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Summary

Direction fields and vector fields play an increasingly important role in computer graphics and geometry

processing. The synthesis of directional fields on surfaces, or other spatial domains, is a fundamental step

in numerous applications, such as mesh generation, deformation, texture mapping, and many more. The

wide range of applications resulted in definitions for many types of directional fields: from vector and

tensor fields, over line and cross fields, to frame and vector-set fields. Depending on the application at

hand, researchers have used various notions of objectives and constraints to synthesize such fields. These

notions are defined in terms of fairness, feature alignment, symmetry, or field topology, to mention just

a few. To facilitate these objectives, various representations, discretizations, and optimization strategies

have been developed. These choices come with varying strengths and weaknesses. This course provides

a systematic overview of directional field synthesis for graphics applications, the challenges it poses, and

the methods developed in recent years to address these challenges.

Prerequisites

The audience should have some prior experience with triangle mesh representation of geometric models,

and a working knowledge of vector calculus, linear algebra, and general computer graphics fundamentals.

Some familiarity with the basics of differential geometry and numerical optimization are helpful, but not

required.

Intended Audience

The course targets researchers and developers who seek to understand the concepts and technologies used

in direction field and vector field synthesis, learn about the most recent developments, and discern how this

powerful tool, which has had impact in a variety of research and application areas, might benefit their area

of work. Participants will get a broad overview, and obtain the knowledge on how to choose the proper

combination of techniques for many relevant tasks.

Sources

These notes are largely based on the following state-of-the-art report by the lecturers. It has been extended

to include updates on the most recent developments.

• A. Vaxman, M. Campen, O. Diamanti, D. Panozzo, D. Bommes, K. Hildebrandt, M. Ben-Chen. Di-

rectional Field Synthesis, Design, and Processing. Computer Graphics Forum 35 (2), 2016.

• The course was subsequently given at SIGGRAPH Asia 2016, including demos and real-time coding

sessions. The entire course, including the notes, the presentation slides, and the demos, is provided in

the following open-source GitHub repository: https://github.com/avaxman/DirectionalFieldSynthesis

Further Reading

Being a relatively young and developing topic, no textbooks covering the various aspects of directional

field synthesis in the context of computer graphics and geometry processing are available. The notes of a

recent course on vector field processing offer another perspective on parts of the topic, with a focus on the

discrete differential geometry aspects:

• F. de Goes, M. Desbrun, Y. Tong. Vector Field Processing On Triangle Meshes. SIGGRAPH Courses,

2016.

By contrast, we treat directional fields in a general, broader sense, focusing on the theoretical and practical

aspects related to their geometrical, topological, and representational properties which are crucial for the

https://github.com/avaxman/DirectionalFieldSynthesis


efficient use of field synthesis in applications and research.
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Course Overview

The course will start with an overview over the broad variety of types of direction fields and vector fields

that have found use in applications. We establish a concise taxonomy for these directional fields, and

briefly introduce the necessary differential geometry background.

After discussing the concepts of discretization and their specific pitfalls in the context of directional fields,

we focus on the most important representations used for these fields in geometry processing. It will

become clear that every choice of discretization and representation comes with different advantages and

shortcomings; we provide a guide to making the proper choice, depending on the concrete requirements

of the application. We illustrate the importance of these choices by comparing results from various field

synthesis and optimization methods and demonstrate the algorithms to clarify the crucial differences.

After introducing the most common synthesis objectives and constraints, such as smoothness and align-

ment, we also discuss advanced and specialized ones, pertaining to symmetry, conjugacy, holonomy, or

based on differential operators.

While directional fields are used as an abstract mathematical tool in many applications, it can be extremely

helpful to actually visualize them—for purposes of understanding, debugging, and assessment. We ex-

plain efficient means of visualization suited for specific types of fields. The course will conclude with a

demonstration of how directional field synthesis provides benefits in important application scenarios, and

a discussion of the major open problems in this area of research.

Syllabus

• Introduction

• Applications

• Taxonomy

• Discretization

• Representation

– Break –

• Objectives, Constraints, Operators

• Visualization

• Live coding demo

• Open Problems

• Q&A



Directional Field Synthesis, Design, and Processing

1 Introduction

An increasing number of computer graphics and geometry process-
ing methods rely on, or are guided by, spatially-varying directional
information, assigned to each point on a given domain. These di-
rectional fields exist in many flavors: some specify a magnitude in
addition to a direction, while others consider multiple directions per
point, often with some notion of symmetry among them. Directional
fields appear in the literature under several names, such as vector
fields, direction fields, line fields, cross fields, frame fields, RoSy
fields, N-symmetry fields, PolyVector fields, or tensor fields. We
provide a taxonomy of the different variants, discuss, and compare
their properties. We use the term “directional field” to refer to the
general class of such fields, and use more specific definitions in the
context of the respective literature.

A directional field can be the result of a (real-world or virtual)
measurement of the geometric or physical properties of an object,
or its surface. Notable examples are the principal directions of a
shape, stress or strain tensors, the gradient of a scalar field, the
advection field of a flow, and diffusion data from MRI. There exists
a large body of literature exploring ways to analyze (and visualize)
such fields, including comprehensive surveys [Laramee et al. 2007;
Brambilla et al. 2012]. We are instead interested in surveying the
body of work that focuses on the active creation and processing of
such fields, in the context of geometry processing and computer
graphics. Directional fields can be synthesized (also: designed) by
a computational model that considers user constraints, alignment
conditions, fairness objectives, or physical realizations.

There have been significant developments in directional field syn-
thesis over the past decade. These developments have been driven
by the increasing demand for applications that require directional
fields, in their diverse variants. Prominent examples include: surface
parametrization, mesh generation, texture synthesis, flow simulation,
fabrication, architectural geometry, and illustration.

Different applications have different requirements. To name a few
examples, some applications require the prescription of a specific
field topology, whereas other applications infer it automatically;
some require that the field is integrable to a scalar function, whereas
others require that the flow of the vector does not generate distortion;
some require a soft alignment with curvature directions, whereas
others require hard alignment with certain user constraints.

Figure 1: Visualization of a directional field that was synthesized
based on fairness and alignment objectives. Its singularities are
depicted by little dots, colored according to their index.

While there exists a plethora of algorithms for synthesizing direc-
tional fields, there is no “one-size-fits-all” method which is appli-
cable in all cases. With a given set of objectives and constraints,
the main design choices are for the most appropriate representation
and discretization scheme for directional quantities, and for an opti-
mization strategy to achieve the design goals. The intricate interplay
between these various choices makes it challenging to find the best
approach, given specific application requirements. The goal of this
course is to clarify the implications of these choices, guide practi-
tioners to the right choice, and encourage researchers to address the
(multitude of) remaining open questions.

1.1 Overview

In addition to providing a comprehensive overview of the recent
contributions that have been made to this topic, we establish a struc-
tured categorization of directional fields. In particular, we cover the
following aspects:

Types of Directional Fields We classify the distinct types of
directional fields used in the literature in Section 2. They differ by
a number of parameters, such as the number of directional entities
per point of the domain, symmetries between them, and whether
they encode magnitude in addition to direction. A precise notation
is introduced, in order to avoid confusion between many terms that
are used ambiguously.

Differential Geometry The mathematical formalism of direc-
tional fields in the continuous setting provides the theoretical foun-
dation for computational synthesis in the discrete setting. This is
covered in Section 3.

Discretization One can think of “discretization” as where direc-
tional fields are represented. For instance, the directional information
can “live” on the supporting planes of the faces of a triangulation,
on discrete tangent planes defined on vertices, or as scalar integrated
1-forms on edges. A choice of discretization can retain some proper-
ties of directional fields from the continuous setting, such as their
differential or their topological structure, but usually not all of them.
Furthermore, discrete representations can be viewed as a sampling
of a continuous field, and are thus liable to effects such as aliasing.
We treat these aspects in Section 4.

Representation We define “representation” as how directional
fields are encoded. In R

2, an explicit representation using Euclidean
coordinates is straightforward. However, the situation is more com-
plicated on curved surfaces. To handle this, a large variety of rep-
resentations for directional fields has been explored. This variety
ranges from representations based on local Cartesian or polar coordi-
nates, through discrete 1-forms and complex number-based represen-
tations, to more indirect encoding, e.g. as the roots of polynomials,
or the maxima of scalar functions. These are described in Section 5.

Topology and Operators Given where and how directional
fields are encoded, we proceed to describe how their topological
and differential properties are formulated in the discrete setting. We
discuss the discrete definitions of directional-field singularities in
Section 6. We show how operators from vector calculus can be in
defined in the discrete setting in Section 7.



Objectives and Constraints We describe common measures
of quality for directional fields, and means to prescribe required prop-
erties. A popular measure of quality is fairness, though other types
of objectives and constraints also appear in the literature. These
include: alignment with a sparse or dense set of directional con-
straints, symmetry, or adherence to a specific topology. We present
the various types of synthesis objectives, and discuss the amenability
of the different representations to these goals in Section 8.

Applications While our main focus is the general problem of
directional field synthesis, we outline specific application scenarios
in Section 9. The wide range of applications reveals the variety of
different requirements posed on directional field synthesis, which
led to the multitude of diverse treatments of directional data.

Field Visualization A visual understanding of the synthesized
fields is often helpful, or even a necessity. Various effective visual-
ization techniques have been developed for directional fields. We
briefly present them in Section 10.

Algorithms and Comparison We provide a desiderata-based
guide to choosing the right method for various purposes, and empiri-
cally compare some of the properties of the state-of-the-art methods,
in Section 11.

Open Questions We conclude in Section 12 with an outlook
on future research, by presenting open problems, shortcomings, and
remaining questions.

2 Types of Directional Fields

Directional fields come in many different flavors. Unfortunately,
the available terminology in the literature suffers from many
inconsistencies—some terms are synonymous, some are homony-
mous, and others are simply ambiguous and context-dependent. In
light of this, we introduce a notation that allows us to unambiguously
refer to specific types of fields. For the purpose of familiarity, we
indicate common names used in the literature for these fields.

We refer to a directional object (in short: a directional) as a “direc-
tion” if the magnitude is irrelevant, and as a “vector” if it plays a
role. A field on a domain is the assignment of a directional to each
point in the domain.

A directional field can be multi-valued, describing a set of directions
or vectors at every point. Our only assumption is that the size of
the set, denoted as N , is constant throughout the field. We assume
this since a setting with varying N has found no application so far.
The cases of N = 1, 2, 4, 6 are the most common in practice. Of
particular interest are rotationally-symmetric direction fields, or in
short: RoSy fields. Common variants are two directions with π-
radians RoSy, four directions with π/2 RoSy, or two independent
pairs of directions with π RoSy within each pair. These symmetry
properties are very natural in many applications, for instance when
dealing with principal curvature directions [Hertzmann and Zorin
2000], principal directions of stress or strain tensors [Pietroni et al.
2015], conjugate directions [Liu et al. 2011; Diamanti et al. 2014],
or Langer’s lines [Marcias et al. 2013; Bommes et al. 2013b], to
name a few.

We encode the type of the field using a set of integers {r1, . . . , rk} ∈
N

k, whose sum is the size of the N -set (
∑

i ri = N ). These ri
indicate that the N -set is partitioned into k subsets with cardinalities
ri, and within each subset the directions or vectors obey rotational

symmetry, i.e. there are angles 2π/ri between them. Furthermore,
in the case of vectors, the elements of each such subset are equal
in magnitude. We contract multiple equal values for brevity: if
ri = ri+1 = · · · = ri+m−1, we write (ri)

m
.

Common examples include:

1-vector field One vector, classical “vector field”

2-direction field
Two directions with π symmetry,
“line field”, “2-RoSy field”

13-vector field
Three independent vectors, “3-
polyvector field”

4-vector field
Four vectors with π/2 symmetry,
“non-unit cross field”

4-direction field
Four directions with π/2 symmetry,
“unit cross field”, “4-RoSy field”

22-vector field
Two pairs of vectors with π symme-
try each, “frame field”

22-direction field
Two pairs of directions with π
symmetry each, “non-ortho. cross
field”

6-direction field
Six directions with π/3 symmetry,
“6-RoSy”

23-vector field
Three pairs of vectors with π sym-
metry each

3 Differential Geometry of Directional Fields

In order to perform a systematic study of directional fields in discrete
settings, we give a concise introduction to the theory of continuous
directional fields on manifolds, covering definitions of basic con-
cepts. It is considerably out of the scope of this course to include
a full description. Therefore, every section includes references to
textbooks for a comprehensive account.

Note that most theoretical concepts only pertain to 1-vector fields.
The relevant properties of general directional fields are covered in
more detail in the subsequent sections.

3.1 Differential and Riemannian Structure

In this section, we review basic notions concerning the geometry of
surfaces. For a comprehensive introduction to Riemannian geometry,
we refer the reader to [do Carmo 1992; Kuehnel 2005; Jost 2008].

Tangent Bundle and Vector Fields We consider a smooth, com-

pT
p
M

q

T
q
M

pact and oriented 2-dimensional man-
ifold M embedded in R

3. For any
point p ∈ M, the tangent space TpM
of M at p is a two-dimensional vector
space. Any tangent vector at p is or-
thogonal to the surface normal of M at
p. Hence, we can identify TpM with
the subspace of R3 that is orthogonal

to the surface normal of M at p (see inset). The union

TM =
⋃

p∈MTpM

of all tangent spaces forms a 4-dimensional manifold, called the
tangent bundle of M. Locally it is trivial, which means that around
every point p ∈ M there is an open neighborhoodU ⊂ M such that



⋃

p∈UTpM is diffeomorphic to U×R
2. Every vector v ∈ TM lies

in one of the tangent spaces TpM, and we call the corresponding
point p the foot point of v. The projection π : TM 7→ M maps
every vector in the tangent bundle to its foot point. A tangent
vector field on M is a section of the tangent bundle: a smooth map
v : M 7→ TM such that π ◦ v : M 7→ M is the identity. For
further reading, we refer to [Agricola and Friedrich 2002, Chapter
3.2] and [Jost 2008, Chapter 2].

Cotangent Bundle and 1-forms The dual space of a vector space
consists of the linear maps from that space to R. The dual space is
again a vector space of the same dimension as the primal space. We
denote the dual spaces of the tangent spaces by TpM

∗. The union of
all cotangent spaces, TM∗ =

⋃

p∈MTpM
∗, forms the cotangent

bundle. A section in the cotangent bundle is called a 1-form. For
example, we can apply a 1-form ω to a vector field v. The result
ω(v) is a function on M.

Connections and Parallel Transport An affine connection (or
covariant derivative) associates with two tangential vector fields v
and w a new tangential vector field ∇wv. This map is linear in w

∇fw1+w2
v =f ∇w1

v+∇w2
v

and a derivation in v

∇w(fv1 + v2) = (∇wf )v1 + f ∇wv1 +∇wv2,

where v,v1,v2,w,w1 and w2 are smooth vector fields, f is a
smooth function and ∇wf is the derivative of f in direction w. We
can think of ∇wv as the derivative of v in direction w.

Using an affine connection, we can define the parallel transport
of a vector along a curve on the manifold. Con-
sider a curve c : [0, 1] 7→ M and a vector
v0 ∈ Tc(0)M . Then, there is a unique vector
field v : [0, 1] → TM along c (which means
π(v(t)) = c(t) for all t) that solves the lin-
ear differential equation ∇ċ(t)v(t) = 0 with
the initial condition v(0) = v0. The vector
field v(t) is called the parallel transport of

v0 along c. The inset figure shows an example of a vector that is
parallel transported along a curve on the unit sphere. The parallel
transport of vectors is linear: This means if a vector in Tc(t0)M is a
linear combination of other vectors in Tc(t0)M , it will be the same
linear combination (same weighted sum) after the parallel transport
of the vectors. For proofs, we refer to [do Carmo 1992, Section
2.2].

Riemannian Metric A scalar product on a vector space provides
a measure of vector norm (or length) and the angles between vectors.
A Riemannian metric g on M assigns a scalar product 〈·, ·〉p to any
tangent space TpM. This assignment is smooth, i.e., the map p→
〈·, ·〉p is smooth. A Riemannian metric allows for defining various
geometric concepts on a differentiable manifold, such as the distance
of points in the manifold, geodesic curves, angles between pairs of
vectors, intersection angles between curves, the volume of domains
in the manifold, intrinsic curvatures (like the Gaussian curvature) and
differential operators (including gradient, divergence, curl, Laplace
operators). A manifold that is equipped with a Riemannian metric is
called a Riemannian manifold.

We can construct a Riemannian metric on surfaces in R
3 using

the scalar product of R3. Every tangent plane of the surface is a
subspace of R3. Hence, we obtain a scalar product on every tangent
space by restricting the scalar product of R3 to the tangent plane.
Note that since the surface normal is changing along the surface, the
resulting Riemannian metric on the surface is not flat.

Levi-Civita Connection On a Riemannian manifold, we are inter-
ested in affine connections that satisfy

∇ug(v,w)=g(∇uv,w)+g(v,∇uw), (1)

which means that the affine connection is compatible with the Rie-
mannian metric g. For the parallel transport of vectors, this means
that the scalar product between any pair of vectors does not change
when the vectors are parallel-transported along a curve. Hence, for
an affine connection that is compatible with g, the maps between
two tangent spaces, obtained by parallel transporting vectors along
any curve, are isometries. Then, the parallel transport of a vector
along a curve can be described by the oriented angle that the vector
forms with the tangent of the curve. The derivative of the oriented
angle along the curve is the same for every vector that is parallel
transported along the curve.

Among the affine connections that are compatible with a Riemannian
metric g, there is a unique one that is torsion-free, i.e., satisfies

∇wv −∇vw + [v,w] = 0.

Here [v,w] denotes the Lie bracket of v and w. This connection is
called the Levi-Civita connection (or Riemannian connection). For
the Levi-Civita connection, the parallel transport of vectors is linked
to the geodesic curvature of the curve in the surface. The derivative
of the oriented angle between the transported vector and the tangent
of the curve equals the geodesic curvature of the curve. For proofs,
we refer to [do Carmo 1992, Section 2.3] and [O’Neill 1966, Section
VII.3].

Holonomy Consider a closed curve c on a surface M. Parallel
transporting a vector vp along c from a point p to itself does not in
general yield the same vector vp again. In the inset figure, the red
vector is parallel transported along a circle
of latitude on the sphere, yielding the blue
vector. In this case, the vector rotates with
constant speed relative to the tangent of the
curve (in other words: the derivative of the
angle between the vector and the tangent of
the curve is constant). The oriented angular
difference between vp and its transport v′

p is
called the holonomy angle of the curve, and is independent of p and
vp. The holonomy angle of the Levi-Civita connection is closely
related to the Gaussian curvature of the surface: the holonomy angle
of a smooth curve that bounds a simply-connected domain equals the
integral of the Gaussian curvature over the domain that is enclosed
by the curve, modulo 2π. For proofs, we refer to [O’Neill 1966,
Section 7.3].

3.2 Vector Field Topology

In this section, we consider topological properties of vector fields:
singularities, indices, and the Poincaré–Hopf theorem. Proofs of the
concepts and theorems presented in this section can be found in chap-
ters 7 and 8 of [Fulton 1995], which provides a good introduction to
algebraic topology (including vector field topology).

α(t) α(1)
α(0)

p

indexpv = 1

t

A vector field has a singularity at a
point p if it vanishes or is not defined
at this point. We assume that the field
has a finite number of singularities. Let
us first consider a singular point p of
a vector field v on a domain in R

2, as
shown in the inset figure.

We consider a small, simple (not self-
intersecting), closed curve around p,



Figure 2: Singularities of index 1
2

, 1
4

, 0 (non-singular), − 1
4

, − 1
2

in a 4-vector field. The black curves are the so-called separatri-
ces – integral curves (cf. Section 10.3) of the field intersecting the
singularity.

parametrized (in counterclockwise direction) by a function c :
[0, 1] 7→ R

2. By “small”, we mean that the (topological) disc
enclosed by the circle does not contain a second singularity in the
field. We inspect the vector field along the curve. Since none of the
vectors v(c(t)) vanishes, we can represent the vector field along the
curve in polar form. This means there is a smooth angle function
α : [0, 1] 7→ R, going counterclockwise around the curve, such that

v(c(t)) = ‖v(c(t))‖

(

cos(α(t))
sin(α(t))

)

.

The function α is not unique, since we can add multiples of 2π to
α and get the same vectors v(c(t)). However, since α is smooth,
the difference α(1)− α(0) is unique, it is a multiple of 2π, and it
depends neither on the curve c(t) (as long as it is simply-connected
and does not contain a second singularity), nor on the starting point
c(0). We define the index of the singularity of v at p to be the integer

indexpv =
1

2π
(α(1)− α(0)) .

The index measures the number of times the vectors along the curve
c rotate counterclockwise, while traversing the curve once. In the
context of direction fields, it is common to consider only points p
with indexpv 6= 0 as singular. We adopt this herein.

The definition does not directly extend to surfaces, because there
is no global coordinate system (the tangent bundle is not trivial).
However, we can calculate the index at a singular point p of a vector
field v on a surface M by using an arbitrary chart around p. The
chart maps the vector field on a local neighborhood of p on the
surface to a vector field on an open set of the plane. Following that,
we can use the definition discussed above to compute the index, and
this computation would be invariant to the specific choice of the
chart.

A vector field cannot have an arbitrary set of singularities. For a
surface without boundary, the sum of all indices is related to the
genus g of the surface. Explicitly, the Poincaré–Hopf theorem states
that the sum of all the indices of a vector field equals 2-2g.

The concept of indices of singularities can be generalized to other
types of direction fields (Figure 2). In these cases, the index is not
an integer anymore. For example, for N -vector fields, the index
is a multiple of 1

N
[Ray et al. 2008]. Similar to 1-vector fields,

direction fields obey the Poincaré–Hopf theorem: they cannot have
an arbitrary set of singularities, as the sum is the topological constant
2-2g. This has been described in [Ray et al. 2008] for N -direction
fields, and in [Diamanti et al. 2014] for 1N -direction fields.

3.3 Vector Calculus

Vector calculus is concerned with the differentiation and integration
of vector fields. This includes differential operators like gradient,
divergence, curl and the Laplace operator. Most papers dealing with
the processing of vector fields are, at least implicitly, using vector
calculus. Our focus is on vector calculus on surfaces. It is closely

related to exterior calculus, and all presented concepts could alter-
natively be formulated in terms of differential forms and operators
on the exterior algebra. For brevity, we restrict the presentation
to vector calculus. For an in-depth treatment of vector analysis
and exterior calculus, and proofs of the concepts presented in this
section, we refer to [Warner 1983; Agricola and Friedrich 2002]. A
recommended undergraduate text is [Jaenich 2013].

Gradient The differential of a smooth function f is a 1-form.

0

1

In many cases, it is more convenient to work
with a vector field describing the derivative
instead. This vector field is called the gradient
of f . We can think of the gradient of a function
as the vector field that points to the direction
of the steepest ascent of the function, as shown
in the inset figure. Formally, the gradient of f
is defined as the unique tangential vector field

that satisfies

〈grad f,v〉 = ∇vf

for all tangential vector fields v. We emphasize that for the construc-
tion of the gradient of a function a metric is needed.

Divergence The divergence is a linear operator mapping vector
fields to functions. At any point p ∈ M, the divergence of a smooth
vector field v is defined by

divv(p) =

d
∑

i=1

〈∇eiv(p), ei〉 (2)

where {ei} is an arbitrary orthonormal basis of TpM. Let U be
a compact subset of M and ν be the outer-pointing normal at the
boundary ∂U , then

ˆ

U

f divv dA = −

ˆ

U

〈grad f,v〉 dA+

ˆ

∂U

f 〈ν,v〉 ds. (3)

If we think of the vector field as a velocity field (e.g. of a fluid),

U

∂U

ν

v

U

∂U

ν

v

then the divergence
of the vector field
provides information
about the sources and
sinks of the flow. If
we set f to be the
constant unit function
(f(p) = 1 ∀p) in (3),
the first term vanishes,

and the equation shows that the integral of the divergence of a vector
field measures the flow into and out of U . Here, U can be any domain
in the manifold. If the boundary integral is positive, there is more
flowing out of than into the domain, which means that the domain is
a source. Similarly, if the boundary integral is negative, the domain
is a sink. The inset figure shows two examples of vector fields with
non-vanishing divergence. In both cases the shown domain U is a
source.

Curl For surfaces, the curl is closely related to the divergence.

v

Jν

U

∂U

v

Jν

U

∂U

It measures the
amount by which
the field locally cir-
culates around each
point. Intuitively, it
measures the amount
by which a wheel
placed at each point



of the domain would spin, if forces were applied to it according to
the vector field at that point. In the inset figure, both fields have
non-vanishing curl. To reveal the connection to the divergence, we
consider the operator J that rotates any vector of a vector field in its
tangent plane by π

2
(following the orientation of the surface). For a

surface embedded in R
3, we can represent this operator using the

cross product and the surface normal field: J: v 7→ N × v. The curl
operator maps vector fields to functions and is defined by

curlv = −div Jv. (4)

This means it measures the divergence of the field after a rotation of
π
2

of all vectors in their respective tangent planes. Analogous to (3),
the curl satisfies the equation

ˆ

U

f curlv dA =

ˆ

U

〈grad f, Jv〉 dA+

ˆ

∂U

f 〈J ν,v〉 ds. (5)

In the same manner as the divergence, by setting f = 1 in (5),
we can see that the curl of a vector field measures how much the
vector field circulates around the domain. Analogous to sources and
sinks, the curl in the field is generated by vortices. The divergence
measures the flow in and out of the domain, while the curl measures
the flow along the boundary. The inset figure shows two vector fields
with non-vanishing curl. In both cases, the flow circulates around
the domain U .

Hodge Decomposition and Harmonic Fields The space X of
square-integrable tangential vector fields on a surface with vanishing
boundary can be decomposed into three orthogonal subspaces

X = Image(grad)⊕ Image(J grad)⊕H,

where the domain of the gradient is the Sobolev space W 1,2 of
functions whose differential is square-integrable. The gradient
fields have the property that their curl vanishes, and the rotated
gradient fields have vanishing divergence. The remaining space
H consists of the harmonic vector fields. These fields are both
divergence and curl-free. Consequently, they are gradients of
scalar functions in simply-connected subdomains (locally), but not
otherwise (globally). An example is shown in the inset figure.
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For surfaces without boundary, the space of har-
monic vector fields H equals the first singular
cohomology of the surface. This is an important
relation between vector calculus and algebraic
topology. The dimension of the space of har-
monic tangential vector fields on a surface of
genus g and without boundary is 2g. For a
comprehensive treatment of the Hodge decomposition and proofs of
the statements made above, we refer to [Warner 1983, Chapter 6].

For manifolds with boundary, analogous decompositions of spaces
of vector fields for different types of boundary conditions are pos-
sible. For an in-depth treatment of the topic, we refer the reader
to [Schwarz 1995].

Exterior Calculus Vector calculus is closely related to exterior
calculus, and all presented concepts could alternatively be formu-
lated in terms of differential forms and operators on the exterior
algebra. We briefly discuss this relation. We denote the space of
smooth differential i-forms on M by Λi, the exterior derivative by
di : Λ

i 7→ Λi+1 and the Hodge star operator by ∗i : Λ
i 7→ Λn−i.

The 0-forms are functions on the manifold and 1-forms are discussed
above. In the case of differential forms on a surface, all 2-forms
can be represented as products of a function and the volume form.
Using the Riemannian metric, we can additionally get a one-to-one
correspondence between vector fields and 1-forms: to any vector

field v, we associate the 1-form 〈v, ·〉. With these identifications of
functions and vector fields with the 0, 1 and 2-forms on a surface, the
operators on spaces of functions and vector fields can be expressed
in terms of the exterior derivative and the Hodge star:

Fields J grad curl div

Forms ∗1 d0 ∗2 ◦ d1 ∗2 ◦ d1 ◦ ∗1

In the same spirit, the Hodge decomposition, which is discussed for
vector fields above, can alternatively be formulated for 1-forms.

4 Discretization

In most applications, directional fields are computed by solving
an optimization problem, where the optimization variables depend
on how the fields are represented and discretized. The choice of
representation and discretization directly affects the properties of the
optimization problem, such as linearity or convexity. Hence, these
choices heavily influence the range of objectives and constraints
that one can pose, and, as a result, determine which applications are
computationally feasible and which are not.

In this section, we discuss various discretizations of tangent spaces
and spaces of vector fields on triangle meshes. In addition, we
present geometric and topological discretization challenges: the
need to define a discrete connection between tangent spaces, and
the ambiguities that arise due to the sampling process. The issues
addressed here are the foundation for the directional field represen-
tations described in Section 5.

4.1 Tangent Spaces

The tangent spaces of the a triangle mesh can be located on the faces,
edges, or vertices of a triangle mesh.

One way to construct a tangent space at a point is to assign a surface
normal vector to the point. The tangent space is then the linear
subspace of R3 orthogonal to the normal vector. For points inside
the faces, the surface normal is obviously the normal of the trian-
gle. Different schemes for computing surface normal vectors at the
edges and vertices of a mesh have been proposed. Among those
are weighted averages of the adjacent triangle normal vectors [Max
1999], and techniques based on principal component analysis [Gar-
land and Heckbert 1997].

As an alternative to this extrinsic construction, tangent vectors at
a point on a mesh can be considered as the set of vectors pointing
from the point along the surface. For example, the tangent vectors
at a vertex point from the vertex into one of the neighboring trian-
gles. This construction is typically used for working intrinsically
on a surface, e.g., when shooting curves on a surface [Polthier and
Schmies 1998]. In this case, the tangent space at a vertex is the set
of all possible vectors which are the tangent to all possible curves
passing through this vertex. Intrinsic notions of tangent vectors have
also been used in [Zhang et al. 2006; Knöppel et al. 2013; Myles
et al. 2014], where a smooth atlas is defined on the mesh using a
local parametrization of the 1-ring of each vertex.

Note that the choice between these options is not just a matter of
personal taste; it has consequences that can influence the suitability
for specific use cases. A prominent example is the positioning
of the singularities of a directional field. In most discrete field
representations, they lie in between the tangent spaces, i.e. in the
vertex-based scenario within the triangles, in the triangle-based
scenario on the vertices. This implies that it may or may not be
possible to position singularities onto sharp features of non-smooth
surfaces.



Figure 3: Graphs of functions in Sh (top row) and S∗
h (bottom

row) and their gradients are shown. Image courtesy of Matthias
Nieser [Nieser 2012].

4.2 Spaces of Vector Fields

Given a choice of discrete tangent spaces, we still need to fix the
space of discrete tangent vector fields. While this choice is less
discussed in the literature than the choice of representation, it is
similarly important. Furthermore, for applications such as surface
parametrization, where the main goal is to compute scalar functions,
the choice of space for vector fields is closely tied to the choice of
space for scalar functions.

A large portion of the literature in geometry processing uses scalar
functions whose values are given at vertices and interpolated linearly
to the faces. This space of functions is known as the linear Lagrange
elements, and we denote it by Sh [Polthier and Preuß 2003; Wardet-
zky 2006] (see Figure 3). The gradients of such functions are vector
fields which are constant at each face, and tangent to the faces. We
denote this space by Xh. Hence, if f ∈ Sh, then grad f ∈ Xh.
In this sense, these two spaces fit together, and this combination is
indeed common in the literature. In order to define discrete operators
of vector calculus which are consistent with the smooth case (e.g.
allow for a discrete Hodge decomposition as discussed in Section
7.1), it is useful to define another space of scalar functions that is
linear across faces, albeit only continuous at edge midpoints. This
space is known as the Crouzeix-Raviart elements [Wardetzky et al.
2007], and denoted by S∗

h (see Figure 3). Gradients of functions in
S∗
h are also piecewise constant vector fields on the faces.

Piecewise constant vector fields are discontinuous along edges. This
can be problematic, depending on the application. Alternatively,
higher order representations [Zhang et al. 2006; Knöppel et al. 2013]
can be used for constructing spaces of vector fields. Using a higher
order interpolation scheme, for instance, allows to represent fields
in such a way that integral lines do not intersect [Ray and Sokolov
2014; Myles et al. 2014], properly preserving this property from the
continuous setting, though recent results show that this is possible to
certain extents with piecewise constant fields as well [Campen et al.
2016b].

Spaces of vector fields are closely related to spaces of differential
forms. For the construction of spaces of differential forms in Dis-
crete Exterior Calculus and the duality of spaces of forms and vector
fields, we refer the reader to [Desbrun et al. 2005].

4.3 Discrete Connections

Given two adjacent tangent spaces i and j, we need a notion of
connection between them in order to compare two directional objects
that are defined on them. In Section 3.1, it is explained that
connections are tightly linked to the parallel transport of vectors. In
the discrete setting, we describe a connection by specifying bijective
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linear maps between each pair
of adjacent tangent spaces. We
can think of the linear maps as
the maps we obtain by paral-
lel transport between the adja-
cent tangent spaces. In the case
that the connection respects the
metric of the surface (see Sec-
tion 3.1), all maps between ad-
jacent tangent spaces would be
isometries. For a background
on discrete connections, we refer
to [Knöppel and Pinkall 2015].

A straightforward discretization of the Levi-Civita connection is
made by “flattening” the two adjacent tangent planes. Specifically,
this is done by rotating them around the axis which is perpendicu-
lar to both their normals (the orange line in the inset) so that they
coincide. The directionals in the rotated tangent spaces can then
be compared directly, as they lie in the same Euclidean space. As
a consequence, this process yields a three-dimensional rotation op-
erator which allows to parallel-transport a vector from one tangent
space to another. It is important to note that this definition of dis-
crete connection depends only on the normals. It is invariant to
any local coordinate system, or to the specific representation of the
directionals. Such a connection is required regardless of the choice
of vector space: see e.g. [Crane et al. 2010] for piecewise constant
vector fields, and [Knöppel et al. 2013] for piecewise linear ones.

4.4 Discrete Field Topology

Moving from a continuous tangent bundle to a discrete set of tangent
spaces, and from a continuous directional field to directionals per
tangent space, can be considered a form of sampling. This sampling
can lead to a loss of information, and introduce ambiguity. This, in
particular, concerns the field topology (cf. Section 3.2), and is best
exemplified as follows:

Consider a piecewise constant face-based 1-direction field that is
discontinuous across the edges. As a consequence, the notions of
smooth holonomy and index do not immediately apply in this case,
e.g. the differential is not defined on the discontinuous edges. In
order to extend these notions to the discrete case, the behavior of the
field across the edges, where the field is discontinuous, needs to be
clarified. The example in the inset shows such a
piecewise constant field in two triangles i and j. In
this example, it is intuitive to assume that the field
undergoes a rotation δij = π/4 clockwise when
crossing the common edge from top (i) to bottom
(j). However, every other rotation δij = π/4 + 2πk, with k ∈ Z,
would be a valid assumption as well.

Rotation If no additional information is given, the reasonable
assumption is that the field undergoes a principal rotation across a
discontinuity. That means that the rotation δij between two vectors
vi,vj, in respective adjacent tangent planes i, j, is assumed to be in
the range [−π, π), measured following a parallel transport i → j.
In this case, the topology of the field is implicit, induced by the
underlying assumption. If we indeed sample a continuous field, this
implicit topology might of course differ from the original topology.
This is an aliasing problem, analogous to similar problems in signal
processing, where the sampling density is too sparse to capture the
bandwidth of the signal. We discuss this in more detail in Section 6.

It is important to note that this problem is not limited to piecewise-
constant vector fields, but that it exists in other forms of field sam-
pling and interpolation as well. For instance, there are no disconti-



nuities across edges in piecewise linear fields. However, the field is
interpolated within each triangle, and this interpolation is subject to
such aliasing artifacts as well.

It is, nevertheless, possible to achieve a higher power of expression
for directional field interpolation and topology in the discrete setting;
it is done by explicitly specifying the topology, or rather the rotations
across discontinuities, as detailed in the following.

Period Jumps By specifying a value
k ∈ Z (for each pair of adjacent tangent
spaces), we can explicitly prescribe a
non-principal rotation, which differs by
k full period rotations (i.e., rotations
by 2πk radians) from the principal ro-
tation. This is shown in the inset for
k = 0 and k = 1). This concept was
introduced by Li et al. [2006b], where these values were denoted as
period jumps. This way, the topology of the field can be controlled
explicitly, and any field topology can be faithfully sampled, if the
mesh resolution permits.

Explicit control over the period jumps can also be achieved by di-
rectly controlling the rotations δ. Note, however, that these rotations
need to meet certain conditions to actually be consistent with a
directional field [Crane et al. 2010], as we detail in 5.1.

Matching If the field is multi-valued, with N > 1 directionals per
tangent space, an additional degree of freedom needs to be taken into
account: the correspondence between the individual directionals in
tangent space i to those in the adjacent tangent space j. A matching
between two N -sets of directionals: {u1, . . . ,uN} in tangent space
i, and resp. directionals v in tangent space j, is a bijective map f be-
tween them (or their indices). Assuming an indexing of directionals
within each tangent space in a counterclockwise order, the matching
preserves order if and only if f(ur) = vs ⇔ f(ur+1) = vs+1 for
all 0 ≤ r, s < N , where the indices are taken modulo N . The term
matching is generally meant to refer to a matching that preserves
order, unless it is explicitly stated that it is non-order-preserving.

Effort Based on a matching f , the notions of rotation and principal
rotation can be generalized to multi-valued fields. The rotation δrij

j
i

δij

R
2

of an individual directional ur to
its matched adjacent directional
vf(r) is defined just like the rota-
tion of a 1-directional field. The
sum Yij =

∑N

r=1 δ
r
ij is called

the effort of the matching f . The
value δij = Yij/N is the aver-
age rotation, or simply rotation
of the matching. Note that for
a symmetric N -directional field
δij = δrij for every r.

The efforts of different (order-
preserving) matchings differ by 2π (regardless of N and of symme-
tries); the one matching for which Yij ∈ [−π, π) or, equivalently,
δij ∈ [−π/N, π/N), is called the principal matching, and the cor-
responding rotation δij , as in the 1-directional case, is called the
principal rotation.

5 Representation

Unlike scalar functions, which can be unambiguously represented
using a single number per point, directional data poses some chal-
lenges. The need to utilize different types of directional information

has motivated many different representations. In the following,
we describe the representations of directional fields that have been
proposed in the literature.

5.1 Angle-Based

1-Direction Fields By defining an arbitrary reference base or-
thonormal frame {e1, e2} on each tangent space, 1-direction (unit
vector) fields can be concisely described within each tangent space
by a signed angle φ that is relative to e1 [Li et al. 2006b; Ray et al.
2008]. Following the Levi-Civita connection (flattening rotation;
see Section 4.3), an extra angle Xij , identified with the change of
bases e between the flattened tangent spaces i and j, is required.
Finally, an integer kij describes a possible period jump between the
directions. Having all these, the rotation angle between two adjacent
1-directionals φi and φj is expressed as follows:

δij = φj − (φi +Xij + 2πkij). (6)

The two directions φi, φj are parallel if δij is zero.

Remark: in this representation, a principal rotation δij ∈ [−π, π)
is not generally associated with a vanishing period jump kij = 0
(cf. Section 4.4). That is because φ and X are not necessarily
principal by definition. Period jumps between adjacent local frames
are unavoidable, as they are vector fields that are subjected to the
Poincaré-Hopf theorem as well.

N-Direction Fields Another advantage of the angle-based repre-
sentation is the straightforward extension to N -direction. This is
done in [Li et al. 2006b; Ray et al. 2008] by using a single direc-
tion φ representing the set of N directions, and allowing the period
jump to be an integer multiple of 1/N , thereby also enumerating
the efforts of (order-preserving) matchings. The set of N directions
{φ + l · 2π/N |l ∈ {0 . . . N − 1}} is trivially deduced by the
N -symmetry from φ. The rotation angle formula becomes:

δij = φj − (φi +Xij +
2π

N
kij) (7)

Rotation Angles Instead of constructing local bases and express-
ing relative angles within each tangent space, it is possible to de-
scribe a field explicitly by the rotation angles δij of the field between
tangent spaces i and j. This is the representation used in [Crane
et al. 2010]. Note that this representation does not require the choice
of local bases—the field is represented explicitly only in a single
tangent space; the rest of the field is deduced by propagating the
explicit rotations δij . Note, however, that this representation is not
inherently valid: the rotations must meet a consistency condition for
every cycle of tangent spaces; otherwise, they are not consistently
“integrable” to actual directionals per tangent space (cf. Section
11.2.1).

22-Direction Fields A particular angle-based representation was
devised for frame-fields in [Liu et al. 2011]. For two independent
2-direction fields, represented by angles φ, ψ per face, the matching
is represented by an extra binary switch variable: q ∈ {0, 1} that
encodes the two potential matchings between neighboring frames
(φ, ψ)i and (φ, ψ)j . We obtain two different rotation angles:

δ(φ, ψ)i→j =

(

φj − [(1− q)φi + qψi +Xij + πk1,ij ]
ψj − [(1− q)ψi + qφi +Xij + πk2,ij ]

)

(8)

An alternative angle-based representation for 22-direction fields is
offered in [Iarussi et al. 2015], which requires only a single period



jump and can be seen as a direct generalization of [Ray et al. 2008;
Bommes et al. 2009]. The key idea is to locally decompose a 22-
direction (φ, ψ) into a 4-direction represented by α ∈ R, and an
additional skew angle β ∈ (−π

4
, π
4
). The explicit relation w.r.t. the

previous approach is given by φ = α+ β and ψ = α+ π
2
− β, and

an ordering of [φ, ψ, φ+ π, ψ + π] is assumed. Consequently, the
rotation angles are fully determined by a single period jump as in
the N -direction field case:

δ(φ, ψ)i→j =

(

(αj + βj)− (αi + (−1)kijβi + kij
π
2
)

(αj − βj)− (αi − (−1)kijβi + kij
π
2
)

)

(9)

The major advantage of the angle-based representation is that direc-
tions, as well as possible period jumps, are represented explicitly.
This leads to a linear expression of the rotation angle as well. This is
beneficial for optimization purposes (cf. Section 8). Moreover, this
representation provides control over the topological properties of the
field. The major disadvantage is the use of integer (and possibly bi-
nary [Liu et al. 2011]) variables, which leads to discrete optimization
problems, as we discuss in Section 11.

5.2 Cartesian and Complex

A vector v in a two-dimensional tangent space can be represented
using Cartesian coordinates (from R

2) in the local coordinate system
{e1, e2}, or equivalently as complex numbers (from C) [Knöppel
et al. 2013]. This representation is related to the angle-based repre-
sentation via trigonometric functions, or the complex exponential,
as follows:

v =

(

cos (φ)
sin (φ)

)

= eiφ (10)

The change of bases from one tangent space to another, by angle
Xij as before, is performed via multiplication with a rotation matrix:

(

cos (Xij) − sin (Xij)
sin (Xij) cos (Xij)

)

(11)

or, in complex notation, eiXij . Note, however, that due to the period-
icity of the trigonometric functions or the complex exponential, the
Cartesian representation is invariant to rotations by multiples of 2π,
and thus the rotation is inferred implicitly. When comparing adjacent
vectors in this representation, the inferred rotation is then inherently
principal (cf. Section 4.4). The lack of explicit period jumps can be
an advantage, as such discrete jumps typically make optimization
problems non-convex. However, it can be a disadvantage as well, as
it is not possible to exert full control over the topology of the field
(cf. Section 6).

By multiplying the argument of the trigonometric functions, or
taking the complex exponential to the power of N , i.e. using

v
N =

(

cos (Nφ)
sin (Nφ)

)

= eiNφ
(12)

we achieve invariance to rotations by multiples of 2π/N instead of
2π. In this way, the principal matching for N -directional fields is
implicitly assumed. This idea was introduced several times for the
representation of N -direction fields under varying names [Hertz-
mann and Zorin 2000; Ray et al. 2006; Palacios and Zhang 2007;
Zhang et al. 2007; Kowalski et al. 2013; Knöppel et al. 2013]. Paral-
lel transport of these vectors is performed using the rotation matrix

(

cos (NXij) − sin (NXij)
sin (NXij) cos (NXij)

)

(13)

or the complex number eiNXij , respectively. The inferred principal
rotation of this representative is exactly the principal matching of
the represented N -direction field.

The Cartesian representation, unless explicitly constrained to unit
vectors, can also represent N -vector (non-unit) fields with the mag-
nitude component. This can be an advantage or disadvantage, de-
pending on the use case and the optimizations to be performed (cf.
Section 11).

5.3 Tensors

Tensors of rank 2 naturally show up in various contexts. Notable
examples are curvature, metric, strain and stress. Tensors on a 2-
manifold can be simply represented by real-valued 2x2 matrices in
local coordinates:

T =

(

T11 T12

T21 T22

)

Tensor fields are an intensively studied topic; a comprehensive
overview of the latest developments can be found in [Laidlaw and
Vilanova 2012]. Symmetric tensors with T12 = T21 are the most
commonly used [Zhang et al. 2007], due to their straightforward
relation to directional information, as outlined in the following.

Symmetric Tensors A symmetric matrix T ∈ R
2×2 has an eigen-

decomposition T = UΛUT by definition, where Λ = diag(λ1, λ2)
contains the two real eigenvalues, and U = [u1, u2] contains the
two (orthogonal) eigenvectors with ||ui|| = 1 . A rank-2 tensor
field encodes two eigenvector fields u1 and u2 accordingly. Since
eigenvectors are only determined up to sign, a rank-2 tensor field
can in fact be interpreted as two orthogonal 2-direction fields ±ui.

It is important to note that the eigendecomposition is unique only
in case if λ1 6= λ2. Thus, the directional information is solely

contained in the traceless deviatoric part D = T − tr(T )
2
I . Con-

sequently, the eigenvalues λ′
i of D encode a 2-vector field ±λ′

iui

[de Goes et al. 2016] with singularities at points where D vanishes.
A common approach to 2-tensor fields is to choose local coordinate
systems (e.g. per face or per vertex), and to handle the connection
discretely by transformations between such local coordinate systems.
A well-founded alternative, using a coordinate-free representation,
has been recently proposed in [de Goes et al. 2014], using discrete
differential forms. The idea is to decompose a symmetric 2-tensor
field in such a way that it can be stored as one scalar per vertex,
edge and face of a triangulation, i.e., three discrete forms of orders
0, 1 and 2, respectively. This representation is consistent with dis-
crete exterior calculus, as it allows the definition of discrete notions,
among which are divergence-free tensors, covariant derivatives, and
the Lie bracket.

Symmetric tensor fields should not be confused with orthogonal
cross-fields (4-vector or direction fields). Although seemingly sim-
ilar, they differ significantly in the class of possible singularities.
While cross-fields may have singularities of type k · 1

4
, k ∈ Z, tensor

fields are limited to singularities of type k · 1
2

. Intuitively, this means
that a symmetric tensor field can be unambiguously decomposed
into two independent 2-direction fields, which is not possible for a
general 4-direction field. This observation uncovers the limitations
of tensor fields: while such fields are commonly used to estimate
a sparse set of constraints (e.g. salient principal curvature direc-
tions), 4-direction fields are interpolated in the rest of the domain
(cf. [Bommes et al. 2009]). For example, the smoothest 4-direction
field on a cube, having eight singularities of index 1

4
at its corners,

does not correspond to a smooth symmetric tensor field.

Structure Tensors A special case of symmetric tensors are struc-
ture tensors, which are frequently used to represent 2-direction fields
in arbitrary dimensions [Granlund and Knutsson 1995]. The key



idea is to represent a line l in R
n as the eigenspace of the largest

eigenvector of an n× n matrix

Ol =
vv⊺

||v||2
,

where v is a vector parallel to l. It is easy to see that the construction
is invariant to flips or changes in magnitude in v or Ol, and that it
uniquely identifies a given line l.

General Tensors General (not necessarily symmetric) tensors are
not guaranteed to have real eigenvalues. Nevertheless, it is possible
to deduce consistent directional information using the concept of
dual eigenvectors [Zheng and Pang 2005; Zhang et al. 2009] that
applies to operators with complex eigenvalues. As a result, the direc-
tional field is partitioned into real and complex parts that smoothly
join along separation curves. The field is defined by eigenvectors
in the real parts, while dual-eigenvectors are chosen in the complex
parts.

5.4 Composite

A 22-vector field can be represented as a composition of a 4-direction
field and an additional auxiliary field that encode scale and skewness,
i.e. the difference of the 22-vector field from the 4-direction field.
[Panozzo et al. 2014] proposes a unique decomposition into a 4-
direction field and a 2×2 semi-positive definite tensor fieldW . This
representation completely decouples the scale and skewness of a 22-
vector from the direction component, allowing to interpolate them
independently. In particular, since the tensor is semi-positive definite,
it can be efficiently interpolated coefficient-wise by simply solving a
sparse linear system. In [Jiang et al. 2015], a new Riemannian metric
is computed on the surface. This metric serves as the semi-positive
definite tensor that defines the skewness and scale. Following this,
the 4-direction field is computed in this new metric.

5.5 1-Forms

Instead of directly representing vector fields, it is possible to take
the dual perspective, and represent 1-forms. A discrete 1-form
is encoded using the integral of a continuous 1-form over the
edges. Hence, for every oriented edge eij we encode a scalar
cij =

´

eij
ωp(êij)ds, where êij is the corresponding unit vector,

and p is a point along the edge [Hirani 2003; Fisher et al. 2007].

The advantage of this approach is that we are encoding scalar values
(the integrated projection of the vector field along the edges), and
therefore the approach is coordinate free (i.e. no local frame is
required). In addition, there are discrete versions for the curl and
the divergence of a vector field represented as a 1-form, which
are simple to represent and manipulate (using the corresponding
exterior calculus operators d and ⋆). Moreover, the space of discrete
1-forms admits a discrete Hodge decomposition [Fisher et al. 2007].
See also Section 7.1. Discrete 1-forms, encoded on edges, can be
extended into the adjacent triangles using Whitney forms [Wang
et al. 2006]. This allows for finite element discretizations of exterior
calculus [Arnold et al. 2006].

Discrete 1-forms have been successfully used in applications such
as vector field design [Wang et al. 2006; Fisher et al. 2007; Ben-
Chen et al. 2010], quad meshing [Tong et al. 2006], point cloud
meshing [Tewari et al. 2006] and surface parametrization [Gu and
Yau 2002; Gortler et al. 2006]. In addition, there is a large body of
work specifically addressing harmonic 1-forms and discrete analytic
functions (see e.g. [Mercat 2001]).

5.6 Complex Polynomials

Complex Cartesian representations have been extended to general
1N -vector fields in [Diamanti et al. 2014]. The main insight is
that the Cartesian representation u

N is in fact equivalent to the
root-set of the complex polynomial p (z) = zN − u

N . Anal-
ogously, every N -vector set {u1, . . .uN}, in the complex form
ui ∈ C, can be uniquely identified as the roots of a complex polyno-
mial p(z) = (z − u1) . . . (z − uN ). Writing p in monomial form,
p(z) =

∑

i cnz
n, the coefficient set {cn} is thus an order-invariant

representative of a 1N -vector, and was denoted as an N -PolyVector.
Comparing between PolyVectors on adjacent tangent spaces amounts
to comparing polynomial coefficients. As every coefficient cn con-
tains multiplications of N − n roots, the coefficients are compared
accordingly: assume two coefficients sets cn and dn on neighbour-
ing tangent spaces, then

dn = ei(N−n)δn,ijcn, (14)

Where ei(N−n)δn,ij is the rotation between the coefficients cn and
dn (including the change of basis Xij).

The advantages (continuous optimization) and disadvantages (cou-
pling of magnitude and direction) of complex Cartesian representa-
tions are inherited by the PolyVector representation, though it repre-
sents the general case of 1N -vector fields. Moreover, an N -vector
is represented by an N -PolyVector in which all the coefficients but
the free coefficient, c0, are zero. This constitutes a simple linear
subspace. In this manner, the rest of the coefficients represent the
skewness of the 1N -vector—in an implicit manner with no obvious
way to control it. Furthermore, it was shown in [Diamanti et al.
2014] that the effort of any matching between PolyVectors in adja-
cent tangent spaces is equal to the effort of a respective matching
between their free coefficients c0 and d0, when considered as the
higher-order complex representatives of an underlying N -direction,
as in Section 5.2. Thus, the concept of principal effort and matching
readily applies to PolyVectors as well.

5.7 Linear Operators

In the continuous case, given a vector field v, we can construct a
linear operator from functions on M to functions on M given by:
f 7→ 〈grad f,v〉. In fact, the opposite is also true: given a linear
operator on functions which fulfills the product rule, it is possible
to construct the unique corresponding vector field [Morita 2001].
Therefore, one possible representation of vector fields is through
their correponding linear operators on functions.

By choosing a discrete function space, for example Sh, this linear
operator can be represented as a sparse matrix in the discrete setting.
Alternatively, one can choose a set of k lowest eigenfunctions of the
Laplace-Beltrami operator as the function space, leading to a small
k × k matrix representation.

This point of view allows to design vector fields under various global
constraints (such as commutativity with a symmetry map), as well as
combining such constraints with point-wise constraints on the value
of the vector field [Azencot et al. 2013]. In addition, this approach
allows to compute the flow of a vector field using the exponential of
the matrix representing the operator, which is useful for numerical
fluid simulation [Azencot et al. 2014], and for generating smooth
maps between surfaces [Corman et al. 2015].

An important disadvantage of this approach is that the product rule
Dv(fg) = fDvg+gDvf does not hold in the discrete case. Hence,
given a linear operator it is challenging to check whether it corre-
sponds to a vector field without projecting on the chosen basis. This
projection could potentially be a costly operation.



5.8 Spherical Harmonics

The Cartesian or complex coordinates (cf. Section 5.2) can be in-
terpreted as coefficients of a certain class of 2D spherical harmon-
ics [Ray and Sokolov 2015]. The directions of an N -direction
field then correspond to the maxima of the function described by
these coefficients. This interpretation is useful because it can be
generalized to 3D [Huang et al. 2011]. The inset
shows a visualization of a function from the
employed class of spherical harmonics. Note
that there are six maxima (blue), representing
six directions forming an orthogonal 3D cross.
Comparison and interpolation of 3D crosses can
then be reduced to interpolation of coefficients.

It is important to note that the space of functions that represent ro-
tated crosses is a proper submanifold of the full coefficient space.
While for 2D crosses the projection on the 1D submanifold of rota-
tions turns out to be a simple re-normalization, the corresponding
operation for 3D crosses is considerably more involved. The pro-
jection from the 9D space of free SPH coefficients onto the 3D
submanifold of functions, associated with rotated crosses, is highly
nonlinear, and globally-optimal schemes [Knöppel et al. 2013] do
not generalize to 3D.

5.9 Scalar Fields

Gradient vector fields of scalar fields are inherently curl-free, and
co-gradient vector fields are inherently divergence-free. Hence, a
convenient option to represent and synthesize such fields without the
need for respective constraints is to deal with scalar fields instead,
and derive the vector field in the end. For instance, in [von Funck
et al. 2006], a divergence-free 2D vector field is represented as the
co-gradient field of a scalar field. Similarly, a divergence-free 3D
vector field can be defined as the cross-product of the gradients
of two volumetric scalar functions [von Funck et al. 2006]. This
representation has also been used to encode a 2-vector field in [Yao
et al. 2012], where the field is represented as the set of directions
perpendicular to the gradient of a scalar function.

6 Topology

The discrete Levi-Civita connection, the principal rotations, the pe-
riod jumps, and the matchings that are part of the various directional
field representations bring about discrete counterparts of curvature
and singularity indices. We describe how these are acquired in the
different representations.

6.1 Direction Fields and Trivial Connections

Given a direction in one of the tangent spaces, one might try to create
a complete direction field by propagating the direction, through
parallel transport, into all other tangent spaces. This is inconsistent
in the presence of curvature, as then the Levi-Civita connection
along a cycle does not transport a direction back to itself due to
holonomy, cf. Section 3.1.

By using an alternative transport with zero holonomy, however, a
direction field is well-defined in the above manner. A connection
with this property is called trivial [Crane et al. 2010]. We can thus
look at a given direction field (with matchings between adjacent
tangent spaces) as an “altered connection”, where the rotation angles
δij of the field (cf. Section 4.4) describe the deviation from the
Levi-Civita connection. The connection implied by an N -direction
field is trivial in the sense that a directional is always transported
back to itself up to a rotation by k 2π

N
, k ∈ Z.
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4

index − 9
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index - 21
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Figure 4: Using the principal period jumps and matchings in a
sampling of a 4-direction field splits higher-order singularities into
lower-order ones. The colored dots correspond to singularities of
index − 2

4
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6.2 Singularities and Indices

The singularities of a directional field (cf. Section 3.2) are a topo-
logical property that is derived, in the discrete setting, from the
sums of rotations δij around elementary cycles of tangent spaces.
For instance, in the case of a face-based field representation, the
cycles are 1-rings around vertices. In the case of a vertex-based
representation, the cycles comprise the edges bounding a face. The
sumDC =

∑

i δi,i+1 along such a cycle C is the difference between
the curvature K′

C , induced from the trivial connection defined by
the field, and the original Gaussian curvature KC , induced by the
Levi-Civita connection: K′

C = KC +DC . Note that in a face-based
field representation, KC is simply the angle-defect from 2π [Crane
et al. 2010] at the vertex enclosed by C.

WhereverK′
C 6= 0, the field has a singularity, and its index isK′

C/2π
[Ray et al. 2009; Crane et al. 2010]. There are several, yet equivalent,
expressions for the calculation of singularity indices [Li et al. 2006b;
Ray et al. 2008; Diamanti et al. 2014].

Surfaces that are not simply-connected admit non-contractible (and
boundary) cycles, forming a homology basis [Ray et al. 2008; Crane
et al. 2010]. In addition to the rotation sums around elementary (e.g.,
1-ring) cycles, the rotation sums around these non-elementary cycles
are additional topological degrees of freedom of the field.

6.3 Sampling Problem

We discussed the ambiguities that a discrete field representation
introduces in Section 4.4. Such ambiguities can be settled using
explicit period jumps and matchings (e.g. in an angle-based represen-
tation, cf. Section 5.1). In representations that do not natively carry
this extra information (e.g. the Cartesian or complex representation),
one can only implicitly assume principal matchings and rotations
(cf. Section 4.4)—unless some other prior information about the
singularities is available. For the case of an 1N -direction field, this
means that the rotation between two adjacent tangent spaces is al-
ways only within [−π/N, π/N). Consequently, the rotation sum
around a cycle of m tangent spaces cannot exceed mπ/N . There-
fore, higher-order singularities cannot be represented by low-valence
cycles. For instance, in a vertex-based representation on a triangle
mesh (as in [Knöppel et al. 2013]), no other indices besides ± 1

N

are likely to arise. If the geometry or the constraints promote higher
index, clusters of ± 1

N
singularities arise instead. Figure 4 shows

examples of fields with a high-order singularity, sampled in a face
based setting.



7 Operators

7.1 Discrete Vector Calculus

We discuss discrete differential operators acting on spaces of piece-
wise constant vector fields and piecewise linear functions on tri-
angular surface meshes, which were discussed in Section 4.2. We
introduce conforming and nonconforming discrete divergence and
curl operators and show how these operators can be combined to get
a discrete Hodge decomposition of vector fields. The presented con-
cepts have been introduced in [Polthier and Preuß 2003; Wardetzky
2006] and our presentation loosely follows theirs.

Alternatively to this construction, a structure-preserving discrete
Hodge decomposition can be formulated in terms of discrete dif-
ferential forms and discrete operators between them. For a general
treatment of Discrete Exterior Calculus, we refer to [Hirani 2003;
Desbrun et al. 2005] and to [Fisher et al. 2007] for the discrete
Hodge decomposition of discrete one-forms. For an introduction to
DEC, we refer to [Crane et al. 2013].

Discrete Divergence and Curl For simplicity, we consider only
a triangular surface mesh Mh without boundaries. The vector fields
in Xh are not differentiable, hence the definition (2) of the divergence
cannot be directly applied. However, the right-hand side of (3) is
well-defined for pairs of a function f in Sh or S∗

h and a vector field
v in Xh. Hence, we can evaluate integrals over f divv and use this
for defining a conforming and nonconforming discrete divergence.
For any v ∈ Xh, the conforming discrete divergence of v is the
linear functional

divhv : Sh 7→ R

f → −

ˆ

Mh

〈grad f,v〉 dA,

and the nonconforming discrete divergence is the linear functional

div
∗
hv : S∗

h 7→ R

g → −

ˆ

Mh

〈grad g,v〉 dA.

Following the definition of the curl in the continuous case, see (3),
the conforming and nonconforming discrete curl operators are de-
fined as

curlhv = −divhJv and curl
∗
hv = −div

∗
hJv.

The discrete divergence and curl of a vector field are functionals and
not functions. This means they cannot be evaluated at a point of the
surface, but they can only be tested with a function. In this sense,
they are integrated and not pointwise quantities. Since the space Sh

and S∗
h are finite-dimensional, the functionals can be transposed to

get functions representing the divergence and curl of a piecewise
constant vector field. This transposition means multiplication with
the inverse mass matrix. For a discussion of integrated and pointwise
quantities and their relation, we refer to [Wardetzky et al. 2007].

Discrete Harmonic Vector Fields For the construction of the
discrete harmonic vector fields, we consider the kernels of the dis-
crete divergence and curl operators. By Kernel(divh) we denote the
subspace of Xh containing the vector fields v for that divhv is the
trivial functional (i.e., divhv(f) = 0 ∀f ∈ Sh). The kernels of
div∗

h, curlh and curl∗h are defined analogously.

To get spaces of harmonic fields whose dimension equals twice
the genus of the surface, we need to combine the conforming and

nonconforming discrete operators. There are two combinations: We
define the conforming discrete harmonic vector fields as

Hh = Kernel(divh) ∩ Kernel(curl
∗
h)

and the nonconforming discrete harmonic vector fields as

H∗
h = Kernel(div

∗
h) ∩ Kernel(curlh).

We would like to remark that using only the conforming discrete
divergence and curl yields a space of harmonic vector fields whose
dimension is not twice the genus but depends explicitly on the
number of vertices, edges and faces of the mesh.

Discrete Hodge Decomposition Similar to the definition of the
discrete harmonic vector fields, the discrete Hodge decomposi-
tions combine the conforming and nonconforming discrete function
spaces and operators. There are two possible combinations:

Xh = Image(grad|Sh
)⊕ Image(J grad|S∗

h
)⊕Hh

and
Xh = Image(grad|S∗

h
)⊕ Image(J grad|Sh

)⊕H∗
h.

As in the continuous case, the subspaces are mutually orthogonal
with respect to the L2-scalar product. The fact that there are two
isomorphic decompositions is specific to the discrete setting and does
not appear in the continuous case. In [Wardetzky 2006], convergence
of the decompositions under refinement has been established. In this
sense, the two decompositions are similar as they converge to the
same limit under refinement.

In the recent work [Brandt et al. 2016] a discrete Hodge–Laplace
operator and a spectral decomposition of the space of piecewise con-
stant vector fields compatible with the discrete Hodge decomposition
have been introduced.

Discrete Killing Vector Fields Beyond scalar-valued derivative
constraints such as the divergence and the curl, one can also pose
more complex constraints, which can be expressed in terms of the
covariant derivative tensor of the vector field. For example, one can
consider the amount of stretch that a vector field generates: if we
place two particles near each other on the surface and let them flow
with the vector field, this stretch measures how much the distance
between them changes while flowing. Vector fields that generate
no stretch are called Killing vector fields, and are the generators of
self-isometries (distance preserving maps from the surface to itself).

In terms of the covariant derivative, a vector field v is Killing if and
only if its covariant derivative tensor is anti-symmetric, namely:

〈∇uv,w〉 = −〈∇wv,u〉, (15)

for any two vector fields u,v (see [do Carmo 1992], Chapter 3,
Exercise 5). For example, it is easy to check that the planar vector
field which rotates around the origin v(x, y) = (−y, x) has an anti-
symmetric Jacobian matrix (the planar equivalent of the covariant
derivative), and is therefore a Killing vector field. Exact Killing
fields are quite rare, as their existence implies a 1-parameter family
of self-isometries. For example, surfaces of revolution (and their
isometric deformations) have exact an exact Killing field which
generates the rotation around their axis. Therefore, in the discrete
case it is interesting to consider approximate Killing vector fields
(AKVFs), i.e. those whose flow is an approximate isometry.

Different discretizations have been used to compute approximate
Killing vector fields. In [Ben-Chen et al. 2010], the authors refor-
mulate the Killing equation (15) in terms of exterior calculus, and



use discrete 1-forms for the computation. As KVFs are genera-
tors of isometries, [Grushko et al. 2012] used Generalized Multi-
Dimensional Scaling, a tool which has been previously used for
computing approximate isometries between surfaces, for comput-
ing AKVFs. Another property of KVFs is that their corresponding
derivation operator commutes with the Laplace-Beltrami operator.
This property was leveraged in [Azencot et al. 2013], using the
operator representation of vector fields, for computing AKVFs. Fi-
nally, [de Goes et al. 2014] used their general tensor decomposition,
and [Azencot et al. 2015] used equation (15) by directly discretizing
the covariant derivative.

As generators of isometries, AKVFs are useful in any application
where distortion minimization is a goal. For example, AKVFs can
be used for generating intrinsic patterns [Ben-Chen et al. 2010],
for segmentation [Solomon et al. 2011b] and for planar deforma-
tion [Solomon et al. 2011a].

Discrete Covariant Derivative While some differential quanti-
ties of vector fields have simple operators (for example, the diver-
gence and the curl), in general, any first order differential operator
can be expressed in terms of the covariant derivative tensor of the
vector field. Thus, given a general discretization of the covariant
derivative, we have more options for the type of objective functions
we can minimize and constraints we can enforce. However, we need
to pay for this flexibility by discretizing a more complicated object
(a tensor instead of an operator from vector fields to functions, for
example).

This direction is relatively new, and therefore only a few discrete
constructions have been proposed so far in geometry processing.
In [de Goes et al. 2014], the authors propose a general discretiza-
tion of tensor fields on triangulations, using a decomposition which
represents such tensors using five scalar functions. On the other
hand, [Azencot et al. 2015] discretize directly the covariant deriva-
tive through its extrinsic representation as the directional derivative
of the coordinates of the vector field, projected on the surface. Using
both approaches it is possible to find approximate Killing vector
fields by minimizing the norm of the symmetric part of the covariant
derivative, compute the Lie bracket of two vector fields, as well as
other applications. Recently, [Liu et al. 2016] proposed a pointwise
definition of a covariant derivative using geodesic polar maps.

8 Objectives and Constraints

Depending on the application, various objectives can be used for vec-
tor field optimization (Figure 5). We introduce the fairness objectives
that have been proposed in the literature, and give an overview of the
constraints that can be enforced while minimizing these objective
functions.

8.1 Fairness

In order to optimize for the “best” direction field for a given appli-
cation, the notion of “best” has to be defined and formulated. The
most common way to measure the fairness of a field is by using the
Dirichlet energy, measuring how variable, or rather, non-similar, the
field is between adjacent tangent spaces. This notion poses several
issues, which we show in the following.

Parallelity For many use cases, the ideal field is a parallel field,
i.e. the direction in one tangent space is obtained via parallel trans-
port from the directions in adjacent tangent spaces. Since globally
parallel direction fields are not possible in the presence of curvature,
many methods instead opt for “as-parallel-as-possible”. In angle-
based methods [Ray et al. 2009; Crane et al. 2010] for N -direction

fields, this amounts to a Dirichlet energy on the rotation angle

Efair-N =
N

2

∑

e∈E

we · (δe)
2, (16)

where the edge weightswe are chosen to account for a certain metric.
Typical choices are unit weights [Ray et al. 2008; Bommes et al.
2009] or (dual) cotan weights [Crane et al. 2010]. Following [Iarussi
et al. 2015], this fairness objective generalizes to 22-direction fields:

Efair-22 =
∑

e∈E

we · (δ(φ, ψ)e)
2. (17)

Note that this objective can be decomposed into

Efair-22 = Efair-4 + Efair-skew,

with a symmetric part that is the Dirichlet energy Efair-4 of a 4-
direction field, and a skew part corresponding to Eqn. (9):

Efair-skew =
∑

eij∈E

weij · ((−1)pijβi − βj)
2,

that measures the fairness of the specific component that encodes
the deviation from orthogonality. This observation stresses the fact
that a 22-vector field can be interpreted as a 4-direction field in a
different metric [Panozzo et al. 2014; Jiang et al. 2015].

In the PolyVector representation [Diamanti et al. 2014] (as the gen-
eral case of the complex Cartesian representation [Zhang et al. 2007;
Knöppel et al. 2013]), the objective function is the difference be-
tween parallel-transported coefficients of the representing polyno-
mial p(z) =

∑

n Cnz
n:

Efair =
∑

(i,j)∈E

∑

n

∣

∣

∣
Cn,j − ei(N−n)XijCn,i

∣

∣

∣

2

. (18)

(a) [Fisher et al. 2007] (b) [Ben-Chen et al. 2010]

(c) [Knöppel et al. 2013]

Symmetry Anti-symmetry

(d) [Azencot et al. 2013]

Figure 5: Various objectives used for vector field optimization - (a)
alignment to constraints, (b) Killing energy for isometric on-surface
deformations, (c) smoothness (Dirichlet energy) (d) commutativity
with the symmetry/antisymmetry self maps.



In the case of an entirely parallel field, all these (representation-
dependent) objectives are zero; however, they behave differently in
other cases. See Section 11 for a detailed discussion and comparison
of these objective functions.

Note that a parallelity-based fairness objective strongly depends on
the underlying connection for parallel transport. Variants exist that
manipulate the usual Levi-Civita connection intrinsically [Ray et al.
2009] or extrinsically [Ebke et al. 2014] in order to achieve certain
effects, in particular preventing excessive singularities from arising
in regions of high-frequency geometric detail or noise. This process
can be interpreted as a re-distribution of Gaussian curvature, which
accordingly influences where singularities arise.

Orthogonality Works that target 14-vector fields that are not nec-
essarily symmetric 4-direction fields often attempt to make the field
as orthogonal as possible (subject to other constraints), to avoid
degenerate and small-angle configurations. In [Liu et al. 2011;
Iarussi et al. 2015], the relative angle deviation for the 22-direction
fields from becoming 4-direction fields is directly encoded. [Liu
et al. 2011] use it in an inequality bound to avoid degeneracy,
while [Iarussi et al. 2015] minimize the orthogonality deviation
angle directly. In [Diamanti et al. 2014], the angle is not directly
encoded. Instead, 4-direction fields are represented by polynomials
of the form p(z) = z4 − u

4, and thus minimizing the magnitude of
all the coefficients of the polynomial, save for the free coefficient,
provides control over orthogonality as well. Note that this trivially
extends to controlling how much 1N -vector fields are far from being
N -direction fields.

Coons Interpolation As-parallel-as-possible objective functions
promote straight streamlines. This might not always be a
desired goal: in the context of surface reconstruction from
sketches, [Iarussi et al. 2015] estimate 3D normal fields from
2D concept sketches. The corresponding mathematical task is

to find a 22-vector field in the image
plane that is the projection of the (reg-
ularized) principal-curvature field of the
corresponding (unknown) 3D shape. It
turns out that an as-parallel-as-possible
optimization inappropriately flattens the
sketched shape (inset, top) due to the met-
ric distortion of the projection. In order to
more naturally extrapolate the bending of
sketched curves (boundary in the inset) to
the shape, the theory of regularized curva-
ture fields [Iarussi et al. 2015] devises an-
other optimization objective, called bend
field energy that is based on the covariant
derivative:

Ebend2D =

ˆ

||∇uv||
2 + ||∇vu||

2 dA. (19)

The corresponding 22-vector field is locally parametrized by vectors
u and v. Essentially, the objective function measures how smooth
one vector field is in the direction of the other, and vice versa, instead
of the isotropic smoothness of the parallelity measure. The result is
an interpolation (inset, bottom) similar to Coons interpolation [Farin
and Hansford 1999].

Soft Feature Alignment In certain applications, it is desirable to
compute directional fields aligned with surface features. While this
is achievable using constraints (Section 8.2), it can be accounted
for directly in the fairness energy by measuring parallelity on the

ambient space [Jakob et al. 2015; Huang and Ju 2016]. This ap-
proach does not require any parameter tuning and it also does not
require the explicit estimation of curvature directions. However, the
generated fields are not guaranteed to follow all surface features.

Other Objective Functions A decomposition of the Dirichlet
energy ED into its holomorphic part EH and its anti-holomorphic
part EA is proposed in [Knöppel et al. 2013]. This enables a new
parameter s ∈ [−1, 1] to balance between both parts, i.e. E(s) =
(1 + s)EH + (1− s)EA. The authors observed that varying s can
be useful for finding a good compromise between straightness of
the field and number of singularities. Note that both parts of the
Dirichlet energy have been used before: the holomorphic one in the
context of Killing vector fields [Ben-Chen et al. 2010], that are both
holomorphic and divergence free, and the anti-holomorphic one for
vector field design [Fisher et al. 2007].

Some methods seek to minimize the curl of an existing (computed)
direction field by scaling, in order to achieve better integrability.
In [Ray et al. 2006], the curl is minimized isotropically on a 4-
direction field, to form a 4-vector field with potentially less curl,
leading to a more conformal than isometric parametrization. This is
extended to different scaling in each axis to get an orthogonal and
anisotropic, 22-vector field in [Zhang et al. 2010].

8.2 Constraints

Alignment It is often required for a field to be more than just
fair or symmetric, but also to fit certain prescribed directions, or
an entire existing field on a surface. Examples are the principal
curvature 22 direction field, strokes given by an artist on the surface,
boundary curves, or feature lines. If this information is represented
in a way compatible with the employed field representation, this
can be straightforward: the field can be either compared against the
prescribed values, using a data term [Knöppel et al. 2013; Diamanti
et al. 2014], or be hard-constrained [Bommes et al. 2009; Nieser
et al. 2012; Campen et al. 2016a]. Similar techniques are applicable
when using differential forms [Fisher et al. 2007] and functional
operators [Azencot et al. 2013]. Difficulties arise when the con-
straints are partial, i.e., only one of multiple directions is prescribed
at a point. Depending on the representation, such constraints can
be hard to express. [Iarussi et al. 2015] and [Diamanti et al. 2015]
recently described how such partial constraints can be handled for
22-directional fields. In the former case, due to the variable period
jumps, it does not matter which of the four directions one constrains,
i.e. without loss of generality one can simply constrain α+ β (see
Section 5.1) to a fixed direction. In [Diamanti et al. 2015], partial
constraints are encoded by lowering the degree of the complex poly-
nomial. This is possible without loss of generality, since the order
of roots does not matter (commutativity of multiplication).

Symmetry and Maps In addition to specifying exact directions
(either sparse, full, or partial), it is possible to prescribe the behavior
of the values of the vector field in a more global way. For example, if
the surface has bilateral symmetry, it is advantageous if the designed
directional fields adhere to the same symmetry, allowing field-guided
applications to preserve the symmetry as well. Similarly, given
multiple shapes with a correspondence between them, we could
require that the directional fields commute with the correspondence,
effectively designing directional fields jointly on multiple shapes.

In [Panozzo et al. 2012], symmetric fields are computed by explicitly
transporting the directional field using the symmetry map, which can
be any self map of the surface. Using an alternative representation
of a map as a correspondence between functions, [Azencot et al.
2013] compute symmetric (and anti-symmetric) vector fields by



computing vector fields whose functional representation commutes
(or anti-commutes) with the functional map. The latter generates
smoother fields (as it is works in the space of smooth vector fields),
while the former can be applied to more general setups, such as
4-direction fields.

8.3 Differential Constraints

Fields must fulfill certain differential properties in order to best
suit their purpose. Curl-free fields are optimal for the purpose of
integration to scalar fields or parametrization maps. Curl-free 1N -
vectors fields, with a focus on 22-vector fields, are described and
computed in [Diamanti et al. 2015]. Curl-free directional fields are
defined by a reduction to a given matching, for which all adjacent
matched vectors are curl free. This algorithm inherits the advantages
and disadvantages of the PolyVector framework, and in addition
tends to introduce many singularities in curved regions.

Divergence-free fields lead to volume preserving maps, and are
therefore used in deformation [von Funck et al. 2006], shape cor-
respondence [Corman et al. 2015] and physically based simulation
of fluids [Azencot et al. 2014]. In R

3, divergence-free fields can
be represented as the cross product of the gradients of two scalar
fields p, q: u (x, y, z) = ∇p (x, y, z) × ∇q (x, y, z). On closed
genus-0 surfaces, divergence-free fields are spanned by π/2-rotated
gradients of scalar functions, see Section 7.1 and [Polthier and Preuß
2003].

8.4 Topology

Representations that include explicit period jumps, like the angle-
based methods discussed in Section 5.1, make it possible to control
the topology of the field. This is achieved by prescribing rotation
angle sums around 1-rings to fix singularities (cf. Section 6.2), or,
more generally, by prescribing rotation angle sums around arbitrary
cycles [Ray et al. 2008; Bommes et al. 2009; Crane et al. 2010]. In
Section 11, we discuss which methods support which types of such
topological constraints.

9 Applications

Directional fields are very popular in computer graphics, scientific
visualization, meshing for finite element simulations, cultural her-
itage and architectural geometry. In this section, we provide an
overview of the most recent works that use direction fields, grouping
them by applications.

9.1 Mesh Generation

Vector fields have been extensively used to provide directional guid-
ance in automatic mesh generation methods [Giannakopoulos and
Engel 1988]. For instance, they guide the mesh generation to the
domain boundaries, and describe the characteristics of the governing
equations of physical problems.

2D Knupp [1995] describes a method to generate quadrilateral
meshes from curvilinear grids. These grids are obtained from so-
lutions to a Poisson problem that is formulated with respect to a
given vector field. Essentially, a global parametrization is sought,
whose gradients match given vector fields as much as possible in a
least-squares sense. Such early methods were restricted to planar
domains and entirely regular quad grids.

Surfaces The same principle has been introduced to the field
of Computer Graphics in a more general formulation by Ray et

al. [2006]. Parametrization-based mesh generation techniques,
guided by vector fields, became quite popular recently [Kälberer
et al. 2007; Bommes et al. 2009; Pietroni et al. 2011b; Li et al.
2011a; Tarini et al. 2011; Campen et al. 2012; Nieser et al. 2012;
Bommes et al. 2013a; Ebke et al. 2014; Campen and Kobbelt 2014b;
Campen and Kobbelt 2014a; Li et al. 2015; Jakob et al. 2015]. The
most significant difference between the early approaches and the
more recent ones is the transition from vector fields to 4-direction
(“cross”) fields. This enables the handling of arbitrary geometries
and topologies, and allows for the generation of “unstructured” quad
meshes with irregular vertices, permitting higher flexibility and bet-
ter quality. On surfaces, the direction fields are often used to promote
alignment to the principal curvature directions of the underlying sur-
face, through field-guided parametrization [Ray et al. 2006; Kälberer
et al. 2007] or field-guided mesh structure generation [Campen et al.
2012; Campen et al. 2013]. This is of interest [Li et al. 2006a;
Alliez et al. 2003; Cohen-Steiner et al. 2004; Campen and Kobbelt
2014b; Campen et al. 2016a], e.g. to maximize approximation qual-
ity [D’Azevedo 2000], minimize normal noise and aliasing [Botsch
and Kobbelt 2001], or optimize element planarity [Liu et al. 2011].
Nevertheless, the fields serve an additional purpose to directional
guidance in unstructured mesh generation; their role is actually two-
fold: the topology of the fields is exploited to predetermine aspects
of the mesh structure – in particular, the number, type, and position
of irregular vertices are generally derived from the singularities in
the fields – thereby greatly simplifying the parametrization optimiza-
tion problems involved in the mesh generation process [Kälberer
et al. 2007; Bommes et al. 2009]. Anisotropic and adaptive meshing
are also possible, if the guiding 4-direction field is replaced with
a 22-direction (“frame”) field [Panozzo et al. 2014; Diamanti et al.
2014; Jiang et al. 2015; Diamanti et al. 2015; Campen et al. 2015].

Point Clouds Directional fields can be discretized and designed
directly on point clouds [Pietroni et al. 2011b; Li et al. 2011a; Jakob
et al. 2015] and are used to directly mesh the point cloud with a
semi-regular triangular or quadrilateral mesh, without having to first
convert it into an unstructured triangle mesh.

Volume The use of a field-aligned parametrization for remesh-
ing purposes naturally extends to higher dimensions, where it has
been applied for the creation of 3D hexahedral meshes [Huang et al.
2011; Nieser et al. 2011; Li et al. 2012; Jiang et al. 2014; Kowal-
ski et al. 2014]. The generation of suitable vector fields, however,
becomes significantly more involved when moving to higher dimen-
sions, as detailed in Section 12.

9.2 Deformation

In deformation applications, a displacement field describes the dif-
ference between two poses of a shape. Non-linear properties of
a deformation, such as area/volume preservation, or isometry, are
represented as properties of the displacement field. Divergence-free
displacement fields do not change the volume to first-order. Hence,
deformations that are approximately volume preserving can be gen-
erated by successively deforming a shape by small displacement
fields, that are divergence free [von Funck et al. 2006]. In a simi-
lar spirit, deformations which are as isometric as possible can be
generated using approximate Killing vector fields [Solomon et al.
2011a]. Recently, [Martinez Esturo et al. 2014] created a generalized
formulation that includes these two cases.

In reduced-order methods, the linear span of a set of deformation
fields is used to generate low-dimensional subspaces of the space
of all possible deformations. Restricting the system to be simu-
lated within the subspace drastically reduces the dimension of the
non-linear problems. Examples of subspace constructions include



vibration modes and modal derivatives [Barbič and James 2005;
Hildebrandt et al. 2011], subsampling [Huang et al. 2006; Adams
et al. 2010; Wu et al. 2014] and linear blend skinning [Kim and
James 2011; Jacobson et al. 2012]. In combination with a scheme
for the efficient force evaluation, run times that are independent of
the resolution of the mesh to be deformed can be achieved, which
allows for real-time deformation of complex meshes.

Different force approximations schemes have been proposed, in-
cluding the precomputation of the coefficients of reduced polyno-
mials [Barbič and James 2005], optimized cubature [An et al. 2008;
von Tycowicz et al. 2013], mesh coarsening [Hildebrandt et al. 2011]
and rotation clustering for the as-rigid-as-possible objective [Jacob-
son et al. 2012]. Recently, a method for real-time nonlinear shape
interpolation was introduced [von Tycowicz et al. 2015]. The pro-
posed subspace construction involves the computation of the tangent
vectors to the manifold of interpolating shapes.

9.3 Texture Mapping and Synthesis

Directional-field guided parametrization methods have been mainly
applied for remeshing purposes (cf. Section 9.1). Nevertheless,
the global, seamless parametrization that they produce can be used
for other traditional graphics applications, such as texture mapping
and mip-mapping. The regularity of the parametrization, and the
simple seamlessness conditions, make it simple to define a seamless
texture [Ray et al. 2010] that can be sampled at different resolutions
without artefacts.

The stripe patterns occurring on many natural and biological objects,
like plants (i.e. cactus ridges and maize), and animals (fish scale
patterns, zebra stripes), can be synthesized with the guidance of a
2-direction field [Ray et al. 2006; Knöppel et al. 2015], describing
smooth stripe directions. Fields with higher-order symmetries are
useful for more general texture synthesis methods [Wei and Levoy
2001].

To synthesize more complex patterns, a shape grammar [Stiny and
Gips 1971] can be applied to a surface using a vector field for
guidance [Li et al. 2011b]: the vector field locally defines a reference
frame, that is used by the shape grammar to decide on the orientation
of the pattern. This idea has been further generalized to synthesize
volumetric textures composed of discrete elements [Ma et al. 2011]
(i.e. wood patterns, piles of stones).

9.4 Architectural Geometry

Polyhedral Meshes Directional fields are used extensively for ar-
chitectural geometry purposes. One common application is remesh-
ing with polyhedral meshes (meshes with flat polygonal faces). Pla-
nar faces are associated with the so-called conjugate directions [Liu
et al. 2006], and thus an effort is invested to compute them on tri-
angular meshes. Two vectors u,v are conjugate at a point p if
IIp (u,v) = 0, where II is the second fundamental form [do Carmo
1992]. In [Zadravec et al. 2010], two conjugate 2-direction fields are
computed, only allowing for ± 1

2
singularities. In [Liu et al. 2011],

The computation of the most general case of conjugate 22-direction
fields is made possible. However, the optimization is nonlinear and
nonsmooth (integer and binary variables were employed). In [Dia-
manti et al. 2014], conjugate 22-vector fields are computed in a
local-global manner, where smooth 22-drection fields are computed
based on the complex polynomial representation (cf. Section 5.6)
globally, and then projected to the closest conjugate directional fields
locally. The aforementioned methods mostly targeted the design of
planar quad meshes: Planar hexagonal meshes are considered in [Li
et al. 2015; Vaxman and Ben-Chen 2015].

Self-Supporting Structures Special direction fields are used to
establish surfaces that are in a stable equilibrium. In [Vouga et al.
2012], principal directions of a relative surface operator serve as
the conjugate field for planar quad meshing. In [Panozzo et al.
2013], 4-directional fields are computed for the meshing of the
initial quad mesh, from which the structure would be built. The
fields are computed as a balance between smoothness and adherence
to prominent regions of the surface, that require the mesh to be
built with a certain orientation. The problem is formulated in the
language of DEC in [de Goes et al. 2013], where the new metric of
the stress tensor is expressed by the hodge star. The metric is also
altered by a 22-direction field to deform a mesh in a statics-aware
way in [Pietroni et al. 2015].

Strip Surfaces Directional-field synthesis has also been em-
ployed to create architectural surfaces from strips corresponding
to the surface curvature profile. In [Pottmann et al. 2010], a discrete
Jacobi field is computed, and geodesic strips are extracted through
it. A Jacobi field is a special vector field that indicates the density of
geodesics at a point and in the direction it points to. Independently,
they sharpen a 4-direction field to become a geodesic 2-direction
field from which these strips are extracted.

9.5 Cultural Heritage

Parametrizations, which are guided by 4-direction fields, are used
in cultural heritage to analyze and restore artifacts. The interactive
system proposed in [Pietroni et al. 2011a] allows a historian to sketch
stripes on a 3D scanned model and use the stripes to guide the design
of a 4-direction-field. This field is then used to flatten the stripe to a
planar rectangle, where high-frequency details are easier to analyze.

A system to restore damaged historical parchments is presented
in [Pal et al. 2014]. Each document is 3D scanned, and an optical
character recognition (OCR) algorithm is used on the texture to
extract a few recognizable characters. These characters provide clues
on the deformation that the parchment underwent. This information
is then propagated by interpolating a pair of 1-vector fields over the
other parts of the document. A parametrization algorithm is then
used to restore the document to its original flat geometry.

9.6 Other applications

Miscellaneous geometry-processing algorithms that use directional
fields include surfacing [Iarussi et al. 2015; Pan et al. 2015],
mesh segmentation [Solomon et al. 2011b; Zhuang et al. 2014],
parametrization [Campen et al. 2016b], and shape analysis [Hilde-
brandt et al. 2012]. Outside of geometry processing, directional
fields have been used in procedural modeling [Li et al. 2011b],
crowd simulations [Patil et al. 2011], urban planning [Yang et al.
2013], digital fabrication [Cignoni et al. 2014], hair scanning [Paris
et al. 2008], object design [Fu et al. 2014], non-photorealistic ren-
dering [Hertzmann and Zorin 2000; Yao et al. 2012; Zhang 2013;
Chi et al. 2014], shading [Mehta et al. 2012; Raymond et al. 2014],
and data analysis [Ferreira et al. 2013].

10 Visualization

Visualizing direction fields is a challenging problem that has a wide
literature, especially in the scientific visualization community. In
this Section, we give an overview of the most common rendering
methods for symmetric fields on surfaces, and we refer an interested
reader to [Laidlaw et al. 2001; Laidlaw et al. 2005; Laramee et al.
2007; Forsberg et al. 2009; Peng and Laramee 2009; Brambilla et al.
2012; Laidlaw and Vilanova 2012] for an overview of 2D and 3D
vector fields visualization methods.



10.1 Image-based Advection for Vector Fields

One of the most established techniques for visualizing vector fields
is Line Integral Convolution (LIC) [Cabral and Leedom 1993]. This
technique generates a random image at the desired resolution. Then,
for every pixel of the image, computes a streamline, i.e. a curve
passing through the point whose tangent is aligned with the given
vector field. The random image is then integrated over the streamline
and the resulting value is associated to that pixel. The blur effect
can be controlled by changing the length of the traced streamline.
This technique might seem prohibitively expensive to apply to large
images, but it is actually possible to efficiently map a variant of this
method to modern graphics hardware by splitting the line integral to
small steps that are performed in parallel over the entire domain [van
Wijk 2002].

This image-based approach can be directly extended to surfaces
using a projection of the 3D surface in image-space: the streamlines
can be then traced directly in the view plane, by using a projection of
the vector field. Care has to be taken on the boundary of the domain,
as detailed in [Wijk 2003].

10.2 Image-based Advection for Tensor Fields

LIC is extended to general tensor fields [Zhang et al. 2007] and
N-RoSy fields [Palacios and Zhang 2011], by decomposing them
into independent LIC-rendered vector fields, and then blending the
resulting images. The blending should be optimized to increase the
local contrast, as it decreases as more and more layers are blended.
This techniques is particularly appealing for interactive applications,
since it can render images in real-time by implementing it in a GPU
shader. For example, it is used in many interactive field-design
algorithms [Zhang et al. 2006; Zhang et al. 2007; Palacios and
Zhang 2011], where a field is interactively designed using radial
basis functions, and the result is shown instantaneously.

10.3 Streamline Tracing

The previous techniques produce a dense visualization of the direc-
tion field by integrating a scalar field over the streamlines. However,
a sparse set of separatrices can also be directly used to visualize
the behavior of the field. This approach is preferred over LIC
in many applications, such
as non-photorealistic render-
ing using hatches [Hertzmann
and Zorin 2000] or to natural
phenomena synthesis [Knöppel
et al. 2015]. The tracing can
be done directly on the sur-
face [Ray and Sokolov 2014;
Myles et al. 2014], or in
image space [Spencer et al.
2009]. In both cases, it is im-
portant to enforce a uniform
and not too dense sampling of
the streamlines to avoid clut-
tering [Mebarki et al. 2005;
Spencer et al. 2009].

After tracing, streamlines can be
replaced by a more complex ge-
ometry (such as a triangulated
brush stroke with varying width) and then be rendered using a ray
tracer. This method has been introduced in [Crane et al. 2010], and
then subsequently used in many other works, such as [Knöppel et al.
2013; Knöppel et al. 2015; Jakob et al. 2015].

10.4 Texture-based Streamline Rendering

An alternative approach has been pro-
posed in [Panozzo et al. 2014], which
replaces the streamline tracing with the
computation of two parametrizations.
These parametrizations are used to apply
a stochastic texture map that is aligned
with the direction field (see inset). The
advantage of this approach is that it can
naturally represent 22-direction fields,
since it encodes skewness, scale, and
anisotropy. Note that skewness can be
represented directly with LIC, or any
other tracing techniques, but scale and
anisotropy cannot. As noted in [Palacios
and Zhang 2011], these attributes might
be mapped over color or line thickness,
but the mapping would then be arbitrary
and unintuitive.

The approach proposed in [Panozzo et al.
2014] uses the spacing between the lines
in one direction to indicate the length of
the frame field component in the other
direction. This cross-hatching tends to
sketch rectangles, with the size and shape
indicated by the frame field. A two-
layered UV-mapping is propagated over
the surface, following the frame field, i.e.,
the Jacobian of the parametrization of the vertices of a given tri-
angle is close to the frame. In the final rendering, each fragment
accesses the texture twice at the two UV locations, creating the two
superimposed directions that form the cross-hatching.

10.5 Glyph Rendering

Glyphs, or collections of
arrows, can be used to ren-
der the field at a subset
of the points of a surface.
While this approach is not
as effective as the previous
methods, due to the clutter introduced in the visualization, it is the
only one that currently supports the visualization of non-symmetric
(e.g. 13-) directional fields.

11 Algorithms & Comparisons

When some form of direction field synthesis is needed in an appli-
cation, the question arises of which synthesis method (using which
representation and which discretization) is suitable, and which is
best suited. In the following we provide a desiderata-based guide to
choosing the right method for various purposes, provide a property
matrix (cf. Table 1), and empirically compare some of the properties
of the state-of-the-art methods.

The first question that should be answered to find the best approach
is whether the desired field topology is known in advance (cf. Sec-
tion 11.2), or whether it needs to be optimized (cf. Section 11.3), i.e.
automatically determined in a way conducive to the geometric objec-
tives. This aspect has the most significant influence on the suitability
of the various optimization strategies and field representations.

Since vector fields and direction fields are closely related, many
algorithms for vector field synthesis can also be used to create direc-
tion fields, and direction field synthesis approaches can be employed



Type Method Represent. Topology Constraints Opt.

1-Vector [Praun et al. 2000] Extrinsic Partial Dir LS

1-Vector [Pedersen 1995] Extrinsic None None LS

1-Vector [Turk 2001] Extrinsic None Dir LS1

1-Vector [Fisher et al. 2007] DEC Partial Dir LS

1-Vector [Chen et al. 2007] RBF Partial Dir LS

1-Vector [Zhang et al. 2006] RBF Partial Dir LS

1-Vector [Azencot et al. 2013] Functional Partial Dir,Kil,Sym LS

1-Vector [Chen et al. 2012] RBF Partial Dir LS

1-Vector [von Funck et al. 2006] Scalar Partial Dir,Div LS

1-Vector [Wang et al. 2006] DEC Partial Dir,Harm2 LS

1-Vector [Ben-Chen et al. 2010] DEC None Kil Eigen

1-Vector [Solomon et al. 2011a] Extrinsic None Dir LS

2-Direction [Paris et al. 2008] Struct. T. None Dir LS

2-Vector [Yao et al. 2012] Scalar Partial Dir LS

N -Direction [Hertzmann and Zorin 2000] Angle Partial Dir NL

N -Direction [Wei and Levoy 2001] Angle Partial Dir NL

N -Direction [Ray et al. 2006] Complex Partial Dir NL

N -Direction [Palacios and Zhang 2007] RBF Partial Dir LS

N -Direction [Ray et al. 2008] Angle Fixed Dir LS

N -Direction [Bommes et al. 2009] Angle Full Dir,Hom MILP

N -Direction [Ray et al. 2009] Complex Partial Dir NL

N -Direction [Lai et al. 2010] Complex Fixed Dir NL

N -Direction [Crane et al. 2010] DEC Fixed Dir LS

N -Direction [Zadravec et al. 2010] DEC Partial3 Dir NL

N -Direction [Palacios and Zhang 2011] RBF Partial Dir LS

N -Direction [Panozzo et al. 2012] Angle Full Dir MILP

N -Direction [Knöppel et al. 2013] Complex None Dir Eigen

N -Direction [Marcias et al. 2013] Angle Full Dir MILP

N -Direction [Jakob et al. 2015] Angle Full Dir MILP4

2
2-Vector [Panozzo et al. 2014] Composite Full Dir LS5

2
2-Vector [Iarussi et al. 2015] Angle Full Dir,Part MILP6

2
2-Vector [Jiang et al. 2015] Composite Full Dir,Part NL

2
2-Vector [Liu et al. 2011] Angle Full Dir,Conj NLIP

2-Tensor [de Goes et al. 2014] DEC None Dir LS

Tensor [Zhang et al. 2007] RBF Partial Dir LS

Directional [Diamanti et al. 2014] Polynomial Partial Dir,Conj LS7

Directional [Diamanti et al. 2015] Polynomial Partial Dir,Part,Int NL

Table 1: Summary of field synthesis algorithms. For each algorithm,
from left to right: the type of field, the paper describing the
algorithm, the representation used (cf. Section 5), the control over
the singularity placement offered (“Partial”: singularities can
be prescribed, but additional ones can arise, “Full” means exact
control is possible, “Fixed” means that the entire topology has
to be specified), a list of supported constraint types (cf. Section
11, “Dir”: directional constraints, “Part”: partial directional
constraints supported, “Conj”: the resulting field is conjugate,

“Int”: the resulting field is integrable/curl-free, “Kil”: the resulting
field is as-Killing-as-possible, “Sym”: the resulting field respects
a given shape symmetry, “Hom”: homology constrains can be
given), the type of optimization used (“LS” = linear system, “NL”
= non-linear, “MILP” = mixed-integer linear program,“NLIP” =
non-linear integer program).

1) This algorighm uses a multi-resolution hierarchy.
2) The fields are harmonic only in the limit of increasing constraint weights.
3) The singularities are restricted to index 1/2 and −1/2.
4) Scales linearly due to a custom MILP solver and a multi-grid hierarchy.
5) Linear in addition to the technique used to interpolate a N -direction field.
6) Two objectives are proposed, one is a MILP and the other is a NLIP.
7) Non-linear if the conjugacy constraint is used.

to create (unit) vector fields. Certain properties, such as as-Killing-
as-possible, however, fundamentally rely on magnitudal information
and only apply to 1-vector fields. For the sake of clarity, we first con-
sider algorithms specialized for 1-vector fields (cf. Section 11.1), and
then discuss the more general problems of synthesizing directional
fields (with all kinds of symmetries) in detail. We will also restrict
our discussion to algorithms that can design fields on 2-manifolds or
in the plane.

11.1 1-Vector Fields

Fairness Fair tangent vector fields have been introduced in
graphics for the purpose of decorating implicit surfaces in [Ped-
ersen 1995]. The representation they chose is angle-based and
supports directional constraints. Precise topological control is not
supported. Field-guided texture synthesis on triangulated surface
has been proposed [Praun et al. 2000] (using RBF interpolation) and
[Turk 2001] (using a diffusion equation). In both works, no control
of the topology was possible, since the field is represented using
extrinsic coordinates and then projected on the surface to make it
tangential after the interpolation. A similar system focusing on fast,
interactive manipulation is proposed in [Zhang et al. 2006], where
singularities can be manually introduced and moved over the surface.
In [Fisher et al. 2007] the sinks, sources and vortices of a vector
field are controlled by prescribing its divergence and curl. To allow
for additional control of the vector field, e.g. by prescribing direc-
tions, the divergence on curl are prescribed in a least squares sense.
More recent approaches [Azencot et al. 2015] allow to compute the
covariant derivative as an operator on vector fields, thus allowing to
optimize for a Dirichlet type objective to synthesize smooth fields.

Note that many of the recent algorithms for general directional fields,
as discussed in the remainder of this section, can be used for 1-vector
fields as well. This can be of practical interest because some of them
enable additional objectives and constraints.

Other Objectives Killing vector fields (and vector fields that
are as-Killing-as-possible) naturally represent continuous intrinsic
symmetries [Ben-Chen et al. 2010] and can be used to generate
close to isometric planar deformations [Solomon et al. 2011a]. The
design of time-varying vector fields have been studied in [Chen et al.
2012]. Recently, a functional representation of vector fields has been
proposed in [Azencot et al. 2013], which allows to naturally encode
global constraints such as symmetry in an efficient way, at the price
of losing precise local control over directional properties and the
fields’ topology.

11.2 Fixed Topology

11.2.1 Fairest N -Direction Field

A first algorithm to construct the fairest (in the sense of Section 8)
N -symmetry field for a given field topology has been presented
by Ray et al. [2008]. It is based on the angle-based direction field
representation (cf. Section 5.1), and only involves solving a sparse
linear system with a size proportional to the size of the mesh, effec-
tively minimizing the discrete Dirichlet energy. Note that without
any further constraints the solution is not uniquely determined: any
rotation by a globally constant angle applied to a field yields a field
of equal smoothness. A directional constraint in a single face is
sufficient to fix this one degree of freedom.

On a surface of genus g > 0 or with b > 1 boundary loops, there are
2g + b− 1 topological degrees of freedom besides the singularity
indices: the field’s holonomy (or turning number) along the non-
contractible cycles of a homology basis [Ray et al. 2008]. In some



scenarios [Campen and Kobbelt 2014b] it is clear from the context
how they shall be fixed, so this information is readily available. In
other scenarios, like user-guided field design, requiring the manual
fixing of these degrees of freedom can be unintuitive. Ray et al.
[2008] describe how they can be left free, i.e. only the singularities
are prescribed, and in the end automatically be fixed in a reasonable
way.

The direction field optimization method described by Bommes et al.
[2009] is a generalization to the setting of completely free topology
(neither singularity indices nor homology generator turning numbers
are assumed as input). But, as the topology is explicitly represented
in this method, it is possible to specify topological constraints. In
the extreme the topology can be constrained entirely, effectively
yielding a method equivalent to the algorithm of Ray et al.

Later Crane et al. [2010] presented a method that can be interpreted
as a dual (or differential) formulation of the above algorithm: instead
of solving for the per-face angles φi (cf. Section 5.1), it solves for
the per-edge difference of incident face angles, the rotations δij .
Then choosing a direction φ0 in a single face, all others are implied
through these difference angles (cf. Section 5.1). “Triviality con-
straints” on the rotations must be taken into account to ensure global
consistency, i.e. implication of a unique value φi per face. These
constraints fix the topology of the field (the relation between the
rotations δij and indices and turning numbers is treated in Section
6.2). The resulting field then is exactly the same as the one yielded
by the above algorithm, i.e. again the algorithms are equivalent.
This dual, connection-based point of view provides interesting in-
sights, explicitly revealing why the singularities of cross fields (with
topology optimized for smoothness) designate good irregular vertex
configurations for quad meshes [Campen 2014, Chapter 4].

Optimization strategies for the smoothest field with fixed topology
based on other forms of representation than the angle-based rep-
resentation are harder to formulate. The main issue is measuring
differences between vectors or directions across a specified number
of periods, which in the angle-based setting amounts to a simple
addition of multiples of 2π to the direct difference, but, e.g., with
a Euclidean coordinate based representation is more complicated
(Section 6.3). One noteworthy exception is the method described
by Fisher et al. [Fisher et al. 2007] using a 1-form representation
(cf. Section 5.5). In this method the topology is prescribed using
constraints on curl and divergence. It is, however, inherently limited
to 1-direction/vector fields (N -symmetry fields for N > 1 are not
supported).

Note that for fields with magnitudal component the optimization
for smoothness without further constraints is not useful: the trivial
solution (the zero-field) is a global optimum but obviously not of
any interest.

11.2.2 Fairest N -Direction Field with Directional Constraints

Often one is interested in guiding the field synthesis in a certain way,
influencing the directional behavior in a local or global manner. Of
practical interest is the case of sparse hard constraints, i.e. fixing
the field’s direction in certain places, and the case of dense soft
constraints, namely prescribing a (weighted) target field. Note that
dense hard constraints obviously make no sense, while sparse soft
constraints can be seen as a special case of the dense soft constraints
scenario with low or zero weights in certain areas.

There is one significant obstacle to the consideration of such con-
straints in the fixed topology case: the topological configuration
of the constraints needs to be known as well. For instance: how
many turns does the field make between two directional constraints?
Which of the N directions of an N -direction field is supposed to fol-

low the prescribed direction? If this information is not available one
expects the optimization algorithm to make an optimal (or at least
good) choice. This implies a much harder optimization problem
with discrete degrees of freedom [Campen and Kobbelt 2014b].

Dense Soft Constraints In order to take soft constraints into
account, one simply adds a weighted data term to the Dirichlet
term in the above angle-based algorithm [Panozzo et al. 2012]. The
optimization can then still be performed using a simple sparse linear
system solve. If the constraint topology is unknown, a term + k

N
2π

(effectively representing a free matching and period jump) needs
to be added for each directional constraint, where k is an integer
variable to be optimized per constraint [Campen and Kobbelt 2014b].

Sparse Hard Constraints Hard directional constraints can be
taken into account by removing the corresponding angle variables
from the optimization, fixing them to the desired values [Bommes
et al. 2009; Crane et al. 2010]. If the topological constellation is
unknown, again a term + k

N
2π needs to be added per constraint.

11.2.3 Fairest 22-Direction Field with Directional Constraints

The algorithm for 22-direction field synthesis described in [Iarussi
et al. 2015] is based on the same explicit topology representation
as [Bommes et al. 2009] which we considered in Section 11.2.1 for
fairest N -direction fields. It is thus amenable to the same type of
topological constraints, allowing for a complete prescription of the
fields topology. It can therefore easily be used for the fixed topology
use case. Hard and soft directional constraints can be taken into
account in the same manner as well.

11.2.4 Fairest 22-Vector Field with Directional Constraints

Likewise, the algorithm for 22-vector field synthesis described in
[Panozzo et al. 2014] is based on the same explicit topology rep-
resentation as [Bommes et al. 2009], allowing it to be used for the
fixed topology use case.

11.3 Optimized Topology

For the optimization of a direction field’s topology there are two
fundamentally different approaches: the topology can be represented
and optimized explicitly (i.e. there are variables in the optimization
that directly express the topology), or it can be implicit. In the latter
case one derives the field topology from the field geometry in a
certain way. We discussed this in detail in Section 4.4.

The use of an explicit topology representation implies that a form
of mixed optimization (with continuous and discrete degrees of
freedom) is involved, because the topology of a direction field is
not a continuous object (period jumps and matchings are discrete).
This leads in general to optimization problems which are NP-hard.
Nevertheless, it has been shown that quite efficient polynomial time
approximations (based on a series of sparse linear system solves
[Bommes et al. 2012]) can yield good results in practical applica-
tions, with an asymptotic behavior no different from algorithms with
a purely continuous optimization, cf. Section 11.4.

An implicit topology representation is amenable to more efficient
continuous optimization. However, depending on the representation
and the constraints, the problem can become non-convex, and non-
linear optimization, requiring a starting point, can become necessary.
Of particular importance in this context is how easily objectives like
parallelity can be expressed. As these objectives concern multiple
(usually two) adjacent directionals, one needs to be able to compare
these. In the context of fields with multiple directionals, to that



end the matching (cf. Section 4.4) needs to be determined. The
principal matching is inherent to some representations (cf. Sections
5.3, 5.2, and 5.6), and some form of fairness can be expressed in
a linear manner with these representations, allowing for efficient
optimization, even in a global manner [Knöppel et al. 2013].

11.3.1 Fairest N -Direction Field

The angle-based formulation of the Dirichlet energy (16) involves the
period jumps (and matchings). When these are considered variables,
the problem seeks to optimize field geometry and topology for
smoothness. An approximative solution strategy for this setting
was described by Bommes et al. [Bommes et al. 2009]. Exact
optimization using, e.g., Branch-and-Bound strategies is possible
but rarely practical due to the large number of discrete variables.

Using one of the representations that inherently have a principal
matching and rotation one can avoid this discrete optimization.
However, in contrast to an angle based representation, these rep-
resentations have an inherent magnitudal component that has to
be dealt with. In particular, degeneration must be prevented, for
instance using (non-linear) per-vector unity constraints [Palacios
and Zhang 2007], a global unity constraint (which can be handled
more efficiently) [Knöppel et al. 2013], or a sufficient number of
constraints that explicitly fix the field’s magnitude to non-zero values
[Diamanti et al. 2014] (but also affect its direction, reducing its fair-
ness). Furthermore, the expressivity of this representation is limited:
while the optimization with the above technique with explicit period
jumps can yield and represent singularities of arbitrary index, only
low-index singularities can arise here. The concrete limits depend
on the valences of the mesh elements carrying the directionals. If
the surface geometry or additional constraints require higher order
singularities, clusters of low order singularities will arise instead in
the respective region (cf. Section 6.3).

11.3.2 Fairest N -Direction Field with Directional Constraints

Directional constraints can be taken into account when using an
angle-based representation, just as described for the fixed topology
case in Section 11.2.2, with terms + k

N
2π per constraint.

Cartesian representations [Palacios and Zhang 2007; Knöppel et al.
2013; Diamanti et al. 2014] include magnitude besides direction,
such that value constraints fix not only the direction, but also the
magnitude. When these vector constraints are then interpolated
harmonically [Diamanti et al. 2014], minimizing the Dirichlet energy
(18), the prescribed magnitudes can bias the notion of fairness (cf.
Figure 8) and in extreme cases lead to degeneracies (cf. Figure 6
(b)). The interesting question of whether hard directional constraints
can be handled using an efficient Eigenvector problem formulation,
akin to [Knöppel et al. 2013], is yet to be explored. Straightforward
elimination of constrained variables from the system, as can be done
in other formulations [Bommes et al. 2009], alters the structure of
the system in a non-trivial way. The method of [Palacios and Zhang
2007] can handle hard directional constraints, but requires non-linear
unity constraints.

11.3.3 Fairest N -Direction Field with Topological Con-
straints

Angle based methods can handle topological constraints due to
the fact that the topology is completely described by the period
jumps that are direct variables in the problem formulation. It is thus
possible to prescribe the field’s holonomy for arbitrary cycles on the
surface, using a simple linear equality constraint on the sum of period
jumps along the cycle [Bommes et al. 2009]. Most importantly, the
indices of individual singularities can be fixed in this way (using

the 1-ring cycles), and points and regions can be constrained to be
regular (index 0).

For other representations where the topology is not explicitly acces-
sible in the optimization, exerting such control is not easily possible
and has in fact not been elaborated yet.

11.3.4 Fairest 22-Direction Field

For certain applications, it is useful to optimize for a 22-direction
field instead of a 4-direction field. The method proposed in [Iarussi
et al. 2015] extends [Bommes et al. 2009] by adding an additional
angle that represents the skewness of the field, i.e. how far it is from
a 4-direction field. The formulation of the two papers is similar, and
it gives full control over the topology, in addition to supporting hard
and soft constraints, both on the directional alignment and on the
skewness. Methods for the synthesis of 22-vector fields, discussed
in the following section, could be used as well, by simply ignoring
the magnitude of the resulting field.

11.3.5 Fairest 22-Vector Field

[Diamanti et al. 2014] supports the design of 22-vector fields, and
various field properties (direction, scale and skewness) can be con-
trolled with soft or hard constraints. However, each constraint must
fix all the properties, i.e. it is not possible to fix only the scale and
not the skewness in a certain point. Topological constraints cannot
be taken into account, due to the implicit topology representation.
This is possible with methods which represent scale and skewness
separately from an angle-basedN -direction field with explicit period
jumps [Panozzo et al. 2014; Jiang et al. 2015]. The method described
by [Ebke et al. 2014] is based on the same principle, but scale and
skewness are optimized for a specific goal (scale-awareness) and not
intended to be controlled or constrained by the user.

11.3.6 Fairest General Directional Field

A first representation and optimization method that supports gen-
eral directional fields (without any symmetries) has recently been
introduced [Diamanti et al. 2014]. Direction and magnitude can be
controlled in sparse and dense, hard and soft manners. Topological
control is not possible.

11.4 Comparative Analysis

In this subsection, we experimentally compare field design algo-
rithms with respect to scalability, quality of the results and singular-
ity placement to provide additional insights on the similarities and
differences between the algorithms.

Constrained 4-Direction Fields In Figure 6, we compare differ-
ent methods for designing a 4-direction field on a planar strip. The
leftmost and rightmost triangles are fixed, and the interior part is de-
signed by the algorithms. For fair comparison, we use a face-based
variant of [Knöppel et al. 2013], and employ hard vector constraints
on a sparse set of faces, in a way equivalent to using [Diamanti
et al. 2014] in the subspace of N -RoSy fields. Note that (a) is thus
identical to (b) in this specific case, up to a normalization of the vec-
tors. It is interesting to note the different behavior between complex
representations (a), (b) and angle representations (c),(d): the latter
naturally interpolates the rotation in the constraints, while the former
mix scale changes in the interpolation. Interestingly, the scale in (b)
rapidly drops in the middle: this is an undesirable feature in many
applications which can be ameliorated by adding additional con-
straints (Figure 8). The normalization in (a) partially conceals the



(a) [Knöppel et al.

2013]

(b) [Diamanti et al.

2014]

(c) [Bommes et al.

2009]

(d) [Jakob et al.

2015]

Figure 6: Interpolation of a 4-direction field on a planar triangle
strip, with the leftmost and rightmost faces constrained.

(a) [Diamanti et al.

2014]

(b) [Diamanti et al.

2015]

(c) [Panozzo et al.

2014]

Figure 7: Interpolation of a 22-vector field on a planar triangle
strip, with the available methods that support this field type. The left-
most and rightmost faces are constrained. The vectors are colored
according to their magnitude, to illustrate differences in scale.

Figure 8: 22-vector fields synthesized with [Diamanti et al. 2014]:
the red crosses are the constraints. If the constraints are very sparse
(left), we observe a reduction in scale caused by the fairness objec-
tive. While this is not a major practical problem (this phenomenon
disappears with just a few more constraints), it would be preferable
to have a fairness objective that preserves scale. Image courtesy of
[Diamanti et al. 2014].

problem, but produces highly unfair fields, with triangle to triangle
differences of up to 45 degrees.

Constrained 22-Vector Fields We perform the same experiment
for 22-Vector fields (Figure 7) and obtain a similar behavior: the
angle based representation (c) favors interpolating a rotation, while

(a) [Bommes et al.

2009]

48 singularities

(b) [Jakob et al.

2015]

42 singularities

(c) [Knöppel et al.

2013]

62 singularities

(d) [Diamanti et al.

2015]

56 singularities

Figure 9: Singularities of a 4-direction field. The fields have been
constrained on the same 14 faces (uniformly sampled) for all meth-
ods, where the direction is constrained to be the projection of an
horizontal vector.

Figure 10: The global optimality of [Knöppel et al. 2013] (with
implicit topology) ensures that symmetric singularity placement is
obtained on a symmetric shape, while approaches like[Bommes et al.
2009] (with explicit topology representation based on period jumps)
might fail to find the optimal solution due to the involved discrete
optimization. Image courtesy of [Knöppel et al. 2013].

complex based representations (a), (b) favor the interpolation of
skewness and scale.

Singularities The distribution and number of singularities of a
directional field is one of the main criteria for evaluating its quality
for many applications. We experimented with different methods (an
example for 4-direction fields is shown in Figure 9) and observed that
angle based approaches (a), (b) tend to introduce less singularities
than complex-number representations (c), (d). However, the greedy
solution strategies that are used for angle based representations can
get stuck in local minima, while the convex formulation of [Knöppel
et al. 2013] guarantees that the optimal solution (with respect to
a specific fairness objective) can be found. This is particularly
noticeable in symmetric shapes (Figure 10), where the non-optimal
solutions might have non symmetric singularity placement.

Integrability When a direction field is used to create a field-
aligned parametrization, its integrability, i.e. how far it is from
being a gradient of a set of scalar functions, plays an important role.
While specialized methods can produce integrable fields [Diamanti
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Figure 11: Integration error for the fields shown in Fig. 9: the color
shows how much the field deviates from being the gradient of a
scalar field. We omitted [Diamanti et al. 2015] from this comparison
since it directly optimizes for integrability.

et al. 2015], they require an expensive optimization. In the litera-
ture, many other methods have been used to design fields to guide
parametrizations, and we compare a few in Figure 11, where we
plot and measure the Poisson error obtained when using the fields
as target gradients. This error is measured as the average L2-norm
between the field and the gradient of the scalar function retrieved
after integration.

The complex representation (a), (b) tends to produce results that
are more integrable than angle based. In particular, measuring the
smoothness using the complex representation and then avoiding nor-
malization (b), consistently produces results that are more integrable:
this suggest that the fairness measure in the complex representation
indirectly favors integrability but this property is partially lost in the
normalization. For a more extensive comparison of the two repre-
sentations for the purpose of isotropic quadrangulation, we refer to
the experimental section of [Jakob et al. 2015].

Scalability We compare the efficiency of different field design
algorithms in a controlled experiment (Figure 12), where all algo-
rithms are executed on three series of meshes obtained decimating
three high-resolution meshes.

The multi-resolution hierarchy, combined with the embarrassingly
parallel nature of the optimization, makes the algorithm proposed in
[Jakob et al. 2015] noticeably faster than the others, both in absolute
running time and in term of asymptotic running time. Interestingly,
all other algorithms have similar asymptotic behavior, suggesting
that for these field design problems the performance advantage of
methods that requires to solve a linear system [Ray et al. 2006; Crane
et al. 2010; Knöppel et al. 2013; Diamanti et al. 2014] compared
with the ones that require a mixed-integer solver [Bommes et al.
2009; Jakob et al. 2015] is only a constant multiplicative factor
that does not depend on the resolution of the dataset. [Diamanti
et al. 2015] is considerably slower than all other methods due to the
non-linear optimization used to enforce integrability.

12 Open Questions

We have presented the state-of-the-art in directional field synthesis,
design, and processing. In this section, we discuss possible general-
izations of existing methods, and interesting unsolved problems.

Topology Control Currently, there is no representation that in-
corporates the advantages of the Cartesian representation methods
(namely, representation of non-unit vector fields, and having convex
and continuous objective functions), while providing direct control
over the field topology. This problem is exacerbated by the fact
that methods that advocate fairness optimization as a tool for au-
tomatic singularity placement, empirically tend to introduce many
low-degree singularities, possibly because of the sampling problem
discussed in Section 6.3. Mixed-integer angle-based methods are
highly non-linear, and linear angle-based methods require the man-
ual prescription of singularities. This prescription requires some
expertise, and is not directly associated with the fairness of the vec-
tor field. Hence, there is a demand for a representation which is both
general enough to include non-unit vector fields, is equipped with
an efficient fairness objective, and that allows for more control over
the topology.

A promising direction is the exploration of fairness objectives which
are not as-parallel-as-possible, but involve some notion of influence
on singularities. The conformal energy in [Knöppel et al. 2013], as
well as objectives with alternative notions of parallelism [Ray et al.
2009; Ebke et al. 2014] show this effect to some extent.

Sampling and Convergence Period jumps, principal matching,
and discrete definitions of singularities all bridge the gap between
the discrete and the continuous. However, we have gathered the
inconsistencies that arise from these sampling methods. What is
lacking is a consistent sampling theorem for 1N -directional fields
on discrete meshes that would answer the classical question from
discrete signal processing: given a continuous field, what is a proper
sampling, in the sense that it allows for a full reconstruction of the
original field? Evidently, the answer to these question is correlated
with general sampling problems on discrete meshes. The insights
on sampling we presented in Section 6.3 could be a background
to set some ground rules for a future theory on field sampling and
reconstruction.
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Figure 12: Different field design methods on three series of meshes
with increasing resolution. Top: log-log plot of the running times,
middle: mumber of singularities



Geometry of Directional Fields There is a multitude of open
questions related to the discretization of various differential oper-
ators on directional fields. First, there are operators, which map
from vector fields to vector fields, that still do not have a satisfactory
discretization on surfaces. One example is the Lie bracket of two
vector fields, which measures the commutativity of the flow of the
vector fields, and is important for parametrization. Discretizations
for the Lie bracket were suggested in [Azencot et al. 2013; de Goes
et al. 2014; Azencot et al. 2015]. However, the first and last compute
an operator on functions, while the second requires the solution of a
sparse linear system, and therefore yields a non-local operator. A
systematic study of the geometric structure of N -vector fields in its
different forms (described in Section 2), and the properties of opera-
tors acting on them, is still missing. The recent preprint of Knöppel
and Pinkall [Knöppel and Pinkall 2015] provides a classification of
discrete complex line bundles over simplicial complexes.

Suitability for Parametrization and Meshing The application
area that perhaps benefited the most from recent advances in direc-
tional field synthesis is field-guided parametrization; in particular,
for purposes of quadrilateral mesh or layout generation. In this
context, not only the directional information of the field is exploited:
its topology, i.e. its singularities and holonomy, is used to define a
suitable parametrization domain, and to decide over number, type,
and position of irregular vertices in high quality semi-regular quad
meshes. It is commonly assumed that the topology of an arbitrarily
synthesized directional field is suitable for that purpose. However,
the topological structure of a seamless parametrization or a quad
mesh is slightly more restricted. For instance, not every singularity
configuration is valid in this context [Jucovič and Trenkler 1973;
Izmestiev et al. 2012], and global holonomy can likewise be an issue
[Kälberer et al. 2007; Myles et al. 2014]. Precise conditions still
need to be discerned in detail, before specialized synthesis methods
can be developed. For the time being, only post-processing adjust-
ments can be made to remedy problematic situations, for instance,
by introducing additional singularities [Myles et al. 2014].

3D Generalization The generalization of the discussed con-
cepts to the three-dimensional setting, for instance based on tetrahe-
dral meshes, comes with a number of severe complications.

• The angle-based representation (cf. Section 5.1) that allows
for a field definition without ambiguities regarding rotational
periods, does not extend to 3D. A similar problem arises for
the angle-valued period jumps. This precludes any form of
precise topological control in 3D directional field synthesis;
best-effort approaches are available [Weinkauf et al. 2004], but
guarantees cannot be given.

• Directions in 2D can be parameterized by an angle, and vec-
tors by Cartesian coordinates or complex numbers. Repre-
sentations for 3D orientations, such as matrices, quaternions
[Kowalski et al. 2014], tensors [Paris et al. 2008], or spherical
harmonics coefficients [Huang et al. 2011], require additional
constraints (orthogonal and unit determinant, unit length, or
rotation-equivalent, respectively). Such constraints lead to
more complicated and less efficient (non-linear or non-convex)
optimization procedures, e.g. interleaving steps for objective
reduction and re-projection onto the constraint manifold.

• There are some pathological cases of field topologies which do
not lead to valid parametrizations and quad mesh generation.
When moving from 2D to 3D this small gap turns into a very
large gap: in fact, only a small subset of possible 3D directional
field topologies is suitable for these purposes, as discussed in
[Nieser et al. 2011] and tackled partially in [Li et al. 2012;
Jiang et al. 2014]. Reliable solutions are yet to be found.

13 Available Implementations

There are freely available implementations for a number of the
synthesis and visualization methods discussed in this course. We
have collected them, and list them in the following table. The name
of each paper is a hyperlink to the webpage containing the respective
source code.

1-Vector Fields

As-Killing-As-Possible Vector Fields for Planar Deformation [Solomon et al. 2011a]

Design of 2D Time-Varying Vector Fields [Chen et al. 2012]

An Operator Approach to Tangent Vector Field Processing [Azencot et al. 2013]

N -Directional Fields

Rotational Symmetry Field Design on Surfaces [Palacios and Zhang 2007]

Mixed-Integer Quadrangulation (+Solver) [Bommes et al. 2009]

Interactive Visualization of Rotational Symmetry Fields on Surfaces [Palacios and Zhang 2011]

Trivial Connections on Discrete Surfaces [Crane et al. 2010]

Globally Optimal Direction Fields [Knöppel et al. 2013]

Instant Field-Aligned Meshes [Jakob et al. 2015]

2
2-Directional Fields

Frame Fields: Anisotropic and Non-Orthogonal Cross Fields [Panozzo et al. 2014]

Regularized Curvature Fields from Rough Concept Sketches [Iarussi et al. 2015]

1
N -Vector Fields

Designing N -PolyVector Fields with Complex Polynomials [Diamanti et al. 2014]

Integrable PolyVector Fields [Diamanti et al. 2015]
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AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Transactions on Graphics 22, 3.

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing cu-
bature for efficient integration of subspace deformations. ACM
Transactions on Graphics 27, 5, 1–10.

ARNOLD, D. N., FALK, R. S., AND WINTHER, R. 2006. Finite ele-
ment exterior calculus, homological techniques, and applications.
Acta numerica 15, 1.

AZENCOT, O., BEN-CHEN, M., CHAZAL, F., AND OVSJANIKOV,
M. 2013. An operator approach to tangent vector field processing.
Computer Graphics Forum 32, 5.

AZENCOT, O., WEISSMANN, S., OVSJANIKOV, M., WARDETZKY,
M., AND BEN-CHEN, M. 2014. Functional fluids on surfaces.
Computer Graphics Forum 33, 5.

AZENCOT, O., OVSJANIKOV, M., CHAZAL, F., AND BEN-CHEN,
M. 2015. Discrete derivatives of vector fields on surfaces – an
operator approach. ACM Transactions on Graphics 34, 3 (May).

http://www.cs.technion.ac.il/~cggc/Upload/Projects/KVFDeformation/index.html
http://www.sci.utah.edu/~chengu/timeVarying_vfd.htm
http://mirela.net.technion.ac.il/publications/
http://web.engr.oregonstate.edu/~palacijo/rosy_project.html
http://libigl.github.io/libigl/tutorial/tutorial.html#nrotationallysymmetrictangetfields
https://www.graphics.rwth-aachen.de/software/comiso
http://web.engr.oregonstate.edu/~palacijo/rosy_project.html
http://www.cs.columbia.edu/~keenan/index.html#code
http://www.cs.columbia.edu/~keenan/index.html#code
http://igl.ethz.ch/projects/instant-meshes/
http://libigl.github.io/libigl/tutorial/tutorial.html#anisotropicremeshingusingframefields
http://www-sop.inria.fr/reves/Basilic/2015/IBB15/supplemental_material/Code/codeReadme.html
http://libigl.github.io/libigl/tutorial/tutorial.html#npolyvectorfields
http://libigl.github.io/libigl/tutorial/tutorial.html#integrable
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connections on discrete surfaces. Computer Graphics Forum 29,
5.

CRANE, K., DE GOES, F., DESBRUN, M., AND SCHRÖDER, P.
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KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quadcover
- surface parameterization using branched coverings. Computer
Graphics Forum 26, 3.

KIM, T., AND JAMES, D. L. 2011. Physics-based character skinning
using multi-domain subspace deformations. In Symposium on
Computer Animation, 63–72.
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