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Abstract. It is widely recognized that the performance of many image pro-

cessing algorithms can be significantly improved by applying multiscale image

representations with the ability to handle very efficiently directional and other

geometric features. Wavelets with composite dilations offer a flexible and espe-

cially effective framework for the construction of such representations. Unlike

traditional wavelets, this approach enables the construction of waveforms rang-

ing not only over various scales and locations but also over various orientations

and other orthogonal transformations. Several useful constructions are derived

from this approach, including the well-known shearlet representation and new

ones, introduced in this paper. In this work, we introduce and apply a novel

multiscale image decomposition algorithm for the efficient digital implementa-

tion of wavelets with composite dilations. Due to its ability to handle geomet-

ric features efficiently, our new image processing algorithms provide consistent

improvements upon competing state-of-the-art methods, as illustrated on a

number of image denoising and image enhancement demonstrations.

1. Introduction

It has become commonly understood that while 1D wavelets are optimal at ap-

proximating point singularities, their 2D separable counterparts are not equally

effective at approximating singularities along curves which model edges in images.

The need for directional filtering in order to improve multidimensional data process-

ing was early recognized, for example, in the works [1, 23, 41]. More recently, new
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generations of directional representations were developed which exhibit near opti-

mal approximations on the class of cartoon images. The most notable of these rep-

resentations are the curvelets [42, 8], the contourlets [13] and the shearlets [26, 34],

which are constructed by defining systems of analyzing waveforms ranging not only

at various scales and locations, like traditional wavelets, but also at various orien-

tations, with the number of orientations increasing at finer scales.

Within the context of improved multidimensional representations, the theory

of wavelets with composite dilations, originally developed in [26, 27, 28], is espe-

cially important. This framework is a generalization of the classical theory from

which traditional wavelets are derived, and it provides a very flexible setting for the

construction of many truly multidimensional variants of wavelets, such as the well

known construction of shearlets 1. Several additional sophisticated constructions

using this approach were obtained by Blanchard [4, 5], by Kryshtal and Blanchard

in a paper which exploits the connection with crystallographic groups [6], and by

Kryshtal et al. [32]. Furthermore, it was recently shown by two of the authors in [16]

that several recent filter bank constructions such as the hybrid wavelets of Eslami

and Rada [20, 21, 22] and the variants of the contourlets construction proposed

in [31, 45] can either be derived or are closely related to systems obtained from the

framework of wavelets with composite dilations.

These observations indicate the potential of wavelets with composite dilations

for the construction of directional multiscale representations going far beyond tra-

ditional wavelets with respect to their ability to represent geometric features. How-

ever, except for some very special cases, no satisfactory method for designing effi-

cient numerical implementations of wavelets with composite dilations was developed

so far, due to the difficulty of adapting the standard wavelet implementation al-

gorithms to this more general setting. The goal of this paper is to introduce a

1Even though the shearlet system is not exactly an example of wavelets with composite dila-
tions, it is closely related to this framework being defined as a union of two such systems [26, 34].
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new general procedure for the design of discrete multiscale transforms which takes

full advantage of the geometric features associated with the framework of wavelets

with composite dilations. Using this approach, we are able to design and implement

several new classes of directional discrete transforms and to obtain improved imple-

mentations of known ones. As will be illustrated in this paper, the newly derived

algorithms based on wavelets with composite dilations are highly competitive in

imaging applications such as denoising and enhancement.

Recall that, for tasks such as image denoising and enhancement, where the ob-

jective is to extract or emphasize certain image features, it is often beneficial to

use redundant representations. A standard method for designing nonsubsampled

directional representations is to use critically sampled transformations based on

2D directional filters that satisfies Bezout’s identity, as done in [12, 22]. As will

become clear below, this approach is frequently associated with filters that do not

faithfully match with the desired theoretical frequency decomposition. By contrast,

in this paper we introduce a novel filter bank construction technique that enables

the projection of the data directly onto the desired directionally-oriented frequency

subbands. A key new feature of our construction is the ability to generate the

transform coefficients by directly applying the action of the matrices associated

with the frequency plane decomposition. This is in contrast to earlier implementa-

tions such as the discrete shearlet transform in [17], which was designed to mimic

the desired frequency plane decomposition. Not only does our new approach follow

directly from the theoretical setting, but it also allows for more sophisticated com-

posite wavelet decompositions enabling a much finer handling of the geometry in

the data. As special cases of our approach, we obtain an improved implementation

of the shearlet transform and we introduce new hyperbolic composite wavelet trans-

form. This last transform has potentially high impact in deconvolution and other

image enhancement applications, as indicated by the novel decompositions sug-

gested in [10] and by the techniques for dealing with motion blur recently proposed
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in [19]. This is due to the special decomposition of the frequency plane associated

with this transform which provides a somewhat finer partition of the low-frequency

region vs. the high-frequency one.

Finally, we wish to mention the important work by Durand [15], who explores

a large family of (discrete) directional wavelets and derives their implementation

from a single nonseparable filter bank structure. With respect to our approach

which is continuous (i.e., we deal with functions in L2(R2)), the work of Durand is

purely discrete.

1.1. Paper Organization. The definition and basic properties of wavelets with

composite dilations, along with novel constructions are presented in Section 2. The

novel discrete implementations are discussed in Section 3. Numerical demonstra-

tions illustrating the performance of the new constructions for denoising and image

enhancement are presented in Section 4. Concluding remarks are given in Section 5.

2. Wavelets with composite dilations

Let us introduce the notation which will be used subsequently. Given τ ∈ R
n,

the translation operator Tτ on L2(Rn) is defined by

Tτ f(x) = f(x− τ), x ∈ R
n, f ∈ L2(Rn).

For a ∈ GLn(R) (where GLn(R) denotes the group of invertible matrices on R
n),

the dilation operator Da is given by

Da f(x) = | det a|−1/2 f(a−1x).

We adopt the convention that the points x ∈ R
n are column vectors and the points

ξ ∈ R̂
n (the Fourier domain) are row vectors. Hence a vector x ∈ R

n multiplying a

matrix a ∈ GLn(R) on the right is a column vector and a vector ξ ∈ R̂
n multiplying

a matrix a ∈ GLn(R) on the left is a row vector; that is, ax ∈ R
n and ξa ∈ R̂

n.

Notice that we will denote matrices as lower-case letters, and use capital letters to
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denote sets. The Fourier transform of f ∈ L2(Rn) is given by

f̂(ξ) =

∫

Rn

f(x) e−2πiξx dx,

where ξ ∈ R̂
n and the inverse Fourier transform is

f̌(x) =

∫

R̂n

f(ξ) e2πiξx dξ.

The standard wavelet systems generated by Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) and

A = {ai : i ∈ Z} are the collections of functions of the form

{Dj
a Tk ψm : j ∈ Z, k ∈ Z

n,m = 1, . . . , L},

which form a Parseval frame for L2(Rn). That is, for all f ∈ L2(Rn), we have:2

∥f∥2 =
∑

j∈Z

∑

k∈Zn

L∑

m=1

|⟨f,Dj
a Tk ψm⟩|2.

Note that the traditional wavelet systems are obtained with a = 2 I, where I is the

identity matrix. That is, the dilation factor is the same for all coordinate axes.

The wavelets with composite dilations [26] overcome the limitations of standard

wavelets in dealing with the geometry of multivariate functions by including a

second set of dilations. Namely, they have the form

AAB(Ψ) = {DaDb Tk Ψ : k ∈ Z
n, a ∈ A, b ∈ B},

where A, B are countable subsets ofGLn(R) and the matrices b ∈ B satisfy | det b| =

1. As for standard wavelet systems, Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) chosen so that

∥f∥2 =
∑

a∈A

∑

b∈B

∑

k∈Zn

L∑

m=1

|⟨f,DaDb Tkψm⟩|2,

2Recall that an orthonormal basis is a special case of a Parseval frame; however, the elements
of a Parseval frame need not be orthogonal.
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for any f ∈ L2(Rn). Usually, the matrices a ∈ A are expanding (but not necessarily

isotropic, as in the traditional wavelet case); the matrices b ∈ B, which are non-

expanding, are associated with rotations and other orthogonal transformations. As

a result, one can define systems of wavelets with composite dilations containing

elements that are “long and narrow” and range over many locations, scales, shapes

and directions. Building on this idea [26, 34], shearlets are able to provide a nearly

optimally sparse representation for a general class of images [24, 25].

The theory of wavelets with composite dilations extends nicely many of the

standard results of wavelet theory (see [26, 27, 28]) and, at the same time, it allows

for a much richer geometric structure. In particular, it is rather straightforward

to obtain the following simple conditions for the constructions of wavelets with

composite dilations in the case where the generator ψ is chosen such that ψ̂ = χS ,

where S ⊂ R
2 and χS denotes the characteristic function of S. We state the

theorem in dimension n = 2, but it holds in any dimension. Notice that, since the

set S is defined in the Fourier domain, matrices act on it from the right, according

to our general convention stated above.

Theorem 1 ([27]). Let A,B be subsets of GL2(R) and S ⊂ F ⊂ R
2. Suppose that

the following conditions hold:

(1) R̂
2 =

∪
k∈Z2(F + k),

(2) R̂
2 =

∪
a∈A,b∈B S (ab)−1,

where the unions are disjoint up to a set of measure zero. Then for ψ such that

ψ̂ = χS the system AAB(ψ) is a Parseval frame for L2(R2). If, in addition, ∥ψ∥ =

1, then AAB is an orthonormal basis for L2(R2).

Hince, similar to the wavelet case, AAB is Parseval frame if the collections of A-

and B-dilations of S form a tiling of the frequency plane.
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It is clear that the systems described in Theorem 1 are not well-localized in

the spatial domain, since their elements are characteristic functions of sets in the

frequency domain and, hence, have slow spatial decay. Wavelets with composite

dilations which are well-localized require ad hoc constructions such as the shearlets

in [24] or the constructions described in [16]. Some new well-localized constructions

will be introduced in this paper.

2.1. Some Constructions. In this section, we apply Theorem 1 to construct sev-

eral examples of wavelets with composite dilations for L2(R2). This is useful both

to illustrate the variety of possible constructions which can be derived from this ap-

proach, and to set the groundwork for new discrete multiscale transforms which will

be developed in Section 3. Note that Constructions 1-3 are not new (see [27, 28]),

and are included for comparison. As indicated below, Constructions 1-2 are formally

equivalent to systems recently introduced in the literature using ad hoc construc-

tions, but can be derived from the general framework of wavelets with composite

dilations. Construction 4 is new.

Sb1

Sb3

ξ2

Sb2

S

ξ1 ξ1

S

Sa

ξ2

Figure 1. Tiling of the frequency domain associated with a sys-
tem of wavelets with composite dilations, where a is the quincunx
dilation matrix and B is the group of symmetries of the square.

Notices that, since S ∈ R̂
2, the matrices a and bℓ acts on it from

the right, according to our convention.
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2.1.1. Construction 1. Let A = {aj : j ∈ Z} where a = ( 1 1
−1 1 ) (the quincunx ma-

trix) and letB be the group of symmetries of the square, that is, B = {±b0,±b1,±b2,±b3}

where b0 = ( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ), b3 = ( 0 −1

−1 0 ). Let ψ̂(ξ) = χS(ξ),

where the set S is the union of the triangles with vertices (1, 0), (2, 0), (1, 1) and

(−1, 0), (−2, 0), (−1,−1), which is illustrated in Figure 1. A direct calculation shows

that S satisfies the assumptions of Theorem 1, so that the system

AAB(ψ) = {Dj
aDb Tk ψ : j ∈ Z, b ∈ B, k ∈ Z

2}

is an orthonormal basis for L2(R2) (in fact, it is a Parseval frame and ∥ψ∥ = 1).

As noticed in [16], the frequency partition achieved by the Hybrid Quincunx

Wavelet Directional Transform (HQWDT) from [22] is a simple modification of

this construction, which is obtained by splitting each triangle of the set S into

2 smaller triangles. Another example, with the same matrices A and B, but a

different generating set S, is illustrated in Figure 2 on the left. For future labeling,

we will refer to this second construction concisely as the ab-star decomposition

alluding to its star-like frequency tiling and its composite wavelet origin.

2.1.2. Construction 2. Let A = {aj : j ∈ Z} where a = ( 2 0
0 2 ) and consider B =

{b0, b1, b2, b3} where b0 = ( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ), b3 = ( 0 −1

−1 0 ). Let R be the

union of the trapezoid with vertices (1, 0), (2, 0), (1, 1), (2, 2) and the symmetric one

with vertices (−1, 0), (−2, 0), (−1,−1), (−2,−2). Next, we partition each trapezoid

into right triangles Rm, m = 1, 2, 3, as illustrated in Figure 2 on the right. Hence

we define Ψ = {ψm : m = 1, 2, 3}, where ψ̂m(ξ) = χRm
(ξ). Then the system

AAB(Ψ) = {Dj
aDb Tk Ψ : j ∈ Z, b ∈ B, k ∈ Z

2}

is an orthonormal basis for L2(R2).
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ξ1

ξ2

ξ1

Sb1

Sb3 Sb2

S

ξ2
R3

R2

R1

R1a

Figure 2. Left: tiling of the frequency domain associated with a
system of wavelets with composite dilations where a is the quincunx
dilation matrix and B is the group of symmetries of the square.
While a and B are as in Fig. 1, the generator ψ is different. Right:
tiling of the frequency domain associated with a system of wavelets
with composite dilations where a = 2I and B is the group of sym-
metries of the square.

2.1.3. Construction 3. Another example of a system of wavelets with composite

dilations is obtained by keeping the same set A of dilation matrices as in Con-

struction 2, and redefining B as the set {bℓ : −3 ≤ ℓ ≤ 2}, where b is the shear

matrix ( 1 1
0 1 ). For that, let R be the union of the trapezoid with vertices (1, 0),(2, 0),

(1, 1/3), (2, 2/3) and the symmetric one with vertices (−1, 0), (−2, 0), (−1,−1/3),

(−2,−2/3), R̃ = Rr, where r = ( 0 1
−1 0 ) and define Ψ = {ψm : m = 1, 2}, where

ψ̂1 = χR, and ψ̂
2 = χR̃. It follows that the system

AAB(Ψ) = {Dj
aDb Tk Ψ : j ∈ Z, b ∈ B, k ∈ Z

2}

is an orthonormal basis for L2(R2). For practical applications, it is useful to modify

this system by restricting the scale parameter to the values j ≥ 0 and by taking

care of the low frequency region of the frequency plane using a standard wavelet

basis. The frequency tiling corresponding to this system is illustrated in Figure 3.

As observed in [16], this frequency tiling is similar to the one used for the Non-

Uniform Directional Filter Bank (NUDFB) in [38] and to a construction in [14]. If
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ξ2

Rb

R

Ra

ξ1

Figure 3. Tiling of the frequency domain associated with a system
of wavelets with composite dilations where a = 2I and B is a set
of shearing matrices.

this construction is combined with a separable generator, then one obtains the fre-

quency tiling corresponding to the Hybrid Wavelet Directional Transform (HWDT)

from [22] and to the directional filter bank constructions found in [15, 36, 45].

2.2. Construction 4. Hyperbolic tiling. 3

Another example of a system of wavelets with composite dilations is obtained

by using sets of matrices of the form

(1) B =

{
bℓ =

(
1/λ 0
0 λ

)ℓ

: ℓ ∈ Z

}
, A =

{
aj =

(√
2 0

0
√
2

)j

: j ∈ Z

}
,

where λ > 1 is a fixed parameter. In the following, we will set λ =
√
2, but the

discussion below can be easily extended to other choices of λ.

Let us start by noticing that, for each k > 0, the set Hk = {(ξ1, ξ2) ∈ R̂
2 : ξ1ξ2 =

k} consists of two branches of hyperbolas. For any ξ = (ξ1, ξ2) ∈ Hk, every other

point ξ′ on the same branch of the hyperbola has the unique representation ξ′ =

(ξ1γ
−t, ξ2γ

t) for some t ∈ R, where γ > 1 is fixed. In particular, any ξ = (ξ1, ξ2) in

3Some ideas of this construction were introduced by one of the authors and collaborators in [27].
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S

Sb Sa

ξ2/ξ1 = 4

ξ2/ξ1 = 2
ξ2ξ1 = 1

ξ2ξ1 = 4

ξ2ξ1 = 2
ξ2ξ1 = 1

ξ2

ξ1 r

2t

S

Sb

Sa

Figure 4. The figure on the left shows the hyperbolic trapezoid
S = SI , in quadrant I, and the action of the matrices a and b on
it. The plot on the right shows the same regions in the coordinate
system defined by r and 2t.

quadrant I can be parametrized by

ξ(r, t) = (
√
r (

√
2)−t,

√
r (

√
2)t),

where r ≥ 0, t ∈ R. This implies that r = ξ1 ξ2 and 2t = ξ2
ξ1
. For any k1 < k2, a set

{ξ(r, t) : k1 ≤ r < k2} is a hyperbolic strip and, for m1 < m2, a set {ξ(r, t) : k1 ≤

r < k2,m1 ≤ 2t ≤ m2} is a hyperbolic trapezoid. We have the following observation.

Proposition 2. Let SI be the hyperbolic trapezoid SI = {ξ(r, t) : 1 ≤ r < 2, 1 ≤

2t ≤ 2}, a =

(√
2 0

0
√
2

)
and b =

(
1/
√
2 0

0
√
2

)
. Then

∪

j∈Z

∪

ℓ∈Z

SIa
jbℓ = quadrant I,

where the union is disjoint, up to sets of measure zero.

Proof. For any k ̸= 0, the matrices bℓ, ℓ ∈ Z, preserve the hyperbolas Hk since

ξ bℓ = (ξ1, ξ2)

(
(
√
2)−ℓ 0

0 (
√
2)ℓ

)
= (ξ1(

√
2)−ℓ, ξ2(

√
2)ℓ) = (η1, η2),
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and η1η2 = ξ1ξ2. Hence, the right action of bℓ, ℓ ∈ Z, maps an hyperbolic strip into

itself (see Figure 4). In addition, a direct calculation shows that, if ξ2 = mξ1 and

(η1, η2) = (ξ1, ξ2)b
ℓ, then η2

η1

= 2ℓ ξ2ξ1 = 2ℓm. It follows that bℓ, ℓ ∈ Z, maps a line

through the origin of slope m into a line through the origin of slope 2ℓm. From the

observations above, it follows that the hyperbolic trapezoid SI is a tiling set of the

hyperbolic strip {ξ(r, t) : 1 ≤ r < 2} for the dilations bℓ, ℓ ∈ Z.

Next observe that a maps the hyperbola ξ1ξ2 = k to the hyperbola ξ1ξ2 = 2k,

and that aj maps the hyperbolic strip {ξ(r, t) : 1 ≤ r < 2} to the hyperbolic strip

{ξ(r, t) : 2j ≤ r < 2j+1} (see Figure 4). The proof follows by combining this

observation with the previous one about the action of the dilations bℓ on SI . �

S

Sb Sa ξ2ξ1 = 4
√
2

ξ2ξ1 = 2
√
2

ξ2ξ1 = 1

ξ2

ξ1 r

2t

S

Sb

Sa

Figure 5. The plot on the left shows the hyperbolic trapezoid S =
S′
I , in quadrant I, and the action of the matrices a and b on it. The

plot on the right shows the same regions in the coordinate system
defined by r and 2t.

To obtain a tiling of the whole frequency plane, let SIII be the symmetric ex-

tension of SI in quadrant III, i.e., SIII = {x ∈ R
2 : −x ∈ S}; in quadrant IV,

define

SIV = {(ξ1, ξ2) : (−ξ1, ξ2) ∈ SI}
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and its symmetric extension SII in quadrant II. It follows that

∪

j∈Z

∪

ℓ∈Z

(SI ∪ SII ∪ SIII ∪ SIV ) a
jbℓ = R

2,

where again the union is disjoint, up to sets of measure zero. Hence, letting Ψ =

(ψI , ψII , ψIII , ψIV ), where ψ̂I = χSI
, . . . , ψ̂IV = χSIV

, it follows from Theorem 1

that the system of wavelets with composite dilations

AAB(Ψ) = {Dj
aD

ℓ
b Tk Ψ : j ∈ Z, k ∈ Z

2, ℓ ∈ Z}

is a Parseval frame of L2(R2).

A variant of the construction above is obtained by replacing the set of diagonal

matrices A in (1) with the set

(2) A =

{
aj =

(
2 0

0
√
2

)j

: j ∈ Z

}
.

These matrices produce parabolic scaling, that it, the dilation factor along one

orthogonal axis is quadratic with respect to the other axis. This scaling factor

plays a critical role in the sparsity properties of curvelets and shearlets [8, 24, 33].

Similar to the construction above, let S̃I be the hyperbolic trapezoid in the

frequency plane defined by

S̃I = {ξ(r, t) :
√
2/2 ≤ r < 2, 1 ≤ 2t ≤ 2}.

Again, the right action of B maps any hyperbolic strip into itself. The matrix

a ∈ A maps the hyperbola ξ1ξ2 = k to the hyperbola ξ1ξ2 = 2
√
2k and, thus,

aj maps the hyperbolic strip {ξ(r, t) :
√
2/2 ≤ r < 2} to the hyperbolic strip

{ξ(r, t) : 2(2
√
2)j−1 ≤ r < 2(2

√
2)j}. Unlike the previous construction, however,

the matrix a ∈ A does not preserve lines through the origin since it maps a line

ξ2 = mξ1 into ξ′2 =
√
2
2 mξ

′
1. The action of the matrices a and b on S̃I is shown in

Figure 5, illustrating that the sets S′
Ia

ibℓ become increasingly more elongated as
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i → ∞. Similar to the previous construction, by defining trapezoids S̃II , S̃III and

S̃IV in the other quadrants, it is easy to verify that the tiling property holds:

∪

j∈Z

∪

ℓ∈Z

(S̃I ∪ S̃II ∪ S̃III ∪ S̃IV ) a
jbℓ = R

2.

Thus, letting Ψ = (ψI , ψII , ψIII , ψIV ), where ψ̂I = χS̃I
, . . . , ψ̂IV = χS̃IV

, it follows

from Theorem 1 that the system of wavelets with composite dilations

AAB(Ψ) = {Dj
aD

ℓ
b Tk Ψ : j ∈ Z, k ∈ Z

2, ℓ ∈ Z}

is a Parseval frame of L2(R2).

2.2.1. Well-localized Construction. In order to construct hyperbolic systems of wavelets

with composite dilations which are well-localized, we recall the following result.

Theorem 3 ([27]). Let ψ ∈ L2(R2) be such that supp ψ̂ ⊂ Q = [−1/2, 1/2]2, and

∑

j,ℓ∈Z

|ψ̂(ξ aj bℓ)|2 = 1 a.e. ξ ∈ R̂
2,

where a, b ∈ GL2(R). Then the system of wavelets with composite dilations (1),

where A = {aj : j ∈ Z} and B = {bℓ : ℓ ∈ Z}, is a Parseval frame of L2(R2).

For ξ = (ξ1, ξ2) ∈ R̂
2, with ξ1 ̸= 0, let ψ̂ be defined by

(3) ψ̂(ξ1, ξ2) = V (ξ1ξ2)W (
ξ2
ξ1

),

where V , W ∈ C∞
c (R) satisfy suppV ⊂ [ 1

88 ,
1
11 ], suppW ⊂ [ 23 ,

8
3 ],

∑

j∈Z

|V (2jr)|2 = 1 for a.e. r ≥ 0,

and

∑

ℓ∈Z

|W (2ℓ2t)|2 = 1 for a.e. t ∈ R.
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The functions V andW can be obtained by appropriately rescaling a Meyer wavelet

and restricting its domain to the positive axis in the Fourier domain.

Hence we have the following corollary of Theorem 3.

Proposition 4. Let ψ ∈ L2(R2) be given by (3) and ψ′ be defined by ψ̂′(ξ1, ξ2) =

ψ̂(−ξ1, ξ2). Then, for A and B given by (1) and Ψ = {ψ, ψ′}, the system of wavelets

with composite dilations

AAB(Ψ) = {Dj
aD

ℓ
b Tk Ψ : j ∈ Z, k ∈ Z

2, ℓ ∈ Z},

is a Parseval frame of L2(R2).

Proof. The support conditions on V,W ensure that supp ψ̂ is a pair of trape-

zoidal regions in quadrants I and III which are contained inside the unit cube

[−1/2, 1/2]2. In fact, V is constant along each branch of the hyperbola and is

defined along lines through the origin. Its support is contained between the hyper-

bolas ξ1ξ2 = 1
88 and ξ1ξ2 = 1

11 . W is constant along each line through the origin,

is defined along hyperbolas and its support is contained in the cone defined by the

lines through the origin of slopes ξ2 = 2
3 ξ1 and ξ2 = 8

3 ξ1. In addition, a direct

calculation shows that, for all ξ = (ξ1, ξ2), with ξ1ξ2 ≥ 0 and ξ1 ̸= 0, we have:

∑

j∈Z

∑

ℓ∈Z

|ψ̂(ξ aj bℓ)|2

=
∑

j∈Z

∑

ℓ∈Z

|V̂ (2jξ1ξ2)|2 |W (2ℓ
ξ2
ξ1

)|2

=
∑

j∈Z

|V̂ (2jξ1ξ2)|2
∑

ℓ∈Z

|W (2ℓ
ξ2
ξ1

)|2 = 1,

for ξ in quadrants I and III in R
2. A similar calculation with ψ̂ replaced by ψ̂′ yields

a similar result valid for all ξ in quadrants II and IV. Hence
∑

j∈Z

∑
ℓ∈Z

|Ψ̂(ξ aj bℓ)|2 =

1, for a.e. ξ ∈ R
2 and the proof follows from Theorem 3. �
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An argument similar to Proposition 4 shows that it is possible to construct a

similar well-localized Parseval frame by replacing the set of isotropic dilations A

given by (1) with the anisotropic dilations (2).

Figure 6. Tiling of the frequency domain associated with a hy-
perbolic system of wavelets with composite dilations.

Note that, for a discrete implementation of the hyperbolic systems, the indices

j and ℓ need to be limited to a finite range. The asymptotic regions not covered

because of this discretization can then be dealt with by partitioning the comple-

mentary regions with a Laplacian Pyramid-type of filtering. A form of the tiling

of the frequency plane associated with this construction is illustrated in Figure 6.

For the correct interpretations of this figure, observe that the elements of the well-

localized system of wavelets with composite dilations ψ(ajbℓx) do overlap in the

frequency domain. That is, Figure 6 should be interpreted as a picture of the essen-

tial frequency support (i.e., the regions where most of the norm is concentrated),

rather than the exact frequency support of the elements of the system.

2.2.2. Cone-based hyperbolic construction. The hyperbolic construction suffers from

a bias in directional sensitivity along the orientations ±π/4,±3π/4. In addition,

the regions along the orthogonal axes in the frequency domain are only covered

asymptotically, for values ℓ → ±∞. To overcome this situation, we define the
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Figure 7. Frequency tiling of a cone-based hyperbolic composite
wavelet system. Since the scaling matrix is isotropic, the number
of directional subbands is fixed at each scale. If the scaling matrix
is replaced by an anisotropic one, e.g., a parabolic scaling matrix,
then the number of directional subbands will double at each scale.

“cone-based” system of wavelets of composite dilations

{Dj
aD

ℓ
b Tk ψ : j ≥ 0, |ℓ| ≤ L, k ∈ Z

2},

where bℓ ∈ B given by (1), a can be the isotropic or anisotropic dilation matrix, L

is chosen so that the system tiles the frequency plane only in the cone π
8 ≤ ξ2

ξ1
≤ 3π

8 ,

and ψ is given by (3). Using ψ′ defined as in Proposition 4 one covers the frequency

plane in the cone 5π
8 ≤ ξ2

ξ1
≤ 7π

8 . Finally, the remaining two cones in the frequency

domain are covered by rotating the above systems by π/4. The picture of the

frequency tiling associated with this decomposition is given in Figure 7.

Unfortunately, the projection into cones has the effect of destroying the good

localization properties of those elements of the system that overlap the cone bound-

aries in the Fourier domain. The analytic solution of this problem is not trivial and

is beyond the scope of this paper. However, this limitation has not caused any

significant loss of performance for its implementation.
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3. Composite Wavelet Implementation

3.1. Analysis Filter Design. In this section, we describe a novel approach for the

construction of filters that match the frequency tiling associated with the desired

system of wavelets with composite dilations. Given a system of wavelets with

composite dilations AAB(Ψ), this approach allows us to directly apply the set of

matrices A and B to generate the specific frequency tiling associated with the

system AAB(Ψ).

✲

ajbℓ

✲

ajbℓ

Figure 8. Illustrations of filter constructions where the number of
samples used is small for the purpose of presentation. The images
on the left are the sequences of points {(ξn1 , ξn2 )}Nn=1 contained in
the region S. The images on the right are the sequences of points
{(ηn1 , ηn2 )}Nn=1 where (ηn1 , η

n
2 ) = ⌈(ξn1 , ξn2 )ajbℓ⌉.

To describe our approach, consider ψ̂(ξ) = χS(ξ), where S corresponds to a

bounded region satisfying the conditions of Theorem 1. For example, S can be

chosen to be a trapezoidal hyperbola and the set of matrices A and B to be A =

{aj}, B = {bℓ}, as in Construction 4.

Hence, given a sequence of points {(ξn1 , ξn2 )}Nn=1 ∈ S that densely fills the set

S, we define (ξ
n

1 , ξ
n

2 ) = ⌈(ξn1 , ξn2 )⌉ = (⌈ξn1 ⌉, ⌈ξn2 ⌉), where ⌈·⌉ denotes the ceiling

function. To digitally create the desired filters, we assign the non-zero entries of
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Figure 9. Examples of hyperbolic filters. From left to right: Time
Domain, Frequency Domain

our starting filter Ĝ0,0 by the evaluation Ĝ0,0(ξ
n

1 , ξ
n

2 ) = 1. We then proceed to

create the other filters {Ĝi,ℓ} by assigning the non-zeros entries as Ĝi,ℓ(η
n
1 , η

n
2 ) = 1

for (ηn1 , η
n
2 ) = ⌈(ξn1 , ξn2 ) ajbℓ⌉. Note that N needs to be chosen large enough so that

the points (ηn1 , η
n
2 ) are dense enough to fill out the regions Sj,ℓ = Sajbℓ completely

in terms of its pixelated image for all desired values of j and ℓ. Thus, the density

is relative to the size of the pixelated image grid. An example of such an N is

provided in the appendix. Figure 8 illustrates this construction.

This construction can be modified to create the well-localized version of wavelets

of composite dilations by the following modification. We start by creating an ini-

tial densely supported filter with the desired windowing. By keeping track of the

multiple assigned grid points, the windowing can be appropriately compensated by

assigning the average windowed value at these point locations. Examples of this

construction are shown in Figure 9 and a pseudo-code for creating such filters is

given in the Appendix. This construction process can be applied to any planar
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region and can be viewed as a refinement of the original discrete shearlet transform

construction given in [17]. In fact, when the techniques suggested in this paper

are used to design filters for a revised discrete shearlet transform, the newly con-

structed discrete transform performs significantly better than its first incarnation.

Recall that the original shearlet implementation was based on the use of a map-

ping function that performed a re-arrangement of windowed data in a pseudo-polar

grid onto a Cartesian grid. In our new implementation, we avoid the use of the

mapping function and are able to produce the appropriate windowed data directly

onto the Cartesian grid. In addition, this implementation is multi-channel, so that

the estimates provided from individual filtered coefficients are not level-dependent

and this improves the transform’s conditioning. In contrast with [17], where an

inverse mapping function was used to take care of weighting the multiple assigned

pixel values, by avoiding the re-mapping process, we can now avoid creating re-

arrangement domains (a process which usually generated some artifacts). In fact,

we are able to obtain the desired filters by directly applying the A and B dila-

tions associated with the desired composite wavelet decompositions. This way, the

discrete implementation provides a perfect match with its theoretical counterpart

and it allows one to deal even with very complicated geometrical decompositions

in the frequency plane. See Figure 10 for a representative illustration of the filters

associated with the new implementation.

3.2. Synthesis Filter Design. It would seem that our construction method of

analysis filters should be extendible for the creation of the synthesis filters. However,

by dealing with the non-uniformity caused by the discretization of a continuous for-

mulation, we have introduced slight imperfections in the windowing. These slight

deviations can be particularly unforgiving in a multi-channel based implementa-

tion. Consider, as an example, reformulating the contourlet transform naively into

a multi-channel implementation by applying the transform to a delta function to

find the analysis and synthesis filters. Figure 11 gives a visual illustration of how
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Ĝ1✲ ✲

Ĝ2✲ ✲

.... . .

✲Ĝ12✲

Ĝ13✲ ✲

...

Figure 10. An illustration of a multi-channel filter bank designed
to implement wavelets with composite dilations.

this approach fails to achieve perfect reconstruction. This is particularly interesting

since the standard implementation of contourlets achieves perfect reconstruction.

× =+×+×+×

̂̃
G1 Ĝ1

̂̃
G2 Ĝ2

̂̃
G3 Ĝ3

̂̃
G4 Ĝ4

Figure 11. By applying the nonsubsampled contourlet transform
to a delta function, we can obtain directional filters. Failure of the
perfect reconstruction condition is depicted using the analysis and
synthesis filters found by applying the 2nd level decomposition of
contourlets to a delta function.

To improve upon the reconstruction estimate, we will construct the synthesis

filters by using a method devised for solving a related problem known as the Mul-

tichannel Deconvolution Problem (MDP) which can roughly be stated as follows.

Given a collection {Gi}mi=1 of distributions on R
d (d ≥ 2), find a collection {G̃j}mj=1
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of distributions such that

m∑

j=1

G̃j ∗Gj = δ,

where δ is a Dirac delta distribution. In the Fourier-Laplace domain, when the

distributions are assumed to be compactly supported, this equation is referred to

as the analytic Bezout equation. This problem has a connection with the polynomial

Bezout equation which is usually solved for computing the filters associated with

traditional filter banks (see [11] for more details).

Several methods for solving the MDP in a discrete setting provide a way of

constructing appropriate synthesis filters (see [39, 40, 2, 3, 29, 18, 11, 48] for details

on some of these methods). One of the earliest and simplest methods for solving

this problem was given in [39]. To explain its derivation, we formulate the problem

in the Fourier domain as follows. Suppose we wish to recover the image f and that

we are given m blurred images sj , i.e.

ŝj(ξ1, ξ2) = f̂(ξ1, ξ2) Ĝj(ξ1, ξ2) + n̂j for j = 1, . . . ,m,

where Gj and nj are the respective transfer function and associated noise from the

j-th imaging sensor. Assuming that no statistical information is available, find the

image fa which yields a least squares fit between predicted and observed images,

i.e., minimize

m∑

j=1

|ŝj(ξ1, ξ2)− f̂a(ξ1, ξ2) Ĝj(ξ1, ξ2)|2.

After differentiating with respect to f̂a, the solution is found to be

f̂a(ξ1, ξ2) =

m∑

j=1

ŝj(ξ1, ξ2)
̂̃Gj(ξ1, ξ2),
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where

̂̃Gj(ξ1, ξ2) =
Ĝj(ξ1, ξ2)∑m

k=1 |Ĝk(ξ1, ξ2)|2
,

for j = 1, . . . ,m. The synthesis filters {G̃j}mj=1 are robust (and even optimal) with

respect to any residual noise left from the decompositions that might remain after

thresholding schemes have been utilized for denoising purposes. When filters of

small finite support are desired, we use the method given in [11], which reduces the

problem of finding the synthesis filters to solving a constrained matrix inversion

problem. This method is particularly flexible as the support sizes of the synthesis

filters can be controlled by a free parameter that balances between local and global

conditioning.

Another solution to achieve perfect reconstruction is to slightly modify the anal-

ysis filters to be

(4) Ĝ′
j(ξ1, ξ2) =

Ĝj(ξ1, ξ2)√∑m
k=1 |Ĝk(ξ1, ξ2)|2

,

and to use

(5) ̂̃Gj(ξ1, ξ2) =
Ĝj(ξ1, ξ2)√∑m
k=1 |Ĝk(ξ1, ξ2)|2

,

as the synthesis filters for j = 0, . . . ,m− 1. Note that this solution means that the

implemented transform corresponds to a tight frame. However, we have found that

for some constructions the MDP solutions perform better.

To emphasize the benefits of our proposed filter constructions, we show the differ-

ences in frequency responses for some representatives of the new shearlet filters and

the non-subsampled contourlet transform (NSCT) filters in Figure 12. This illustra-

tion shows that whereas the NSCT filters may be constructed by using conventional

filter design elements, their desired frequency responses do not truly match with
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Figure 12. Comparison of filters design methods. The images
on the top correspond to examples of the frequency responses of
the newly constructed shearlet filters. The images on the bottom
correspond to examples of the frequency responses of the NSCT
for the same directional components.

the actual frequency responses. Nonetheless, the NSCT filters are very effective

and have other advantages.

We can summarized the algorithm for the construction of the filters implementing

the discrete wavelets with composite dilations as follows.

(1) Generate a sequence of points {(ξn1 , ξn2 )} ∈ S filling
densely the support region S associated with the gener-
ator of the system of wavelets with composite dilations.

(2) Given j and ℓ, form filter Ĝj,ℓ by assigning the value
at (ηn1 , η

n
2 ) = ⌈(ξn1 , ξn2 )ajbℓ⌉ to be the average of the

pre-image values of the generator function evaluated at
(ξn1 , ξ

n
2 ).

(3) Use synthesis filters ̂̃Gj,ℓ(ξ1, ξ2) =
Ĝj,ℓ(ξ1,ξ2)∑

j,ℓ |Ĝj,ℓ(ξ1,ξ2)|2
, solve

for synthesis filters by solving the matrix system as de-
scribed in [11], or use (4) and (5).

The filterbank implementation is highly efficient as it requires O(N2 logN) opera-

tions for an N ×N image.
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4. Numerical Experiments

In this section, we present several numerical experiments on image restoration

and enhancement to demonstrate the effectiveness of the wavelets with compos-

ite dilations and their discrete implementation. The simulations were done using

Matlab on a Windows system with Intel Pentium M/1.73 GHz processor.

4.1. Denoising. In the first set of experiments, we illustrate the denoising capa-

bility of the new wavelets with composite dilations by means of hard thresholding.

The objective of this problem is to recover an image x, given noisy observations

y = x+ γ,

where γ is zero-mean white Gaussian noise with variance σ2. By adapting the

standard wavelet shrinkage approach [37], we apply a hard threshold on the subband

coefficients of several versions of composite wavelets decompositions. In particular,

we choose the threshold Tj = Kσj , where σ
2
j is the noise variance in each subband

and K is a constant. In our experiments, we set K = 2 for all subbands.

To assess the denoising performance of our method, we compare it against three

different competing discrete multiscale transforms: the nonsubsampled wavelet

transform (NSWT), the second generation curvelet transform (curv) [7], and the

nonsubsampled contourlet transform (NSCT). The discrete wavelets with compos-

ite dilations we have tested are the new shearlet transform (ab-shear), the cone-

based hyperbolic transform (c-hyper), the hyperbolic transform (hyper), the star-

like transform given in Construction 1 (ab-star). Specifically, the new constructions

are done using the pseudo-code shown in the appendix so that the frequency plane

decompositions correspond to the decompositions displayed in Figures 2 (left side),

3, 6, and 8. The value of N0 is set to the size of the image the transform is being

applied to. For the sake of comparison, we have also included the original imple-

mentation of the shearlet transform (shear) [17]. The peak signal-to-noise ratio
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(PSNR) is used to measure the performance of the different transforms. Given an

N ×N image x and its estimate x̃, the PSNR in decibels (dB) is defined as

PSNR = 20 log10
255N

∥x− x̃∥F
,

where ∥.∥F is the Frobenius norm. In Tables I and II, we show the results obtained

using various discrete transforms on the Peppers and Barbara images, respectively.

The highest PSNR for each experiment is shown in bold. As it can be seen from

the tables, all our new transforms provide superior or comparable results to that

obtained using NSWT, NSCT and curvelets. Indeed, in some cases, the composite

wavelet transforms provide improvement of nearly 1 dB or more compared to the

competing algorithms. Figures 13, 14, 15 and 16 show some of the reconstructed

images for these various experiments.

Table I: Denoising results using Peppers image.

σ Noisy ab-shear c-hyper hyper ab-star NSWT shear NSCT curv

10 28.17 34.28 33.70 33.91 33.45 33.71 34.05 33.81 32.36
20 22.15 31.82 31.01 31.28 30.83 31.19 31.78 31.60 29.65
30 18.63 30.25 29.35 29.72 29.26 29.43 30.13 30.07 28.25
40 16.13 29.01 28.12 28.40 28.04 28.09 28.86 28.85 27.28
50 14.20 27.98 27.17 27.33 26.99 27.04 27.90 27.82 26.46

Table II: Denoising results using Barbara image.

σ Noisy ab-shear c-hyper hyper ab-star NSWT shear NSCT curv

10 28.17 33.47 33.97 33.81 32.29 31.58 33.12 33.01 29.16
20 22.15 30.38 30.41 30.49 29.02 27.23 30.07 29.41 25.46
30 18.63 28.44 28.37 28.53 27.02 25.10 28.16 27.24 24.42
40 16.14 26.93 26.86 26.75 25.55 24.02 26.59 25.79 23.81
50 14.20 25.59 25.78 25.35 24.06 23.37 25.39 24.79 23.33

In Table III, we report average runtime of the different transforms in filtering

noisy images. Note that NSWT and curv use preconstructed filters. As a result

they are very fast and run in less than a minute. The performance of our composite

wavelet transforms can be significantly enhanced by implementing them in a parallel

form and using other modifications, but this is beyond the scope of this paper.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Denoising experiments with a Barbara image. (a)
Original image. (b) Noisy image with σ = 20, PSNR=22.15 dB.
(c) Restored image using ab-shear, PSNR=30.38 dB . (d) Re-
stored image using c-hyper, PSNR=30.41 dB. (e) Restored image
using hyper, PSNR=30.49 dB. (f) Restored image using ab-star,
PSNR=29.02 dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Denoising experiments with a Barbara image. (a)
Original image. (b) Noisy image with σ = 50, PSNR=14.20 dB.
(c) Restored image using ab-shear, PSNR=25.59 dB . (d) Re-
stored image using c-hyper, PSNR=25.78 dB. (e) Restored image
using hyper, PSNR=25.35 dB. (f) Restored image using ab-star,
PSNR=24.06 dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Denoising experiments with a Peppers image. (a)
Original image. (b) Noisy image with σ = 20, PSNR=22.15 dB.
(c) Restored image using ab-shear, PSNR=31.82 dB . (d) Re-
stored image using c-hyper, PSNR=31.01 dB. (e) Restored image
using hyper, PSNR=31.28 dB. (f) Restored image using ab-star,
PSNR=30.83 dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Denoising experiments with a Peppers image. (a)
Original image. (b) Noisy image with σ = 50, PSNR=14.20 dB.
(c) Restored image using ab-shear, PSNR=27.98 dB . (d) Re-
stored image using c-hyper, PSNR=27.17 dB. (e) Restored image
using hyper, PSNR=27.33 dB. (f) Restored image using ab-star,
PSNR=26.99 dB.
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Table III: Average runtime in seconds.

Image Size ab-shear c-hyper hyper ab-star NSWT shear NSCT curv

256× 256 63.27 113.64 77.53 13.23 0.58 35.93 45.89 6.86
512× 512 198.39 306.56 233.60 42.03 3.02 115.56 286.90 32.21

4.2. Enhancement. The objective of image enhancement is to improve the vi-

sual or perceptual quality of an image in a certain sense. For example, a simple

and well-known method to visually improve images with poor intensity is contrast

enhancement using histogram equalization.

Since edges frequently contain the dominant information of an image, an effec-

tive way to improve the contrast of the image consists in enhancing the edges. This

approach has been widely used in astronomical and medical imaging, especially

using methods based on multiscale image decomposition. However, in most of these

methods, the image is decomposed in a separable fashion, without taking full advan-

tage of the geometric information associated with the edges [35, 30]. By contrast,

a multiscale decomposition which is able to take advantage of directional features,

such as curvelets, shearlets or wavelets with composite dilations, is much more ef-

fective in dealing with the edges and other directional information [16, 47, 43, 12].

At the same time, it is well-known that natural images have their energy strongly

concentrated at low frequencies. Since directional information is related mostly to

mid- and high-frequency components, the lowpass information can hinder our abil-

ity to efficiently capture and analyze these features. Therefore, scale information

needs to be used in conjunction with directional information in applications where

it is important to distinguish features of different sizes. To this end, in this section,

we exploit the directional and multiscale properties of the newly designed wavelets

with composite dilations for a new algorithm for image enhancement.

Our approach is based on a mapping function which amplifies weak edges and

suppresses noise. Specifically, we introduce a new adaptive nonlinear mapping func-

tion that incorporates the nonnegative garrote shrinkage functions. This approach

provides a good compromise between hard and soft shrinkage rules and allows one
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to avoid amplifying noise and remove small noise perturbations. Our mapping f is

defined as

f(y) =





0 if |y| < T1,

sign(y)T2 + ᾱ(sigm(c(gy − β))− sigm(−c(gy + β))) if T2 ≤ |y| ≤ T3,

y otherwise.

where sigm(y) = (1 + e−y)−1, y ∈ [−1, 1], ᾱ = α(T3 − T2), β ∈ (0, 1), c is a gain

factor, 0 ≤ T1 ≤ T2 < T3 ≤ 1, and gy =
garroteT2

(y)

T3−T2

, with

garroteT2
(y) =

{
0, for |y| ≤ T2

y − T 2

2

y , for |y| > T2

Notice that α can be computed by α = (sigm(c(1 − β)) − sigm(−c(1 + β)))−1.

Here, β and c determine the threshold and the rate of enhancement, respectively.

As shown in Figure 17, when the mapping f is applied to the composite wavelet

transform of an image, only the values falling in the interval [T2, T3] are modified for

enhancement, while the values in [0, T1] are suppressed. These parameters can be

adaptively estimated by using the robust median operator [9] and the noise variance

in each subband of the image decomposition [44]. For example, T1, T2, and T3 for

the subband j can be chosen as pσj , qσj , rσj , respectively, where σ
2 is the noise

variance of the input image and σ2
j is the noise variance of the jth subband and

p, q and r are user defined values. Through this nonlinear function, the values of

the transformed image in each subband are pointwise modified by

ỹk = ykmax
f

(
yk
ykmax

)
,

where 1 ≤ k ≤ m, yk is the output of the kth channel of the filter bank, and ykmax

is the maximum absolute amplitude of yk.

To summarize, our image enhancement algorithm based on the discrete wavelet

transform with composite dilations consists of the following steps:
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(1) Estimate the noise standard deviation in the N ×N input image using the

robust median operator [9].

(2) Pass the input image through the analysis part of the filter bank obtaining

a set of m subbands, each corresponding to a given scale and direction.

Each subband contains N2 coefficients.

(3) For each subband:

(a) Calculate the noise standard deviation [43].

(b) Use the nonlinear mapping function to modify the subband coefficients.

(4) Pass the modified coefficients through the synthesis part of the filter bank

and reconstruct the enhanced image.
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Figure 17. Enhancement map: β = 0.20, c = 25, T1 = 0.1, T2 =
0.15, T3 = 0.9.

Even though there is no standard way of evaluating the quality of enhanced im-

ages, a number of metrics have been proposed to quantitative analyze the enhanced

images, such as the Universal Quality Index (UQI) [46]. UQI models image dis-

tortion as a combination of three factors: loss of correlation, luminance distortion

and contrast distortion. UQI takes values between -1 and 1, with 1 providing the

best estimate of quality.
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(a) (b)

(c) (d)

(e) (f)

Figure 18. Enhancement experiments with a Barbara image. (a)
Original image. (b) Enhanced using NSWT. (c) Enhanced using
ab-shear. (d) Enhanced using hyper. (e) Enhanced using c-hyper.
(f) Enhanced using ab-star.
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(a) (b)

Figure 19. Enhancement experiments with a Barbara image. (a)
Enhanced using NSCT. (b) Enhanced using curv.

We have compared our enhancement method against the NSWT, NSCT and curv

using the same nonlinear map for all our tests. In the first set of experiments, we

used the classical Barbara image and the following parameters β = 0.22 and c = 15.

Figures 18(b)-(f) and Figures 19(a)-(b) indicate that our proposed enhancement

algorithm works better using the wavelets with composite dilations developed in this

paper than using the NSWT and curv. The ab-shearlet tiling-based enhancement

gives results visually similar to that of NSCT.

In the second set of experiments, the input image is a Zebra image, as shown

in Figure 20(a). For this set of experiments, we chose β = 0.20 and c = 0.15 for

this set of experiments. Figures 20(b)-(f) and Figures 21(a)-(b), show the results

obtained by various transforms. As we see consistently from all these figures, the

enhancement algorithm based on wavelets with composite dilations is very effective

in enhancing the weak edges and retaining textures while suppressing the noise.

This can be confirmed by looking at the UQI metrics in Table III.

4.3. Deconvolution Example. When the model of the degradation of an image

is described as a convolution operation, the processing of recovering the original
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(a) (b)

(c) (d)

(e) (f)

Figure 20. Enhancement experiments with a Zebra image. (a)
Original image. (b) Enhanced using NSWT. (c) Enhanced using
ab-shear. (d) Enhanced using hyper. (e) Enhanced using c-hyper.
(f) Enhanced using ab-star.
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(a) (b)

Figure 21. Enhancement experiments with a Zebra image. (a)
Enhanced using NSCT. (b) Enhanced using curv.

Table III: UQI results for image enhancement experiments.

Image ab-shear c-hyper hyper ab-star NSWT NSCT curv

Barbara 0.6918 0.7027 0.6953 0.6672 0.6750 0.6923 0.6687
Zebra 0.6538 0.6853 0.6873 0.6827 0.6800 0.6827 0.6820

image from the degraded blurred image is commonly referred to as deconvolution.

This inverse processes is known to be an ill-posed problem.

In this subsection, we give some preliminary experiments that indicate the abil-

ity of using a hyperbolic composite wavelet to better regularize the deconvolution

process. The key point to make is that regularization for this type of problem is

best done by using a representation that can sparsely represent the image and the

convolution operator.

Let γ denote anN×N array of samples from a zero mean additive white Gaussian

noise (AWGN) with variance σ2. In addition, we let the N × N arrays y and x

denote the observed image and the image to be estimated, respectively. When the

blurring function is symmetric about the origin and a reflexive boundary is assumed

for the finite discretization of the problem, the convolution is diagonalizable in the
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DCT domain. Thus we write the deconvolution problem in the DCT domain as

(6) Y (k1, k2) = H(k1, k2)X(k1, k2) + Γ(k1, k2),

where Y (k1, k2),H(k1, k2), X(k1, k2) and Γ(k1, k2) are the 2D DCTs of y, h, x, and

γ, respectively, for 1 ≤ k1, k2 ≤ N. Figure 22 displays a contour plot of a typical

out-of-focus blur in the DCT domain and also shows the corresponding hyperbolic

composite decomposition when we consider the transform that results when the

convolution is implemented with a reflexive boundary.

Using the regularized inverse operator Hα(k1, k2) = H(k1, k2)/(H(k1, k2)
2 + α)

for some regularizing parameter α ∈ R+, an image estimate in the DCT domain is

given by

Xα(k1, k2) = Hα(k1, k2)Y (k1, k2),

for 1 ≤ k1, k2 ≤ N. This type of regularization applied is often referred to as

Tikhonov-regularization. Let Gj,ℓ denote the DCT of the composite wavelet filters

gj,ℓ for a given choice of j and ℓ. The coefficients of an estimate of the image for a

given regularization parameter αj,ℓ can be computed in the DCT domain as

Xαj,ℓ
(k1, k2) = Hαj,ℓ

(k1, k2)Gj,ℓ(k1, k2)Y (k1, k2)

for 1 ≤ k1, k2 ≤ N. Taking advantage of the hyperbolic-based decomposition, we

can adaptively control the regularization parameter to be the best suited for each

hyperbolic supported region. The final estimate is then found by inverting the

composite wavelet transform using these estimated coefficients.

We compared this method against the standard Tikhonov-regularization using

the Barbara image and out-of-focus point spread function shown in Figure 22. The

results are provided in Table IV for various levels of noise given in terms of the so-

called blurred signal-to-noise-ratio (BSNR) [11]. This is a commonly used metric

for measuring the severity of blur and noise, which, for an image of size N ×N , is
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defined by

BSNR = 10 log10

(∥(x ∗ h)− µ(x ∗ h)∥22
N2σ2

)
,

where µ(x ∗ h) denotes the mean of x ∗ h, and is measured in decibels.

Figure 22. The image on the left is the out-of-focus point spread
function displayed in the DCT domain. The image on the right
is the decomposition based on the hyperbolic composite wavelet
when implemented by convolution with a reflexive boundary.

Table IV: Deconvolution results using the Barbara image.

BSNR 30 35 40 45
hyper 25.90 27.41 29.09 31.12

Tik 24.86 26.04 27.76 29.73

Our experiments indicate the potential of hyperbolic-based decompositions schemes

for the problem of deconvolution. It is clear that there are other blurring functions

that exhibit patterns containing valleys (low magnitude values) that follow a hy-

perbolic distribution. In these cases, an improved regularization is possible when

the image representation is sufficiently sparse and it enables a control of the regu-

larization parameters by isolating the locations of the valleys.

5. Conclusion

In this paper, we have demonstrated the potential of wavelets with composite

dilations to derive and implement directional multiscale representations which are

specifically designed to deal with edges and other anisotropic features with high

efficiency. A new discrete method for decomposing images using this approach
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was devised which follows directly from the generating structure and is much more

flexible and sophisticated than previous design concepts. In fact, this new method

is able to produce very sophisticate geometrical decompositions of the frequency

plane such as the new hyperbolic decomposition. Our new discrete transforms even

improve upon the original implementation of the discrete shearlet transform, whose

advantages in denoising and other imaging applications have been established in

previous works. The numerical demonstrations included in this paper show that

our new discrete transforms perform consistently better than similar directional

multiscale transforms in problems of image denoising and enhancement.
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Appendix

Below is a Matlab-based pseudo-code to generate the hyperbolic composite wavelet

filters restricted to the fourth quadrant. The complete filters are found by adding

the appropriate flip with zero padding. N0 is the quadrant size of the image and

k ≥ 2 is a multiplier to determine the number of sequence elements. Hr and Ht

denote the window functions for the radial and time parameters.
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N = kN0;
k1 = 1/2; k2 = 1/k1;
r = linspace(k1, k2, N);
t = linspace(2, 0, N);
xs = [ ];ys = [ ];
for i = 1 : N ,

x =
√

r(i). ∗ λt;

y =
√

r(i). ∗ λ−t;
xs = [xs(:)′ x(:)′];
ys = [ys(:)′ y(:)′];

end
for j = j0 : j1,

Aj =

(√
2
j

0

0
√
2
j

)

;

for l = l0:l1,

Bl =

(
λl 0

0 λ−l

)
;

η = [xs(:) ys(:)](AjBl);
η1 = η(:, 1);η2 = η(:, 2);
G = zeros(N0);
Gweight = zeros(N0);
ci = 0;
cit = 1;
for jl = 1 : N ,

η1 = ⌈η1(jl)⌉;
η2 = ⌈η2(jl)⌉;
ci = ci + 1;
if η1 <= N0,

if η2 <= N0,
Gweight(η1, η2) = Gweight(η1, η2) + 1;
G(η1, η2) = G(η1, η2) +Hr(ci)Ht(cit);

end
end
if ci = N ,

ci = 0;
cit = cit + 1;

end
if cit > N

cit = 1;
end

end

Ĝweight = Gweight(1 : N0, 1 : N0);

Ĝ = G(1 : N0, 1 : N0);

if ∥Ĝ∥1 > 0

[i0, j0, nG] = find(Ĝweight);
avg = 1./nG;
P = sparse(i0, j0, avg,N0, N0);

Ĝi,l = Ĝ. ∗ P ;
end

end
end
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