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1. INTRODUCTION

We consider in this paper a nonlinear mathematical
pProgramming problem with natural perturbations
X n
min fo(x) , X & R

P(tu): s.t.

1A

£, (x)
£, (x)

tu, , 1¢12I
1

tu, , i3
1

P s . . Iud
where t = 0 , I,J are finite sets of indices and u ¢ R

is a fixed direction for the perturbations. We are looking
for the minimal assumptions to have the Lipschitz continuity
of any local optimal solution x(tu) of program P(tu)

near some optimal solution x* of program P(0).

The Lipschitz behaviour of the optimal solutions in
parametric optimization have been studied by many authors.
We cite the works of Aubin [1], Cornet-Vial [2] and Robinson
[6] where this property has been obtained under regularity
conditions related somehow with the Mangasarian-Fromovitz
regularity condition. This regularity conditions restricts
the program P(0) to be defined in the interior of the
domain of feasible perturbations; i.e., the perturbations v
where the programs P(v) have feasible solutions. Theorenm
4.3 in Gauvin-Janin [3] is a tentative to have this
Lipschitz property under more general regularity conditions.
Oour purpose in this paper is to give a more refined version

of that result. 2An example is given which shows that we may
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have obtained the most accurate statement for a Lipschitz
directional continuity property for the optimal solutions in
mathematical programming. Finally the result is used to
obtain a nice and simple formula for the directional
derivative of the optimal value function of the mathematical
programming problem. This last result comes to complete and
to refine Theorem 3.6 in Gauvin-Tolle [4] where this formula
was obtained with the assumption, among others, that a
Lipschitz continuity property was satisfied for the optimal

solutions.

It should be noticed that program P(tu) as formulated
contains the case where the feasible solutions are
restrained to remain in some convex polyhedron because such
set can always be defined by linear inequalities or
equalities which can be included in the above formulation.
Also a mathematical program with general nonlinear
perturbations can be translated to the formulation with
linear right-hand side perturbations only as it has been
once shown by R.T. Rockafellar (see the Introduction in

Gauvin-Janin ([3]).

2. ASSUMPTIONS AND PRELIMINARIES

For an optimal solution x* of P(0), we denote by

Q(x*) the set of Lagrange multipliers; i.e., the

Iud
R

multipliers (AO,A) ;A€ , such that
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A VE (x*) + *) =
o VEo(XT) * 4 Fg 2y VE(X) =0

by A, 20 , 1 eI

o' “i
A, £.(x*) =0 i .
i l( ) ’ e I

The corresponding set of Kuhn-Tucker multipliers is denoted

by

Ql(x*) = { x ¢ RIUJI (1,2) e a(x*) }
with its recession cone

B,(x*) = (X e R™I| (0,a) ¢ axt) 3.

The first assumption is a very general regularity

condition.

le The set ﬂl(x*) is nonempty.

The second assumption is a condition on the choice of

the direction of perturbations.
HZ: The direction u satisfies

T
ATu >0, V¥V A oo(x*) , A = 0.

This assumption implies that the family ({ Vfi(x*) | i ¢ 3}
related with the equality constraints is linearly

independent (see (3) of Remark 3.1 in Gauvin-Janin [3]).

Both assumptions implies that the set ﬂl(x*,u) of

optimal solutions for the linear program
T
max { =x"u | A ¢ nl(x*) }

is nonempty and bounded even if Ql(x*) is unbounded (see
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(4) of Remark 3.1 in Gauvin-Janin [3]). By duality, this

implies that the linear program LP(x*,u):

n
nin vfo(x*)y + Y e R

subject to
vfi(x*)y =u, ., ie I(x*) = { i¢ I | fi(x*) =0 }
Vfi(x*)y =u, ., ied

is feasible and bounded. We denote by Y(x*,u) the set of

optimal solutions for that program, by

I(x*,u) = { L ¢ I(x*) | 3y ¢ Y(x*,u) such that
VE (X*)y = ui }
the set of indices corresponding to possible binding

inequality constraints for some optimal solution and by
I*(x*,u) = { L ¢ I(x*,u) | sup ¢ Ay I x e nl(x*,u) } > 0}

the subset of indices corresponding to nonnul optimal

multipliers. Finally we denote by
E={Y ¢ rR" | Vfi(x*)y =0, ie I(x*,u)y uJ)}

the tangent subspace at x* to the inequality constraints
related with this last set of indices together with the

equality constraints.

If we let VZL(x,A) be the Hessian of the Lagrangian

L(x,x) = £_(x) £.0x),

+ A,
ie§UJ 1

the third and last assumption is a weak second-order

sufficient optimality condition related with the above

tangent subspace.
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H3: For any y ¢ E, y = 0, there exists i* ¢ Ol(x*,u)

such that
2
yT VI L(x*,A*)y > 0.

This condition is weak in the sense that it does not need to

hold for all i* ¢ nl (x*,u) or all 1 ¢ nl(x*).

By arguments similar of those in Theorem 2.2 in
Gauvin-Janin [3], assumption H3 implies that x* is a

strict local optimum for the enlarged program

n
min fo(x) , X ¢ R
s.t.
fi(x) <=0, i¢ I*(x*,u)
£,00 =0, icd.

Since x* 1is assumed to be an optimum of the original
program P(0), we must have that x* 1is also a strict
optimum of P(0). Therefore we have a neighborhood X(x¥*)
of x* where fo(x*) < fo(x) for any feasible point x

of P(0).
By a local optimal solution of P(tu) near x* we mean
any optimal solution x(tu) of the restricted program
P(tu|x*) : min { fo(x) | x ¢ R(tu)nX(x*) )

where R(tu) is the set of feasible solutions of P(tu).
Under assumptions Hl and HZ' the proof of Theorem 3.2 in
Gauvin-Janin [3] shows that it is possible to construct a

feasible are x(t) ¢« R(tu), t ¢ [O,to[, for some tO > 0,
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such that %P& x(t) = x*., Since fo(x(tu)) =< fo(x(t)), we

have, for any cluster point x** of x(tu) as tiO,
** i < lim £ t)) = £ _(x*).
£,(x**) = lip sup £ (x(tw)) =< im £ (x(t)) o (X7)

But since x* is the unique optimum for the restricted
program P(0|x*), we must necessarily have x** = x* and
consequently
‘1_:%% x(tu) = x*.
It should be noticed from above that the assumptions H1
and H2 implies that the program P(tu), t ¢« [O, to[, is
feasible even if v = 0 is at the boundary of the domain of

feasible perturbations

dom R= (v | R(v) = ¢ }.

In that case the condition on the direction u in H2
implies that wuw must be pointing toward the interior of

dom R. Example (3.1) in Gauvin-Janin [3] illustrates that

situation.

3. LIPSCHITZ DIRECTIONAL CONTINUITY FOR THE OPTIMAL
SOLUTIONS

The next result on the Lipschitz directional continuity
for the optimal solution is a generalization and a

refinement of Theorem 4.3 in Gauvin-Janin [3].

Theorem 1

Let x* be an optimal solution of program P(0) with
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assumptions Hl' HZ and H3 satisfied. Then, for any

local optimal solution x(tu) of P(tu) near x*, we have
i —-x* < + o,
llgtgup | x(tu) -x*| /t
Proof.

As previously noticed, assumption H3 implies the
existence of a neighborhood X(x*) where x* is the unique
optimum of the restricted program P(0|x*): and by

assumption H1 and Hz, we also have

%}3 x(tu) = x*

for any optimal solution x(tu) of the restricted program
P(tu|x*) which is then feasible for some nontrivial

interval [O,to[.

Now let suppose the conclusicn is false and let take any

sequence (tn), tnlo, such that
i t —-x* = 4+ «
%&g | x( nu) X |/tn .
3 t - - =
lim (x(t w)-x*)/|x(t u)-x*| =y
for some cluster point y of the bounded set
{ (x(tu)=x*)/|x(tu) -x*|}.

From Lemma 3.1 and Theorem 3.2 in Gauvin-Janin [3], we
have, for n 1large enough, for some § and for any

A e nl(x*,u),
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-tn ATu + % (x(tnu)—x*)T VZL(X*,A)(X(tnu)—X*)
+ ]x(tnu)—x*|2 ax(x(tnu)
< fo(x(tnu)) - fo(x*)
< -tn ATu + 5 ti (1)
where %}g* ak(x) = 0. We also have

< tn ui , 1 e I*(x*,u)
- *
fi(x(tnu)) fi(x )

t u, , 1 J.
n 1

n
Therefore we have, for some S and some si ¢ [0,1],

n
vfo(x(s0 tnu))(x(tnu)-x*) < ﬁtn |

IA
t
[
[
®
H
*
L)
X
*
=]

Vfo(x(sg £ u)) (x(t_u)=x*)

Since we have assumed that

. o =
lim tn / ]x(tnu) x* | o,

ho S d-]
we can divided all above inequalities and equalities by
[x(tnu)-x*l and take the limits to obtain

vfo(x*)y < 0

0, 1 e I*(x*,u)

IA

Vfi(X*)Y
=0, 1¢ J.

But it exists a 1 ¢ Ql(x*,u) with Ay > 0, i¢ I*(x*,u),

such that
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-v ¥ = *
fo(x ) ifK Ai Vfi(x )

where K = I*(x*,u)uJ. From above, we then have

0 =< -Vfo(x*)y = A Vfi(x*)y <0

icI*?x*,u) i
which implies that

vfi(x*)y =0, i¢ I*(x*,u);
therefore y ¢ E.

From H3, it exists A* ¢ nl(x*,u) and a« > 0 such
that
yT sz(x*,A*)y = 2a.
For n large enough, we can write

(x(tnu)—x*)T v2L(x*,2%) (x(t u)-x*) > a]x(tnu)-x*lz.

For n large enough we also have 0A(x(tnu)) = =-a/4 1in the
left~hand side of inequality (1). The two previous

inequalities put together in the left-hand side of (1)

reduce that inequality to
|x(t u)—x*lz/t2 < 46/a < +=
n n
which is in contradiction with what we have assumed at the
beginning.

The following example shows that Theorem 1 is perhaps

the most accurate statement for a Lipschitz directional
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continuity property for the optimal solutions in

mathematical programming.

Example 1
min f0 = -x2
s.t.
£ = —x2 + x_ =< tu
1 1 2 1
f = x2 + x_ =< tu
2 1 2 2
For t = 0, the optimum is x; = x; = 0 where I(x*) =
{1,2}. The multipliers are
a_(x*) = = A_+A, =
() ==z 0 | A, =1
vith in this case no(x*) = { 0 }; therefore assumption

H2 is satisfied for any direction u = (ul,uz). The set of

cptimal multipliers is

* 3 - =

Ql(x )y if u1 u2 (o}

a,(x*,u) =4 ((0,2)) if u-u, >0
{(1,0)) A1if ul--u2 < 0.

The linear program LP(x*,u) becomes

min -y,

s.t.
2%
Y =%

for which we have
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{1,2) if u_~u_ =0

I*(x*,u) = I(x*,u) = (2} if u_-u

o
N NN

(1} if u

A
o

-u

The corresponding tangent subspace is

E = { (¥,.Y,) | Yy, =0}.

Oon this subspace, the Hessian of the Lagrangian has value
T 2., 2
= - _A -
Y VL(x*, )y = -200,93,)y;

For the case where ul-u2 = 0, we have

A* = (0,1) ¢ nl(x*,u), therefore H3 is satisfied with
yT VzL(x*,A*)y = 2yi >0, Vyl = 0.
In that case, the optimal solution of P(tu) is
x(tu) = { (O,tuz) }
for which the Lipschitz continuity holds.

For the case where u,-u, < 0, we only have i* = (1,0)
in ﬂl(x*,u); therefore H3 is not satisfied since
T 2 2
Yy V L{(x*,A*)y = -2y1 <0, Vyl = 0.
The optimal solutions of P(tu) are in that case

x(tu) = ( (£l (E(u,mu )72, t(u +u)/2) )

and the Lipschitz continuity does not hold.
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4. DIRECTIONAL DERIVATIVE FOR THE OPTIMAL VALUE FUNCTION

We now consider the optimal value function of program

P(tu):
p(tu) = inf { fo(x) | x ¢ R(tu) }

vhere, as previously, R(tu) 1is the set of feasible
solutions. We need also to consider the local optimal value

function for the restricted program P(tu]lx*):
p(tu|x*) = inf { fo(x) | x ¢ R{tu)nX(x*) }

where X(x*) 1is some neighborhood of an optimal solution

x* of P(0).

The next result is a more refined and a more accurate

statement for the result of Theorem 3.6 in Gauvin-Tolle [4].

Theorem 2

Let x* and x(tu) be optimal solutions respectively

of program P(0) and P(tu) with the assumptions -

(1) Ol(x*) = ¢ and u satisfied

T
,\u>o,vxeoo(x*) , A = 0O
i -
(2) llg‘gup | x(tu)-x*|/t < +w.
Then the optimal value function has a directional derivative
given by
t(0; = 1i tu)-p(0))/t = ma { —ATu }
p'(0ju) = lim (p(tu)-p Aaolfx*)

Proof.
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When +t is small enough, we have
| 2 (tu) -x*| /¢t =< k.

for some k. For any X ¢ nl(x*), we have

p(tu)-p(0) fo(x(tw)) - fo(x*)

L(x(tu),r) = L(x*,x) - tATu

v

-tATu + VL(X*, 1) (x(tu) -x*)

+

% (x(tu)-x*)Tv2L<xu(t),x)(x(tu)—x*)

for some xu(t) g [x*,x(tu)]. Since VL(x*,x) = 0 and

lip Ix(tw)y=x*|/Jt = Lim ([x(tu)-x*|/t) ([t)

A

k linm &) = o,
wWe necessarily have
T
li¥¢$nf (p(tu)-p(0))/t = Azga?x*) { =2x"u ).
1

This maximum is attained under assumption (1) as previously

noticed.

On the other hand, we have, by Theorem 3.2 in Gollan [5]

or Theorem 3.2 in Gauvin-Janin [3],
1i t 0 t < ma { -ATu)
1g‘gup(p( u)-~-p(0))/t = Aznlfx*) .

The result follows from both inequalities. 5

To complete finally the result of Theorem 3.6 in Gauvin-
Tolle [4], we can state the following theorem. The family
R(tu), t ¢ [o,to[, is said to be uniformly compact if the

closure of R(tu) is compact (see also the

te[8,to[



319

inf-boundedness condition in Rockafellar [7]). Let
5(0) be the set of optimal solution for P(0).

Theorem 3

let S(0) be nonempty and R(tu) be uniformly compact
on the nontrivial interval [O,to[. If, for any optimum
% ¢ $(0), the assumptions Hl'HZ and H3 are satisfied,
then the directional derivative of the optimal value

function exists and is given by

: . T
p'(0;u) = 1lim (p(tu)-p(0))/t = x*?é?O) Aegi?x*) { =x u }.
Proof.

Because R(tu) is uniformly compact and S(0)
nonempty, p(tu) is lower semi-continuous at t = 0+ (see

lemma 2.1 in Gauvin-Tolle ([4]). By H each x* ¢ S(0) is

57
a strict optimum of P(0); therefore it exists a

neighborhood X(x*) where x* is the unique optimum of the
restricted program P(0|x*). By finite covering, the number
of optimum points in S(0) must then be finite. By Hl
and Hz, as previously noticed, the restricted programs
P(tu|x*) are all feasible for t « [O,to[, for some ‘t:0 > 0.
Therefore the local optimal value function are also upper

semi-continuous at t = 0+; therefore continuous at t = 0*+.

for t in some nontrivial interval, we then have
t = i t *y.
p(tu) = _,min,. Bl u| x*)

For each x* ¢ S(0), we have by Theorem 1 that any

optimal solution x(tu) of the restricted program P(tu]|x*)
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is Lipschitz continuous at t = 0+. We then applied Theoren

2 for each local optimal value function p(tulx*) to obtain

finally

p'(0;:u) %}3 (p(tu)-p(0))/t

= x*?%?O) lim (p(tu|x*)-p(0|x*))/t
" Bif) PO

; _.T
" x*e800) Al (x%) =)

When the program P(0) 1is convex, the set ﬂl(x*) is

identical for all x*:S(0):; therefore the above formula
reduces to

T
1 H = - 1
P0F) = ominyy (Xu)

which is the classical result of convex programming under
the Slater regularity condition ( ﬂl(x*) nonempty and

bounded or equivalently Oo(x*) = {0} ).

In the case where the Lipschitz property does not hold
for the optimal solution, we can still have a result on the
directional derivative for the optimal value function if the
optimal solutions satisfy the Holderian continuity; i.e.,
for any local optimal solution x(tu) of P(tu) near x*

ligssup x(tu)-x*| / [t < +o

(see Corollary 4.1 in Gauvin-Janin [3]). 1In that case, the
formula for the directional derivative for the local optimal

value function is given by
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. T
p'(0|x*;u) = inf,, Aeni?g*:y) { =2x7u ) (2)

vhere
D(x*) = (y | vfi(x*)y < 0, 1eI(x*)u{0); VF ix*)y =0, 1 ¢ J)
is the set of critical directions at x* and where
x o = * T 2 *
a (x*:y) = {2 &0 (x*) | vy VLx*A)y=z0)

is the subset of multipliers satisfying the second-order
necessary optimality condition for that critical direction
y.

This nice formula is not so simple and sometime may be
quite difficult to evaluate! Nevertheless the formula can
be useful as illustrated by Example 1 where we have noticed

that for direction wu, with ul-u2 < 0, the optimal

solutions

x(tu) = { (ift(uz—ul)/z , t(u +u)/2 )

are not Lipschitzian but are Holderian. For that example,

the optimal value Afunction
= -t(u_+
p(tu) (u +u,)/2

has a directional derivative with value

p'(0;u) = -(u1+u2)/2.

Since ul-uz < 0, the value given by the formula of Theorem 2

is
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T
Acg:¥x*) { =2 u} = max_ { —Al(uL-uz)-u2 }

which disagree with the real value since Theorem 2 does not
apply for that case. If we refer to the above valid

formula (2), we have the set of critical directions at

x*¥ = 0 given by

2
D(x*) =(yeR [y,=0)

for which we have

T

2 2
* = - - > 0
Yy Vv L(x* )y 2(A 72y, =
if and only if Al =< Az. Therefore
Q_ (x*:y) = { (A_,A) Jx+x_ =1, 0 =2 s})
1 1’72 172 12

and, since ul—u2 < 0, the formula gives the value

T
- u} = Tag { -Al(ul-uZ) u2 }

Asﬂ??§*:y){

which is in agreement with the real value for the

directional derivative.

Assumption H3 can be equivalently formulated by

T 2
H_: *
5 Aeﬂi?g*,u) Yy VL(X*,)\)y >0,V yeE, y = 0.
This assumption needed for the Lipschitzian property in

Theorem 1 is contained in the following less restrictive
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condition used to obtain the Holderian property in Theorem

4.1 in Gauvin~Janin [3]

H : yTVZL(x*,,\)y >0, V yeD(x*), y = 0.

4 ,\cS,i?x*)
We can put together Theorem 3 above and Corollary 4.1 in
gauvin-Janin [3] to obtain the following nice and clear
result for the existence and value for the directional
derivative of the optimal value function in mathematical
programming. This last theorem is related with a similar

result in Rockafellar (7].
Theorem 4

Let S(0) be nonempty and R(tu) be uniformly compact
in some nontrivial interval ([O0,t[- At any optimum
x* ¢ S(0), we assume that H, and H, are satisfied with
at least one of the following weak second-order sufficient

optimality conditions:

T 2
H_: * v o,
3 A:ﬂi?g*,u) y vV L(x JA) Yy >0, Yy « E, ¥+

. T 2
H4. ,\zsl::?x*) y vV L(x*,A) Yy >0, Vy« D(x*), vy = O.

Then the directional derivative p'(0;u) = %%18 (p(tu)-p(0))/t

of the optimal value function exists and is given by
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1 T
A By (20

if H3 is satisfied
'(0; = :

PO = mifgy | T
yeBix*) A:ni?g*:y) (=2 u)

So far; we don't know any example where the optimal

if not and if H4 is satisfied

value function has directional derivative without at least

one of the condition H3 or H4 satisfied.
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