
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. IMAGING SCIENCES c© 2011 Society for Industrial and Applied Mathematics
Vol. 4, No. 1, pp. 57–78

Directional Multiscale Amplitude and Phase Decomposition by the Monogenic
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Abstract. We reconsider the continuous curvelet transform from a signal processing point of view. We show
that the analyzing elements of the curvelet transform, the curvelets, can be understood as analytic
signals in the sense of the partial Hilbert transform. We then generalize the usual curvelets by the
monogenic curvelets, which are analytic signals in the sense of the Riesz transform. They yield a new
transform, called the monogenic curvelet transform. This transform has the useful property that it
behaves at the fine scales like the usual curvelet transform and at the coarse scales like the monogenic
wavelet transform. In particular, the new transform is highly anisotropic at the fine scales and yields
a well-interpretable amplitude/phase decomposition of the transform coefficients over all scales. We
illustrate the advantage of this new directional multiscale amplitude/phase decomposition for the
estimation of directional regularity.
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1. Introduction. Analytic wavelets are important in one-dimensional signal processing,
because they yield a meaningful multiscale decomposition of a signal into amplitude and
phase, where the amplitude has the interpretation of the envelope of the signal. This fact
is exploited for AM-demodulation, for instance [8]. In one dimension, analytic wavelets are
easily constructed by just taking a real wavelet ψ and adding the Hilbert transform of ψ as
an imaginary part.

However, the construction of two-dimensional analytic wavelets is not straightforward,
and several approaches have been made. Kingsbury constructed analytic wavelets by a sepa-
rable approach, called the dual tree complex wavelet transform [13]. These analytic wavelets
proved to be a powerful tool in many image processing applications such as denoising or image
rotation [13, 18]. However, the dual tree complex wavelet transform still has, as a separable
construction, an intrinsically one-dimensional character. Nonseparable wavelet constructions
are in general more flexible and better adapted to the two-dimensional structure of images. In
order to construct nonseparable analytic wavelets one has to generalize the Hilbert transform
to two dimensions. A straightforward construction is the partial Hilbert transform. Unfortu-
nately, the partial Hilbert transform is again some kind of separable construction; thus it has
several drawbacks, which we will point out in section 2.2.1.
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A more suitable nonseparable construction of analytic wavelets in two dimensions uses the
Riesz transform. These Riesz transform based analytic wavelets are called monogenic wavelets.
Several authors already use such monogenic wavelets in image processing [9, 16, 21], for
example, in applications such as AM/FM analysis [21] or descreening [9]. The mother wavelets
used in [9] and [21] are completely isotropic [9] or near-isotropic [21], and directionality is
imposed only by the Riesz transforms. However, the analysis of orientations is often an
important task in image processing, e.g., for edge detection and analysis. To gain higher
anisotropy, Unser and Van De Ville propose in [22] higher order Riesz transforms, which lead
to an approach similar to the steerable pyramid. Olhede and Metikas gain anisotropy by
a certain directional wavelet transform [16]. However, the degree of anisotropy of all three
approaches does not adapt to the scale, so the resolution of the orientations of the singularities
still has some uncertainty [4]. Using the words of [4], these wavelet transforms do not resolve
the so-called wavefront set, which is the set of singularities of a function along with their
(possibly multiple) orientations.

The continuous curvelet transform (CCT), proposed by Candès and Donoho in [4], resolves
the orientations of the singularities exactly, hence without any uncertainty. To use again the
words of [4], the curvelet transform does resolve the wavefront set. This is possible because
the curvelet transform increases the anisotropy of its analyzing elements—the curvelets—
as the scale decreases according to a parabolic scaling law. Thus, the curvelets have higher
directional selectivity at the fine scales. In order to construct a directional monogenic wavelet
transform, it seems natural to take the curvelet transform as a basis. We mention that the
curvelet transform is not the only such transform; a similar construction was proposed in [10],
for example. Interestingly, by construction the curvelets are already analytic wavelets in the
sense of the partial Hilbert transform. To overcome the problems that arise from the partial
Hilbert transform, we propose in this article monogenic curvelets and define the monogenic
curvelet transform (MCT). The new MCT unifies the advantages of the monogenic wavelet
transform and the excellent directional selectivity of the usual curvelet transform.

The article is organized as follows. First, we give an introduction to the analytic signal and
its generalizations to two dimensions, namely, the analytic signal in the sense of the Hilbert
transform and the monogenic signal. We show how they yield reasonable amplitude/phase
decompositions (section 2). We then identify the usual curvelets as analytic wavelets in the
sense of the Hilbert transform (section 3). In section 4 we construct new monogenic curvelets
and define the MCT. This is achieved by replacing the usual curvelets by the new monogenic
curvelets. We prove that the CCT and the MCT converge uniformly to each other at the
fine scales, and we illustrate the differences at the coarse scales (section 5). After a view on
the frame discretization in section 6, we present a possible application, namely, estimation of
regularity from the amplitude of the MCT coefficients.

1.1. Preliminaries and notation. Throughout this article we use (r, ω) for polar coordi-
nates in the frequency domain, and x = (x1, x2) and ξ = (ξ1, ξ2) for Cartesian coordinates in
the spatial domain and in the frequency domain, respectively. The space of real-valued square-
integrable functions is denoted by L2(Rn,R). Unless otherwise stated, all formulas hold in
the L2-sense, thus almost everywhere (a.e.). f is always a real-valued and square-integrable
function; thus f ∈ L2(Rn,R), where n = 1, 2. ρθ denotes a counterclockwise rotation in R2

by the angle θ with its matrix realization
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ρθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The translation by b ∈ R2 is denoted by τb. We denote the corresponding rotation and
translation operators with the same symbols, that is,

ρθf(x) := f(ρ−1
θ x) = f(ρ−θx),

τbf(x) := f(x− b).

The complex imaginary unit is denoted by the (italic) letter i. We denote the modulation by
eξ(x) := e2πi ξ·x and define the Fourier transform by

f̂(ξ) = Ff(ξ) =
∫
Rn

f(x)e−2πi ξ·x dx.

2. Analytic signal concepts. We give a brief introduction to the analytic signal in one
dimension and its generalizations to two dimensions. We will call every generalization of
the analytic signal to two dimensions an analytic signal as well. A short overview of ampli-
tude/phase decomposition by analytic signals is given at the end of the section.

2.1. The analytic signal in one dimension. Let H : L2 (R,R) → L2 (R,R) be the Hilbert
transform defined in the Fourier domain by

(2.1) Ĥf(s) = i sign (s) f̂(s).

Note thatHf is real-valued. Recall that we are in the L2-setting, so (2.1) has to be understood
a.e. Thus it does not matter how the sign-function is defined in 0.

A complex-valued function g : R → C whose imaginary part is the Hilbert transform of its
real part, that is, Im g = −H(Re g), is called an analytic signal. The function f − iHf is an
example of an analytic signal. In one-dimensional signal processing the analytic signal is used
to decompose a signal into amplitude and phase, or, loosely spoken, into a signal intensity and
a signal structure. We refer the reader to [8, 11, 12] for exhaustive discussions of the Hilbert
transform and its applications to one-dimensional signal processing.

2.2. The analytic signal in two dimensions. We now present two reasonable extensions
of the one-dimensional analytic signal to two dimensions, the Hilbert-analytic signal and the
monogenic signal. We will give evidence that the latter is preferable. As the underlying
concept of these extensions is the analytic signal, we also refer to both the Hilbert-analytic
signal and the monogenic signal by the more abstract name analytic signal.

2.2.1. The Hilbert-analytic signal. A straightforward extension to two dimensions is
achieved by letting the Hilbert transform operate on parallel lines which point towards a fixed
orientation θ. This extension is called partial Hilbert transform with respect to the angle θ [2],
defined in the Fourier domain for f ∈ L2(R2,R) by

Ĥθf(ξ) = i sign (cos(θ)ξ1 + sin(θ)ξ2) f̂(ξ).
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Figure 1. Fourier multipliers (imaginary parts) of partial Hilbert transform H0 (a) and Riesz transforms
R1 (b) and R2 (c). The origin of the coordinate system lies in the center of the images.

The Fourier multiplier of the Hilbert transform H0 is displayed in Figure 1(a). We call a
complex-valued function g : R2 → C an analytic signal in the sense of the partial Hilbert
transform (or Hilbert-analytic signal) if its imaginary part is the partial Hilbert transform
with respect to any angle θ of its real part, that is, Im g = −Hθ(Re g).

The Hilbert-analytic signal has two major drawbacks. The first is that the partial Hilbert
transform has a purely one-dimensional nature; thus, the Hilbert-analytic signal does not suf-
ficiently take into account the structure of true two-dimensional signals. The second problem
is the dependence on the angle θ. One encounters the problem of choosing a suitable angle
θ ∈ [0, 2π). Though there are functions f which allow only one sensible choice for θ, in general,
Hθ yields a different analytic signal of f for every different angle θ.

Let us illustrate another problem of the partial Hilbert transform concerning the decay
rate. Let f ∈ L2(R2,R) such that f̂ ∈ C∞ and such that f̂ is supported in a ring around the
origin; that is, supp f̂ = BR(0) \Br(0) with R > r > 0. As f̂ ∈ C∞, we get that f is of rapid
decay; that is, f ∈ o(|x|−m) for every m ∈ N. The application of the partial Hilbert transform

to f generates a step singularity in f̂ , so Ĥθf loses its differentiability, independently of the
choice of θ. Hence, Hθf is not of rapid decay any longer.

Later we will need the following properties of the partial Hilbert transform.

Lemma 2.1.

(1) The (unrotated) partial Hilbert transform H0 commutes with the translation operator
τb; that is,

τbH0f = H0τbf.

(2) Hθ can be interchanged with the rotation ρθ by the following intertwining relation:

ρθH0f = Hθρθf.

Proof.

(1) Using the modulations e−b(ξ) = e−2πi ξ·b, the statement follows from

F (τbH0f) (ξ) = Ĥ0f(ξ)e−b(ξ) = i sign(ξ)f̂(ξ)e−b(ξ) = i sign(ξ)τ̂bf(ξ) = F (H0τbf) (ξ).
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(2) We use the fact that the rotation commutes with the Fourier transform

F (ρθH0f) (ξ) = ρθĤ0f(ξ) = Ĥ0f(ρ
−1
θ ξ)

= Ĥ0f

((
cos(θ)ξ1 + sin(θ)ξ2
− sin(θ)ξ1 + cos(θ)ξ2

))
= i sign(cos(θ)ξ1 + sin(θ)ξ2)ρθf̂(ξ)

= F (Hθρθf) (ξ).

2.2.2. The monogenic signal. In order to overcome the aforementioned drawbacks, an-
other generalization of the analytic signal for two dimensions, which is called the monogenic
signal, was introduced in [7]. It is considered to be the proper generalization of the one-
dimensional-analytic signal for image processing [7] and has proved its usefulness in several
image processing applications [9, 21, 22]. The monogenic signal is based on the Riesz trans-
form. For f ∈ L2

(
R2,R

)
the Riesz transform with respect to the axis xν , ν = 1, 2, is defined

in the L2-sense by

(2.2) R̂νf(ξ) = i
ξν
|ξ| f̂(ξ).

Like f , Rνf is a real-valued L2-function, that is, Rν : L2
(
R2,R

) → L2
(
R2,R

)
; see [19].

The Fourier multipliers of the Riesz transforms are displayed in Figure 1(b)–(c). Unlike the
partial Hilbert transform, the Riesz transform does not depend on any orientation θ. Instead
we have two transforms R1f and R2f with respect to the fixed coordinate axes x1 and x2.
Consequently, a proper representation of the monogenic signal needs two imaginary parts,
one for R1f and one for R2f . Hence we have to switch from the complex numbers to a
hypercomplex algebra which possesses at least two algebraically independent imaginary units.
The classical choice for such a hypercomplex algebra are the quaternions

H := {h = a+ i b+ j c+ k d : a, b, c, d ∈ R} ,
which are an extension of the complex numbers with the three imaginary units i, j, and k. A
short description of the quaternions is given in Appendix A. Now we are able to define the
monogenic signal Mf by

Mf := f − iR1f − jR2f.

The monogenic operator M maps a real-valued function f to a quaternion-valued function
Mf ; hence M : L2(R2,R) → L2(R2,H).

We will later use the following important properties of the Riesz transform, which were
proved in [19].

Lemma 2.2. Let f ∈ L2(R2), ν = 1, 2, and let τb be the translation operator and ρθ the
rotation operator. Then the Riesz transforms satisfy the relations

τbRνf = Rντbf,

R1ρθf = cos(θ)ρθR1f + sin(θ)ρθR2f,

R2ρθf = − sin(θ)ρθR1f + cos(θ)ρθR2f.
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2.3. Amplitude/phase decomposition by analytic signals. We briefly introduce the no-
tion of amplitude and phase of the complex numbers and the quaternions in an exemplary
way. Deeper treatments of the subject can be found in [8, 9, 12]. To prevent differentiation
of cases we define an arcus tangens with two arguments by

atan2(b, a) := arg(a+ i b).

A complex number z = u + i v can be decomposed into an amplitude AC ∈ R+
0 , a phase

angle pC ∈ [0, π], and a phase orientation qC ∈ {−i, i}, that is,

(2.3) z = AC · eqC·pC ,

where AC = |z|, pC = atan2 (|Im z| ,Re z), and qC = i sign (Im z) = i Im z
|Im z| . The real part u is

recovered by
u = Re z = Re (AC · eqC·pC) = AC cos(pC).

Analogously to the complex decomposition, we define, for a quaternion h, amplitude by
AH = |h| and phase angle by pH = atan2 (|Imh| ,Reh). Note that the quaternionic phase
orientation qH = Im h

|Im h| is purely imaginary. Thus, a quaternion is decomposed as

(2.4) h = AH · eqH·pH,

and the real part is recovered by

a = Reh = Re (AH · eqH·pH) = AH cos(pH).

We omit the subscripts C or H in the following.
The most important advantage of analytic signals is that they provide a reasonable notion

of amplitude and phase of real-valued function f(x). Let us clarify first in which cases we con-
sider an amplitude/phase decomposition as reasonable. The amplitude function A(x) should
represent the signal intensity. A(x) should vary slowly, such that A(x) becomes insensitive
with respect to small shifts. The phase function p(x) should encode the oscillatory part of
f(x), which is the part that is sensitive to small shifts of the signal.

We first consider a naive amplitude/phase decomposition of a real-valued (thus nonana-
lytic) signal f : R → R, so

f(x) = |f(x)| sign f(x) = |f(x)| ei arg f(x) = A(x)eq(x)·p(x).

The amplitude boils down to the absolute value A(x) = |f(x)|, the phase angle p(x) =
arg f(x) ∈ {0, π} becomes a jump-function between 0 and π, and the phase direction qR(x) = i
remains constant. This approach obviously does not fulfill the expectations of an amplitude/
phase decomposition; for instance, the amplitude still contains oscillations (Figure 2(b)–(d)).

We now illustrate that the analytic signal, on the other hand, yields a reasonable ampli-
tude/phase decomposition. As the analytic signal f(x) − iHf(x) is a true complex-valued
function, we get according to (2.3) the decomposition

f(x)− iHf(x) = A(x)eq(x)·p(x).
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Figure 2. Oscillatory signal (a) and the real (second row) and analytic (third row) amplitude/phase de-
compositions. The real amplitude/phase decomposition mixes up the envelope and the oscillating part (b). In
contrast, the analytic amplitude/phase decomposition clearly separates the oscillation from the slowly varying
envelope (e)–(g). The thin dashed lines in (b) and (e) show the original function f .

The amplitude now has the interpretation of a slowly varying envelope, and the cosine of the
phase encodes the oscillation part of the signal (Figure 2(e)–(g)).

Analogous arguments hold for the analytic signal of a two-dimensional function f :
R2 → R. For the complex-valued Hilbert-analytic signal f(x) − iHθf(x), we can take the
same amplitude/phase decomposition of the one-dimensional case. For the quaternion-valued
monogenic signal Mf(x) = f(x)− iR1f(x)− jR2f(x), we have the slight difference that we
need the quaternionic amplitude/phase decomposition according to (2.4). Examples of the
monogenic amplitude/phase decomposition will be given in section 5.

3. The curvelet transform as analytic signal. We first recall the definition of the contin-
uous curvelet transform (CCT) as proposed in [4]. We then prove that the curvelets are by
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construction analytic signals in the sense of the partial Hilbert transform.

3.1. The usual continuous curvelet transform (CCT). LetW : R+
0 → R+

0 be a compactly
supported radial window function and V : R → R+

0 be a compactly supported angular window
function satisfying the admissibility conditions

(3.1)

∫ ∞

0
W (ar)2

1

a
da = 1 ∀r > 0

and

(3.2)

∫ 1

−1
V (u)2 du = 1.

Examples of admissible windows W and V are given in [14]. Let a ∈ R+, b ∈ R2, and
θ ∈ [0, 2π). Recall that (r, ω) denote polar coordinates in the frequency domain. A curvelet
γabθ is defined by

γabθ(x) = γa00(ρθ(x− b)) = ρ−θτbγa00(x),

where ρθ is a rotation as defined in section 1.1 and γa00 is defined by its Fourier transform

(3.3) γ̂a00(r, ω) = a3/4W (ar)V

(
ω√
a

)
.

The angular windowing is well defined only for scales a smaller than a fixed scale α0 [4]. Thus
for the coarser scales a ≥ α0 the transform is continued by a purely radial window

(3.4) γ̂a00(r, ω) = a
W (ar)√

π
.

The CCT Γf of a function f is defined by

(3.5) Γf :

{
R+ ×R2 × [0, 2π) → C,

(a, b, θ) �→ 〈γabθ, f〉 .
Note that γabθ is complex-valued for a < α0 and real-valued for a ≥ α0.

3.2. Interpretation of curvelets as Hilbert-analytic signals. We show that γabθ is by
construction a Hilbert-analytic signal for a < α0. To this end, we define the real-valued
function βa00 by symmetrizing γ̂a00 with respect to the origin in the Fourier domain

β̂a00(ξ1, ξ2) :=
1

2
(γ̂a00(ξ1, ξ2) + γ̂a00(−ξ1,−ξ2)).

Now the simple calculation (omitting the subscripts)

γ̂(ξ1, ξ2) = β̂(ξ1, ξ2)− i (i sign(ξ1)β̂(ξ1, ξ2)) = β̂(ξ1, ξ2)− i Ĥ0β(ξ1, ξ2)

yields γa00 = βa00− iH0βa00. By the translation invariance and the rotation covariance of the
partial Hilbert transform (Lemma 2.1), we get that γabθ is a Hilbert-analytic signal; that is,

(3.6) γabθ = Re γabθ + i Im γabθ = βabθ − iH−θβabθ.
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Figure 3. Comparison of the atoms of the CCT and the MCT at a fine scale. There is no visible difference
between H0βa00 and R1βa00. Note that the values of R2βa00(x) are one order of magnitude smaller than those
of R1βa00.
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Figure 4. Comparison of the atoms of the CCT and the MCT at a coarse scale. The partial Hilbert
transform is not sensible for these isotropic functions, so the usual curvelets are not analytic wavelets at the
coarse scales. The Riesz transform, on the other hand, is applicable to isotropic functions as well, so the
monogenic curvelets are analytic wavelets at the coarse scales.

Candès and Donoho considered real-valued curvelets in [6] but without establishing this con-
nection to the complex-valued curvelets.

From now on we refer to the usual curvelet transform also as the Hilbert-analytic curvelet
transform. We call βabθ real(-valued) curvelets. Examples of the usual curvelets for a fine scale
can be found in Figure 3 and for a coarse scale in Figure 4.

4. The monogenic curvelet transform (MCT). In the last two sections we introduced
the necessary tools to define the new MCT. In section 2.2.2 we stated that the proper gen-
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eralization of the one-dimensional analytic signal is not the Hilbert-analytic signal but the
monogenic signal. This motivates us to replace the usual curvelets γabθ, which we identified as
Hilbert-analytic wavelets, by monogenic curvelets Mβabθ. We construct monogenic curvelets
by applying the monogenic signal to the real-valued curvelets βabθ as defined in section 3, thus
adding the Riesz transforms as imaginary parts:

Mβabθ := M(βabθ) = βabθ − iR1(βabθ)− jR2(βabθ).

Illustrations of some monogenic curvelets can be found in Figure 3 for a fine scale monogenic
curvelet and in Figure 4 for a coarse scale monogenic curvelet. The monogenic curvelets yield
a new quaternion-valued transform, which we call monogenic curvelet transform (MCT). We
define the MCT Mf by

(4.1) Mf :

{
R+ × R2 × [0, 2π) → H,

(a, b, θ) �→ 〈Mβabθ, f〉 ,

where

〈Mβabθ, f〉 = 〈βabθ, f〉+ i 〈R1(βabθ), f〉+ j 〈R2(βabθ), f〉 .

Remark 4.1. For the definition of Mf we do not require that f ∈ L2(R2). We require only
that f be a tempered distribution, because βabθ and Rνβabθ ∈ S(R2).

Like the CCT [5], the MCT has a reproducing formula and a Parseval formula.

Theorem 4.1. Let f ∈ L2(R2,R). The monogenic curvelets have a Calderón-like reproduc-
ing formula

(4.2) Mf(x) =

∫
〈Mβabθ, f〉Mβabθ(x) db dθ da/a

3

a.e. and a Parseval formula

(4.3) ‖f‖22 =
∫

|Mf (a, b, θ)|2 db dθ da/a3.

The proof of Theorem 4.1 is similar to the proof in [5] and is given in Appendix B.

5. Comparison of the MCT and the CCT. The goal of this section is to point out the
differences and similarities between the CCT and the MCT. To this end, we first compare
the function plots of the usual curvelets and the monogenic curvelets. At the fine scales,
one immediately recognizes the similarities between the imaginary part of γa00 and R1βa00
(Figure 3). At the coarse scales, on the other hand, there is a big difference, because γa00
lacks an imaginary part for a ≥ α0 (Figure 4). In Figure 5, the amplitudes and phases of the
CCT and the MCT are compared.

5.1. Uniform convergence of MCT and CCT at fine scales. The MCT is quaternion-
valued, whereas the CCT is complex-valued; hence they cannot be compared per se. To
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Figure 5. Comparison of amplitude and phase responses of the filters in Figures 3 and 4. There is no
visible difference at the fine scale between CCT and MCT. At the coarse scale the CCT-amplitude oscillates
and the CCT-phase is discontinuous, whereas the MCT-amplitude decays monotonously and the MCT-phase is
smoother.

make them comparable, we isometrically embed the complex values of the curvelets into the
quaternions. We define the embedded curvelets γ̃abθ by

γ̃abθ := Re γabθ + i cos(−θ) Im γabθ + j sin(−θ) Im γabθ

= βabθ + i cos(−θ)H−θβabθ + j sin(−θ)H−θβabθ

= βabθ + i cos(θ)H−θβabθ − j sin(θ)H−θβabθ.(5.1)

The corresponding embedding of the curvelet coefficients is denoted by

Γ̃f (a, b, θ) = 〈γ̃abθ, f〉 .

The canonical embedding C → H, a + i b �→ a + i b is not suitable here, because it is not
compatible with the rotations in this setting. With the embedding (5.1) we are able to prove
the uniform convergence of the CCT and the MCT (Corollary 5.4). To this end, we need some
preliminary lemmas.

Lemma 5.1. Let Ωa = ([− 2
a ,− 1

2a ]∪ [ 1
2a ,

2
a ])× [−√

a,
√
a] and βa00 be a real curvelet at scale

a, where 0 < a < α0. Then the following statements hold:
(1) The support of β̂a00 lies in the rectangle Ωa; that is, supp β̂a00 ⊂ Ωa.
(2) The measure of supp β̂a00 has the upper bound μ(supp(β̂a00)) ≤ μ(Ωa) = 6a−1/2, where

μ denotes the Lebesgue measure.
(3)

∥∥β̂a00∥∥∞ = a3/4 · CW,V with a constant CW,V depending only on the choice of the
window functions W and V .

(4) For all ξ ∈ Ωa we have the inequalities

|ξ2|
|ξ| ≤ 2a3/2
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and ∣∣∣∣sign(ξ1)− ξ1
|ξ|
∣∣∣∣ ≤ 2a3/2,

which are related to the Fourier multiplier of the Riesz transform.
Proof.
(1) The statement holds by construction of β̂a00.
(2) μ(Ωa) = 2( 2a − 1

2a)(2
√
a) = 4( 4

2a − 1
2a)

√
a = 4 3

2a

√
a = 6a−1a1/2 = 6a−1/2.

(3) ∥∥∥β̂a00∥∥∥∞ = sup
(r,ω)∈R+×[−1,1]

a3/4W (r)V (ω) = a3/4 sup
r∈R+

W (r) sup
ω∈[−1,1]

V (ω).︸ ︷︷ ︸
=:CW,V

(4) The first inequality follows from |ξ2| ≤
√
a and |ξ| ≥ 1

2a . For the second we have
|ξ| − |ξ1| ≤ |ξ1|+ |ξ2| − |ξ1| = |ξ2| =

√
a; thus it follows that∣∣∣∣sign ξ1 − ξ1

|ξ|
∣∣∣∣ = ∣∣∣∣sign ξ1 |ξ| − ξ1

|ξ|
∣∣∣∣ = ∣∣∣∣ |ξ| − |ξ1|

|ξ|
∣∣∣∣ ≤ √

a
1
2a

= 2a3/2.

Lemma 5.2. Let 0 < a < α0, b ∈ R2, and θ ∈ [0, 2π). For the L2-distance of the embedded
curvelets γ̃abθ and the monogenic curvelets Mβabθ, there holds the equation

‖γ̃abθ −Mβabθ‖22 = ‖H0βa00 −R1βa00‖22 + ‖R2βa00‖22 .

Proof. First we calculate

‖γ̃abθ −Mβabθ‖22 = ‖βabθ + i cos(θ)H−θβabθ − j sin(θ)H−θβabθ − βabθ − iR1βabθ + jR2βabθ‖22
= ‖i (cos(θ)H−θβabθ −R1βabθ) + j (− sin(θ)H−θβabθ −R2βabθ)‖22
= ‖cos(θ)H−θβabθ −R1βabθ‖22 + ‖sin(θ)H−θβabθ +R2βabθ‖22 .

We compute for the first term using Lemmas 2.1 and 2.2

‖cos(θ)H−θβabθ −R1βabθ‖22 = ‖cos(θ)H−θρ−θβab0 −R1ρ−θβab0‖22
= ‖cos(θ)ρ−θH0βab0 − cos(−θ)ρ−θR1βab0 + sin(−θ)ρ−θR2βab0‖22
= ‖ρ−θ[cos(θ)(H0βab0 −R1βab0)− sin(θ)R2βab0]‖22
= ‖cos(θ)(H0βab0 −R1βab0)− sin(θ)R2βab0‖22 ,

and analogously for the second term

‖sin(θ)H−θβabθ +R2βabθ‖22 = ‖sin(θ)H−θρ−θβab0 +R2ρ−θβab0‖22
= ‖sin(θ)ρ−θH0βab0 + sin(−θ)ρ−θR1βab0 + cos(−θ)ρ−θR2βab0‖22
= ‖ρ−θ[sin(θ)(H0βab0 −R1βab0) + cos(θ)R2βab0]‖22
= ‖sin(θ)(H0βab0 −R1βab0) + cos(θ)R2βab0‖22 .
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Putting both terms together, we get

‖cos(θ)(H0βab0 −R1βab0)− sin(θ)R2βab0‖22 + ‖sin(θ)(H0βab0 −R1βab0) + cos(θ)R2βab0‖22
=

∫
R2

(cos(θ)(H0βab0(x)−R1βab0(x)) − sin(θ)R2βab0(x))
2 +

(sin(θ)(H0βab0(x)−R1βab0(x)) + cos(θ)R2βab0(x))
2 dx

=

∫
R2

(H0βab0(x)−R1βab0(x))
2 +R2βab0(x)

2 dx

= ‖H0βab0 −R1βab0‖22 + ‖R2βab0‖22 ,

where the penultimate equation follows from the trigonometric identity

(cos(θ)u− sin(θ)v)2 + (sin(θ)u+ cos(θ)v)2 = u2 + v2.

Now the claim follows because both the Hilbert transform and the Riesz transform commute
by Lemmas 2.1 and 2.2 with the translations; that is,

‖H0βab0 −R1βab0‖22 + ‖R2βab0‖22 = ‖H0βa00 −R1βa00‖22 + ‖R2βa00‖22 .

Theorem 5.3. For every b ∈ R2, every θ ∈ [0, 2π), and every 0 < a < α0 it holds that

‖γ̃abθ −Mβabθ‖2 ≤ a24
√
3CW,V ,

with a constant CW,V depending only on the choice of the window functions W and V .

Proof. From Lemma 5.2, we get

(5.2) ‖γ̃abθ(x)−Mβabθ(x)‖22 = ‖H0βa00 −R1βa00‖22 + ‖R2βa00‖22 .

Now we estimate upper bounds for the terms in (5.2), so applying the Plancherel equation
and using Lemma 5.1 we get

‖H0βa00 −R1βa00‖22 = ‖F(R1βa00 −H0βa00)‖22
=
∥∥∥R̂1βa00 − Ĥ0βa00

∥∥∥2
2

=

∫
R2

∣∣∣∣i ξ1|ξ| β̂a00(ξ)− i sign ξ1β̂a00(ξ)

∣∣∣∣2 dξ
=

∫
R2

(
ξ1
|ξ| − sign ξ1

)2

β̂a00(ξ)
2 dξ

≤ (2a3/2)2μ(supp(β̂a00))
∥∥∥β̂a00∥∥∥2∞

= 4a3μ(supp(β̂a00))
∥∥∥β̂a00∥∥∥2∞



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

70 MARTIN STORATH

and

‖R2βa00‖22 =
∥∥∥R̂1βa00

∥∥∥2
2

=

∫
R2

(
ξ2
|ξ|
)2

β̂a00(ξ)
2 dξ

≤ (2a3/2)2μ(supp(β̂a00))
∥∥∥β̂a00∥∥∥2∞

= 4a3μ(supp(β̂a00))
∥∥∥β̂a00∥∥∥2∞ .

Summing up both terms and applying Lemma 5.1 again, we get

‖γ̃abθ −Mβabθ‖2 =
√

‖H0βa00 −R1βa00‖22 + ‖R2βa00‖22
≤
√

8a3μ(supp(β̂a00))
∥∥∥β̂a00∥∥∥∞

≤
√

8a36a−1/2 a3/4CW,V

=
√
48a8/4 CW,V

= a24
√
3 CW,V ,

and the proof is complete.
Corollary 5.4. Let f ∈ L2(R2,R). The Hilbert-analytic curvelet coefficients and the mono-

genic curvelet coefficients converge to each other uniformly in b and θ for a → 0; more
precisely, ∣∣∣Γ̃f (a, b, θ)−Mf (a, b, θ)

∣∣∣ ≤ a24
√
3CW,V ‖f‖2 .

Proof. By virtue of the Cauchy–Schwarz inequality we get∣∣∣Γ̃f (a, b, θ)−Mf (a, b, θ)
∣∣∣ = |〈γ̃abθ, f〉 − 〈Mβabθ , f〉|
= |〈γ̃abθ −Mβabθ, f〉|
≤ ‖γ̃abθ −Mβabθ‖2 ‖f‖2
≤ a24

√
3CW,V ‖f‖2 .

Corollary 5.4 shows that the CCT and the MCT are essentially the same as the scale a
when the scale a is near 0. Thus the asymptotic estimates for a → 0 of the CCT in [4] hold
true for the MCT.

5.2. Coarse scale behavior of the MCT. We have seen that CCT and MCT are essentially
the same at the fine scales. At the coarse scales, in contrast, the transforms differ strongly.
The concept of the Hilbert-analytic signal is not applicable to the isotropic scales (see section
2.2.1). Thus, γabθ remains a purely real-valued function for a ≥ α0. Hence the amplitude
|γabθ| boils down to the absolute value of the real numbers. In analogy to the one-dimensional
example in Figure 2, the real absolute value |γabθ| oscillates and is nonsmooth, even though
γabθ is smooth (Figure 5, upper row).
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Table 1
Comparison between the monogenic wavelets, the usual curvelets, and the monogenic curvelets. Only the

monogenic curvelets possess both the high scale-adaptive directionality and a consistent concept of analytic
signal over all scales.

Anisotropy Analytic signal concept
Coarse scales Fine scales Coarse scales Fine scales

Isotropic monogenic
wavelets [9, 16]

low low monogenic monogenic

Curvelets [4] low high (scale-adaptive) — Hilbert-analytic

Monogenic curvelets low high (scale-adaptive) monogenic monogenic

The concept of the monogenic signal, on the other hand, can be applied to all scales, so
Mβabθ is an analytic signal also at the coarse scales a ≥ α0. Following the arguments of
section 2.3, |Mβabθ| can be interpreted as an envelope of βabθ. We observe that |Mβabθ| is
slowly varying and does not oscillate (Figure 5, upper row), whereas the oscillating part is
coded in the phase (Figure 5, bottom row)

We want to offer a remark about the connection of the MCT with other existing transforms.
Consider the case α0 = ∞. In that case, the angular windowing never applies, so the real parts
of the monogenic curvelets are purely isotropic functions. In that case the MCT boils down
to the isotropic monogenic wavelet transform of [16] or, after discretization, to the monogenic
wavelet frames of [9]. Table 1 depicts the connections we describe in this section.

6. Discretization and frames. We briefly recall the frame discretization of the CCT;
details can be found in [5]. The discretization of the MCT derives directly from there. Recall
that a family of functions {hi}i∈Z is called a tight frame for L2(Rn) if there is an A > 0 such
that for every h ∈ L2(Rn) there holds

(6.1) A ‖h‖22 =
∑
i∈Z

|〈hi, h〉|2 .

The usual curvelet family γabθ is discretized as follows. The continuous parameters a, b, and
θ are replaced by discrete samples, so we set

aj := 2−j , j ∈ Z,

ã
1/2
j :=

1

2
· 2−�j/2�,

θj,l :=
π

2
l · 2−�j/2�, where l = 0, . . . , Lj − 1 with Lj := 4 · 2�j/2�,

bj,lk1,k2 :=

{
ρθj,l(k1/2

j , k2/2
j/2) if j ≥ 0,

(k1/2
j , k2/2

j) else,

where (k1, k2) ∈ Z2. The discrete parameters sample the continuous parameters exactly only
at every other scale due to the construction of ãj [5]. The discrete curvelet frame is the family{

ϕj,k,l := ϕj,0,0(ρθj,l(· − bj,lk1,k2)) | l = 0, . . . , Lj − 1
}
j,k1,k2∈Z

,
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Figure 6. Schematic tiling of the frequency plane by the curvelet frame.

where

ϕ̂j,0,0(r, ω) =

⎧⎨⎩W (ajr)V
(

ω

πã
1/2
j

)
if j ≥ 0,

W (ajr) else.

The curvelet frame yields a tiling of the frequency plane according to the scheme in Figure 6.
Note that now W and V have to fulfill admissibility conditions that are slightly different

from those in the continuous case, namely,

∞∑
j=−∞

W (2jr)2 = 1 ∀ r ∈ (3/4, 3/2) ,

∞∑
l=−∞

V (t− l)2 = 1 ∀ t ∈ (−1/2, 1/2) .

We derive a frame of monogenic curvelets Mψj,k,l in exactly the same fashion as we derived
the MCT from the usual curvelet transform in sections 3 and 4. We symmetrize the basic
element ϕ̂j,0,0 with respect to the origin by

ψ̂j,0,0(ξ1, ξ2) :=
1

2
(ϕ̂j,0,0(ξ1, ξ2) + ϕ̂j,0,0(−ξ1,−ξ2))

to get a tight frame of real-valued functions ψj,k,l [3]. Because of the symmetry it is sufficient

to discretize the angles in the range from [0, π), so we modify Lj to L̃j := 2 · 2�j/2�.
In [9, Theorem 5.1], Held et al. proved that the Riesz transforms maps a frame of real-

valued elements into a frame of quaternion-valued elements with the same frame bounds. So
it follows that{

Mψj,k,l = ψj,k,l + iR2ψj,k,l + jR2ψj,k,l | l = 0, . . . , L̃j − 1
}
j,k1,k2∈Z

is also a tight frame for L2(R2,R).
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7. Application: Estimation of regularity by decay rates of curvelet coefficients. Let us
switch for the moment from the special case of the CCT to continuous wavelet transforms Wf

in general. We assume that the wavelet transforms depend on the parameters a, b, and θ as the
curvelet transform does. The decay rate dθ,b of the wavelet coefficients Wf (a, b, θ) for a → 0
can be seen as a measure for the (Hölder-)regularity of a function f . (See [4, 15, 17, 23].) So
the regularity at a point b with respect to the orientation θ, denoted by dθ,b, can be estimated
from the relation

(7.1) |Wf (a, b, θ)| ∼ Cθ,b · adθ,b .
To exploit this characterization of regularity in practice, we have to estimate dθ,b from a
limited number of scales aj , j = 0, . . . , N . This can be done by wavelet coefficient regression,
which is a least squares approach after taking logarithms in (7.1) [1, Chapter 11].

To get a stable estimation of dθ,b, the amplitude |Wf (aj , b, θ)| must behave well for all
available scales aj. We pointed out in section 5 that the amplitude of the CCT oscillates at
the isotropic scales (Figure 5). This behavior leads to artifacts in the estimation of the decay
rates dθ,b. The MCT in contrast does not suffer from these artifacts (Figure 7).

From a theoretical point of view, only the limit aj → 0 matters for the estimation of regu-
larity. Thus we compute dθ,b from the finest scales aj, which are anisotropic for a sufficiently
small aj . However, there are cases where it makes sense to employ the isotropic scales as well
for the estimation. For example, if for some reason (e.g., runtime), the number of directions
at the finest scale is small, let us assume only four directions. Then we have only three an-
isotropic scales available (one scale with four directions and two scales with two directions).
Hence the anisotropic scales provide only three data points for the computation of dθ,b, which
is not sufficient for a robust estimation of dθ,b. The addition of further data points by using
the subsequent isotropic scales leads to a more robust estimation; see Figure 8.

8. Conclusion and outlook. We introduced the MCT, which is a new tool for directional
multiscale amplitude/phase decomposition. We took the usual curvelet transform with its
excellent directional selectivity and imposed the monogenic signal to add a sensible notion of
amplitude and phase to the curvelet coefficients for all scales. The uniform convergence of
the MCT to the CCT assures us that the MCT inherits the most important properties of the
CCT. A frame discretization was derived directly from the discretization of the usual curvelet
transform. We illustrated the advantages of the MCT over the CCT by the estimation of
directional regularity.

An extension to three-dimensional functions is more or less straightforward. We construct
a three-dimensional CCT analogously to the two-dimensional curvelet transform and impose
the Riesz transform in the same way as in the two-dimensional case. A discretized version
of a three-dimensional curvelet transform is presented in [24], for example. In the three-
dimensional case, we get a third imaginary part R3f . As the third imaginary unit of the
quaternions k is not algebraically independent of the others, that is, k = i j, we have to switch
to a hypercomplex algebra with three algebraically independent imaginary units.

Appendix A. The quaternions. The quaternions can be defined as a four-dimensional
R-vector space, whose basis, denoted by {1, i, j,k}, is a noncommutative algebra with the
properties i2 = j2 = k2 = −1 and k = i j = −j i. As for the complex numbers, a conjugation
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Figure 7. Estimation of the regularity by decay rates of curvelet coefficients. The upper image shows the
test image. The first two rows display the decay rates over two different orientations, that is, the functions
I(b1, b2) = dθ,(b1,b2) for θ = π/8 and θ = 5π/8. The bottom row shows the minimum of the decay rates, that is,
the function I(b1, b2) = infθ∈[0,2π) dθ,(b1,b2). As isotropic scales aj ≥ α0 are also considered for the estimation,
the unstable amplitude of the CCT at the isotropic scales results in artifacts (thin curved lines), whereas the
MCT does not suffer from this problem. Note that these artifacts do not occur if we take only the anisotropic
scales aj < α0 for the estimation of dθ,(b1,b2).
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usual curvelet transform using
all three anisotropic scales.

 

 

−2

−1

0

1

2

3

4

(b) Estimation of dπ/8,b by the
usual curvelet transform using all
three anisotropic scales and the
two subsequent isotropic scales.

 

 

0

1

2

3

4

(c) Estimation of dπ/8,b by the
MCT using all three anisotropic
scales and the two subsequent
isotropic scales.

Figure 8. Estimation of dπ/8,b by the curvelet transform with four directions at the finest scales. The
estimation by the usual curvelet transform (a) using only the anisotropic scales oscillates strongly. Using also
the subsequent two isotropic scales (b) results in artifacts as explained in Figure 7. The estimation by the MCT
using the anisotropic and two subsequent isotropic scales is much smoother than the result of (a) and does not
suffer from the artifacts of (b).

is defined by h = a+ i b+ j c+ k d = a − i b − j c − k d, and the absolute value is |h| =√
hh = |a+ i b+ j c+ k d| = √

a2 + b2 + c2 + d2. The real part is denoted by Reh = a and
the imaginary part by Imh = i b+ j c+ k d.1

Appendix B. Proof of Theorem 4.1. We need the following lemma.
Lemma B.1. Let f, g ∈ L2

(
R2,R

)
such that g � g � f ∈ L2

(
R2,R

)
. Then

F(Mg �Mg � f) = 2ĝ(ξ)2M̂f(ξ).

Proof. Recall that i j = −j i. The claim follows from

F (Mg �Mg � f) (ξ) = F (g − iR1g − jR2g) (ξ)F (g − iR1g − jR2g) (ξ)f̂(ξ)

=
(
ĝ(ξ)− i R̂1g(ξ)− j R̂2g(ξ)

)(
ĝ(ξ)− i R̂1g(ξ)− j R̂2g(ξ)

)
= ĝ(ξ)2f̂(ξ)

(
1− i i

ξ1
|ξ| − j i

ξ2
|ξ|
)(

1− i i
ξ1
|ξ| − j i

ξ2
|ξ|
)

= ĝ(ξ)2f̂(ξ)

(
1− i i

ξ1
|ξ| − j i

ξ2
|ξ| − i i

ξ1
|ξ| +

ξ21
|ξ|2 + i j i 2

ξ1ξ2

|ξ|2 − j i
ξ2
|ξ|

+ j i i 2
ξ1ξ2

|ξ|2 +
ξ22
|ξ|2
)

= ĝ(ξ)2f̂(ξ)

(
2− 2i i

ξ1
|ξ| − 2j i

ξ2
|ξ|
)

= 2ĝ(ξ)2
(
f̂(ξ) + i R̂1f(ξ) + j R̂2f(ξ)

)
= 2ĝ(ξ)2M̂f(ξ).

1Note the difference from a complex number z: Im z is real, whereas Imh is imaginary.
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Proof of Theorem 4.1. We mainly follow the argumentation of [5]. Let

gaθ(x) :=

∫
R2

〈Mβabθ , f〉Mβabθ(x) db

in L2(R2,R). We have to show

(B.1) Mf(x) =

∫ ∞

0

∫ 2π

0
gaθ(x) dθ da/a

3

in L2(R2,R). Let ˜ denote the reflection. As Mβabθ(x) = Mβa0θ(x− b), we have

gaθ(x) =

∫
R2

Mβa0θ(x− b)

(∫
R2

Mβa0θ(y − b)f(y) dy

)
db

=

∫
R2

Mβa0θ(x− b)
(
M̃βa0θ � f

)
(b) db

= Mβa0θ � M̃βa0θ � f(x)

= Mβa0θ �Mβa0θ � f(x),

because β̂a0θ is symmetric with respect to the origin and real-valued and hence M̃βa0θ(x) =
Mβa0θ(−x) = Mβa0θ(x). The preceding lemma yields

ĝaθ(x) = F(Mβa0θ �Mβa0θ � f)(ξ) = 2β̂a0θ(ξ)
2M̂f(ξ).

Plugging this into (B.1), we get

M̂f(ξ) =

∫ ∞

0

∫ 2π

0
ĝaθ(ξ) dθ da/a

3

= 2M̂f(ξ)

∫ ∞

0

∫ 2π

0
β̂a0θ(ξ)

2 dθ da/a3.

So it remains to show that

(B.2)

∫ ∞

0

∫ 2π

0
β̂a0θ(ξ)

2 dθ da/a3 = 1/2.

We split the integral into two parts:∫ ∞

0

∫ 2π

0
β̂a0θ(ξ)

2 dθ da/a3 =

∫ a0

0

∫ 2π

0
β̂a0θ(ξ)

2 dθ da/a3 +

∫ ∞

a0

∫ 2π

0
β̂a0θ(ξ)

2 dθ da/a3.

As β̂a0θ is defined in polar coordinates, we rewrite the equation via ξ = r(cosω, sinω) to get

β̂a0θ(ξ) =
1

2
W (ar)V

(
ω − θ√

a

)
a3/4;
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thus

(B.3)

∫ a0

0

∫ 2π

0
β̂a0θ(ξ)

2 dθ da/a3 =

∫ a0

0

∫ 2π

0

1

2
W (ar)2a3/2V

(
ω − θ√

a

)2

dθ da/a3.

The admissibility condition for V yields∫ 2π

0
V

(
ω − θ√

a

)2

dθ = a1/2.

So (B.3) reduces to
1

2

∫ a0

0
W (ar)2 da/a.

For the second part we have∫ ∞

a0

∫ 2π

0
β̂a0θ(ξ)

2 dθ da/a3 =

∫ ∞

a0

∫ 2π

0

1

4
W (ar)2

a2

π
dθ da/a3

=

∫ ∞

a0

1

2
W (ar)2 da/a ∀r = |ξ| with ξ ∈ supp f̂ .

After summing up the two integrals, we get from the admissibility condition

1

2

∫ ∞

0
W (ar)2 da/a =

1

2

∫ ∞

0
W (t)2

r

t
dt/r =

1

2

∫ ∞

0
W (t)2 dt/t =

1

2
,

which completes the proof of (4.2). Now we prove the Parseval formula. Writing the inner
product as a convolution and applying the Plancherel formula, we get∫

|〈Mβabθ, f〉|2 db dθ da/a3 =

∫ ∣∣(Mβa0θ � f)(b)
∣∣2 db dθ da/a3

=

∫ ∥∥(Mβa0θ � f)
∥∥2
2
db dθ da/a3

=

∫ ∥∥∥∥( ̂Mβa0θ f̂)

∥∥∥∥2
2

dθ da/a3

=

∫ ∣∣∣∣β̂a0θ(ξ)(1 + i i
ξ1
|ξ| + j i

ξ2
|ξ|
)∣∣∣∣2 ∣∣∣f̂(ξ)∣∣∣2 dξ dθ da/a3∫ ∣∣∣β̂a0θ(ξ)∣∣∣2

(√
1 +

ξ21
|ξ|2 +

ξ22
|ξ|2
)2 ∣∣∣f̂(ξ)∣∣∣2 dξ dθ da/a3

=

∫
2
∣∣∣β̂a0θ(ξ)∣∣∣2 ∣∣∣f̂(ξ)∣∣∣2 dξ dθ da/a3

= 2

∫ ∣∣∣f̂(ξ)∣∣∣2(∫ ∣∣∣β̂a0θ(ξ)∣∣∣2 dθ da/a3) dξ

= 2

∫ ∣∣∣f̂(ξ)∣∣∣2 1
2
dξ = ‖f‖22 ,

where the last line follows from (B.2).
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[1] P. Abry, P. Gonçalvès, and J. L. Véhel, eds., Scaling, Fractals and Wavelets, ISTE, London, Wiley,
Hoboken, NJ, 2009.
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