incorporate the cross-classifications among
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the p factors when at least one of them has more than
two attribute levels.

The only feasible existing approach of monitor-
ing multivariate multinomial processes, albeit a naive
one, might be to monitor the p groups of marginal
sums of each factor using p individual charts. If we
consider only the group of marginal sums of the
factor C; (i = 1,...,p), it is a multinomial pro-
cess, which could be handled by applying Marcucci’s
(1985) generalized p-chart. For the kth sample, the
generalized p-chart employs the Pearson chi-square
statistic as the charting statistic for the factor C;,
and its expression is also listed in Appendix A in the
supplemental file. Finally, there would be p separate
charts, which jointly form a multichart. Such a mul-
tichart would signal whenever at least one of the p
individual charts signals.

Clearly, the x2-chart applies to only multivariate
binomial processes and the multichart developed for
multivariate multinomial processes is problematic.
Moreover, both charts focus on the one-way marginal
sums of each factor and almost entirely neglect the
cross-classification interactions among factors.

New Methodologies for
Monitoring and Diagnosis

Log-Linear Models

There is a clear need to model the relationship
between each cell count and factor levels associated
with it. The cell counts are stored in a multiway
contingency table, as in standard multiway ANOVA,
where responses to all factor level combinations are
also placed in a multiway table. Standard multi-
way ANOVA is based on the assumption that the
responses are normally distributed, and it aims to
quantify how the responses are influenced by the
main-factor effects and the factor-interaction effects.
Consider for illustration a three-way ANOVA model,
where the three factors take hy, hg, and hg levels,
respectively. Denote the expected response with the
first factor at its i¢th level, the second factor at its
jth level, and the third factor at its kth level as y;;x
(i = 1,...,h1; _7 = 1,...,h2; k = 1,...,h3). The
three-way ANOVA model is

yijk = u@ +ul + 0P + o4l + 0P oy
(2,3) (1,2,3)
TUujp Tk

where u(® is the overall mean; u,u®, u®) are
the main effects; u(? u(13) 4(23) are the two-
factor-interaction effects; and u(1:2%) is the three-
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factor-interaction effect. Furthermore, identifiability
requires constraints such as

Z“z"l): w2 = zu(“’) > w29 =g

for the first factor along its index i. Similar equations
describe the second and third factors along with their
indexes j and k, respectively. Therefore, the ANOVA
can be represented as a linear regression model. From
the generalized linear model (GLM) point of view, a
linear regression model where the response is nor-
mally distributed has a canonical link function of
unity (see McCullagh and Nelder (1989)).

By analogy with the preceding standard ANOVA,
it is possible to build a similar regression model re-
lating the cell counts and their corresponding fac-
tor levels in the multiway contingency table. Note
that, in our case, the response (the cell count) is
not normally distributed. With no restriction on the
total sample size, we have assumed that each cell
count is independently Poisson distributed. A GLM
where the response follows a Poisson distribution has
a canonical link function that is a logarithm (see Mc-
Cullagh and Nelder (1989)). Therefore, we assume a
log-linear model. For a three-way contingency table
of size hy X hg X hg, the log-linear model character-
izing the relationship between the expectation m;;i
(i=1,...,h1; 3 =1,...,he; k = 1,...,h3) of the
count in cell(i, §, k) and the factor levels indexed with
1,7,k is

Inmjx = u©® + u(l) + u(z) + u(s) + u(l R u(l 3)
1,2,3)
) _‘I, ?
where the u-terms are the main or factor-interaction
effects defined as in the ANOVA model (see Bishop et
al. (2007)). They also satisfy the identifiability con-
straints. When the total sample size N is fixed, the
cell counts jointly follow a multinomial distribution,
and it is more convenient to focus on the probability
Dijr instead of the expectation m;jx = Np;ji. In this
case, the log-linear model will be

+u(23)+u

lnpuk = u(o) + ’U,(l) + u(z) + u(3) + u(l ,2) + ’u,(l 3)

+ul® 4 U2, )

where the probabilities must satisfy Ei,j,k Pijk = 1.

Obviously, the interaction terms, such as u(}2), re-
flect the dependence among the factors and, for a
log-linear model without any interaction effects, the
factors are independent.

The identifiability constraints applicable to a log-
linear model in the form of Equation (1) are some-
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what inconvenient to write out, but they can be
rewritten equivalently in the following form, which
we illustrate for a 2 x 3 contingency table having the
factor C, with two levels and the factor C; with three
levels:

u(O) = IBOy
= ﬂ],
“) = —f
ugz) = P,
us” = fs
(2) = —f2 — [s,

uﬂ” Bas
U§122) Bs,
u(1132) = —f4 — B,
upi”) = —Ba,
(1’2) = —fs,
U(2132) B4+ Ps.

Therefore, the logarithms of the probabilities p;;
(1 =1,2; j = 1,2,3) can be expressed as a linear
combination of the coefficients 8¢ (k = 0,1,...,5).
Clearly, 8, measures the main effect u(!) of the first
factor, |32, A3]T measures the main effect u(® of the
second factor, and (B, As]" measures the interaction
effect u(1'?) of the two factors. The preceding repre-
sentation of factor effects in terms of coefficients can
be extended to a general scenario.

The identifiability constraints dictate that the log-
linear model for a p-way contingency table in which
p factors are considered in the form of Equation (1)
can be expressed in the following regression form (see
Dahinden et al. (2007)):

2P -1

Inp=185, + Z X8, (2)
i—1

where p is the h x 1 probability vector correspond-
ing to the h cells of the contingency table, 1 is a col-
umn vector of appropriate dimension consisting of 1
as all its entries, X; is an h x g; design submatrix
corresponding to the ith main or interaction effect
and containing 1, 0, or —1 as its elements, and 3; is
the coefficient subvector of size ¢; x 1. For the pre-
ceding illustrative 2 x 3 contingency table example

with p = 2 factors, p = [p11, P12, P13, P21, P22, P23] "
and 1 = 14 are both of size 6 x 1, and 81 = [,
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B2 = [B2,83]", Bs = [Bs,B5], and the design sub-
matrixes are

1
S EIE |

and
J
X3 - [—J] )
where
1 0
J= 0 1
-1 -1

Note that the column sums in J are all zero, which
assures identifiability.

Denoting the design matrix by X = [1,X] with
X = [Xy,...,Xop_1] and the coefficient vector by
B = (Bo, BT]" with B = [BF,..., 03 _,]", Equation
(2) can be rewritten as Inp = X/3. The log-linear
model (2) is at the effect level, and there are, in total,
2P — 1 effects from the main effects up to the p-factor-
interaction effect. Here, pT1 = 1 and 5, is a scalar
representing the intercept. Therefore, only h — 1 co-
efficients are free to vary independently and 3y is in-
cluded to ensure the constraint pT1 = 1. Hereafter,
attention will focus on the coefficient subvectors 3;
(¢=1,...,27 —1). In the case of factors all with two
levels, the derivation of the design matrix X is iden-
tical to that of the design matrix of 2* full-factorial
experiment with 1 and —1 representing the high and
low levels, respectively. However, this becomes a lit-
tle complex if at least one factor has more than two
levels. Refer to the additional File 1 in Dahinden et
al. (2007) for the general result of deriving X. For
convenience, we provide the Fortran code for deriv-
ing X once the number of factors and their levels are
specified, which is available from the authors on re-
quest. In addition, an example of four factors is given
in Appendix B in the supplemental file.

The design submatrixes, together with their cor-
responding coeflicient subvectors, are arranged in the
log-linear model from the overall mean [y, the main
effects, up to the effect of the highest order. For
example, we consider three factors C;, Cs, and Cs
with 2, 3, and 3 levels, respectively. The sequence is
the overall mean; the main effects Cy, C3, and Cj;
the two-factor interaction effects C,Cs, C1C3, and
C2Cs; and finally the three-factor interaction effect

Vol. 44, No. 2, April 2012

C1C2C3. Hence, the coefficient vector is

B=[Bo By Bay)
B22) By B(3z)
Bazy  Baz B1,31)
(1,32)  B@3)  B21,32)
'3(22,31) ﬁ(22.32) /6(1,21,31)
Ba2:1,3) B30 B,22,3] -

Note that, by the identifiability constraints, the
scalar f3(;) is sufficient to determine the main ef-
fect of the factor C; with only two levels. How-
ever, we need the two coefficients ((3,) and fs,)
consisting of the subvector B3 to jointly represent
the main effect of the factor C3 with three levels.
In fact, for an effect that contains a factor with
three levels or more, its corresponding coefficient sub-
vector has two elements or more, instead of reduc-
ing into a scalar. Similarly, 85 = [B1,2,),801,2)]"
measures the two-factor interaction effect C1C5, and
Br = [B1,2:,31) B(1,21,32)) B(1,22,31)> B(1,25,3,)] * mea-
sures the three-factor-interaction effect C1CC3. We
see that the ith main or interaction effect, the de-
sign submatrix X;, and the coefficient subvector 3;
(i=1,...,2P — 1) correspond to each other. There-
fore, the probability vector is determined by the mag-
nitudes of these coefficient subvectors.

The log-linear model (2) is at the effect level, but
it can be rewritten equivalently at the coefficient level

as
h—1

Inp=15 + inﬂi, (3)
i=1

where x; is the ith column vector of the matrix "
X and the scalar §; is its corresponding coefficient.
For instance, in the above three-way contingency ta-
ble of size 2 x 3 x 3, B1 = B), Po = B,3,), and
Bir = B(1,2,,3,)- We see X = [Xy,...,Xoo_1] =
[x1,%2,...,X,_1] and B = [B],...,B8%L_T =
[B1,B2,-..,Bn-1]T. There is also a correspondence
between the ith column x; of X and the ith coeffi-
cient 3; (i =1,...,h — 1). By analogy with a linear
regression model, the log-linear model is also essen-
tially a regression model with the probabilities as the
responses, the coefficients as the regressors, and the
column vectors composing the design matrix.

A Phase II control chart requires that the IC pro-
cess parameters be known, which requires estimation
of the coefficient vector 8 in the log-linear model
(2) or (3) from an IC dataset. But as will be seen
next, some simple approximations allow using only
the probability vector p in the IC state, skipping the
estimation of the coefficient vector 3. Once the IC
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dataset is known, the IC probability vector p®) can
be obtained immediately by dividing the cell counts
by the IC dataset size.

Log-Linear Directional Monitoring

In a log-linear model, the marginal distribution of
one factor is mainly determined by its main effect,
whereas the dependence among multiple factors is
represented by their interaction effect. This provides
a means of interpreting shifts in multivariate cate-
gorical processes. According to the one-to-one corre-
spondence between factor effects and coefficient sub-
vectors in a log-linear model, shifts in the marginal
distribution of one factor lead to deviations of the co-
efficient subvector corresponding to its main effect,
and shifts in the dependence among multiple factors
result in deviations of the coefficient subvector re-
flecting their interaction effect.

The prespecified log-linear model can be summa-

rized as N
lnp=X8 and pT1=1.

Denote this model as F(i; E) We assume that the
jth on-line multivariate sampling observation vector
n;, of size h x 1, follows a multinomial distribution
with a total size NV and behaves over time according
to the change-point model

id F(X;80), forj=1,...,T,
TR @
F(X;ﬁ(l)), forj=7+1,...,

where 7 is the unknown change point,and 3 # g
are the known IC and unknown OC process coeffi-
cient vectors, respectively.

Because 8y can be determined from

B =B, Bn1]",

the monitoring problem can be formulated as a
hypothesis-testing problem,

Hy:8=89 versus H;:B3 # ,@(0). (5)

A natural test for the hypothesis (5) can be con-
structed by using the idea of a generalized likelihood-
ratio test (GLRT; Anderson (2003)), which incorpo-
rates all possible shifts in 3 and thus is quite gen-
eral.

There is a correspondence between the ith main
or interaction effect and the coefficient subvector 3;.
According to the effect-sparsity principle (see Wu
and Hamada (2000)), which states that the number
of relatively important effects is small in DOE, it is
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usually reasonable to assume that, in practical ap-
plications, any changes involve only a few coefficient
subvectors or only a few coefficients in the appro-
priate model. Suppose, however, that we have some
a priori knowledge that, in the OC state, only one
coefficient 3; (1 < i < h — 1) is incremented by an
unknown constant §;. The hypothesis then becomes

Ho:B8=pB% versus H;:8=p9+d;é,

where d; is the direction vector of size (h — 1) x 1
with a 1 as its ith component and 0Os elsewhere.

Next consider the more practical case that, in the
OC state, only one coefficient changes, but its loca-
tion is unknown. The alternative in the hypothesis
(5) reduces to

H,: B= ﬂ(o) +dié; or
B=p80 4+dys,... or
B =B +dh_1651, (6)

where §; (1 = 1,2,...,h — 1) are the unknown shift
magnitudes, and the possible shift directions dy, dg,
..., dp_1 are defined in a similar way, applying to 51,
B2, ..., Br_1, respectively. The GLRT derived from
the hypothesis (6) should be better than that from
the hypothesis (5) because it makes full use of more
constructive information about potential shift direc-
tions. In fact, a GLRT based on the hypothesis (6)
that incorporates directional knowledge about poten-
tial changes is very much like the GLRTs used in
multistage process monitoring and diagnosis, which
exploit the information of shift directions from the
first stage to the last one (see Zou and Tsung (2008),
Zou et al. (2008)).

The hypothesis (6) may be further generalized.
There is also the hierarchical-ordering principle in
DOE (see Wu and Hamada (2000)), which states
that lower order effects are more likely to be impor-
tant than higher order effects and that effects of the
same order are equally likely to be important. So
deviations involving fewer factors may appear more
frequently, and it is reasonable to believe that, in
applications, most shifts involve lower order effects
rather than higher order ones. Unlike the hypothe-
sis (6), which considers all one-coefficient shifts from
the main-factor effects up to the highest p-factor-
interaction effect, instead we may focus on effects
involving the first few, say ¢, orders. Denote by g the
number of coefficients corresponding to effects of the
first ¢ orders. Then the hypothesis (6) can be further
extended as

H,: B= ,3(0) +d;é; or
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