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Abstract

Compared to the intuitionistic fuzzy sets, the Pythagorean fuzzy sets (PFSs) can provide the decision makers with more free-

dom to express their evaluation information. There exist some research results on the correlation coefficient between PFSs, 

but sometimes they fail to deal with the problems of disease diagnosis and cluster analysis. To tackle the drawbacks of the 

existing correlation coefficients between PFSs, some novel directional correlation coefficients are put forward to compute the 

relationship between two PFSs by taking four parameters of the PFSs into consideration, which are the membership degree, 

non-membership degree, strength of commitment, and direction of commitment. Afterwards, two practical examples are 

given to show the application of the proposed directional correlation coefficient in the disease diagnosis, and the applica-

tion of the proposed weighted directional correlation coefficient in the cluster analysis. Finally, they are compared with the 

previous correlation coefficients that have been developed for PFSs.

Keywords Pythagorean fuzzy set · Correlation coefficient · Medical diagnosis · Cluster analysis · Information energy

Introduction

The decision making refers to the human activities that 

rank the alternatives and select the optimal ones [26, 38, 

39, 55]. It is extremely common in our daily life and national 

industrial development [10, 13, 23]. For example, there exist 

some startup companies that need to look for the venture 

capital. The investor evaluates the startup companies and 

then selects the optimal alternative for investing. In the early 

stage, the decision-making problems are very simple, so 

human beings can use crisp numbers to express their opin-

ions [5, 6, 30, 31]. As the human activities develop quickly, 

it is difficult for the human beings to describe the vague and 

imprecise information. The knowledge system based on the 

fuzzy set theory was put forward by Zadeh [62] to model 

the fuzzy information. However, the fuzzy set is not com-

posed of the non-membership degree. To extend the mod-

eling capability of the fuzzy set, the concept of intuitionistic 

fuzzy sets (IFSs) was proposed in [4]. The IFSs utilize a pair 

of values from the unit interval to describe the membership 

degree (MD) and non-membership degree (NMD) simulta-

neously. The sum of the MD and NMD in each IFS is less 

than or equal to 1.

To provide the decision makers (DMs) with more free-

dom to express the MDs and NMDs [22], Yager [61] gave 

an extension of IFSs, which is called the Pythagorean fuzzy 

sets (PFSs) and is also characterized by the MD and NMD. 

However, the square sum of the MD and NMD in each PFS 

is less than or equal to 1. As shown in Fig. 1, the reachable 

space of each Pythagorean fuzzy number (PFN) is larger 
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than that of each intuitionistic fuzzy number (IFN). It indi-

cates that the PFSs provide the DMs with more freedom to 

express their information than the IFSs from the geometric 

thinking. Hence, each IFN can also be an PFN, while the 

reverse is not true. For example, a pair of values, denoted 

by (0.6, 0.8) , is not an IFN since 0.6 + 0.8 > 1. However, it 

is an PFN since 0.6
2
+0.8

2
=1 . Because of its stronger mod-

eling capability, the PFSs have been paid much attention [1, 

12, 44, 52–54, 59, 64]. For example, Garg [18] combined 

the PFSs with the linguistic term sets [32] to put forward 

the concept of linguistic Pythagorean fuzzy sets. The novel 

distance measures were devised for PFSs in [41]. Akram 

et al. [2] utilized a revised closeness index and the TOP-

SIS method to handle the group decision-making problems 

with Pythagorean fuzzy sets. Yager [60] presented a gener-

alized form of IFSs and PFSs, called the q-rung orthopair 

fuzzy sets. Xiao and Ding [56] put forward the concept of 

divergence measure for PFSs and applied it into medical 

diagnosis. Some similarity measures have been put forward 

for PFSs and used to process multicriteria decision-making 

problems [51] [54]. Lots of aggregation operators have been 

developed for fusing PFSs [14, 16, 19, 20].

The correlation coefficient, which is an important con-

cept from the statistics, is utilized to measure the relation-

ship between two random variables and is widely applied 

in the statistical analysis [3] [46]. It has been extended to 

compute the relationship between fuzzy information [35] 

and has wide applications in the medical diagnosis [43], 

pattern recognition [42], cluster analysis [47], and decision-

making [33]. Chiang et al. [9] introduced a method from 

the mathematical statistics to compute the correlation coef-

ficient between fuzzy data. In [40], a correlation coefficient 

between two IFSs was put forward. In [28], a novel correla-

tion coefficient measure was developed for hesitant fuzzy 

sets, whose value is in the interval [− 1, 1]. In [11], the cor-

relation and correlation coefficient between q-rung orthopair 

fuzzy sets were developed by Du and their properties were 

discussed. Although there exist many research results 

reporting the correlation coefficient for different kinds of 

fuzzy information, they cannot be utilized to calculate the 

relationship between PFSs since the PFSs show a unique 

information representation form. To fill in this gap for PFSs, 

Garg [21] firstly developed a correlation coefficient and its 

weighted version to compute the relationship between two 

PFSs considering their MD, NMD, and hesitation degree 

(HD). Chen [7] devised some Pearson-like correlation coef-

ficients for PFSs and used them to develop the Pythagorean 

fuzzy compromise approach. The existing studies have the 

drawback that the correlation coefficient value between two 

unequal PFSs may equal to 1. To address this issue, Singh 

et al. [45] put forward some correlation coefficients for PFSs. 

To consider the inverse correlation relation between PFSs, 

Thao [49] proposed a novel correlation coefficient for PFSs, 

the value of which is in the interval [− 1, 1]. However, all 

of these existing correlation coefficients for PFSs still have 

some drawbacks as follows:

1. For the existing studies in [7,  49], there exists the case 

that the denominator equals to zero during the comput-

ing process of correlation coefficient value between two 

PFSs. It is meaningless in mathematics. Hence, they 

may be invalid for some cases.

2. As mentioned by Yager [61], the strength of commit-

ment (SoC) and direction of commitment (DoC) are a 

pair of important parameters that can be used to deter-

mine a unique PFN. Moreover, Li et al. [27] and Zeng 

et al. [63] reported that SoC and DoC are important for 

developing the distance measure between two PFSs. 

However, all the existing studies only consider the MDs, 

NMDs, and HDs of PFSs when calculating the correla-

tion coefficient between PFSs, but ignore the impact of 

SoC and DoC.

To solve the above drawbacks, we put forward some 

directional correlation coefficients to measure the relation-

ship between PFSs by considering the MDs, NMDs, SoCs, 

and DoCs of PFNs. Our contributions can be summarized 

as follows:

1. We analyze the drawbacks of the existing correlation 

coefficients using some counterexamples. To overcome 

these drawbacks, we propose a novel directional correla-

tion coefficient and also its weighted version for PFSs. 

The properties of the novel directional correlation coef-

ficient and its weighted version are also discussed.

2. The proposed directional correlation coefficients are 

applied to deal with the problems of medical diagno-

sis and cluster analysis via two case studies and also a 

series of comparative analyses are performed to verify 

Fig. 1  The reachable spaces of IFNs and PFNs
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the superiority of our proposed directional correlation 

coefficients.

The remainder of this paper is organized as follows. Sec-

tion “Preliminaries” provides some basic knowledge of IFSs 

and PFSs. The drawbacks of the existing correlation coeffi-

cients of PFSs are analyzed and then some novel directional 

correlation coefficients are studied in Sect. “Directional 

correlation coefficients for PFSs”. Section “Case study and 

comparative analysis” provides two case studies to show the 

applications of the proposed directional correlation coeffi-

cients in the medical diagnosis and cluster analysis. Some 

valuable conclusions are drawn in Sect. “Conclusions”.

Preliminaries

In this section, the mathematical forms of the intuitionistic 

fuzzy sets and Pythagorean fuzzy sets are presented.

Intuitionistic fuzzy sets

The concept of intuitionistic fuzzy sets (IFSs) was proposed 

by Atanassov [4], which is an extension of fuzzy sets. The 

IFSs consist of the membership function and non-member-

ship function of each element in the universe of discourse. 

The membership function and non-membership function 

return the membership degree (MD) and non-membership 

degree (NMD) of each element belonging to an IFS. The 

values of MD and NMD in the IFSs are in the unit interval 

[0, 1] and their sum is also in the unit interval [0,1]. Hence, 

the mathematical form of an IFS can be expressed as.

Definition 1 [4]. Let X =

{

x1, x2,⋯ , x
n

}

 denote an universe 

of discourse, then an IFS I on X can be defined as.

where �
I
(x) and �

I
(x) are the membership function and 

non-membership function of each element x , respectively. 

The return values from the membership function and 

non-membership function form a pair of MD and NMD, 

which are denoted as 
(

�
I
, �

I

)

 . Each pair 
(

�
I
, �

I

)

 is called an 

IFN [25] and it satisfies that 0 ≤ �
I
≤ 1 , 0 ≤ �

I
≤ 1 , and 

0 ≤ �
I
+ �

I
≤ 1 . The hesitation degree of an IFN, denoted 

as �
I
 , is computed as 1 − �

I
− �

I
 . Hence, the reachable space 

of each IFN is a triangle, which is enclosed by x axis, y axis, 

and the line �
I
+ �

I
= 1 as shown in Fig. 1.

(1)I =

{(
x,�

I
(x), �

I
(x)

)|
|
|
x ∈ X

}

Pythagorean fuzzy sets

In some situations, the DMs may provide pairs of MD and 

NMD, which do not satisfy the restrictive condition of IFSs. 

For example, a pair of MD and NMD, (0.5, 0.6) , is given 

by the DMs. The sum of MD and NMD is larger than 1, 

but their square sum, 0.52
+ 0.62 , is smaller than 1. If the 

DMs are required to change their information to satisfy the 

restrictive condition of IFSs, then the information will be not 

original and deviate from the DM’s real opinion. This case 

will result in unreasonable decision results. To overcome 

this drawback, Yager [61] put forward an extension of IFSs, 

called Pythagorean fuzzy sets (PFSs), to model the informa-

tion, where the square sum of MD and NMD is less than or 

equal to 1. The mathematical form of PFSs is expressed as 

follows.

Definition 2 [61]. Let X =

{

x1, x2,⋯ , x
n

}

 denote an uni-

verse of discourse, then an PFS P on X can be defined as

where �
P
(x) and �

P
(x) are the membership function and non-

membership function of each element x , respectively. The 

return values from the membership function and non-mem-

bership function form a pair of MD and NMD, which are 

denoted as 
(

�
P
, �

P

)

 . Each pair 
(

�
P
, �

P

)

 is called an PFN [17] 

and it satisf ies that 0 ≤ �
P
≤ 1 ,  0 ≤ �

P
≤ 1 ,  and 

0 ≤ �
2

P
+ �

2

P
≤ 1 . The hesitation degree of an PFN, which is 

denoted as �
P
 , is computed as 

√

1 − �
2

P
− �

2

P
 . Thus, the 

reachable space of each PFN is a quarter circle, which is 

enclosed by x axis, y axis, and the curve �2

P
+ �

2

P
= 1 . As 

shown in Fig. 1, the PFSs provide the DMs with more free-

dom to express their information than the IFSs.

Yager [61] put forward another way of expressing an PFN 

using a pair of parameters 
(

r
P
, d

P

)

 . The parameter r
P
∈ [0, 1] 

is named the strength of commitment (SoC) of an PFN and 

the parameter d
P
∈ [0, 1] is named the direction of commit-

ment (DoC). These two parameters are associated with the 

MD and NMD of an PFN. The relationships among the Soc, 

DoC, MD, and NMD are expressed as

 where � =

(

1 − d
P

)

�

2
 . The term � denotes the intersection 

angle and � ∈

[

0,
�

2

]

.

The relationships among the SoC, DoC, MD, and NMD 

can be interpreted geometrically as shown in Fig. 2. When 

the value of � is fixed, the values of MD and NMD increase 

(2)P =

{(
x,�

P
(x), �

P
(x)

)||
|
x ∈ X

}

(3)�
P
= r

P
cos �

(4)�
P
= r

P
sin �,
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as the value of SoC increases. When the value of r
P
 is fixed, 

as the value of � increases, the value of MD decreases, while 

the value of NMD increases. Hence, the parameters SoC and 

DoC are very important to determine an PFN. From Fig. 2, 

it can be known that the value of � determines the direction 

of r
P
 . Moreover, d

P
= 1 −

2�

�
 . Hence d

P
 is called the direc-

tion of r
P
.

Directional correlation coe�cients for PFSs

In this section, the drawbacks of the existing correlation 

coefficients of PFSs are analyzed using the counterexam-

ples and then some novel directional correlation coefficients 

are devised for PFSs. Finally, their properties are discussed.

Drawbacks of the existing correlation coefficients 
for PFSs

To the best of our knowledge, there are only four research 

studies reporting the correlation coefficients of PFSs, which 

are presented in the literatures [7, 21, 45, 49]. Here, the 

drawbacks of these four research studies are analyzed as 

follows.

1. Drawback of the correlation coefficient proposed by 

Garg [21].

Motivated by the correlation coefficient equations 

between IFSs given in [58], Garg [21] proposed the correla-

tion coefficient between PFSs as follows.

Definition 3 [21]. Let X =

{

x1, x2,⋯ , x
n

}

 be an universe of 

d i s c o u r s e ,  P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
||
x ∈ X

}
 a n d 

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
||
x ∈ X

}
 be two PFSs on X , then 

the correlation coefficient between these two PFSs is com-

puted as.

where the terms �
P

1

(

x
i

)

 and �
P

2

(

x
i

)

 denote the HDs of the 

element x
i
 belonging to the PFSs P

1
 and P

2
 , respectively.

From Definition 3, it can be noted that the correlation 

coefficient presented in [21] only considers the MD, NMD, 

and HD of each PFS, but ignores the SoC and DoC, which 

are also important parameters when determining the values 

of PFSs. Hence, this correlation coefficient given in [21] 

may result in unreasonable results in some situations. In the 

following part, a counterexample is provided to show its 

drawback.

Example 1  Let X be an universe of discourse, P1 =

(

2

3
,

2

3

)

 , 

P2 =

(

1

3
,

2

3

)

 , and P =

�

1
√

3
,

1
√

3

�

 be three PFSs on X . If 

Eq.  (5) is used to compute the correlation coefficient 

between two PFSs, then we can get

(5)K1

�

P1, P2

�

=

∑n

i=1

�

�
2

P1

�

x
i

�

�
2

P2

�

x
i

�

+v
2

P1

�

x
i

�

v
2

P2

�

x
i

�

+ �
2

P1

�

x
i

�

�
2

P2

�

x
i

�

�

�

∑n

i=1

�

�
4

P1

�

x
i

�

+ v
4

P1

�

x
i

�

+ �
4

P1

�

x
i

�

�

�

∑n

i=1

�

�
4

P2

�

x
i

�

+ v
4

P2

�

x
i

�

+ �
4

P2

�

x
i

�

�

Fig. 2  The geometric interpretation of the relationships among the 

SoC, DoC, MD, and NMD
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From the above computing result, it can be seen that 

K1

(

P1, P
)

=K1

(

P2, P
)

 . However, the actual situation is that 

K1

(

P1, P
)

≠ K1

(

P2, P
)

 as shown in Fig. 3. Hence, Eq. (5) 

cannot handle this example well.

2.  Drawback of the correlation coefficient proposed by 

Chen [7]

Inspired by the correlation coefficient between IFSs 

given in [48], Chen [7] proposed the correlation coefficient 

between IFSs as follows.

Definition 4 [7]. Let X =

{

x1, x2,⋯ , x
n

}

 be an universe of 

d i s c o u r s e ,  P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
|
|
x ∈ X

}
 a n d 

K1

�

P1, P
�

=

�

2

3

�2�
1
√

3

�2

+

�

2

3

�2�
1
√

3

�2

+

�

1

3

�2�
1
√

3

�2

�

�

�

2

3

�4

+

�

2

3

�4

+

�

1

3

�4
�

�

�

�

1
√

3

�4

+

�

1
√

3

�4

+

�

1
√

3

�4
�

= 0.9045

K1

�

P2, P
�

=

�

1

3

�2�
1
√

3

�2

+

�

2

3

�2�
1
√

3

�2

+

�

2

3

�2�
1
√

3

�2

�

�

�

1

3

�4

+

�

2

3

�4

+

�

2

3

�4
�

�

�

�

1
√

3

�4

+

�

1
√

3

�4

+

�

1
√

3

�4
�

= 0.9045

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
||
x ∈ X

}
 be two PFSs on X , then 

the correlation coefficient between these two PFSs is com-

puted as

with

w h e r e  �
P1
=

1

n

∑n

i=1
�

P1

�

x
i

�

,  �
P2
=

1

n

∑n

i=1
�

P2

�

x
i

�

, 

�
P1
=

1

n

∑n

i=1
�

P1

�

x
i

�

, �
P2
=

1

n

∑n

i=1
�

P2

�

x
i

�

, �
P

1

=
1

n

∑n

i=1
�

P
1

�

x
i

�

 , 

and �
P

2

=
1

n

∑n

i=1
�

P
2

�

x
i

�

 . �
P

1

(

x
i

)

 and �
P

2

(

x
i

)

 are the HDs of 

the element x
i
 belonging to the PFSs P

1
 and P

2
.

Example 2  Let X  be an universe of discourse, 

P1 =

{(

2

3
,

2

3

)

,

(

1

3
,

2

3

)}

 and P2 =

{(

2

3
,

1

3

)

,

(

2

3
,

2

3

)}

 be two 

PFSs on X , then we have

(6)

K2

(

P1, P2

)

=
1

3

(

k
�

(

P1, P2

)

+ k
�

(

P1, P2

)

+ k
�

(

P1, P2

))

(7)

k
�

�

P1, P2

�

=

∑n

i=1

�

�

�
P1

�

x
i

��2
− �

2

P1

��

�

�
P2

�

x
i

��2
− �

2

P2

�

�

∑n

i=1

�

�

�
P1

�

x
i

��2
− �

2

P1

�2

⋅

�

∑n

i=1

�

�

�
P2

�

x
i

��2
− �

2

P2

�2

(8)

k
�

�

P1, P2

�

=

∑n

i=1

�

�

�
P1

�

x
i

��2
− �

2

P1

��

�

�
P2

�

x
i

��2
− �

2

P2

�

�

∑n

i=1

�

�

�
P1

�

x
i

��2
− �

2

P1

�2

⋅

�

∑n

i=1

�

�

�
P2

�

x
i

��2
− �

2

P2

�2

(9)

k
�

�

P1, P2

�

=

∑n

i=1

�

�

�
P1

�

x
i

��2
− �

2

P1

��

�

�
P2

�

x
i

��2
− �

2

P2

�

�

∑n

i=1

�

�

�
P1

�

x
i

��2
− �

2

P1

�2

⋅

�

∑n

i=1

�

�

�
P2

�

x
i

��2
− �

2

P2

�2

k
�

(

P1, P2

)

=

(

(

2

3

)2

−

(

1

2

)2
)(

(

2

3

)2

−

(

2

3

)2
)

+

(

(

1

3

)2

−

(

1

2

)2
)(

(

2

3

)2

−

(

2

3

)2
)

√

(

(

2

3

)2

−

(

1

2

)2
)2

+

(

(

1

3

)2

−

(

1

2

)2
)2

⋅

√

(

(

2

3

)2

−

(

2

3

)2
)2

+

(

(

2

3

)2

−

(

2

3

)2
)2

=
0

0

Fig. 3  The geometric interpretation of the relationships among PFSs
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From the result, it can be known that Eq. (6) is inva-

lid for Example 2 since the denominator cannot be zero in 

mathematics.

3. Drawback of the correlation coefficient proposed by 

Singh et al. [45].

For most of the existing correlation coefficients, the cor-

relation coefficient value between two unequal PFSs is 1, 

which is unreasonable and ineffective. To overcome this 

drawback, Singh et al. [45] put forward a novel correlation 

coefficient as follows:

Definition 5 [45]. Let X =

{

x1, x2,⋯ , x
n

}

 be an universe of 

d i s c o u r s e ,  P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
||
x ∈ X

}
 a n d 

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
||
x ∈ X

}
 be two PFSs on X , then 

the correlation coefficient between these two PFSs is com-

puted as.

where

�
i
=

c−Δ�
i
−Δ�max

c−Δ�min−Δ�max

, �
i
=

c−Δv
i
−Δvmax

c−Δvmin−Δvmax

, c > 2,

Δ�
i
=
|
|
|
(
�

P
1

(
x

i

))2

−
(
�

P
2

(
x

i

))2|
|
|

 , 

Δv
i
=
|
|
|
(
v

P
1

(
x

i

))2

−
(
v

P
2

(
x

i

))2|
|
|
,

Δ�min = min
i

{
|
|
|

(
�

P1

(
x

i

))2
−
(
�

P2

(
x

i

))2|
|
|

}
, 

Δ�
max

= max
i

{
|
|
|

(
�

P
1

(
x

i

))2

−
(
�

P
2

(
x

i

))2|
|
|

}
,

Δv
min

= min
i

{
|
|
|

(
v

P
1

(
x

i

))2

−
(
v

P
2

(
x

i

))2|
|
|

}
 , 

Δv
max

= max
i

{
|
|
|

(
v

P
1

(
x

i

))2

−
(
v

P
2

(
x

i

))2|
|
|

}
.

Example 3  Let X be an universe of discourse, P1 = (u, u) 

and P = (1, 0) be two PFSs on X . If Eq. (10) is used to com-

pute the correlation coefficient between two PFSs, then we 

can get

K3

(
P1, P

)
=

1

2

[
1 ×

(
1 − |

|u
2
− 12|

|
)
+ 1 ×

(
1 − ||u

2
− 02||

)]
=

1

2
.

From the above result, it can be seen that K3

(

P1, P
)

 

always equals to 
1

2
 when �

P
1

= v
P

1

= u . Hence, it is unrea-

sonable and ineffective.

4. Drawback of the correlation coefficient proposed by 

Thao [49]

Based on the variance and covariance of PFSs, Thao 

[49] proposed the correlation coefficient between PFSs as 

follows.

(10)K3

(

P1, P2

)

=
1

2n

∑n

i=1

[

�
i

(

1 − Δ�
i

)

+ �
i

(

1 − Δv
i

)]

Definition 6 [49]. Let X =

{

x1, x2,⋯ , x
n

}

 be an universe of 

d i s c o u r s e ,  P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
||
x ∈ X

}
 a n d 

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
||
x ∈ X

}
 be two PFSs on X , then 

the correlation coefficient between these two PFSs is com-

puted as

where

Example 4  Let X be an universe of discourse, P1 =

(

2

3
,

2

3

)

 

and P2 =

(

2

5
,

1

5

)

 be two PFSs on X , then we have

From the above result, it is seen that Eq. (11) is inva-

lid for Example 4 since the denominator cannot be zero in 

mathematics.

Directional correlation coefficients and their 
properties

To solve the defects of the existing correlation coefficients 

of PFSs, we propose the information energy, correlation, and 

novel directional correlation coefficients for PFSs by con-

sidering their MDs, NMDs, SoCs, and DoCs in this section.

Let X =

{

x1, x2,… , x
n

}

 be an universe of discourse, 

P =

{(
x,�

P
(x), �

P
(x)

)|
||
x ∈ X

}
 denote an PFS on X , then the 

information energy of the PFS P is computed as

(11)
K4

(

P1, P2

)

=

COV
(

P1, P2

)

√

D
(

P1

)

D
(

P2

)

COV
(

P1, P2

)

=

1

n − 1

∑n

i=1
d

i

(

P1

)

d
i

(

P2

)

, D
(

P1

)

=

1

n − 1

∑n

i=1
d

2

i

(

P1

)

, D
(

P2

)

=

1

n − 1

∑n

i=1
d

2

i

(

P2

)

,

d
i

(

P1

)

=

(

(

�
P1

(

x
i

))2
−

(

1

n

∑n

i=1
�

P1

(

x
i

)

)2
)

−

(

(

v
P1

(

x
i

))2
−

(

1

n

∑n

i=1
v

P1

(

x
i

)

)2
)

,

d
i

(

P
2

)

=

(

(

�
P

2

(

x
i

))2

−

(

1

n

∑n

i=1
�

P
2

(

x
i

)

)2
)

−

(

(

v
P

2

(

x
i

))2

−

(

1

n

∑n

i=1
v

P
2

(

x
i

)

)2
)

.

K4

(

P1, P2

)

=

COV
(

P1, P2

)

√

D
(

P1

)

D
(

P2

)

=

1

1−1
× 0 × 0

√

1

1−1
× 02 × 02
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where r
P

(

x
i

)

 and d
P

(

x
i

)

 denote the strength of commitment 

and the direction of commitment that are associated with 

the membership degree and non-membership degree of the 

element x
i
.

Definition 7  Let X =

{

x1, x2,⋯ , x
n

}

 denote an universe of 

d i s c o u r s e ,  P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
|
|
x ∈ X

}
 a n d 

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
|
|
x ∈ X

}
 be two PFSs on X , then 

the correlation between these two PFSs P
1
 and P

2
 is defined 

as

Apparently, the correlation between the PFSs P
1
 and P

2
 

satisfies the following properties:

1. C
(

P1, P1

)

= T
(

P1

)

;

2. C
(

P1, P2

)

= C
(

P2, P1

)

.

(12)

T(P) =
∑n

i=1

(

(

�
P

(

x
i

))4

+
(

v
P

(

x
i

))4

+
(

r
P

(

x
i

))4

+
(

d
P

(

x
i

))4
)

(13)

C
(

P1, P2

)

=

∑n

i=1

(

(

�
P1

(

x
i

))2(

�
P2

(

x
i

))2
+

(

v
P1

(

x
i

))2(

v
P2

(

x
i

))2

+

(

r
P1

(

x
i

))2(

r
P2

(

x
i

))2
+

(

d
P1

(

x
i

))2(

d
P2

(

x
i

))2
)

Based on the information energy and correlation, the 

correlation coefficient between any two PFSs is defined as 

follows.

Definition 8 Let X =

{

x1, x2,⋯ , x
n

}

 denote an universe of 

d i s c o u r s e ,  P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
||
x ∈ X

}
 a n d 

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
||
x ∈ X

}
 be two PFSs on X , then 

the correlation coefficient between the PFSs P
1
 and P

2
 is 

defined as

Theorem 1  Let X =

{

x1, x2,⋯ , x
n

}

 denote an universe of 

d i s c o u r s e ,  P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
|
|
x ∈ X

}
 a n d 

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
|
|
x ∈ X

}
 be two PFSs on X , then 

the correlation coefficient between the PFSs P
1
 and P

2
 has 

the following properties:

1. �1

(

P1, P2

)

= �1

(

P2, P1

)

;

2. 0 ≤ �1

(

P1, P2

)

≤ 1;

3. �1

(

P1, P2

)

= 1 if P
1
=P

2
.

Proof  (1) It is straightforward.

(2) From Definition 8, it is straightforward that 

0 ≤ �1

(

P1, P2

)

 . We only need to prove that �1

(

P1, P2

)

≤ 1.

(14)

�1

�

P1, P2

�

=
C
�

P1, P2

�

�

T
�

P1

�

T
�

P2

��1∕2

=

∑n

i=1

�

�

�
P1

�

x
i

��2�

�
P2

�

x
i

��2
+
�

v
P1

�

x
i

��2�

v
P2

�

x
i

��2
+
�

r
P1

�

x
i

��2�

r
P2

�

x
i

��2
+
�

d
P1

�

x
i

��2�

d
P2

�

x
i

��2
�

�

∑n

i=1

�

�

�
P1

�

x
i

��4
+
�

v
P1

�

x
i

��4
+
�

r
P1

�

x
i

��4
+
�

d
P1

�

x
i

��4
�

�

∑n

i=1

�

�

�
P2

�

x
i

��4
+
�

v
P2

�

x
i

��4
+
�

r
P2

�

x
i

��4
+
�

d
P2

�

x
i

��4
�

(15)

C
(

P1, P2

)

=

∑n

i=1

(

(

�
P1

(

x
i

))2(

�
P2

(

x
i

))2
+

(

v
P1

(

x
i

))2(

v
P2

(

x
i

))2
+

(

r
P1

(

x
i

))2(

r
P2

(

x
i

))2
+

(

d
P1

(

x
i

))2(

d
P2

(

x
i

))2
)

=

(

(

�
P1

(

x1

))2(

�
P2

(

x1

))2
+

(

v
P1

(

x1

))2(

v
P2

(

x1

))2
+

(

r
P1

(

x1

))2(

r
P2

(

x1

))2
+

(

d
P1

(

x1

))2(

d
P2

(

x1

))2
)

+

(

(

�
P1

(

x2

))2(

�
P2

(

x2

))2
+

(

v
P1

(

x2

))2(

v
P2

(

x2

))2
+

(

r
P1

(

x2

))2(

r
P2

(

x2

))2
+

(

d
P1

(

x2

))2(

d
P2

(

x2

))2
)

+⋯+

(

(

�
P1

(

x
n

))2(

�
P2

(

x
n

))2
+

(

v
P1

(

x
n

))2(

v
P2

(

x
n

))2
+

(

r
P1

(

x
n

))2(

r
P2

(

x
n

))2
+

(

d
P1

(

x
n

))2(

d
P2

(

x
n

))2
)
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According to the Cauchy–Schwarz inequality, we have

Hence, �1

(

P1, P2

)

≤ 1 , which completes the proof.

(3) For each x
i
∈ X , if P

1
= P

2
 , then �

P
1

(

x
i

)

= �
P

2

(

x
i

)

 , 

v
P

1

(

x
i

)

= v
P

2

(

x
i

)

 ,  r
P

1

(

x
i

)

= r
P

2

(

x
i

)

 ,  d
P

1

(

x
i

)

= d
P

2

(

x
i

)

 . 

Hence, �1

(

P1, P2

)

= 1.

Example 5  Recently, the oil leakage event of Benz cars hap-

pens in China and has become the hot topic on the Internet. 

The reporter intends to investigate the correlation coefficient 

between the automobile after-sale service and the customer 

loyalty. The automobile after-scale service contains two fac-

tors: maintenance cost ( x
1
 ) and service attitude ( x

2
 ). The 

customer loyalty involves two aspects: customer satisfac-

tion ( y
1
 ) and trust ( y

2
 ). The PFSs are utilized to express 

the information of the respondents regarding the factors of 

the automobile after-sale service ( P
1
 ) and customer loyalty 

( P
2
 ). The decision-making information collected from the 

questionnaire is expressed as

P1 =

{(

x1, 0.6, 0.5,
)

,
(

x2, 0.7, 0.3,
)}

 , 

P2 =

{(

y1, 0.7, 0.6,
)

,
(

y2, 0.6, 0.4,
)}

.

Step 1 Use Eq. (12) to compute the information energy 

of the PFS P
1
 as

(16)

(

C
(

P1, P2

))2
≤

[

(

�
P1

(

x1

))4
+

(

v
P1

(

x1

))4
+

(

r
P1

(

x1

))4
+

(

d
P1

(

x1

))4
+

(

�
P1

(

x2

))4
+

(

v
P1

(

x2

))4
+

(

r
P1

(

x2

))4
+

(

d
P1

(

x2

))4
+⋯

+

(

�
P1

(

x
n

))4
+

(

v
P1

(

x
n

))4
+

(

r
P1

(

x
n

))4
+

(

d
P1

(

x
n

))4
]

×

[

(

�
P2

(

x1

))4
+

(

v
P2

(

x1

))4
+

(

r
P2

(

x1

))4
+

(

d
P2

(

x1

))4

+

(

�
P2

(

x2

))4
+

(

v
P2

(

x2

))4
+

(

r
P2

(

x2

))4
+

(

d
P2

(

x2

))4
+⋯ +

(

�
P2

(

x
n

))4
+

(

v
P2

(

x
n

))4
+

(

r
P2

(

x
n

))4
+

(

d
P2

(

x
n

))4
]

=

∑n

i=1

(

(

�
P1

(

x
i

))4
+

(

v
P1

(

x
i

))4
+

(

r
P1

(

x
i

))4
+

(

d
P1

(

x
i

))4
)

×

∑n

i=1

(

(

�
P2

(

x
i

))4
+

(

v
P2

(

x
i

))4
+

(

r
P2

(

x
i

))4
+

(

d
P2

(

x
i

))4
)

= T
(

P1

)

⋅ T
(

P2

)

T
�

P1

�

=

�n

i=1

�

�

�
P1

�

x
i

��4
+

�

v
P1

�

x
i

��4
+

�

r
P1

�

x
i

��4
+

�

d
P1

�

x
i

��4
�

=

�

0.6
4
+ 0.5

4
+

�
√

0.61

�4

+ 0.5577
4

�

+

�

0.7
4
+ 0.3

4
+

�
√

0.58

�4

+ 0.7422
4

�

= 0.6609 + 0.8880

= 1.5489

Step 2 Use Eq. (12) to compute the information energy 

of the PFS P
2
 as

Step 3 Use Eq. (13) to compute the correlation between 

the PFSs P
1
 and P

2
 as

Step 4 Use Eq. (14) to compute the directional correlation 

coefficient between the PFSs P
1
 and P

2
 as

In the multi-attribute decision-making problems [11], the 

attributes usually own different weight values. Nevertheless, 

the proposed directional correlation coefficient formula in 

T
�

P2

�

=

�n

i=1

�

�

�P2

�

xi

�

�4

+

�

vP2

�

xi

�

�4

+

�

rP2

�

xi

�

�4

+

�

dP2

�

xi

�

�4
�

=

�

0.7
4
+ 0.6

4
+

�
√

0.85

�4

+ 0.5489
4

�

+

�

0.6
4
+ 0.4

4
+

�
√

0.52

�4

+ 0.6257
4

�

= 1.1830 + 0.5789

= 1.7619

C
�

P1, P2

�

=

�n

i=1

�

�

�
P1

�

x
i

��2�

�
P2

�

x
i

��2
+

�

v
P1

�

x
i

��2�

v
P2

�

x
i

��2
+

�

r
P1

�

x
i

��2�

r
P2

�

x
i

��2
+

�

d
P1

�

x
i

��2�

d
P2

�

x
i

��2
�

=

�

0.62
∗ 0.72

+ 0.52
∗ 0.62

+

�
√

0.61

�2

∗

�
√

0.85

�2

+ 0.5577
2
∗ 0.7422

2

�

+

�

0.72
∗ 0.62

+ 0.32
∗ 0.42

+

�
√

0.58

�2

∗

�
√

0.52

�2

+ 0.5489
2
∗ 0.6257

2

�

= 0.9562 + 0.6104

=1.5666

�1

�

P1, P2

�

=
C
�

P1, P2

�

�

T
�

P1

�

T
�

P2

��1∕2
=

1.5666
√

1.5489
√

1.7619

= 0.9483
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the form of (14) does not consider the weight information of 

the elements in the PFSs. To handle this case, the weighted 

directional correlation coefficient is devised. Suppose that 

the weight vector of the elements in the X =

{

x1, x2,… , x
n

}

 

is denoted as � =

(

�1,�2,… ,�
n

)

 , which satisfies that 

�
i
≥ 0 and 

∑n

i=1
�

i
= 1 . Then the weighted information 

energy of the PFS P is computed as

and the weighted correlation between two PFSs P
1
 and P

2
 

is calculated as

Hence, the weighted directional correlation coefficient 

between two PFSs P
1
 and P

2
 is computed as

(17)

T
�
(P) =

∑n

i=1
�

i

(

(

�
P

(

x
i

))4

+
(

v
P

(

x
i

))4

+
(

r
P

(

x
i

))4

+
(

d
P

(

x
i

))4
)

(18)C
�

(

P1, P2

)

=

∑n

i=1
�

i

(

(

�
P1

(

x
i

))2(

�
P2

(

x
i

))2
+

(

v
P1

(

x
i

))2(

v
P2

(

x
i

))2
+

(

r
P1

(

x
i

))2(

r
P2

(

x
i

))2
+

(

d
P1

(

x
i

))2(

d
P2

(

x
i

))2
)

(19)

�2

�

P1, P2

�

=
C�

�

P1, P2

�

�

T�

�

P1

�

T�

�

P2

��1∕2

=

∑n

i=1
�

i

�

�

�
P1

�

x
i

��2�

�
P2

�

x
i

��2
+
�

v
P1

�

x
i

��2�

v
P2

�

x
i

��2
+
�

r
P1

�

x
i

��2�

r
P2

�

x
i

��2
+
�

d
P1

�

x
i

��2�

d
P2

�

x
i

��2
�

�

∑n

i=1
�

i

�

�

�
P1

�

x
i

��4
+
�

v
P1

�

x
i

��4
+
�

r
P1

�

x
i

��4
+
�

d
P1

�

x
i

��4
�

�

∑n

i=1
�

i

�

�

�
P2

�

x
i

��4
+
�

v
P2

�

x
i

��4
+
�

r
P2

�

x
i

��4
+
�

d
P2

�

x
i

��4
�

When � = (1∕n, 1∕n, ..., 1∕n) , Eq.  (19) can reduce to 

Eq. (14).

Theorem 2  Let X =

{

x1, x2,⋯ , x
n

}

 denote an universe of 

discourse and � =

(

�1,�2, ...,�
n

)

 be the weight vector of 

the elements in X , P1 =

{(
x,�

P1
(x), �

P1
(x)

)|
|
|
x ∈ X

}
 and 

P2 =

{(
x,�

P2
(x), �

P2
(x)

)|
|
|
x ∈ X

}
 be two PFSs on X , then 

the weighted directional correlation coefficient between P
1
 

and P
2
 shows the following properties:

1. �2

(

P1, P2

)

= �2

(

P2, P1

)

;

2. 0 ≤ �2

(

P1, P2

)

≤ 1;

3.  �2

(

P1, P2

)

= 1 if P
1
=P

2
.

Proof  The process of proof is similar to that of Theorem 1, 

so it is omitted here.

Table 1  The medical reference 

data set containing the symptom 

values of the diseases

Cough Headache Temperature Stomach pain Chest pain

Viral fever (0.3, 0.4) (0.7, 0.1) (0.6, 0.2) (0.1, 0.7) (0.5, 0.2)

Malaria (0.5, 0.1) (0.3, 0.2) (0.7, 0.1) (0.6, 0.2) (0.5, 0.1)

Typhoid (0.6, 0.2) (0.9, 0.1) (0.4, 0.3) (0.5, 0.2) (0.1, 0.9)

Stomach problem (0.4, 0.3) (0.1, 0.7) (0.2, 0.6) (0.7, 0.1) (0.2, 0.5)

Chest problem (0.2, 0.6) (0.1, 0.9) (0.3, 0.4) (0.2, 0.5) (0.9, 0.1)

Table 2  Symptom values for four patients

Cough Headache Tempera-

ture

Stomach 

pain

Chest pain

Luna (0.4, 0.4) (0.6, 0.6) (0.5, 0.5) (0.2, 0.2) (0.5, 0.5)

Rose (0.3, 0.3) (0.6, 0.6) (0.2, 0.2) (0.3, 0.3) (0.4, 0.4)

MingK (0.4, 0.4) (0.7, 0.7) (0.3, 0.3) (0.2, 0.2) (0.7, 0.7)

Bob (0.4, 0.4) (0.6, 0.6) (0.5, 0.5) (0.6, 0.6) (0.5, 0.5)

Table 3  Correlation coefficients 

between the symptom values of 

the patients and the symptom 

values of the diseases

Viral fever Malaria Typhoid Stomach problem Chest problem

Luna 0.7353 0.6550 0.8138 0.7219 0.7796

Rose 0.7415 0.6225 0.8262 0.7056 0.7684

MingK 0.6307 0.5018 0.8198 0.6289 0.8127

Bob 0.7928 0.6807 0.7683 0.8027 0.7467
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Case study and comparative analysis

The correlation coefficient is an important indicator, which 

can be used in many practical applications. In this section, 

two practical cases are presented to demonstrate the applica-

tions of correlation coefficient in the medical diagnosis and 

cluster analysis.

Case study: medical diagnosis

Example 6  This example originated in [57]. Sup-

pose that a traditional Chinese physician (TCP) 

performs the medical diagnosis for four patients 

Fig. 4  The visualization of cor-

relation coefficients between the 

symptom values of the patients 

and the symptom values of the 

diseases

Table 4  Correlation coefficients 

between the symptom values of 

the patients and the symptom 

values of the diseases when 

Garg’s correlation coefficient 

[21] is used

Viral fever Malaria Typhoid Stomach problem Chest problem

Luna 0.8567 0.8206 0.8124 0.8567 0.8124

Rose 0.8811 0.8183 0.7971 0.8811 0.7971

MingK 0.6988 0.5989 0.8552 0.6988 0.8552

Bob 0.8924 0.8158 0.7643 0.8924 0.7643

Table 5  Correlation coefficients 

between the symptom values of 

the patients and the symptom 

values of the diseases when 

Chen’s correlation coefficient 

[7] is used

Viral fever Malaria Typhoid Stomach problem Chest problem

Luna 0.0473 − 0.3315 0.4485 0.0473 0.4485

Rose 0.2338 − 0.3737 0.5445 0.2338 0.5445

MingK − 0.0031 − 0.4591 0.6289 -0.0031 0.6289

Bob 0.5023 0.1994 0.1500 0.5023 0.1500

Table 6  Correlation coefficients 

between the symptom values of 

the patients and the symptom 

values of the diseases when the 

correlation coefficient of Singh 

et al. [45] is used

Viral fever Malaria Typhoid Stomach problem Chest problem

Luna 0.8017 0.7612 0.7126 0.8017 0.7126

Rose 0.8013 0.7781 0.7380 0.8013 0.7380

MingK 0.7472 0.6857 0.7329 0.7472 0.7329

Bob 0.7996 0.7816 0.7009 0.7996 0.7009

Table 7   Correlation coefficients between the symptom values of the 

patients and the symptom values of the diseases when Thao’s correla-

tion coefficient [49] is used

Viral fever Malaria Typhoid Stomach 

problem

Chest 

problem

Luna NULL NULL NULL NULL NULL

Rose NULL NULL NULL NULL NULL

MingK NULL NULL NULL NULL NULL

Bob NULL NULL NULL NULL NULL
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D =
{

d1(Luna), d2(Rose), d3(MingK), d4(Bob)
}

 

a c c o r d i n g  t o  t h e i r  s y m p t o m  v a l u e s 

C =
{

c1(Cough), c2(Headache), c3(Temperature),

c4(Stomach pain), c5(Chest pain)
}

 .  T h e  d i s e a s e s 

R =
{

r1(Viral fever), r2(Malaria), r3(Typhoid),

r4(Stomach problem), r5(Chest problem)
}

 have different 

values for symptoms. Since the TCPs mainly use four meth-

ods: observation, olfaction, inquiry, and palpation when the 

diseases of the patients are diagnosed, it is very difficult 

for TCPs to provide crisp numbers as the values of symp-

toms. Considering the uncertainty and fuzziness of diagnosis 

processes, the Pythagorean fuzzy sets are used to represent 

the values of symptoms. According to the clinical experi-

ence accumulated by the veteran TCPs, a medical reference 

data set composed of the symptom values of the diseases is 

constructed as shown in Table 1. Through the above four 

methods, the TCP gives the symptom values of four patients, 

which are shown in Table 2. To conduct the medical diag-

nosis for these four patients, we use Eq. (14) to compute the 

correlation coefficients between their symptom values and 

the symptom values of the diseases in the medical refer-

ence data set, which are shown in Table 3. Then the patient 

dj(j = 1, 2, 3, 4) suffers from the disease r
i
(i = 1, 2,… , 5) that 

satisfies the condition that max
(

�1

(

ri, Cj

))

 , where Cj denotes 

the symptom values of the patient dj.

Figure 4 depicts the visualization of correlation coefficients 

between the symptom values of the patients and the symp-

tom values of the diseases.

As shown in Table 3 and Fig. 4, it can be seen that Luna, 

Rose, and MingK suffer from Typhoid, while Bob suffers 

from Stomach problem.

In order to compare our proposed directional correlation 

coefficient with Garg’s correlation coefficient [21], Chen’s 

correlation coefficient [7], the correlation coefficient of 

Singh et al. [45], and Thao’s correlation coefficient [49], 

Eqs. (5), (6), (10) and (11) are used to handle Example 6 and 

then the results are obtained as shown in Tables 4, 5, 6, 7.

As listed in Tables 4 and 6, the correlation coefficient 

value between the symptom values of Luna and the symptom 

values of Viral fever equals to the correlation coefficient 

value between the symptom values of Luna and the symptom 

values of Stomach problem. Hence, the disease of Luna can-

not be diagnosed in such a case. The patients Rose and Bob 

also have the same situation that their diseases cannot be 

diagnosed when Garg’s correlation coefficient [21] and the 

correlation coefficient of Singh et al. [45] are used.

As depicted in Table 5, the correlation coefficient value 

between the symptom values of Luna and the symptom val-

ues of Typhoid equals to the correlation coefficient value 

between the symptom values of Luna and the symptom val-

ues of Chest problem. Therefore, the disease of Luna cannot 

be diagnosed when Chen’s correlation coefficient [7] is used. 

The patients Rose and MingK also have the same situation.

As shown in Table 7, the correlation coefficient value 

between the symptom values of each patient and the symptom 

values of each disease is NULL. That is because the denom-

inator is zero during the computing process of correlation 

coefficient values. It violates the principle of mathematics. 

Therefore, the diseases of four patients cannot be diagnosed.

According to the above analyses, it can be known that our 

proposed directional correlation coefficient is able to accu-

rately diagnose the diseases of four patients. Hence, it shows 

the feasibility and superiority of our proposed directional 

correlation coefficient.

Case study: cluster analysis

Cluster analysis is a kind of statistical analysis method guid-

ing the process that splits a set of data into some clusters [24, 

36, 37, 65], where the data in the same clusters have more 

similar characteristic than those in the different clusters. It 

is an unsupervised process, which is very different from the 

classification analysis [41]. It has been extended by research 

scholars into the fuzzy decision-making field [34] and some 

clustering algorithms were developed to cluster intuitionistic 

fuzzy sets [15, 50], hesitant fuzzy sets [8], and probabilistic 

linguistic term sets [29]. Here, we do not plan to develop 

a novel clustering algorithm to handle PFSs, but use the 

existing clustering algorithm presented in [8] to validate 

the effectiveness of our proposed weighted directional cor-

relation coefficient. Suppose that there exists a set of PFSs 
{

P1, P2,… , P
n

}

 , then the cluster analysis process guided by 

this clustering algorithm is presented as follows:

Algorithm 1 (Clustering algorithm)

Step 1 Compute the weighted directional correlation 

coefficient �2

(

Pi, Pj

)

 between any two PFSs P
i
 and Pj in 

{

P1, P2,⋯ , P
n

}

 using Eq.  (19) and use all the obtained 

weighted directional correlation coefficients to form a cor-

relation matrix (CM) Γw =
(

�ij

)

n×n
 where �ij = �2

(

Pi, Pj

)

.

Step 2 Check whether the CM can satisfy the condition 

tha t  Γ
2

w
⊆ Γ

w
 ,  where  Γ

2

w
= Γw◦Γw =

(

�
�

ij

)

n×n
 and 

�
�

ij
= max

l

{

min
{

�il, �lj

}}

 . If it fails to satisfy the condition, 

then the equivalent CM Γ2
k

w
 is computed as

until Γ2
k

w
= Γ2

(k+1)

w
.

Step 3 Choose a certain number of values for the confi-

dence level � from the unit interval [0, 1] so as to construct 

�-cutting matrices Γ� =

(

��
ij

)

n×n
 , where the element ��

ij
 can 

be determined as

(20)Γ
w
→ Γ

2

w
→ Γ

4

w
→ ⋯ → Γ

2
k

w
→ ⋯
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Step 4 The set of PFSs 
{

P1, P2,⋯ , P
n

}

 can be clustered 

using the following rule: If all the elements in the ith row 

of Γ
�
 are equal to the elements in the same positions of jth 

row, then the PFSs P
i
 and Pj can be considered to be with 

the similar characteristics and they can be placed in the same 

clusters.

Step 5 End.

In the following part, a case concerning the analysis of 

informatization level of smart cities is given to show the 

superiority of the proposed directional correlation coeffi-

cient when it is applied to cluster analysis. In this exam-

ple, the weighted directional correlation coefficient formula 

given in (19) is used to compute the correlation coefficient 

between two PFSs since the informatization level involves 

some different factors and the factors usually show different 

weights or importance.

Example 7  The informatization level of a city has become 

an important measure for the popularity and economic 

strength of a city, which has attracted much attention from 

government officials in recent years. For example, Digital 

China Summit has been successfully held for two times in 

Fuzhou, China. To analyze the informatization level of ten 

cities, denoted as 
{

P1, P2,… , P10

}

 , five indexes should be 

(21)��
ij
=

{

0, if �ij < �

1, if �ij ≥ �
i, j = 1, 2, ..., n

considered, which are IT infrastructure ( C
1
 ), information 

technology talent ( C
2
 ), information resource and applica-

tion ( C
3
 ), information result transformation efficiency ( C

4
 ), 

economic benefit ( C
5
 ). The weight information of these 

indexes is set to w = (0.2, 0.15, 0.3, 0.1, 0.25)
T . The govern-

ment information steering committee evaluates the informa-

tization level of ten cities according to their indexes using 

the PFSs and records the information as shown in Table 8.

Firstly, the clustering algorithm with our proposed 

weighted directional correlation coefficient is used to group 

these ten cities according the above evaluation information 

as follows:

Step 1 Compute the weighted directional correlation 

coefficient �2

(

Pi, Pj

)

 between any two PFSs P
i
 and Pj in 

{

P1, P2,… , P10

}

 using Eq. (19) and use them to form a cor-

relation matrix (CM) Γw =
(

�ij

)

n×n
 as

Step 2 The equivalent CM is computed using the follow-

ing process

Γ
w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.4434 0.7868 0.5949 0.4027 0.3941 0.7701 0.3685 0.6618 0.7449

0.4434 1.0000 0.4357 0.7798 0.8876 0.6094 0.5083 0.7048 0.5896 0.6643

0.7868 0.4357 1.0000 0.7886 0.4490 0.6108 0.6548 0.4420 0.5848 0.6469

0.5949 0.7798 0.7886 1.0000 0.6129 0.8619 0.6502 0.6378 0.5768 0.6280

0.4027 0.8876 0.4490 0.6129 1.0000 0.4240 0.4553 0.7272 0.6495 0.7402

0.3941 0.6094 0.6108 0.8619 0.4240 1.0000 0.5852 0.5824 0.2564 0.4832

0.7701 0.5083 0.6548 0.6502 0.4553 0.5852 1.0000 0.4072 0.6667 0.7505

0.3685 0.7048 0.4420 0.6378 0.7272 0.5824 0.4072 1.0000 0.6736 0.7503

0.6618 0.5896 0.5848 0.5768 0.6495 0.2564 0.6667 0.6736 1.0000 0.8811

0.7449 0.6643 0.6469 0.6280 0.7402 0.4832 0.7505 0.7503 0.8811 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ
2

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.6643 0.7868 0.7868 0.7402 0.6108 0.7701 0.7449 0.7449 0.7505

0.6643 1.0000 0.7798 0.7798 0.8876 0.7798 0.6643 0.7272 0.6736 0.7402

0.7868 0.7798 1.0000 0.7886 0.6469 0.7886 0.7701 0.6469 0.6618 0.7449

0.7868 0.7798 0.7886 1.0000 0.7798 0.8619 0.6548 0.7048 0.6502 0.6643

0.7402 0.8876 0.6469 0.7798 1.0000 0.6129 0.7402 0.7402 0.7402 0.7402

0.6108 0.7798 0.7886 0.8619 0.6129 1.0000 0.6502 0.6378 0.5896 0.6280

0.7701 0.6643 0.7701 0.6548 0.7402 0.6502 1.0000 0.7503 0.7505 0.7505

0.7449 0.7272 0.6469 0.7048 0.7402 0.6378 0.7503 1.0000 0.7503 0.7503

0.7449 0.6736 0.6618 0.6502 0.7402 0.5896 0.7505 0.7503 1.0000 0.8811

0.7505 0.7402 0.7449 0.6643 0.7402 0.6280 0.7505 0.7503 0.8811 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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It can be noted that Γ16

w
= Γ

8

w
 . Hence, Γ8

w
 is an equivalent 

CM.

Step 3 Ten values of the confidence level of the equiv-

alent CM Γ8

w
 can be obtained as 1.0000, 0.8876, 0.8811, 

0.8619, 0.7886, 0.7868, 0.7798, 0.7701, 0.7505, 0.7503. 

According to these values of the confidence level, ten �-cut-

ting matrices can be obtained.

For example, when � = 0.8876 , then

Γ
4

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.7798 0.7868 0.7868 0.7798 0.7868 0.7701 0.7503 0.7505 0.7505

0.7798 1.0000 0.7798 0.7798 0.8876 0.7798 0.7701 0.7402 0.7402 0.7449

0.7868 0.7798 1.0000 0.7886 0.7798 0.7886 0.7701 0.7503 0.7505 0.7505

0.7868 0.7798 0.7886 1.0000 0.7798 0.8619 0.7701 0.7449 0.7449 0.7505

0.7798 0.8876 0.7798 0.7798 1.0000 0.7798 0.7402 0.7402 0.7402 0.7402

0.7868 0.7798 0.7886 0.8619 0.7798 1.0000 0.7701 0.7272 0.6736 0.7449

0.7701 0.7701 0.7701 0.7701 0.7402 0.7701 1.0000 0.7503 0.7505 0.7505

0.7503 0.7402 0.7503 0.7449 0.7402 0.7272 0.7503 1.0000 0.7503 0.7503

0.7505 0.7402 0.7505 0.7449 0.7402 0.6736 0.7505 0.7503 1.0000 0.8811

0.7505 0.7449 0.7505 0.7505 0.7402 0.7449 0.7505 0.7503 0.8811 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ
8

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.7798 0.7868 0.7868 0.7798 0.7868 0.7701 0.7503 0.7505 0.7505

0.7798 1.0000 0.7798 0.7798 0.8876 0.7798 0.7701 0.7503 0.7505 0.7505

0.7868 0.7798 1.0000 0.7886 0.7798 0.7886 0.7701 0.7503 0.7505 0.7505

0.7868 0.7798 0.7886 1.0000 0.7798 0.8619 0.7701 0.7503 0.7505 0.7505

0.7798 0.8876 0.7798 0.7798 1.0000 0.7798 0.7701 0.7503 0.7505 0.7505

0.7868 0.7798 0.7886 0.8619 0.7798 1.0000 0.7701 0.7503 0.7505 0.7505

0.7701 0.7701 0.7701 0.7701 0.7701 0.7701 1.0000 0.7503 0.7505 0.7505

0.7503 0.7503 0.7503 0.7503 0.7503 0.7503 0.7503 1.0000 0.7503 0.7503

0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7503 1.0000 0.8811

0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7503 0.8811 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ
16

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.7798 0.7868 0.7868 0.7798 0.7868 0.7701 0.7503 0.7505 0.7505

0.7798 1.0000 0.7798 0.7798 0.8876 0.7798 0.7701 0.7503 0.7505 0.7505

0.7868 0.7798 1.0000 0.7886 0.7798 0.7886 0.7701 0.7503 0.7505 0.7505

0.7868 0.7798 0.7886 1.0000 0.7798 0.8619 0.7701 0.7503 0.7505 0.7505

0.7798 0.8876 0.7798 0.7798 1.0000 0.7798 0.7701 0.7503 0.7505 0.7505

0.7868 0.7798 0.7886 0.8619 0.7798 1.0000 0.7701 0.7503 0.7505 0.7505

0.7701 0.7701 0.7701 0.7701 0.7701 0.7701 1.0000 0.7503 0.7505 0.7505

0.7503 0.7503 0.7503 0.7503 0.7503 0.7503 0.7503 1.0000 0.7503 0.7503

0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7503 1.0000 0.8811

0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7503 0.8811 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 4 Based on the obtained �-cutting matrices, the 

informatization level of ten cities can be clustered as shown 

in Table 9.

Γ
w,�=0.8876 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Step 5 End.

To compare the weighted directional correlation coeffi-

cient with the existing correlation coefficients [7], 21, 45, 

these existing correlation coefficients are used to handle 

Example 7.

First, the correlation coefficient proposed by Garg [21] is 

used to compute the CM and equivalent CM as

When Garg’s correlation coefficient [21] is used, the 

obtained clustering result is listed in Table 10.

Similarly, the correlation coefficient that was proposed 

by Chen [7] is also used to compute the CM and equivalent 

CM as

Γ
�

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.8097 0.9203 0.7773 0.8328 0.5636 0.8191 0.6812 0.7842 0.8885

0.8097 1.0000 0.8049 0.9022 0.9203 0.7150 0.6977 0.7660 0.7095 0.7991

0.9203 0.8049 1.0000 0.9022 0.8097 0.7150 0.7660 0.6977 0.7095 0.7991

0.7773 0.9022 0.9022 1.0000 0.7773 0.8664 0.7292 0.7292 0.6310 0.6999

0.8328 0.9203 0.8097 0.7773 1.0000 0.5636 0.6812 0.8191 0.7842 0.8885

0.5636 0.7150 0.7150 0.8664 0.5636 1.0000 0.6524 0.6524 0.3082 0.5359

0.8191 0.6977 0.7660 0.7292 0.6812 0.6524 1.0000 0.6652 0.7565 0.8367

0.6812 0.7660 0.6977 0.7292 0.8191 0.6524 0.6652 1.0000 0.7565 0.8367

0.7842 0.7095 0.7095 0.6310 0.7842 0.3082 0.7565 0.7565 1.0000 0.8922

0.8885 0.7991 0.7991 0.6999 0.8885 0.5359 0.8367 0.8367 0.8922 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ
�16

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.9022 0.9203 0.9022 0.9022 0.8664 0.8367 0.8367 0.8885 0.8885

0.9022 1.0000 0.9022 0.9022 0.9203 0.8664 0.8367 0.8367 0.8885 0.8885

0.9203 0.9022 1.0000 0.9022 0.9022 0.8664 0.8367 0.8367 0.8885 0.8885

0.9022 0.9022 0.9022 1.0000 0.9022 0.8664 0.8367 0.8367 0.8885 0.8885

0.9022 0.9203 0.9022 0.9022 1.0000 0.8664 0.8367 0.8367 0.8885 0.8885

0.8664 0.8664 0.8664 0.8664 0.8664 1.0000 0.8367 0.8367 0.8664 0.8664

0.8367 0.8367 0.8367 0.8367 0.8367 0.8367 1.0000 0.8367 0.8367 0.8367

0.8367 0.8367 0.8367 0.8367 0.8367 0.8367 0.8367 1.0000 0.8367 0.8367

0.8885 0.8885 0.8885 0.8885 0.8885 0.8664 0.8367 0.8367 1.0000 0.8922

0.8885 0.8885 0.8885 0.8885 0.8885 0.8664 0.8367 0.8367 0.8922 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ
��

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 − 0.1297 0.4634 −0.2997 0.0069 −0.5037 0.2763 −0.4232 0.3488 0.3832

− 0.1297 1.0000 −0.0997 0.3859 0.4634 0.0440 −0.5237 −0.0586 −0.0210 −0.2645

0.4634 − 0.0997 1.0000 0.3859 −0.1297 0.0440 −0.0586 −0.5237 −0.0210 −0.2645

− 0.2997 0.3866 0.3859 1.0000 −0.2997 0.5521 −0.2649 −0.2649 0.3332 −0.8589

0.0069 0.4864 −0.1297 −0.2997 1.0000 −0.5037 −0.4232 0.2763 0.3488 0.3832

− 0.5037 0.0442 0.0440 0.5521 −0.5037 1.0000 0.0084 0.0084 −0.7170 −0.6490

0.2763 − 0.5237 −0.0586 −0.2649 −0.4232 0.0084 1.0000 0.0013 0.2104 0.2409

0.4232 − 0.0586 −0.5237 −0.2649 0.2763 0.0084 0.0013 1.0000 0.2104 0.2409

0.3488 0.0210 −0.0210 0.3332 0.3488 −0.7170 0.2104 0.2104 1.0000 0.6917

0.3832 − 0.2645 −0.2645 −0.8589 0.3832 −0.6490 0.2409 0.2409 0.6917 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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When Chen’s correlation coefficient [7] is used, the 

obtained clustering result is shown in Table 11.

Finally, the correlation coefficient of Singh et al. [45] is 

used to compute the CM and equivalent CM as

When the correlation coefficient of Singh et al. [45] is 

used, the obtained clustering result is listed in Table 12.

It can be observed that the clustering result obtained from 

the clustering algorithm with the proposed weighted direc-

tional correlation coefficient is different from the clustering 

results that are obtained from the clustering algorithms with 

the correlation coefficients proposed by Garg [21], Chen 

[7] and Singh et al. [45]. The reasons can be analyzed as 

follows:

Γ
��8

w

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.3859 0.4634 0.3859 0.3859 0.3859 0.2763 0.2763 0.3832 0.3832

0.3859 1.0000 0.3859 0.3859 0.4634 0.3859 0.2763 0.2763 0.3832 0.3832

0.4634 0.3859 1.0000 0.3859 0.3859 0.3859 0.2763 0.2763 0.3832 0.3832

0.3859 0.3859 0.3859 1.0000 0.3859 0.5521 0.2763 0.2763 0.3832 0.3832

0.3859 0.4634 0.3859 0.3859 1.0000 0.3859 0.2763 0.2763 0.3832 0.3832

0.3859 0.3859 0.3859 0.5521 0.3859 1.0000 0.2763 0.2763 0.3832 0.3832

0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 1.0000 0.2763 0.2763 0.2763

0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 1.0000 0.2763 0.2763

0.3832 0.3832 0.3832 0.3832 0.3832 0.3832 0.2763 0.2763 1.0000 0.6919

0.3832 0.3832 0.3832 0.3832 0.3832 0.3832 0.2763 0.2763 0.6919 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ
���

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.6906 0.8531 0.7621 0.6942 0.6728 0.7923 0.6341 0.7728 0.8148

0.6906 1.0000 0.6755 0.8351 0.8351 0.7217 0.6763 0.7323 0.7276 0.7639

0.8531 0.6755 1.0000 0.8351 0.6906 0.7217 0.7323 0.6763 0.7276 0.7639

0.7621 0.8351 0.8351 1.0000 0.7621 0.8322 0.7322 0.7322 0.7027 0.7771

0.6942 0.8351 0.6906 0.7621 1.0000 0.6728 0.6341 0.7923 0.7728 0.8148

0.6728 0.7217 0.7217 0.8322 0.6728 1.0000 0.7204 0.7204 0.5867 0.6830

0.7923 0.6763 0.7323 0.7322 0.6341 0.7204 1.0000 0.5577 0.7204 0.7364

0.6341 0.7323 0.6763 0.7322 0.7923 0.7204 0.5577 1.0000 0.7204 0.7364

0.7728 0.7276 0.7276 0.7027 0.7728 0.5867 0.7204 0.7204 1.0000 0.8429

0.8148 0.7639 0.7639 0.7771 0.8148 0.6830 0.7364 0.7364 0.8429 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ
���16

w
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.8351 0.8531 0.8351 0.8351 0.8322 0.7923 0.7923 0.8148 0.8148

0.8351 1.0000 0.8351 0.8351 0.8531 0.8322 0.7923 0.7923 0.8148 0.8148

0.8531 0.8351 1.0000 0.8351 0.8351 0.8322 0.7923 0.7923 0.8148 0.8148

0.8351 0.8351 0.8351 1.0000 0.8351 0.8322 0.7923 0.7923 0.8148 0.8148

0.8351 0.8531 0.8351 0.8351 1.0000 0.8322 0.7923 0.7923 0.8148 0.8148

0.8322 0.8322 0.8322 0.8322 0.8322 1.0000 0.7923 0.7923 0.8148 0.8148

0.7923 0.7923 0.7923 0.7923 0.7923 0.7923 1.0000 0.7923 0.7923 0.7923

0.7923 0.7923 0.7923 0.7923 0.7923 0.7923 0.7923 1.0000 0.7923 0.7923

0.8148 0.8148 0.8148 0.8148 0.8148 0.8148 0.7923 0.7923 1.0000 0.8429

0.8148 0.8148 0.8148 0.8148 0.8148 0.8148 0.7923 0.7923 0.8429 1.0000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1. When the correlation coefficients proposed by Garg 

[21], Chen [7], and Singh et al. [45] are used, there 

may exist the case that two PFSs P
i
 and Pj are dif-

ferent, but the correlation coefficient between the 

PFSs P
i
 and P

k
 equals to the correlation coefficient 

between the PFSs Pj and P
k
 . For example, in the CM 

Γ
�

w
 , �2

(

P2, P4

)

= �2

(

P3, P4

)

= 0.9022 . In the CM Γ��

w
 , 

�2

(

P7, P4

)

= �2

(

P8, P4

)

= −0.2649 . In the CM Γ���

w
 , 

�2

(

P2, P6

)

= �2

(

P3, P6

)

= 0.7217 . In the CM Γ
w
 , the 

drawback is overcome and it does not incur the above 

case since the proposed weighted directional correla-

tion coefficient considers not only the MDs and NMDs, 

but also the SoCs and DoCs. Thus, the clustering result 

obtained from the clustering algorithm with the pro-
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posed weighted directional correlation coefficient is 

more reasonable since the correlation coefficient is an 

indictor used to perform cluster analysis and it has a 

great influence on the clustering results.

2. From Tables  9, 10, 11 and 12, it can be seen that 

the confidence level value belongs to the interval 

[0.7503, 0.8876] when our proposed weighted direc-

tional correlation coefficient is utilized. The confidence 

level value belongs to the interval [0.8367, 0.9203] 

when the correlation coefficient proposed by Garg [21] 

is used. The confidence level value is in the interval 

[0.2763, 0.6919] when the correlation coefficient that 

was proposed by Chen [7] is used. The confidence level 

value is in the interval [0.7923, 0.8531] when the corre-

lation coefficient proposed by Singh et al. [45] is used. 

Therefore, the confidence level obtained from Chen [7] 

is much smaller than that obtained from our proposed 

weighted directional correlation coefficient, Garg’s cor-

relation coefficient [21], and the correlation coefficient 

of Singh et al. [45]. Moreover, some of the confidence 

level values are smaller than 0.5. It does not satisfy the 

principle in statistics. The interval of the confidence 

level obtained from our proposed weighted directional 

correlation coefficient is bigger than that obtained from 

Garg’s correlation coefficient [21] and correlation coef-

ficient of Singh et al. [45]. It implies that the differences 

of confidence level values obtained from our proposed 

weighted directional correlation coefficient are bigger. 

Therefore, it can better reflect the differences among the 

different clusters.

According to the above analysis, it can be observed that 

our proposed weighted directional correlation coefficient can 

achieve more reasonable result than the correlation coeffi-

cients proposed by Garg [21], Chen [7], and Singh et al. [45] 

when the correlation coefficient is applied to cluster analysis.

Table 8  The evaluation information for the informatization level of 

ten cities

C
1

C
2

C
3

C
4

C
5

P
1

(0.2, 0.5) (0.1, 0.8) (0.6, 0.2) (0.3, 0.4) (0.1, 0.3)

P
2

(0.6, 0.1) (0.7, 0.2) (0.3, 0.4) (0.1, 0.8) (0.5, 0.2)

P
3

(0.1, 0.6) (0.2, 0.7) (0.4, 0.3) (0.8, 0.1) (0.2, 0.5)

P
4

(0.5, 0.5) (0.4, 0.4) (0.3, 0.3) (0.7, 0.7) (0.5, 0.5)

P
5 (0.5, 0.2) (0.8, 0.1) (0.2, 0.6) (0.4, 0.3) (0.3, 0.1)

P
6

(0.6, 0.6) (0.2, 0.2) (0.1, 0.1) (0.5, 0.5) (0.7, 0.7)

P
7

(0.2, 0.7) (0.1, 0.3) (0.8, 0.1) (0.4, 0.3) (0.6, 0.2)

P
8

(0.7,0.2) (0.3, 0.1) (0.1, 0.8) (0.3, 0.4) (0.2, 0.6)

P
9

(0.2, 0.2) (0.4, 0.4) (0.7, 0.7) (0.6, 0.6) (0.1, 0.1)

P
10

(0.3,0.3) (0.5, 0.5) (0.6, 0.6) (0.2, 0.2) (0.4, 0.4)

Table 9  The clustering result 

of the informatization level of 

ten cities when the weighted 

directional correlation 

coefficient is used

Class Confidence level Clustering result

10 0.8876 < � ≤ 1
{

P1

}

,
{

P2

}

,
{

P3

}

,
{

P4

}

,
{

P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

9 0.8811 < � ≤ 0.8876
{

P1

}

,
{

P2, P5

}

,
{

P3

}

,
{

P4

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

8 0.8619 < � ≤ 0.8811
{

P1

}

,
{

P2, P5

}

,
{

P3

}

,
{

P4

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

7 0.7886 < � ≤ 0.8619
{

P1

}

,
{

P2, P5

}

,
{

P3

}

,
{

P4, P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

6 0.7868 < � ≤ 0.7886
{

P1

}

,
{

P2, P5

}

,
{

P3, P4, P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

5 0.7798 < � ≤ 0.7868
{

P1, P3, P4, P6

}

,
{

P2, P5

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

4 0.7701 < � ≤ 0.7798
{

P1, P2, P3, P4, P5, P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

3 0.7505 < � ≤ 0.7701
{

P1, P2, P3, P4, P5, P6, P7

}

,
{

P8

}

,
{

P9, P10

}

2 0.7503 < � ≤ 0.7505
{

P1, P2, P3, P4, P5, P6, P7, P9, P10

}

,
{

P8

}

1 0 < � ≤ 0.7503
{

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

}

Table 10  The clustering result 

of the informatization level 

of ten cities when Garg’s 

correlation coefficient [21] is 

used

Class Confidence level Clustering result

10 0.9203 < � ≤ 1
{

P1

}

,
{

P2

}

,
{

P3

}

,
{

P4

}

,
{

P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

8 0.9022 < � ≤ 0.9203
{

P1, P3

}

,
{

P2, P5

}

,
{

P4

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

6 0.8922 < � ≤ 0.9022
{

P1, P2, P3, P4, P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

5 0.8885 < � ≤ 0.8922
{

P1, P2, P3, P4, P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

4 0.8664 < � ≤ 0.8885
{

P1, P2, P3, P4, P5, P9, P10

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

3 0.8367 < � ≤ 0.8664
{

P1, P2, P3, P4, P5, P6, P9, P10

}

,
{

P7

}

,
{

P8

}

1 0 < � ≤ 0.8367
{

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

}
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Conclusions

In this paper, we focus on developing some novel direc-

tional correlation coefficient measures for PFSs by consider-

ing their MD, NMD, SoC, and DoC. The drawbacks of the 

existing correlation coefficients are analyzed. Afterwards, 

we propose the information energy, correlation, and two 

novel directional correlation coefficients for PFSs by consid-

ering their MDs, NMDs, SoCs, and DoCs. Their properties 

are investigated. The proposed directional correlation coef-

ficients are used in two important applications, which are 

medical diagnosis and cluster analysis. An extended example 

concerning the Chinese medical diagnosis is presented to 

show the application of the proposed directional correla-

tion coefficient and the superiority in the medical diagno-

sis. Another case concerning the analysis of informatization 

level of smart cities is given to show the application of the 

proposed weighted directional correlation coefficient and 

also verify the superiority in the cluster analysis. Compara-

tive analyses show that our proposed directional correlation 

coefficients are better than the existing correlation coeffi-

cients when they are used to solve the problems of the medi-

cal diagnosis and cluster analysis.

Compared with the previous correlation coefficients, the 

proposed directional correlation coefficients show the fol-

lowing advantages:

1. The proposed directional correlation coefficients include 

the important SoC and DoC parameters to better meas-

ure the relationship between two PFSs, which have 

already been verified to be effective in the distance 

measures.

2. For the proposed directional correlation coefficients of 

PFSs, there does not exist the case that the denominator 

equals to zero. They can overcome the drawbacks of the 

existing correlation coefficients.

In the future research, we intend to use the proposed 

directional correlation coefficients for improving the TOP-

SIS method and apply it to solve multicriteria decision-mak-

ing problems. Moreover, we will focus on the applications 

of PFSs in IoT and cloud computing.
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Table 11  The clustering result 

of the informatization level 

of ten cities when Chen’s 

correlation coefficient [7] is 

used

Class Confidence level Clustering result

10 0.6919 < � ≤ 1
{

P1

}

,
{

P2

}

,
{

P3

}

,
{

P4

}

,
{

P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

9 0.5521 < � ≤ 0.6919
{

P1

}

,
{

P2

}

,
{

P3

}

,
{

P4

}

,
{

P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

8 0.4634 < � ≤ 0.5521
{

P1

}

,
{

P2

}

,
{

P3

}

,
{

P4, P6

}

,
{

P5

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

6 0.3859 < � ≤ 0.4634
{

P1, P3

}{

P2, P5

}

,
{

P4, P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

4 0.3832 < � ≤ 0.3859
{

P1, P2, P3, P4, P5, P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

3 0.2763 < � ≤ 0.3832
{

P1, P2, P3, P4, P5, P6, P9, P10

}

,
{

P7

}

,
{

P8

}

1 0 < � ≤ 0.2763
{

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

}

Table 12  The clustering result 

of the informatization level of 

ten cities when the correlation 

coefficient of Singh et al. [45] 

is used

Class Confidence level Clustering result

10 0.8531 < � ≤ 1
{

P1

}

,
{

P2

}

,
{

P3

}

,
{

P4

}

,
{

P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

8 0.8429 < � ≤ 0.8531
{

P1, P3

}

,
{

P2, P5

}

,
{

P4

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9

}

,
{

P10

}

7 0.8351 < � ≤ 0.8429
{

P1, P3

}

,
{

P2P5

}

,
{

P4

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

5 0.8322 < � ≤ 0.8351
{

P1, P2, P3, P4, P5

}

,
{

P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

4 0.8148 < � ≤ 0.8322
{

P1, P2, P3, P4, P5, P6

}

,
{

P7

}

,
{

P8

}

,
{

P9, P10

}

3 0.7923 < � ≤ 0.8148
{

P1, P2, P3, P4, P5, P6, P9, P10

}

,
{

P7

}

,
{

P8

}

1 0 < � ≤ 0.7923
{

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

}
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