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1 Introduction

In economics, we are frequently interested in how solutions to a constrained optimization

problem change when the economic environment changes. In many cases, the question

of interest can be stated in terms of “monotone” comparative statics: if a parameter of

the constrained optimization problem increases, when does its solution increase as well.

Both the constraint set and the objective function may include parameters. For example,

let X be a set, f : X → R, and A,B be subsets of X ordered by some relation, A ⊑ B.

When is it true that A ⊑ B ⇒ argmaxA f ⊑ argmaxB f? Intuitively, when is argmaxA f

increasing in A? Or, more generally, f : X × T → R, where T is a partially ordered set.

When is it true that A ⊑ B and t � t′ ⇒ argmaxA f(·, t) ⊑ argmaxB f(·, t′)? Intuitively,

when is argmaxA f(·, t) increasing in (A, t)?

Milgrom and Shannon (1994) show that when X is a lattice1 and ⊑ is the standard

lattice set order, denoted ⊑lso, argmaxA f(·, t) is increasing in (A, t) in the standard

lattice set order, if, and only if, for every t ∈ T , f(·, t) is quasisupermodular on X and f

satisfies single crossing property on X × T .2 There are several appealing features of such

lattice-theoretic monotone comparative statics results. For example, the sets X and A are

not required to be convex and can be finite, the objective function f is not required to be

differentiable or continuous, and the results apply even when there are multiple solutions

to the optimization problem. Moreover, the notion of quasisupermodularity has a nice

economic intuition in terms of complementarities: when X is a product space, when one

component variable increases, the “marginal” benefit of another component variable goes

up. Some of this standard theory is developed in Topkis (1978), Topkis (1979), LiCalzi and

1Recall that a lattice is a partially ordered set in which every two points have a supremum and an

infimum. For example, RN is a lattice, with the standard product partial order.
2Recall: A ⊑lso B, if for every a ∈ A, b ∈ B, a ∧ b ∈ A and a ∨ b ∈ B. Moreover, f : X → R is

quasisupermodular, if for every a, b ∈ X , f(a) ≥ (>) f(a∧ b) =⇒ f(a∨ b) ≥ (>) f(b), and f : X×T → R

satisfies single-crossing property on X × T , if for every a, b ∈ X with a � b and for every t, t′ ∈ T with

t′ � t, f(a, t) ≥ (>) f(b, t) ⇒ f(a, t′) ≥ (>) f(b, t′).
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Veinott (1992), Veinott (1992), and Milgrom and Roberts (1994). These ideas have had

many applications in developing the theory of supermodular games, submodular games,

aggregative games, and comparing equilibria.3

A limitation of these results is that they do not apply to some basic economic problems

in which constraint sets are not ordered in the standard lattice set order. Consider, for

example, the standard budget set in consumer theory: B(p, w) =
{

x ∈ R
N
+ | p · x ≤ w

}

,

where p ∈ R
N , p ≫ 0 is a price system, and wealth is w > 0. As is well-known,

for w < w′, B(p, w) 6⊑lso B(p, w′), and therefore, the standard lattice-based monotone

comparative statics results cannot be applied directly to the theory of demand.

Quah (2007) develops monotone comparative statics results to include such problems.4

He considers f : X → R, where X is a convex sublattice of RN , and i ∈ {1, . . . , N} is a

direction in R
N . His techniques include new binary relations, denoted ∆λ

i ,∇
λ
i , a new set

order, termed Ci-flexible set order, and a new notion of Ci-quasisupermodular function.5

In particular, if w < w′, then B(p, w) is lower than B(p, w′) in the Ci-flexible set order. A

main result is: argmaxA f is increasing in A in the Ci-flexible set order, if, and only if, f is

Ci-quasisupermodular. Moreover, a sufficient condition for f to be Ci-quasisupermodular

is that f is supermodular and i-concave.6

Quah (2007) uses some assumptions that are less typical in the standard theory of

monotone comparative statics. The domain, X , of the objective function is assumed to

be convex. This rules out discrete spaces; in particular, finite games and cases where

3Some of this can be seen in Bulow, Geanakoplos, and Klemperer (1985), Vives (1990), Milgrom

and Roberts (1990), Milgrom and Roberts (1994), Zhou (1994), Amir (1996), Amir and Lambson (2000),

Echenique (2002), Echenique (2004), Zimper (2007), Roy and Sabarwal (2008), Roy and Sabarwal (2010),

Roy and Sabarwal (2012), Acemoglu and Jensen (2013), Acemoglu and Jensen (2015), Monaco and

Sabarwal (2015), and others.
4For additional development and generalizations, confer Quah and Strulovici (2009) and Quah and

Strulovici (2012).
5Formal definitions are presented in appendix A.
6Intuitively, i-concave requires concavity in every direction u, where u is a vector with ui = 0.
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consumption of some goods is more naturally modeled as discrete, for example, automo-

biles and homes. Moreover, the notion of Ci-quasisupermodular function uses the binary

relations ∆λ
i ,∇

λ
i and convexity of domain in important ways, and it is less transparent

than standard assumptions of quasisupermodularity and single-crossing property. Fur-

thermore, the binary relations ∆λ
i ,∇

λ
i have some counter-intuitive properties; they are

non-commutative, and their outcomes are not necessarily comparable in the underlying

order in R
N . Finally, the framework does not include parameterized objective functions,

which rules out cases involving the effect of actions of others on a given agent’s payoff, for

example, cases with public goods, externalities from other consumers or producers, and

strategic effects based on actions of other players.

This paper presents an extension of the theory of monotone comparative statics. The

basic framework is as follows. Consider a sublattice X of RN , T a partially ordered set, f :

X × T → R, and i ∈ {1, . . . , N}. A main result is: argmaxA f(·, t) is increasing in (A, t)

in the i-directional set order, if, and only if, for every t ∈ T , f(·, t) is i-quasisupermodular

and satisfies i-single crossing property on X, and f satisfies basic i-single crossing property

on X × T . These terms are defined more concretely in the next section, but intuitively,

increase in the i-directional set order formalizes the idea of increase in the i-th direction

in R
N . In this characterization, X is not required to be convex and there is no use of

the binary relations ∆λ
i ,∇

λ
i . The framework allows for parameter effects in the objective

function. The new properties i-quasisupermodular, i-single crossing, and basic i-single

crossing retain the same flavor as their counterparts in the standard theory of monotone

comparative statics. The i-directional set order is a reformulation of Ci-flexible set order to

align more closely with the spirit of monotone methods; on convex sublattices, it coincides

with Ci-flexible set order and this helps subsume results in Quah (2007).7

The main result is explored in several directions. It is extended to apply to all di-

7Notably, this strand of the literature does not address comparison of budget sets with respect to price

effects. That turns out to be a more complex problem. Antoniadu (2007) and Mirman and Ruble (2008)

present some results for that case.
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rections i, it is specialized to consider comparative statics with respect to A only or to

t only, and the ordinal nature of the properties allows for increasing transformations of

the objective function to also respect the same characterization. Sufficient conditions are

explored as well; in particular, Quah’s sufficient conditions of supermodular and i-concave

remain sufficient here. Furthermore, the characterization here has a natural formulation

in terms of cardinal assumptions – i-supermodular and i-increasing differences, and in

turn, this has a natural formulation in terms of differential conditions using directional

derivatives. Several examples highlight applications of these results.

The paper proceeds as follows. Section 2 formalizes the constrained optimization prob-

lem, the set orders, and properties on objective function. The main results on directional

monotone comparative statics are presented next. The main results are explored fur-

ther in subsections formalizing sufficient conditions and differential conditions. Section 3

presents several applications of the main result. Appendix A presents some connections

to Quah (2007) and appendix B includes details of some proofs.

2 Constrained Optimization

Recall that a lattice8 is a partially ordered set in which every two elements, a and b, have

a supremum in the set, denoted a ∨ b, and an infimum in the set, denoted a ∧ b. The

supremum and infimum operations are with respect to the partial order. In this paper, we

work with finite-dimensional Euclidean space, represented by R
N . This is a lattice in the

standard product order on R
N , denoted, as usual, by ≤,9 and in this order, for a, b ∈ R

N ,

a ∧ b = (min {a1, b1} , . . . ,min {aN , bN}) and a ∨ b = (max {a1, b1} , . . . ,max {aN , bN}). A

subset X of a lattice is a sublattice, if for every a and b in X , their supremum in the

overall lattice, a ∨ b, is in X , and their infimum in the overall lattice, a ∧ b, is in X .

Let X be a sublattice of RN , (T,�) be a partially ordered set, f : X × T → R, A

8This paper uses standard lattice terminology. See, for example, Topkis (1998).
9For a, b ∈ R

N , a ≤ b means that for every i = 1, . . . , N , ai ≤ bi.
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be a subset of X , and consider the constrained maximization problem maxA f(·, t). We

are interested in how argmaxA f(·, t) changes with (A, t). As the set of maximizers is not

necessarily a singleton, this involves a comparison of sets.

2.1 Set Orders

There are several set orders on subsets of a lattice (confer Topkis (1998)). Two of the

more common ones are as follows. Consider a sublattice X of RN , and subsets A and B

of X . A is lower than B in the standard lattice set order , denoted A ⊑lso B, if

for every a ∈ A, b ∈ B, it follows that a ∧ b ∈ A and a ∨ b ∈ B. A is lower than B in

the weak lattice set order , denoted A ⊑wlso B, if for every a ∈ A, there is b ∈ B such

that a ≤ b, and for every b ∈ B, there is a ∈ A such that a ≤ b.10 Moreover, another

set order is of interest when we are considering increases in a particular component of

vectors: for i ∈ {1, 2, . . . , N}, A is lower than B in the i-weak lattice set order ,

denoted A ⊑wlso
i B, if for every a ∈ A, there is b ∈ B such that ai ≤ bi, and for

every b ∈ B, there is a ∈ A such that ai ≤ bi. As is well-known and easy to check:

A ⊑lso B =⇒ A ⊑wlso B =⇒ A ⊑wlso
i B.

The standard results in monotone comparative statics typically use the standard lattice

set order, but that order cannot compare some of the constraint sets of interest here, and

therefore, to expand comparability of sets, we work with the following weakenings of the

standard lattice set order. Let X be a sublattice of RN , A and B be subsets of X , and

i ∈ {1, 2, . . . , N}. A is lower than B in the i-directional set order , denoted,

A ⊑dso
i B, if for every a ∈ A and b ∈ B with ai > bi, there is v = s(b − a ∧ b) for some

s ∈ [0, 1] such that a + v ∈ B and b− v ∈ A.11 In this definition, notice that the vector

10In all the set orders considered here, when convenient, we may say A is lower than B equivalently as

B is higher than A.
11The i-directional set order is a reformulation of the Ci-flexible set order in Quah (2007). The definition

here retains the spirit of monotone methods, does not require X to be convex, and there is no use of the

operators ∆λ

i
,∇λ

i
. Some comparisons to Quah (2007) are presented in appendix A.
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v satisfies v ≥ 0, and therefore, a ≤ a + v and b − v ≤ b. Moreover, when a ≥ b, this

condition is satisfied trivially, and therefore, a non-trivial application of this order is when

ai > bi and a 6≥ b. Figure 1 shows this idea graphically. For intuition, we can consider the

two-good discretized consumption space, and budget-type sets given by the green and the

purple lines. For these sets to be ranked in the 1-directional set order, for each a in the

lower set and b in the higher set with a1 > b1, there is v = s(b− a ∧ b) such that a+ v is

in the higher set and b− v is in the lower set. Similarly, say that A is lower than B in

!

"!

#!

"$%!

#&%!

! ! !! ! ! !!

Figure 1: i-Directional Set Order

the directional set order , denoted A ⊑dso B, if for every i ∈ {1, 2, . . . , N}, A is lower

than B in the i-directional set order.

Proposition 1. Let X be a sublattice of RN and A,B be non-empty subsets of X.

(1) A ⊑lso B =⇒ A ⊑dso
i B =⇒ A ⊑wlso

i B, for each i ∈ {1, 2, . . . , N}, and

(2) A ⊑lso B =⇒ A ⊑dso B =⇒ A ⊑wlso B.

Proof. The proof of (1) is similar to that of (2). To prove (2), suppose first that

A ⊑lso B. Fix i ∈ {1, 2, . . . , N}, a ∈ A, and b ∈ B with ai > bi. Let s = 1. Then

b− v = b− 1(b− a ∧ b) = a ∧ b ∈ A and a + v = a + 1(a ∨ b− a) = a ∨ b ∈ B. Thus, for

every i ∈ {1, 2, . . . , N}, A ⊑dso
i B, whence A ⊑dso B. Now suppose A ⊑dso B. Fix a ∈ A.

As B is non-empty, let b ∈ B. If a ≤ b, then we are done. Otherwise, there is i such that

ai > bi. In this case, there is v = s(b − a ∧ b) for some s ∈ [0, 1] such that a + v ∈ B.
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Moreover, v ≥ 0 implies a ≤ a+ v. The proof is similar for the other case: b ∈ B implies

there is a ∈ A such that a ≤ b.

As shown in this proposition, the i-directional set order is weaker than the standard

lattice set order and stronger than the i-weak lattice set order. Similarly, the directional

set order is weaker than the standard lattice set order and stronger than the weak lattice

set order. One benefit of the i-directional set order is that it can order budget sets for

different levels of wealth, whereas the standard lattice set order cannot.

Example 1-1 (Walrasian budget sets). Let X = R
N
+ , N ≥ 2, p ≫ 0, and w > 0. The

Walrasian budget set at (p, w) is given by B(p, w) =
{

x ∈ R
N
+ | p · x ≤ w

}

. We know that

in the standard lattice set order when w < w′, B(p, w) 6⊑lso B(p, w′), but these budget sets

are comparable in the directional set order: w < w′ =⇒ B(p, w) ⊑dso B(p, w′), as follows.

Fix i ∈ {1, 2, . . . , N}, a ∈ B(p, w) and b ∈ B(p, w′) with ai > bi. If p·(a∨b) ≤ w′, let s = 1,

and therefore, v = b−a∧b. In this case, b−v = a∧b ∈ B(p, w), and a+v = a∨b ∈ B(p, w′).

Moreover, if p · b ≤ w, let s = 0, and so, v = 0. In this case, b − v = b ∈ B(p, w), and

a + v = a ∈ B(p, w′). In the other cases, let s ∈
[

p·b−w

p·(b−a∧b)
, w′−p·a

p·(b−a∧b)

]

⊂ [0, 1], and

therefore, v = s(b− a∧ b). In this case, p · (b− v) ≤ w and p · (a+ v) ≤ w′. Consequently,

a+ v ∈ B(p, w′) and b− v ∈ B(p, w), as desired.

Example 1-2 (Two-good discretized Walrasian budget sets). In the two-good

case, the directional set order can be used to order budget sets with discrete consumption.

Consider two goods, each consumed in integer amounts. Let X = Z
2
+, p = (p1, p2) ≫ 0,

and w > 0. The (discretized) Walrasian budget set at (p, w) is given by B(p, w) =
{

x ∈ Z
2
+ | p · x ≤ w

}

. Consider w < w′ and suppose p1 divides w′ − w and p2 divides

w′ − w. In this case, w < w′ =⇒ B(p, w) ⊑dso B(p, w′), as follows. Fix i = 1.

Let a ∈ B(p, w) and b ∈ B(p, w′) with a1 > b1. As above, if p · (a ∨ b) ≤ w′, let

s = 1, and if p · b ≤ w, let s = 0. Notice that these cases include the case where

a ≥ b. So suppose a1 > b1 and a2 6≥ b2. Then b − a ∧ b = (0, b2 − a2) > 0, and

p · (b − a ∧ b) = p2(b2 − a2). Let s = w′−w
p·(b−a∧b)

= w′−w
p2(b2−a2)

and v = s(b − a ∧ b). Notice
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that b− v = (b1, b2 − s(b2 − a2) = (b1, b2 −
w′−w
p2

) ∈ Z
2
+, because p2 divides w′ − w. Thus

B(p, w) ⊑dso
1 B(p, w′). Similarly, B(p, w) ⊑dso

2 B(p, w′), whence B(p, w) ⊑dso B(p, w′).

When there are three or more discrete goods, the discretized Walrasian budget set is

not necessarily comparable in the directional set order. Consider X = Z
3
+, p = (1, 1, 1),

w = 1, w′ = 2, and B(p, w) = {x ∈ Z
3
+ | p · x ≤ 1} and B(p, w′) = {x ∈ Z

3
+ | p · x ≤ 2}.

Let i = 1, a = (1, 0, 0) ∈ B(p, w), and b = (0, 1, 1) ∈ B(p, w′). Then a1 > b1, and for

s ∈ [0, 1] consider v = s(b− a ∧ b). It is easy to check that for s = 0, b− v 6∈ B(p, w), for

s = 1, a+ v 6∈ B(p, w′), and for s ∈ (0, 1), b− v 6∈ Z
3
+. Thus, B(p, w) 6⊑dso

1 B(p, w′).

This does not imply that other sets in higher dimensions are not comparable in the

directional set order. For example, consider A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and

B = {(0, 2, 0), (1, 1, 0), (0, 1, 1), (1, 1, 1)}. In this case, A 6⊑lso B, because for a = (1, 0, 0)

and b = (0, 2, 0), a∨b = (1, 2, 0) 6∈ B. But it is easy to check that for i = 1, 2, 3, A ⊑dso
i B,

and therefore, A ⊑dso B.

Additional classes of sets comparable in the i-directional set order can be derived in a

manner analogous to Quah (2007). One such class is presented in appendix B.

2.2 Objective Function

Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}. The function f is

i-quasisupermodular on X , if for every a, b ∈ X with ai > bi, f(a) ≥ (>) f(a∧ b) =⇒

f(a∨b) ≥ (>) f(b). In this definition, notice that when a ≥ b, these conditions are satisfied

trivially. Therefore, non-trivial application of this definition is when ai > bi and a 6≥ b.

The graphical intuition is the same as in the standard notion of a quasisupermodular

function, as shown in figure 2. In other words, if the tradeoff between a and a ∧ b is

favorable (in the sense that f(a) ≥ f(a ∧ b) or f(a) > f(a ∧ b)), then the tradeoff

remains favorable at a ∨ b and b, in the same sense. Indeed, recall the definition of a

quasisupermodular function: f is quasisupermodular on X , if for every a, b ∈ X

8
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Figure 2: i-Quasisupermodular on X

f(a) ≥ (>) f(a ∧ b) =⇒ f(a ∨ b) ≥ (>) f(b). It is easy to check that for every i, f is

i-quasisupermodular on X, if, and only if, f is quasisupermodular on X .

Another useful property is the following. Let X be a sublattice of RN , f : X → R,

and i ∈ {1, 2, . . . , N}. The function f satisfies i-single crossing property on X , if

for every a, b ∈ X with ai > bi, and for every v ∈ {s(b − a ∧ b) | s ∈ R, s ≥ 0} such that

a + v, b+ v ∈ X , f(a) ≥ (>) f(b) =⇒ f(a + v) ≥ (>) f(b+ v). In this definition, notice

that v ≥ 0, and vi = 0. Moreover, when a ≥ b, these conditions are satisfied trivially.

Therefore, non-trivial application of this property is when ai > bi and a 6≥ b. Figure 3

presents a graphical idea.

!
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Figure 3: i-Single Crossing Property on X
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Notice that the black arrow is (b − a ∧ b) and the red arrow is (translated) s(b − a ∧ b).

Intuitively, this property says that if the tradeoff between a and b is initially favorable

(in the sense that f(a) ≥ f(b) or f(a) > f(b)), then it remains favorable when we move

in the direction b− a ∧ b. This intuition is similar to that of the standard single crossing

property. In particular, as v = s(b− a∧ b) satisfies v ≥ 0 and vi = 0, we may reformulate

i-single crossing property as follows: for every a, b ∈ X with ai > bi, and for every

v ∈ {s(b − a ∧ b) | s ≥ 0} such that a + v, b + v ∈ X , f(ai, a−i) ≥ (>) f(bi, b−i) =⇒

f(ai, a−i + v−i) ≥ (>) f(bi, b−i + v−i). This reformulation captures the flavor of the

standard single crossing property as follows. For a, b with ai > bi, if f(ai, a−i) ≥ (>

) f(bi, b−i), then when we increase a−i and b−i by a non-negative v−i = [s(b−a∧b)]−i, the

tradeoff remains favorable. Similarly, f satisfies directional single crossing property

on X , if for every i ∈ {1, 2, . . . , N}, f satisfies i-single crossing property on X .

In order to consider parameterized objective functions, let X be a sublattice of RN ,

(T,�) be a partially ordered set, f : X × T → R, and i ∈ {1, 2, . . . , N}. The function

f satisfies basic i-single crossing property on X × T , if for every a, b ∈ X with

ai > bi, and for every t, t′ ∈ T with t′ � t, f(a, t) ≥ (>) f(b, t) =⇒ f(a, t′) ≥ (>) f(b, t′).

The function f satisfies basic directional single crossing property on X × T , if

for every i ∈ {1, 2, . . . , N}, f satisfies basic i-single crossing property on X × T . For

convenience of reference, the word “basic” is used in basic i-single crossing property on

X × T to distinguish this definition from that for i-single crossing property on X . It is

easy to check that if f satisfies basic directional single crossing property on X × T , then

f satisfies (standard) single crossing property in (x; t).12

12For every a, b ∈ X with a ≥ b and for every t, t′ ∈ T with t′ � t, f(a, t) ≥ (>) f(b, t) =⇒ f(a, t′) ≥

(>) f(b, t′).
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2.3 Directional Monotone Comparative Statics

Some of the main results in this paper concern conditions on f that yield monotone

comparative statics. This is formalized as follows. Let X be a sublattice of RN , (T,�) be

a partially ordered set, f : X × T → R, and i ∈ {1, 2, . . . , N}. The function f satisfies i-

directional monotone comparative statics on X×T , if for every A,B subset of X ,

and for every t, t′ in T , A ⊑dso
i B and t � t′ =⇒ argmaxA f(·, t) ⊑dso

i argmaxB f(·, t′). In

other words, f satisfies i-directional monotone comparative statics formalizes the idea that

argmaxA f(·, t) is increasing in (A, t) in the i-directional set order. Similarly, f satisfies

directional monotone comparative statics on X×T , if for every i ∈ {1, 2, . . . , N},

f satisfies i-directional monotone comparative statics on X × T .

Theorem 1. Let X be a sublattice of RN , (T,�) be a partially ordered set, f : X×T → R,

and i ∈ {1, 2, . . . , N}. The following are equivalent.

(1) f satisfies i-directional monotone comparative statics on X × T .

(2) For every t ∈ T , f(·, t) is i-quasisupermodular and satisfies i-single crossing property

on X, and f satisfies basic i-single crossing property on X × T .

Proof. Suppose first that (2) holds. Let A ⊑dso
i B and t � t′. Let a ∈ argmaxA f(·, t),

b ∈ argmaxB f(·, t′), and ai > bi. Then there is v = s(b − a ∧ b) for some s ∈ [0, 1] such

that a + v ∈ B and b− v ∈ A.

As case 1, suppose s = 1. Then a ∧ b = b − b + a ∧ b = b − v ∈ A, and a ∨ b =

a+ s(a ∨ b− a) = a+ v ∈ B. As a ∈ argmaxA f(·, t), it follows that f(a, t) ≥ f(a ∧ b, t),

and then i-quasisupermodularity on X implies f(a∨ b, t) ≥ f(b, t), and then basic i-single

crossing property on X×T implies f(a∨b, t′) ≥ f(b, t′). As b ∈ argmaxB f(·, t′), it follows

that a + v = a ∨ b ∈ argmaxB f(·, t′). Therefore, f(a ∨ b, t′) = f(b, t′). In particular,

f(a ∨ b, t′) 6> f(b, t′), and again i-quasisupermodularity implies f(a, t′) 6> f(a ∧ b, t′), and

then basic i-single crossing property on X ×T implies f(a, t) 6> f(a∧ b, t). Consequently,

f(a, t) ≤ f(a ∧ b, t), and it follows that b− v = a ∧ b ∈ argmaxA f(·, t).
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As case 2, suppose s < 1. Then a ∈ argmaxA f(·, t) and b − v ∈ A imply f(a, t) ≥

f(b − v, t). Moreover, when looking at the i-th component, ai > bi ≥ (b − v)i, because

v = s(b− a ∧ b) ≥ 0. Applying i-single crossing property on X to a and b − v, with the

directional vector w = s
1−s

[(b− v)− a ∧ (b− v)] implies f(a + w, t) ≥ f(b − v + w, t).

Notice that v = s(b − a ∧ b) = s [(b− v)− a ∧ b] + sv = s [(b− v)− a ∧ (b− v)] + sv,

and therefore, v = s
1−s

[(b− v)− a ∧ (b− v)] = w. In other words, f(a + v, t) ≥ f(b, t),

and then basic i-single crossing property on X × T implies f(a+ v, t′) ≥ f(b, t′), whence

a + v ∈ argmaxB f(·, t′). Thus, f(a + v, t′) = f(b, t′), whence f(a + v, t′) 6> f(b, t′),

or equivalently, f(a + w, t′) 6> f(b − v + w, t′) and then using i-single crossing property

on X , f(a, t′) 6> f(b − v, t′), and then using basic i-single crossing property on X × T ,

f(a, t) 6> f(b− v, t). Thus, b− v ∈ argmaxA f(·, t), as desired.

In the other direction, suppose f satisfies i-directional monotone comparative statics

on X × T . Let’s first see that for every t, f(·, t) is i-quasisupermodular on X . Fix t,

and a, b with ai > bi. Form the sets A = {a, a ∧ b} and B = {b, a ∨ b}. Notice that

A ⊑dso
i B. (Consider a ∈ A and b ∈ B. Let v = b − a ∧ b. Then a + v = a ∨ b ∈ B and

b− v = a∧ b ∈ A. The other cases are satisfied vacuously, because in those cases the i-th

component of the element from A is not greater than the i-th component of the element

from B.)

Suppose f(a, t) ≥ f(a ∧ b, t). Then a ∈ argmaxA f(·, t). Suppose to the contrary

that f(a ∨ b, t) < f(b, t). Then argmaxB f(·, t) = {b}. Applying f satisfies i-directional

monotone comparative statics to (A, t) and (B, t), there is s ∈ [0, 1] such that a + s(a ∨

b− a) ∈ argmaxB f(·, t) = {b}. But the i-th component of a+ s(a ∨ b− a) is ai which is

strictly greater than bi, a contradiction. Therefore, f(a ∨ b, t) ≥ f(b, t), as desired.

Now suppose f(a, t) > f(a ∧ b, t). Then {a} = argmaxA f(·, t). Suppose to the

contrary that f(a ∨ b, t) ≤ f(b, t). Then b ∈ argmaxB f(·, t). By i-directional monotone

comparative statics, there is s ∈ [0, 1] such that b− s(b− a ∧ b) ∈ argmaxA f(·, t) = {a}.

But the i-th component of b−s(b−a∧b) is bi which is strictly less than ai, a contradiction.
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Therefore, f(a ∨ b, t) > f(b, t), as desired.

Let’s now check that for every t, f(·, t) satisfies i-single crossing property on X . Fix

t, and a, b ∈ X with ai > bi. Fix v = s(b− a ∧ b) with s ≥ 0 such that a + v, b+ v ∈ X .

Before we proceed further, consider the following calculations. Let y = b + v, and let

u = y − a ∧ y = a ∨ y − a. Notice that u = y − a ∧ y = y − a ∧ b = (1 + s)(b − a ∧ b).

This implies that v = s(b − a ∧ b) = s
1+s

u. Let s′ = s
1+s

∈ [0, 1) and write v = s′u. In

particular, y− s′(y− a∧ y) = y− v, and a+ s′(a∨ y− a) = a+ v. Now let A = {a, y − v}

and B = {y, a+ v}. Then A ⊑dso
i B, because for a ∈ A, and y ∈ B, there is s′ ∈ [0, 1], as

above such that a + s′(a ∨ y − a) = a + v ∈ B and y − s′(y − a ∧ y) = y − v ∈ A. The

other comparisons are vacuously true, because when considering the i-th components,

(y − v)i ≤ yi = bi < ai ≤ (a+ v)i.

Suppose f(a, t) ≥ f(b, t) = f(y − v, t). Then a ∈ argmaxA f(·, t). Suppose to the

contrary that f(a + v, t) < f(b + v, t) = f(y, t). Then {y} = argmaxB f(·, t). As f

satisfies i-directional monotone comparative statics on X × T , there is ŝ ∈ [0, 1] such

that a + ŝ(a ∨ y − a) ∈ argmaxB f(·, t) = {y}. But considering the i-th components,

(a + ŝ(a ∨ y − a))i = ai > bi = yi, a contradiction. Thus f(a + v, t) ≥ f(b + v, t), as

desired.

Now suppose f(a, t) > f(b, t) = f(y − v, t). Then {a} = argmaxA f(·, t). Suppose

to the contrary that f(a + v, t) ≤ f(b + v, t) = f(y, t). Then y ∈ argmaxB f(·, t).

As f satisfies i-directional monotone comparative statics, there is ŝ ∈ [0, 1] such that

y− ŝ(y−a∧y) ∈ argmaxA f(·, t) = {a}. But considering the i-th components, (y− ŝ(y−

a ∧ y))i = yi = bi < ai, a contradiction. Thus f(a+ v, t) > f(b+ v, t), as desired.

Finally, let’s check that f satisfies basic i-single crossing property in X × T . Fix a, b

with ai > bi, and fix t′ � t. Let A = {a, b}. Then A ⊑dso
i A. Suppose f(a, t) ≥ f(b, t).

Then a ∈ argmaxA f(·, t). As f satisfies i-directional monotone comparative statics on

X × T , there is s ∈ [0, 1] such that a + v = a + s(b − a ∧ b) ∈ argmaxA f(·, t′). Notice

that (a + s(b − a ∧ b))i = ai > bi, and therefore, a + v = a, whence f(a, t′) ≥ f(b, t′).
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Now suppose f(a, t) > f(b, t). Then {a} = argmaxA f(·, t). Suppose to the contrary that

f(a, t′) ≤ f(b, t′). Then b ∈ argmaxA f(·, t′). By i-directional monotone comparative

statics, there is s ∈ [0, 1] such that b − v = b − s(b − a ∧ b) ∈ argmaxA f(·, t) = {a}, a

contradiction. Thus, f(a, t′) > f(b, t′).

Some implications of this theorem are formalized in the following corollaries.

Corollary 1. Let X be a sublattice of R
N , (T,�) be a partially ordered set, and f :

X × T → R. The following are equivalent.

(1) f satisfies directional monotone comparative statics on X × T .

(2) For every t ∈ T , f(·, t) is quasisupermodular and satisfies directional single crossing

property on X, and f satisfies basic directional single crossing property on X × T .

Proof. For this equivalence, notice that f satisfies directional monotone comparative

statics on X×T means that for every i ∈ {1, 2, . . . , N}, f satisfies i-directional monotone

comparative statics on X×T , which is equivalent to, for every i ∈ {1, 2, . . . , N}, for every

t ∈ T , f(·, t) is i-quasisupermodular and satisfies i-single crossing property on X , and f

satisfies basic i-single crossing property on X × T , and this is equivalent to (2).

Corollary 2. Let X be a sublattice of RN , (T,�) be a partially ordered set, f : X×T → R,

and i ∈ {1, . . . , N}.

(1) If f satisfies i-directional monotone comparative statics on X × T , then

A ⊑dso
i B and t � t′ =⇒ argmaxA f(·, t) ⊑wlso

i argmaxB f(·, t′).

(2) If f satisfies directional monotone comparative statics on X × T , then

A ⊑dso B and t � t′ =⇒ argmaxA f(·, t) ⊑wlso argmaxB f(·, t′).

Proof. Statement (1) follows from relations between i-directional set order and i-weak

lattice set order (proposition 1). For statement (2), suppose f satisfies directional mono-

tone comparative statics on X × T . Consider A ⊑dso B and t � t′. Then for ev-

ery i ∈ {1, 2, . . . , N}, A ⊑dso
i B, and by the theorem, for every i ∈ {1, 2, . . . , N},

argmaxA f(·, t) ⊑dso
i argmaxB f(·, t′), whence argmaxA f(·, t) ⊑dso argmaxB f(·, t′), and

consequently, argmaxA f(·, t) ⊑wlso argmaxB f(·, t′).
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In other words, under (1), f satisfies i-directional monotone comparative statics on

X × T implies that when A ⊑dso
i B and t � t′, then no matter which maximizer of

f(·, t) we take from A, we can find a maximizer of f(·, t′) from B that is larger in the

i-th component, and symmetrically, no matter which maximizer of f(·, t′) we take from

B, we can find a maximizer of f(·, t) from A that is smaller in the i-th component. In

particular, when the set of maximizers is a singleton, we conclude that the solution to the

optimization problem is increasing in the i-th component, in the standard order in the

real numbers.

Similarly, f satisfies directional monotone comparative statics on X × T implies that

when A ⊑dso B and t � t′, then no matter which maximizer of f(·, t) we take from A,

we can find a larger maximizer of f(·, t′) from B, and symmetrically, no matter which

maximizer of f(·, t′) we take from B, we can find a smaller maximizer of f(·, t) from A.

In particular, when the set of maximizers is a singleton, we conclude that the solution to

the optimization problem is increasing in the standard vector order in R
N .

The framework in theorem 1 can be specialized naturally to the case of non-parameterized

objective functions. Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}. The

function f satisfies i-directional monotone comparative statics on X , if for every

A,B subset of X , A ⊑dso
i B =⇒ argmaxA f ⊑dso

i argmaxB f . In other words, f satisfies

i-directional monotone comparative statics on X formalizes the idea that argmaxA f(·)

is increasing in A in the i-directional set order.

Corollary 3. Let X be a sublattice of RN , f : X → R, and i ∈ {1, . . . , N}.

The following are equivalent.

(1) f satisfies i-directional monotone comparative statics on X

(2) f is i-quasisupermodular and satisfies i-single crossing property on X

Proof. Apply theorem with singleton T = {t}.

Similarly, say that f satisfies directional monotone comparative statics on X ,

if for every i ∈ {1, 2, . . . , N}, f satisfies i-directional monotone comparative statics on X .
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It follows immediately that f satisfies directional monotone comparative statics on X, if,

and only if, f is quasisupermodular and satisfies directional single crossing property on

X.

Theorem 1 can be used to inquire separately about comparative statics with respect

to the parameter in the objective function, holding fixed the constraint set. In this case,

the condition i-single crossing property on X may be dropped, as follows.

Corollary 4. Let X be a sublattice of RN , A be a subset of X, (T,�) be a partially ordered

set, f : X × T → R, and i ∈ {1, 2, . . . , N}.

If f is i-quasisupermodular on X and satisfies basic i-single crossing property on X × T ,

then t � t′ =⇒ argmaxA f(·, t) ⊑dso
i argmaxA f(·, t′).

Proof. Follow the proof in the corresponding direction in theorem 1, setting s = 0 and

note that i-directional set order is reflexive.

In this corollary, A is an arbitrary subset of X . Therefore, under the conditions in this

corollary, for an arbitrary constraint set A, as long as the set of maximizers is nonempty,

i-directional monotone comparative statics holds with respect to the parameter. (Of

course, if the set of maximizers is empty, i-directional monotone comparative statics

holds trivially.)

Finally, the ordinal nature of the conditions in theorem 1 implies that i-directional

(and directional) monotone comparative statics property is preserved under increasing

transformations of the objective function. This is useful in applications.

Corollary 5. Let X be a sublattice of RN , (T,�) be a partially ordered set, f, g : X×T →

R, and i ∈ {1, 2, . . . , N}. Suppose g is a strictly increasing transformation of f .

f satisfies i-directional (respectively, directional) monotone comparative statics on X×T ,

if, and only if, g satisfies i-directional (respectively, directional) monotone comparative

statics on X × T .

Proof. If f satisfies i-directional monotone comparative statics on X × T , then f is
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i-quasisupermodular and satisfies i-single crossing property on X , and satisfies basic i-

single crossing property on X×T . As these properties are ordinal, g satisfies these as well,

and another application of the theorem yields the result. The other direction is similar.

Moreover, the proof for directional monotone comparative statics is similar.

2.4 Sufficient Conditions

Quah (2007) shows that when X is a convex sublattice (a sublattice that is also a convex

set) of RN , if f : X → R is supermodular and i-concave, then argmaxA f is increasing in

A in the Ci-flexible set order. In particular, if f is supermodular and concave, then this

condition is satisfied for every i. This is useful, because supermodular and concave are

conditions that are easy to check.

We show that these conditions are also sufficient for f to satisfy i-single crossing prop-

erty on X . Therefore, we can use the same conditions here, apply them to some additional

potentially discrete problems, and extend them naturally to include parameterized objec-

tive functions, as follows.

Let X be a sublattice of RN , f : X → R, and u ∈ R
N , u 6= 0. The function f is

(relatively) concave in direction u, if for every a ∈ X , the function f(a+ su), when

viewed as a real-valued function of a real variable s, is a concave function relative to its

domain in the real numbers. It is easy to check that f is (relatively) concave on X,13 if,

and only if, for every u ∈ R
N , u 6= 0, f is (relatively) concave in direction u.

For i ∈ {1, 2, . . . , N}, f is (relatively) i-concave on X , if for every u ∈ R
N \ {0}

with ui = 0, f is (relatively) concave in direction u, and f is (relatively) directionally

concave on X , if for every i ∈ {1, 2, . . . , N}, f is (relatively) i-concave on X . Notice

that if f is (relatively) concave on X, then f is directionally concave on X.

13With the standard definition, f(αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y), with α ∈ [0, 1] and with the

quantifier “relative” applied to mean the points are in the domain of f , as usual.

17



Theorem 2. Let X be a sublattice of RN , (T,�) be a partially ordered set, f : X×T → R,

and i ∈ {1, 2, . . . , N}.

If for every t ∈ T , f(·, t) is i-supermodular and (relatively) i-concave on X, and f sat-

isfies basic i-single crossing property on X × T , then f satisfies i-directional monotone

comparative statics on X × T .

Proof. Suppose for every t ∈ T , f(·, t) is i-supermodular and (relatively) i-concave on

X , and f satisfies basic i-single crossing property on X × T . It is sufficient to show that

for every t ∈ T , f(·, t) satisfies i-single crossing property on X and then invoke theorem

1. To do so, fix t ∈ T , a, b ∈ X with ai > bi, and v = s(b − a ∧ b) with s ≥ 0 such that

a+ v, b+ v ∈ X .

Consider the following computations. Let b′ = b+v, a′ = a+v and u = a∨b′−a′. It is

easy to check that (a∨b′)−v = a∨(b+v)−v = a∨b, and therefore, u = a∨b−a = b−a∧b.

Consequently, v = su. Moreover, notice that ui = 0 and a ∨ b′ = a′ + u = a+ (1 + s)u.

Now, i-concavity in direction u implies that f(a′, t)−f(a∨b′, t) = f(a∨b′−u, t)−f(a∨

b′, t) ≥ f(a∨ b′−u− su, t)− f(a∨ b′− su, t) = f(a, t)− f(a∨ b, t), and i-supermodularity

implies f(a∨b′, t)−f(b′, t) ≥ f(a∨b, t)−f(b, t). Consequently, f(a′, t)−f(b′, t) = f(a′, t)−

f(a∨b′, t)+f(a∨b′, t)−f(b′, t) ≥ f(a, t)−f(a∨b, t)+f(a∨b, t)−f(b, t) = f(a, t)−f(b, t).

It follows that f(a, t) ≥ (>) f(b, t) ⇒ f(a′, t) ≥ (>) f(b′, t), as desired.

The following corollaries follow immediately.

Corollary 6. Let X be a sublattice of R
N , (T,�) be a partially ordered set, and f :

X × T → R.

If for every t ∈ T , f(·, t) is supermodular and (relatively) directionally concave on X, and

f satisfies basic directional single crossing property on X × T , then f satisfies directional

monotone comparative statics on X × T .

Proof. The hypothesis implies that for every i ∈ {1, . . . , N}, for every t ∈ T , f(·, t)

is i-supermodular and (relatively) i-concave on X , and f satisfies basic i-single crossing

18



property on X × T , and the theorem then shows that for every i ∈ {1, . . . , N}, f satisfies

i-directional monotone comparative statics on X × T , as desired.

Corollary 7. Let X be a sublattice of RN and f : X → R.

(1) If f is i-supermodular and (relatively) i-concave on X, then f satisfies i-directional

monotone comparative statics on X.

(2) If f is supermodular and (relatively) directionally concave on X, then f satisfies di-

rectional monotone comparative statics on X.

(3) If f is supermodular and (relatively) concave on X, then f satisfies directional mono-

tone comparative statics on X.

Proof. Apply the previous theorem with singleton T = {t}.

Moreover, corollary 5 implies that in each of these sufficient conditions, if g is a strictly

increasing transformation of f , then g also satisfies the corresponding i-directional (or

directional) monotone comparative statics.

2.5 Differential Conditions

An appealing feature of the different single crossing properties defined here is that they

are closely aligned to their counterparts in the standard theory. In particular, they possess

natural extensions to cardinal properties and can also be formulated in terms of differential

conditions in a manner similar to the standard case.

Consider the following cardinal property naturally suggested by the i-single crossing

property on X . Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}. The

function f satisfies i-increasing differences on X , if for every a, b ∈ X with ai > bi,

and for every v ∈ {s(b − a ∧ b) | s ≥ 0} such that a + v, b + v ∈ X , f(a) − f(b) ≤

f(a+ v)− f(b+ v). As earlier, when a ≥ b, v = 0, and this condition is satisfied trivially.

Nontrivial application of this definition is when ai > bi and a 6≥ b. Similarly, f satisfies

directional increasing differences on X , if for every i ∈ {1, 2, . . . , N}, f satisfies
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i-increasing differences on X . It is easy to check that if f satisfies i-increasing differences

on X, then f satisfies i-single crossing property on X , and it follows immediately that

if f satisfies directional increasing differences on X, then f satisfies directional single

crossing property on X .

Recall that in the standard theory, f satisfies (standard) increasing differences on R
N ,

if, and only if, f satisfies increasing differences for every pair of component indices i, j with

i 6= j. Thus, f satisfies increasing differences on R
N , if, and only if, f is supermodular.

Moreover, assuming differentiability, f is supermodular, if, and only if, every pair of cross-

partials is nonnegative (for every i 6= j, ∂2f

∂xi∂xj
≥ 0). The notion of i-increasing differences

can be characterized similarly, using directional derivatives, as follows.

Notice that for u ∈ R
N , if we let a = b + u, then b − a ∧ b = (b − a)+ = (−u)+.

Say that a function f : X → R satisfies i-increasing differences (u) on X , if for every

b ∈ X, u ∈ R
N with ui > 0, for every s ≥ 0, such that b+u, b+s(−u)+, b+u+s(−u)+ ∈ X ,

f(b+ u)− f(b) ≤ f(b+ u+ s(−u)+)− f(b+ s(−u)+). Notice that for u ≥ 0, (−u)+ = 0,

and this condition is satisfied trivially. Therefore, nontrivial application of this definition

is when ui > 0 and u 6≥ 0. It is easy to check that f satisfies i-increasing differences on

X, if, and only if, f satisfies i-increasing differences (u) on X . This recasts i-increasing

differences in terms of differences in f based on changes in direction u (where ui > 0).

Figure 4 presents the graphical intuition.
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Figure 4: Cross Partial Directional Derivatives
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The graphical intuition suggests a potential “cross partial” characterization based on

directions u and (−u)+. This is achieved as follows. Let X be a sublattice of RN , f : X →

R, and i ∈ {1, 2, . . . , N}. Say that f satisfies i-increasing differences (*) on X , if for every

b ∈ X, u ∈ R
N with ui > 0, and for every σ ≥ 0, f(b+ σu+ s(−u)+)− f(b+ s(−u)+) is

(weakly) increasing in s. As earlier, we consider only points b+σu+s(−u)+, b+s(−u)+ ∈

X . As shown in appendix B, f satisfies i-increasing differences (u) on X, if, and only if,

f satisfies i-increasing differences (*) on X .

These formulations show that i-increasing differences on X is equivalent to i-increasing

differences (*) on X . A benefit of this equivalence is that the condition i-increasing

differences (*) on X has the same mathematical structure as the one used to show that

a supermodular function can be characterized by the sign of its cross-partials (confer

Topkis (1978)). The only difference is that this definition uses a more general vector u

whereas supermodularity uses the basis vectors. This connection can be seen more clearly

as follows.

Recall the definition of a directional derivative. LetX be an open set in R
N , b ∈ X and

u ∈ R
N , and suppose f : X → R is continuously differentiable. The directional derivative

of f at b in the direction u is Duf(b) = limσ→0
f(b+σu)−f(b)

σ
. Recall from the standard

theory of supermodular functions (confer Topkis (1978), page 310, for the submodular

case) that if ui is the i-th basis vector, then a function f is supermodular on X (assuming

X is an open set and a sublattice in R
N , and f is twice continuously differentiable), if,

and only if, for all b ∈ X , for all i, j ∈ {1, 2, . . . , N} with i 6= j, and for all σ ≥ 0,

f(b+ σui)− f(b) is (weakly) increasing in the j-th component (that is, in direction uj).

This is equivalent to: for all b ∈ X , for all j 6= i, Duif(b) is (weakly) increasing in the

j-th component (that is, in direction uj), which is further equivalent to: for all b ∈ X , for

all j 6= i, DujDuif(b) ≥ 0. Using the same logic yields the following result.

Proposition 2. Let X be an open set and a sublattice of R
N , f : X → R be twice

continuously differentiable, and i ∈ {1, 2, . . . , N}. The following are equivalent.
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(1) f satisfies i-increasing differences on X.

(2) For every b ∈ X, u ∈ R
N with ui > 0, D(−u)+Duf(b) ≥ 0.

Proof. We know that f satisfies i-increasing differences on X ⇐⇒ f satisfies i-increasing

differences (*) on X . In other words, (1) is equivalent to: for every b ∈ X, u ∈ R
N with

ui > 0, and for every σ ≥ 0, f(b + σu+ s(−u)+)− f(b+ s(−u)+) is (weakly) increasing

in s (that is, in the direction (−u)+). Using the fundamental theorem of calculus, this is

equivalent to: ∀b ∈ X, ∀u ∈ R
N with ui > 0, Duf(b+ s(−u)+) is (weakly) increasing in s

(that is, in direction (−u)+). This, in turn, is equivalent to ∀b ∈ X, ∀u ∈ R
N with ui > 0,

D(−u)+Duf(b) ≥ 0.

The second statement can be given a convenient name in terms of nonnegative cross

derivatives, as follows. Let X be an open set and a sublattice of RN , f : X → R be

twice continuously differentiable, and i ∈ {1, 2, . . . , N}. The function f has nonneg-

ative i-cross derivative property on X , if for every b ∈ X, u ∈ R
N with ui > 0,

D(−u)+Duf(b) ≥ 0, and f has nonnegative directional cross derivative property

on X , if for every i ∈ {1, 2, . . . , N}, f has nonnegative i-cross derivative property on

X . This proposition shows that i-increasing differences on X is equivalent to nonnegative

i-cross derivative property on X , and it follows immediately that directional increasing

differences on X is equivalent to nonnegative directional cross derivative property on X .

Similarly, consider the following cardinal property naturally suggested by the basic

i-single crossing property on X × T . Let X be a sublattice of RN , (T,�) be a partially

ordered set, f : X × T → R, and i ∈ {1, 2, . . . , N}. The function f satisfies basic i-

increasing differences on X × T , if for every a, b ∈ X with ai > bi, and for every

t, t′ ∈ T with t � t′, f(a, t) − f(b, t) ≤ f(a, t′) − f(b, t′). The function f satisfies basic

directional increasing differences on X×T , if for every i ∈ {1, 2, . . . , N}, f satisfies

basic i-increasing differences on X × T . As earlier, it is easy to check that if f satisfies

basic i-increasing differences on X×T , then f satisfies basic i-single crossing property on

X×T , and it follows immediately that if f satisfies basic directional increasing differences

22



on X×T , then f satisfies basic directional single crossing property on X×T . The following

result now obtains easily.

Proposition 3. Let X be an open set and a sublattice of RN , T be an open subset of RM ,

f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N}.

The following are equivalent.

(1) f satisfies basic i-increasing differences on X × T .

(2) For every b ∈ X, u ∈ R
N with ui > 0, DtDuf(b, t) ≥ 0.

Proof. It is easy to check that f satisfies basic i-increasing differences on X ×T ⇐⇒ for

every b ∈ X, u ∈ R
N with ui > 0, f(b + u, t) − f(b, t) is (weakly) increasing in t. This

is equivalent to: ∀b ∈ X, ∀u ∈ R
N with ui > 0, Duf(b, t) is (weakly) increasing in t, and

this is further equivalent to: ∀b ∈ X, ∀u ∈ R
N with ui > 0, DtDuf(b, t) ≥ 0.

The second statement can be given a convenient name in terms of nonnegative cross

derivatives, as follows. Let X be an open set and a sublattice of RN , T be an open subset

of RM , f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N}. The

function f has nonnegative basic i-cross derivative property on X × T , if for

every b ∈ X, u ∈ R
N with ui > 0, DtDuf(b, t) ≥ 0, and f has nonnegative basic

directional cross derivative property on X×T , if for every i ∈ {1, 2, . . . , N}, f has

nonnegative basic i-cross derivative property on X . The above proposition shows that

basic i-increasing differences on X×T is equivalent to nonnegative basic i-cross derivative

property on X×T , and it follows immediately that basic directional increasing differences

on X×T is equivalent to basic nonnegative directional cross derivative property on X×T .

We have the following result.

Theorem 3. Let X be an open set and a sublattice of RN , T be an open subset of RM ,

f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N}.

If for every t ∈ T , f(·, t) is i-supermodular14 and has nonnegative i-cross derivative

14For every a, b ∈ X with ai > bi, f(a, t)− f(a ∧ b, t) ≤ f(a ∨ b, t)− f(b, t).
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property on X, and f has nonnegative basic i-cross derivative property on X × T , then f

satisfies i-directional monotone comparative statics on X × T .

Proof. The hypothesis in this statement, combined with the propositions above, implies

that f satisfies basic i-single crossing property on X × T , and for every t ∈ T , f(·, t)

is i-quasisupermodular and satisfies i-single crossing property on X , and the conclusion

follows from an application of theorem 1.

It follows immediately that if for every t ∈ T , f(·, t) is supermodular and has nonneg-

ative directional cross derivative property on X, and f has nonnegative basic directional

cross derivative property on X × T , then f satisfies directional monotone comparative

statics on X × T .

The following corollaries help specialize this theorem to the case of comparative statics

with respect to A or to t separately.

Corollary 8. Let X be an open set and a sublattice of RN , f : X → R is twice continu-

ously differentiable, and i ∈ {1, 2, . . . , N}.

If f is i-supermodular and has nonnegative i-cross derivative property on X, then f sat-

isfies i-directional monotone comparative statics on X.

Proof. Apply the theorem with singleton T = {t}.

This corollary implies immediately that if f is supermodular and has nonnegative di-

rectional cross derivative property on X, then f satisfies directional monotone comparative

statics on X.

In order to understand more concretely the nonnegative i-cross derivative property on

X , let’s compute D(−u)+Duf(b). For convenience, we use subscripts for partial derivatives.

Notice that Duf(b) =
N
∑

j=1

fj(b)uj , where fj(b) ≡
∂f

∂xj
(b) and uj is the j-th component of

u. Therefore,

D(−u)+Duf(b) =

N
∑

k=1

N
∑

j=1

fk,j(b)uj(−u)+,k.
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Here fk,j(b) is the k, j-th cross-partial of f evaluated at b, uj is the j-th component of

u, and (−u)+,k is the k-th component of (−u)+. This is easier to understand if we let

L = {ℓ | uℓ < 0}. In this case,

(−u)+,k =







−uk if k ∈ L, and

0 if k 6∈ L,

and therefore,

D(−u)+Duf(b) =
N
∑

k=1

N
∑

j=1

fk,j(b)uj(−u)+,k

=
∑

k∈L

N
∑

j=1

fk,j(b)uj(−uk)

=
∑

k∈L

∑

j 6∈L

fk,j(b)uj(−uk) +
∑

k∈L

∑

j∈L

fk,j(b)uj(−uk)

=
∑

k∈L

∑

j 6∈L

fk,j(b)uj(−uk)−
∑

k∈L

∑

j∈L

fk,j(b)(−uj)(−uk)

=
∑

k∈L

∑

j 6∈L

fk,j(b)uj(−uk)− [ w′
L D2fL(b) wL] ,

where fL is the restriction of f to the components in L, D2fL(b) is the second derivative

of fL evaluated at b, wL is the restriction of (−u)+ to L, and w′
L is the transpose of wL.

Notice that for k ∈ L, −uk > 0 and for j 6∈ L, uj ≥ 0. In this case, the sign of the

term fk,j(b)uj(−uk) is determined by the sign of the cross-partial fk,j(b). Similarly, for

k ∈ L, −uk > 0 and for j ∈ L, uj < 0. In this case, the sign of the term fk,j(b)uj(−uk)

is determined by the sign of −fk,j(b). In particular, if f is supermodular, then the first

term,
∑

k∈L

∑

j 6∈L

fk,j(b)uj(−uk) ≥ 0. Moreover, if f is concave in direction (−u)+, then the

matrix of second derivatives is negative semidefinite, and therefore, the second term,

− [ w′
L D2fL(b) wL] ≥ 0.

Corollary 9. Let X be an open set and a sublattice of RN , T be an open subset of RM ,

f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N}.

If for every t ∈ T , f(·, t) is i-supermodular on X, and f has nonnegative basic i-cross

derivative property on X × T , then f satisfies i-directional monotone comparative statics

on X × T .
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Proof. The conditions in this statement imply that for every t ∈ T , f(·, t) is i-quasisupermodular

on X , and f satisfies basic i-single crossing property on X×T , and the conclusion follows

from an application of corollary 4.

In order to understand more concretely the nonnegative basic i-cross derivative prop-

erty on X × T , let’s compute DtDuf(b, t). Recall that Duf(b, t) =
N
∑

j=1

fxj
(b, t)uj, where

fxj
(b, t) ≡ ∂f

∂xj
(b, t) and uj is the j-th component of u. Therefore,

DtDuf(b, t) =

[

N
∑

j=1

ft1,xj
(b, t)uj , · · · ,

N
∑

j=1

ftM ,xj
(b, t)uj

]

,

where ftm,xn
(b, t) ≡ ∂2f

∂tm∂xn
(b, t), for m = 1, . . . ,M , n = 1, . . . , N . This may be written in

standard matrix form as

DtDuf(b, t) =











ft1,x1
(b, t) · · · ft1,xN

(b, t)
...

...

ftM ,x1
(b, t) · · · ftM ,xN

(b, t)





















u1

...

uN











.

A useful sufficient condition for nonnegative basic i-cross derivative property on X×T

is the following. Let X be an open set and a sublattice of RN , T be an open subset of

R
M , f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N}. If for

some subset M ′ of {1, . . . ,M}, ftm,xi
(b, t) ≥ 0 for m ∈ M ′, and ftm,xj

(b, t) = 0 otherwise,

then f has nonnegative basic i-cross derivative property on X × T . To see that this is

true, fix u ∈ R
N with ui > 0, and notice that the m-th component of DtDuf(b, t) is

ftm,xi
(b, t)ui ≥ 0 for m ∈ M ′ and zero otherwise. This condition retains the flavor of

standard increasing differences in (x; t) by working with nonnegative cross-partials, and

it is useful in applications, as detailed in the next section.

3 Examples

Example 2 (Consumer Demand). Consider a consumption space X that is a sublat-

tice of RL
+, a partially ordered parameter space (T,�), a utility function u : X × T → R
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and a subset A of X , and consider the utility maximization problem, maxA u(·, t). When

utility is continuous on X and A is a nonempty compact set, this problem has a solution

termed consumer demand. Let’s denote it by D(A, t) = argmaxA u(·, t). Theorem 1 pro-

vides conditions characterizing when D(A, t) is increasing in (A, t) in the i-directional set

order and in the directional set order. Some special cases are notable.

Consider Walrasian demand, that is, let the consumption space be X = R
L
+ or X =

R
L
++, a price vector p ∈ R

L
++, wealth w > 0, and let B(p, w) = {x ∈ X | p · x ≤ w} be the

Walrasian budget set and let D(p, w) = argmaxB(p,w) u(·, t) be Walrasian demand. We

know that w ≤ w′ ⇒ (∀i) B(p, w) ⊑dso
i B(p, w′). Say that demand for good i is normal, if

w ≤ w′ ⇒ D(p, w) ⊑wlso
i D(p, w). In this setting, the result on sufficient conditions implies

that if u is i-supermodular and i-concave, then Walrasian demand for good i is normal,

and if u is supermodular and directionally concave, then Walrasian demand for all goods

is normal. Moreover, corollary 5 implies that strictly increasing transformations of u yield

the same conclusions. This implies, for example, that some of the standard cases such as

general Cobb-Douglas preferences (with no restriction that exponential parameters add

to 1), constant elasticity of substitution, and taking logarithms of standard preferences

are all admissible. Furthermore, in the case of two goods, these results hold with discrete

consumption sets as well, when conditions in example 1-2 hold.

We can also consider comparative statics with respect to parameter t. Corollary 4

implies that if u is i-quasisupermodular and satisfies basic i-single crossing property on

X × T , then t � t′ =⇒ argmaxA u(·, t) ⊑dso
i argmaxA u(·, t′). Notably, A can be an

arbitrary subset of RL. This can be seen concretely with Stone-Geary utility.

Example 3 (Stone-Geary utility) Consider consumption space X = R
L
+ or X =

R
L
++, a bundle b ∈ R

L
+, and utility given by u(x, b) =

L

Π
j=1

(xj + bj)
αj , where αj > 0 for all

j. The bundle b is sometimes viewed as a survival bundle available as an outside option,

perhaps through a government program, or through a soup kitchen, or through a charity,
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and so on, although other interpretations are available.15 Theoretically, it is a parameter in

the utility function. Notice that for each b, u(·, b) is quasisupermodular and quasiconcave.

Moreover, when b = 0, Stone-Geary specializes to Cobb-Douglas preferences. There is no

restriction that αj add up to 1.

In order to use derivatives, let a ∈ R
L
−−, and write u(x, a) =

L

Π
j=1

(xj − aj)
αj , where

αj > 0 for all j, and consider the monotonic transformation, v(x, a) =
∑L

j=1 αj log(xj−aj).

Then for each a ∈ R
L
−−, v(·, a) is supermodular and concave on X . Moreover, for fixed

i ∈ {1, . . . , L}, and for every u ∈ R
L with ui > 0, Duv(x, a) =

∑L

j=1
αj

xj−aj
uj and therefore,

DaiDuv(x, a) =
αi

(xi−ai)2
ui > 0. Consequently, v satisfies basic i single crossing property on

X×R−−, where R−− indexes ai. By theorem 3, v (and u) satisfies i-directional monotone

comparative statics on X × R−−. In particular, when ai goes up, (and as long as the

corresponding budget sets (weakly) increase in the i-directional set order,) demand for

good i goes up.

In terms of the original problem with nonnegative b, this implies that when a compo-

nent of the survival bundle is increased, a consumer’s optimal response is to decrease the

same component of her demand. This is consistent with results in public economics on the

effect of more generous social welfare options. It follows here from a minimal calculation

on the objective function and is valid for an arbitrarily fixed compact budget set.

Example 4 (Multi-market competition). Consider a firm that is competing in

two markets; market 1 is imperfectly competitive, say, an oligopoly, and market 2 is

perfectly competitive. (For example, the firm might produce a generic product for the

competitive market and a differentiated version to have some market power.) Suppose

the firm’s profits are given by Π(x1, y; x2, . . . , xM) = Π1(x1, x2, . . . , xM) + p · y − c(y),

where Π1 is the firm’s profit in market 1, which has M ≥ 2 firms, and p · y − c(y) is its

profit in market 2. The firm’s choice variables are (x1, y) ∈ R
2
+. Suppose the actions of

15For example, in models of charitable giving, b may be viewed as a consumer or donor’s intrinsic

benefit from donation, as in Harbaugh (1998).
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other firms in market 1 are complementary to the actions of the firm; that is, ∂2Π1

∂xj∂x1
≥ 0,

for j = 2, . . . ,M . (For example, this follows if market 1 competition is of a standard

differentiated Bertrand variety. It could also follow if there are production externalities

or network externalities in market 1.) The firm’s problem is to maxA Π(x1, y; x2, . . . , xM).

Notice that Π is supermodular in (x1, y), because of additivity. To check that Π has the

basic 1-single crossing property in (x1, y; x2, . . . , xM), observe that for u with u1 > 0,

Dx−1
DuΠ(x1, y; x−1) = [ ∂2Π1

∂x2∂x1
u1, . . . ,

∂2Π1

∂xM∂x1
u1] ≥ 0. Therefore, when competitor action

goes up, firm 1’s best response in market 1 goes up as well. Notably, this result holds for

arbitrary constraint set A.

We can also inquire about comparative statics with respect to A. For motivation,

suppose market 1 is subject to production or network externalities. (For example, when

other firms produce more, a given firm’s marginal cost goes down, either because of a

direct upstream or downstream production externality or an indirect one, perhaps through

the availability of more skilled labor, more efficient supply chains, and so on.) In other

words, suppose x1 is the firm’s production in market 1, and suppose again that ∂2Π1

∂xj∂x1
≥ 0

for j = 2, . . . ,M . The firm faces a capacity constraint for producing both outputs,

A(k) = {(x1, y) | x1 + y ≤ k}. This can be generalized somewhat by considering A(k) =

{(x1, y) | α1x1 + α2y ≤ k}, where α1 and α2 are arbitrary positive constants, perhaps

indexing different production requirements. (For example, it may be that some more

factory space is needed to produce a unit of the differentiated good, as compared to the

competitive good, and the “weighted” output is constrained by the “base” plant size of k

units.) Consider the firm’s problem: maxA(k)Π(x1, y; x2, . . . , xM ). For fixed A(k), we still

have the earlier result that the firm’s supply in market 1 is (weakly) increasing with respect

to supply of other firms. But now we can also inquire about the effects of an increase

in plant capacity simultaneously with an increase in other firm actions. To do so, we

need to check for x1-concavity of Π. This holds when the cost function in the competitive

market, c(y) is convex (which follows from concave production technology). In this case,
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(k, x−1) ≤ (k′, x′
−1) ⇒ argmaxA(k)Π(x1, y; x−1) ⊑

dso
1 argmaxA(k′) Π(x1, y; x

′
−1).

16

We can also inquire about monotone comparative statics for the competitive market.

Notice that ∂2Π
∂p∂y

= 1, and therefore, an increase in the competitive price increases output

in the competitive market, regardless of the constraint set. Moreover, y-concavity of Π fol-

lows from convex cost in market 1 (again, following from concave production technology)

and concave total revenue function in market 1 (which follows if demand is linear, and also

if demand has constant elasticity less than or equal to 1, which includes Cobb-Douglas

preferences).

A more general example can be formulated as follows. Consider a firm producing

outputs in N ≥ 2 markets, with profit in market i given by Πi(xi, ti), where xi ∈ R+ is the

firm’s output in market i, and ti ∈ R
Mi is a vector of parameters for market i. Total profit

of the firm is Π(x; t) =
∑N

i=1Πi(xi, ti) and the firm’s problem is to maxAΠ(x; t) for x in

some constraint set A. In this case, Π is supermodular in (x1, . . . , xN ), due to additivity. If

we assume that each Πi(xi, ti) is concave in xi and satisfies basic i-single crossing property

in (xi, ti), (for example, if ∂2Πi

∂ti,j∂xi
≥ 0 for j = 1, . . . ,Mi,) then we may conclude that for

each i, A ⊑dso
i A′ and ti ≤ t′i implies argmaxA Π(x; ti, t−i) ⊑

dso
i argmaxA′ Π(x; t′i, t−i).

Example 5 (Emissions Standards). Consider the emissions standards model in

Montero (2002) and Bruneau (2004). A firm is producing an output q ≥ 0 that causes pol-

lution. It is subject to an emissions ceiling e > 0 and can produce produce more by engag-

ing in costly abatement a ≥ 0. The firm’s payoff is given by π(q, a; k) = p ·q−c(q)−kc(a).

Here, revenue is p · q, cost of output, c(q) is assumed to be increasing and convex, as is

cost of abatement, c(a). The firm can consider technological progress k ≤ 1, measured

as a decrease in abatement cost to kc(a). It is easy to check that Π is supermodu-

lar in (q, a), Π is concave, and technological innovation (decrease in k, or increase in

−k) satisfies ∂2Π
∂(−k)∂q

= 0 and ∂2Π
∂(−k)∂a

≥ 0. Therefore, an increase in technological in-

16The same result holds for minimum production quotas; constraints sets of the form A(k) =

{(x1, y) | α1x1 + α2y ≥ k}, where α1 and α2 are arbitrary positive constants. In this case as well,

k ≤ k′ ⇒ A(k) ⊑dso A(k′).

30



novation, say (−k) ≤ (−k′) implies that argmaxAΠ(q, a; k) ⊑dso
a argmaxA Π(q, a; k′),

for arbitrary constraint set A. In particular, it holds for the emissions constraint set,

A(e) = {(q, a) | q − a = e}. Moreover, at optimum, an increase in a leads to an increase

in q, and therefore, increase in technological innovation increases both abatement and

output. This main result follows from an easy calculation on the objective function.

Example 6 (Discrete labor supply). Recent models of labor supply frequently

incorporate a discrete choice model, for example, Aaberge, Gagsvik, and Strøm (1995), van

Soest (1995), and Hoynes (1996). In order to work with integer data, these models consider

integer work-leisure choices. Let h denote hours worked and l denote hours of leisure.

Given total hours available T , the constraint set is B(T ) = {(h, l) ∈ Z+×Z+ | h+ l ≤ T}.

Using example 1-2, it is easy to check that T ≤ T ′ ⇒ B(T ) ⊑dso B(T ′). Preferences are

given by u(wh+ I, l) where w is wage rate and I is non-labor income, both exogenously

specified. Using our results, when preferences are supermodular and concave, both hours

worked and leisure hours are increasing in the time constraint T , even in a discrete choice

framework. In particular, for standard preferences such as Cobb-Douglas, CES, and their

increasing transformations, this result holds. Moreover, consider the utility from Hoynes

(1996), u(wh + I, l) = α1 ln(wh + I) + α2 ln(l) with α1, α2 > 0. In this case, the basic

h-single crossing property holds for parameters (w,−I), because ∂2u
∂(−I)∂h

= α1w
(wh+I)2

≥ 0,

∂2u
∂w∂h

= α1I
(wh+I)2

≥ 0, ∂2u
∂(−I)∂l

= 0, and ∂2u
∂w∂l

= 0. Consequently, optimal labor supply

increases when either wage rate goes up or non-labor income goes down. Notably, this

result holds for discrete choices and for an arbitrary compact constraint set.

Example 7 (Auctions with budget constraints). Auctions with budget con-

straints are common in practice (for example ad auctions run by Google and Yahoo,

Treasury auctions, and spectrum or electricity auctions), but less widely studied in the

auction theory literature (for some examples, confer Rothkopf (1977), Palfrey (1980), and

Dobzinski, Lavi, and Nisan (2012)). Consider an auction of N ≥ 2 indivisible items. A

bidder has exogenously specified valuation v = (v1, . . . , vN) for the N objects, and can

bid b = (b1, . . . , bN) subject to a resource constraint b1 + · · ·+ bN ≤ T . The probability
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of winning object i with bid bi is given by Fi(bi), where
∂Fi

∂bi
≥ 0. The expected payoff

from winning object i is ui(bi, vi)Fi(bi) and the expected payoff from losing is normalized

to 0. A bidder maximizes expected payoff u(b, v) =
∑N

i=1 ui(bi, vi)Fi(bi) subject to her

resource constraint. Suppose marginal utility for object i is increasing in vi (
∂ui

∂vi
≥ 0),

and bids and valuations are complementary ( ∂2ui

∂vi∂bi
≥ 0). To inquire into monotone com-

parative statics, suppose ui(bi, vi)Fi(bi) is concave in bi. In this case, expected payoff

is supermodular and concave in b, and therefore, the payoff-maximizing bid profile b is

(weakly) increasing in total resources T . In the two-item case, this holds for discrete

choice as well. Moreover, for an arbitrarily fixed item i, it is easy to compute that

∂2ui(bi,vi)Fi(bi)
∂vi∂bi

= ∂2ui

∂vi∂bi
Fi(bi) +

∂ui

∂vi

∂Fi

∂bi
≥ 0. Consequently, an increase in valuation of item i

increases its optimal bid (for an otherwise arbitrary constraint set).

4 Conclusion

This paper presents an extension of the theory of monotone comparative statics in differ-

ent directions in finite-dimensional Euclidean space. The new notions of i-single crossing

property and basic i-single crossing property are similar in spirit to the single-crossing

property in the standard theory of monotone comparative statics, both are ordinal prop-

erties, and both can be naturally specialized to related cardinal and differential properties.

The results here use more standard assumptions on the objective function, include param-

eters in the objective function, do not require the use of new binary relations or convex

domains, and include results in Quah (2007) as a special case. The results allow flexi-

bility to explore comparative statics with respect to the constraint set, with respect to

parameters in the objective function, or both. Moreover, the formulation here is easy to

apply in many applications.
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Appendix A. Relation to Quah (2007)

Quah (2007) uses different techniques based on new binary relations, denoted ∇λ
i and

∆λ
i , and convex sets. Using these binary relations, he defines a new set order, termed Ci-

flexible set order, and a new notion of Ci-quasisupermodular function. Some connections
to these ideas are explored here.

Let X be a convex sublattice of RN (that is, X is a sublattice that is also a convex
set), and i ∈ {1, 2, . . . , N}. For a, b ∈ X and λ ∈ [0, 1], let

a∆λ
i b =

{

a if ai ≤ bi
λb+ (1− λ)a ∧ b if ai > bi,

and a∇λ
i b =

{

b if ai ≤ bi
λa + (1− λ)a ∨ b if ai > bi.

Figure 5 shows the graphical intuition.
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Figure 5: Ci-flexible Set Order

When ai > bi, the set
{

a, a∆λ
i b, a∇

λ
i b, b

}

forms a “backward-bending” parallelogram,
as compared to the standard lattice theory rectangle formed by the set {a, a ∧ b, a ∨ b, b}.
The shape of this parallelogram varies with λ, ranging from the standard lattice theory
rectangle when λ = 0 to the degenerate line segment formed by {a, b} when λ = 1 .

The binary operations ∆λ
i ,∇

λ
i have some counter-intuitive properties when compared

to the standard lattice operations ∧,∨. For example, the relations ∆λ
i ,∇

λ
i are non-

commutative: suppose N = 2, i = 1, consider a = (1, 0), b = (0, 1), and λ = 1
2
. Then

a∆λ
i b = 1

2
b 6= b = b∆λ

i a, and a∇λ
i b = (1, 1

2
) 6= a = b∇λ

i a. Moreover, a∆λ
i b and a∇λ

i b

are not necessarily comparable in the underlying lattice order : suppose N = 2, i = 1, and
consider a = (1, 1) and b = (2, 0). Then for every λ ∈ [0, 1], a∆λ

i b = a 6≤ b = a∇λ
i b. It is

easy to see that additional classes of examples of these instances can be provided as well.

The binary relations ∆λ
i ,∇

λ
i are used to define the Ci-flexible set order and the notion

of a Ci-quasisupermodular function, as follows.

Let X be a convex sublattice of RN and i ∈ {1, 2, . . . , N}. For subsets A,B of X , A is
lower than B in the Ci-flexible set order , denoted A ⊑C

i B, if for every a ∈ A, b ∈ B,
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there is λ ∈ [0, 1] such that a∆λ
i b ∈ A and a∇λ

i b ∈ B. The Ci-flexible set order is flexible
in the sense that the choice of λ may vary for each a ∈ A and b ∈ B, and therefore, the
“backward bendedness” of the parallelogram may vary for each a ∈ A and b ∈ B. On
convex sublattices, the Ci-flexible set order is the same as the i-directional set order, as
shown next.

Proposition 4. Let X be a convex sublattice of RN , i ∈ {1, 2, . . . , N}, and A,B be subsets
of X. The following are equivalent.
(1) A is lower than B in the Ci-flexible set order (A ⊑C

i B).
(2) A is lower than B in the i-directional set order (A ⊑dso

i B).

Proof. Suppose A ⊑C
i B. Fix a ∈ A, b ∈ B, and suppose ai > bi. Let λ ∈ [0, 1] be such

that a∆λ
i b ∈ A and a∇1−t

i b ∈ B. Let t = 1 − λ ∈ [0, 1]. Then b− v = b − t(b − a ∧ b) =
(1−t)b+t(a∧b) = a∆1−t

i b ∈ A, and a+v = a+t(a∨b−a) = (1−t)a+t(a∨b) = a∇1−t
i b ∈ B,

as desired.

In the other direction, suppose A ⊑dso
i B. Fix a ∈ A, b ∈ B. Suppose ai ≤ bi. Then

a∆1−t
i b = a ∈ A and a∇1−t

i b = b ∈ B, as desired. Suppose ai > bi. Let t ∈ [0, 1]
be such that v = t(b − a ∧ b) = t(a ∨ b − a) satisfies b − v ∈ A and a + v ∈ B.
Then for λ = 1 − t, a∆λ

i b = (1 − t)b + t(a ∧ b) = b − t(b − a ∧ b) = b − v ∈ A, and
a∇λ

i b = (1− t)a+ t(a ∨ b) = a+ t(a ∨ b− a) = a+ v ∈ B, as desired.

The i-directional set order may be viewed as reformulating the Ci-flexible set order
to work more closely with monotone methods. In particular, i-directional set order does
not invoke the binary relations ∆λ

i ,∇
λ
i , it does not require convex sets, and it uses the

standard properties of order and direction in R
N .

Let X be a convex sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}. The function
f is Ci-quasisupermodular , if for every a, b ∈ X and for every λ ∈ [0, 1], f(a) ≥ (>
) f(a∆λ

i b) ⇒ f(a∇λ
i b) ≥ (>) f(b). One of the main results in Quah (2007) is the following:

for every i ∈ {1, . . . , N}, argmaxA f is increasing in A in the Ci-flexible set order, if, and
only if, f is Ci-quasisupermodular.

Notice that the property Ci-quasisupermodular is symbolically similar to the notion of
a quasisupermodular function. Its interpretation is more complex for two reasons: first,
the use of the quantifier “for every λ ∈ [0, 1]” in the definition forces consideration of
the whole line segment joining a and a ∨ b and the whole line segment joining a ∧ b and
b, and essentially forces consideration of convex sets, and second, the interpretive issues
with using ∆λ

i ,∇
λ
i carry over to this definition.

The use of the quantifier “for every λ ∈ [0, 1]” in this definition is required by the
Ci-flexible set order. This can be seen as follows. Suppose we consider weakening the
definition of f is Ci-quasisupermodular by requiring it to hold for only some collection of
λ ∈ [0, 1], as follows. Let X be a convex sublattice of RN , f : X → R, i ∈ {1, 2, . . . , N},
and Λ be a nonempty subset of [0, 1]. The function f is (i,Λ)-quasisupermodular , if
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for every x, y in X , and every λ ∈ Λ, f(x) ≥ (>) f(x∆λ
i y) ⇒ f(x∆λ

i y) ≥ (>) f(y).
Notice that f is Ci-quasisupermodular is a special case of this definition, when Λ = [0, 1].

In order to characterize the type of monotone comparative statics possible with (i,Λ)-
quasisupermodular functions, consider the following set order. Let X be a convex sub-
lattice of RN , i ∈ {1, 2, . . . , N}, and Λ be a nonempty subset of [0, 1]. For subsets A,B

of X , A is (i,Λ)-lower than B, denoted A ⊑Λ
i B, if for every a ∈ A, for every b ∈ B,

there is λ ∈ Λ such that a∆λ
i b ∈ A and a∇λ

i b ∈ B. Notice that A is lower than B in
the Ci-flexible set order is a special case of this definition, when Λ = [0, 1]. Say that
a function f : X → R has (i,Λ)-increasing property , if for every A,B subset of X ,
A ⊑Λ

i B =⇒ argmaxA f ⊑Λ
i argmaxB f . We can prove the following result.

Proposition 5. Let X be a convex sublattice of RN , f : X → R, i ∈ {1, 2, . . . , N}, and
Λ be a nonempty subset of [0, 1].
f is (i,Λ)-quasisupermodular, if, and only if, f has (i,Λ)-increasing property.

Proof. (⇒) Suppose f is (i,Λ)-quasisupermodular. Fix A ⊑Λ
i B. Let a ∈ argmaxA f and

b ∈ argmaxB f . Notice that A ⊑λ
i B implies that there is λ ∈ Λ such that a∆λ

i b ∈ A and
a∇λ

i b ∈ B. Fix this λ. Thus a ∈ argmaxA f =⇒ f(a) ≥ f(a∆λ
i b) =⇒ f(a∇λ

i b) ≥ f(b),
where the last implication follows from (i,Λ)-quasisupermodularity of f . Moreover, as
b ∈ argmaxB f , it follows that f(a∇λ

i b) = f(b), whence a∇λ
i b ∈ argmaxB f . Furthermore,

f(a∇λ
i b) = f(b) =⇒ f(a∇λ

i b) 6> f(b) =⇒ f(a) ≤ f(a∆λ
i b), where the last implication

follows from (i,Λ)-quasisupermodularity of f . As a ∈ argmaxA f , it follows that f(a) =
f(a∆λ

i b), whence a∆λ
i b ∈ argmaxA f , as desired.

(⇐) Considering the contrapositive, suppose f is not (i,Λ)-quasisupermodular. Then
there exists λ ∈ Λ, and there exist a, b in X , such that either (1) f(a) ≥ f(a∆λ

i b) and
f(a∇λ

i b) < f(b), or (2) f(a) > f(a∆λ
i b) and f(a∇λ

i b) ≤ f(b). Notice that in either
case, it must be that ai > bi. Therefore, a∇λ

i b 6= b, a∆λ
i b 6= a, and a∆λ

i b 6= a∇λ
i b.

Let C =
{

a, a∆λ
i b
}

and C ′ =
{

b, a∇λ
i b
}

. Then C ⊑Λ
i C ′. Suppose (1) is true. Then

a ∈ argmaxC f and y = argmaxC′ f , but for every λ′ ∈ Λ, a∇λ′

i b 6∈ argmaxC′ f , because
ai > bi implies that for every λ′ ∈ [0, 1], a∇λ′

i b 6= b. Therefore, f does not have (i,Λ)-
increasing property (for C ⊑λ

i C ′). Suppose (2) is true. Then a = argmaxC f and
b ∈ argmaxC′ f , but for every λ′ ∈ Λ, a∆λ′

i b 6∈ argmaxC f , because ai > bi implies that
for every λ′ ∈ [0, 1], a∆λ′

i b 6= b. Again, f does not have (i,Λ)-increasing property.

The result in Quah (2007) is a special case of this result, when Λ = [0, 1]. The result
here shows that if we want to weaken the notion of a Ci-quasisupermodular function by
requiring the condition to hold for fewer λ, then we must make the comparability of the
set order more restrictive (that is, fewer sets can be ordered) by requiring less flexibility in
the choice of λ as well. To say this differently, if we want a monotone comparative statics
result applicable to a larger collection of constraint sets, we can expand the collection
of sets that can be ordered by allowing the greatest flexibility in choosing λ, by setting
Λ = [0, 1]. (This gives us the Ci-flexible set order.) In this case, characterizing monotone

38



comparative static requires imposing the strictest conditions on the objective function by
requiring Λ = [0, 1]. In particular, for every a and b, we are forced to consider the whole
line segment joining a and a ∨ b and the whole line segment joining a ∧ b and b, and we
are essentially forced to consider convex sets.

One way to think about theorem 1 is that it presents monotone comparative statics in
the Ci-flexible set order but with new conditions on objective functions that do not force
a restriction to convex sets. Moreover, these new conditions on the objective functions
(i-quasisupermodular and i-single crossing property) are closer in flavor to the standard
assumptions in the theory of monotone comparative statics, they do not use the relations
∆λ

i ,∇
λ
i , and they work with the natural order and direction in R

N . Furthermore, they
can be naturally specialized to cardinal and differential conditions.
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Appendix B. Some Proofs

One set of conditions under which sets can be ordered in the i-directional set order is as
follows. Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}. The function f

is i-quasisubmodular on X , if for every a, b ∈ X with ai > bi, f(a) ≤ (<) f(a∧ b) =⇒
f(a ∨ b) ≤ (<) f(b). The function f satisfies dual i-single crossing property on X ,
if for every a, b ∈ X with ai > bi, and for every v ∈ {s(b− a∧ b) | s ∈ R, s ≥ 0} such that
a+ v, b+ v ∈ X , f(a) ≤ (<) f(b) =⇒ f(a+ v) ≤ (<) f(b+ v).

Proposition 6. Let X be a convex sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}.
If f is continuous, (weakly) increasing, i-quasisubmodular, and satisfies dual i-single cross-
ing on X, then τ ≤ τ ′ =⇒ {x | f(x) ≤ τ} ⊑dso

i {x | f(x) ≤ τ ′}.

Proof. Let τ ≤ τ ′, A = {x | f(x) ≤ τ}, B = {x | f(x) ≤ τ ′}, and suppose a ∈ A, b ∈ B

with ai > bi. As case 1, suppose f(b) ≤ τ . In this case, let v = 0. Then b−v = b ∈ A and
f(a) ≤ τ ≤ τ ′ implies that a+v = a ∈ B. As case 2, suppose f(b) > τ . Then f is (weakly)
increasing implies that f(a ∧ b) ≤ f(a) ≤ τ . For s ∈ [0, 1], consider v(s) = s(b − a ∧ b).
Then s = 0 implies f(b − v(s)) > τ and s = 1 implies f(b − v(s)) ≤ τ . By continuity,
there is ŝ ∈ (0, 1] such that f(b − v(ŝ)) = τ . Set v̂ = ŝ(b − a ∧ b). Then b − v̂ ∈ A and
f(b − v̂) ≥ f(a). As subcase 1, suppose ŝ = 1. Then f(a ∧ b) = f(b − v̂) ≥ f(a) and
i-quasisubmodularity implies that f(b) ≥ f(a∨b), whence a+1(a∨b−a) ∈ B. As subcase
2, suppose ŝ ∈ (0, 1). Applying dual i-single crossing to vectors to a and b− v̂, with the
directional vector w = ŝ

1−ŝ
[(b− v̂)− a ∧ (b− v̂)] implies f(b − v̂ + w) ≥ f(a + w). But

notice that v̂ = ŝ(b− a ∧ b) = ŝ [(b− v̂)− a ∧ b] + ŝv̂ = ŝ [(b− v̂)− a ∧ (b− v̂)] + ŝv̂, and
therefore, v̂ = ŝ

1−ŝ
[(b− v̂)− a ∧ (b− v̂)] = w. In other words, f(b) ≥ f(a + v̂), whence

a+ v̂ ∈ B.

It is easy to check that for given prices p ≫ 0, the function φ : X → R, φ(x) = p · x
satisfies these conditions. This provides another proof that with respect to wealth w,
Walrasian budgets sets are ordered in the i-directional set order.

To show the equivalence of i-increasing differences (u) onX and i-increasing differences
(*) on X , consider first the following slight modification of i-increasing differences (u)
on X . Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}. f satisfies
i-increasing differences (σu), if for every b ∈ X, u ∈ R

N with ui > 0, for every
σ, s ≥ 0, such that b + σu, b + s(−u)+, b + σu + s(−u)+ ∈ X , f(b + σu) − f(b) ≤
f(b+ σu+ s(−u)+)− f(b+ s(−u)+). Consider the following equivalence.

Lemma 1. Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}.
f satisfies i-increasing differences (u) on X, if, and only if, f satisfies i-increasing dif-
ferences (σu) on X.

Proof. For sufficiency, fix b ∈ X , u ∈ R
N with ui > 0, and fix σ, s ≥ 0. If σ = 0, we are

done, because left-hand side and right-hand side of the condition are both zero. Suppose
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σ > 0. Let û = σu and ŝ = s
σ
≥ 0. Then ûi > 0 and ŝ(−û+) = s(−u)+, and therefore,

f(b+ σu)− f(b) = f(b+ û)− f(b)
≤ f(b+ û+ ŝ(−û)+)− f(b+ ŝ(−û)+)
= f(b+ σu+ s(−u)+)− f(b+ s(−u)+),

as desired. For necessity, let σ = 1.

Now recall that f satisfies i-increasing differences (*) on X , if for every b ∈ X, u ∈ R
N

with ui > 0, for every σ ≥ 0, f(b+ σu+ s(−u)+)− f(b+ s(−u)+) is (weakly) increasing
in s, (where we consider only points b + σu + s(−u)+, b + s(−u)+ ∈ X). Consider the
following equivalence.

Lemma 2. Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N}.
f satisfies i-increasing differences (σu) on X, if, and only if, f satisfies i-increasing
differences (*) on X.

Proof. Suppose f satisfies i-increasing differences (σu) on X . To check for i-increasing
differences (*) on X , fix b ∈ X, u ∈ R

N with ui > 0, and σ ≥ 0. Fix s1 ≤ s2. If σ = 0, we
are done, because the expression is 0 for all s. Suppose σ > 0. Let b̂ = b + s1(−u)+ and
ŝ = s2 − s1 ≥ 0. Then

f(b+ σu+ s1(−u)+)− f(b+ s1(−u)+)

= f(b̂+ σu)− f(b̂)

≤ f(b̂+ σu+ ŝ(−u)+)− f(b̂+ ŝ(−u)+)
= f(b+ σu+ s1(−u)+ + (s2 − s1)(−u)+)− f(b+ s1(−u)+ + (s2 − s1)(−u)+)
= f(b+ σu+ s2(−u)+)− f(b+ s2(−u)+),

as desired.

Suppose f satisfies i-increasing differences (*) on X . To check that f satisfies i-
increasing differences (σu) on X , fix b ∈ X, u ∈ R

N with ui > 0, and fix σ, s ≥ 0. Let
s1 = 0. Then s1 ≤ s, and therefore, f(b + σu) − f(b) = f(b + σu + s1(−u)+) − f(b +
s1(−u)+) ≤ f(b+ σu+ s(−u)+)− f(b+ s(−u)+), as desired.

These lemmas imply the equivalence of i-increasing differences (u) onX and i-increasing
differences (*) on X , as desired.
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