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Summary

Models of the evolutionary advantages of sex and genetic recombination due to directional
selection on a quantitative trait are analysed. The models assume that the trait is controlled by
many additive genes. A nor-optimal selection function is used, in which the optimum either moves
steadily in one direction, follows an autocorrelated linear Markov process or a random walk, or
varies cyclically. The consequences for population mean fitness of a reduction in genetic variance,
due to a shift from sexual to asexual reproduction are examined. It is shown that a large reduction
in mean fitness can result from such a shift in the case of a steadily moving optimum, under light
conditions. The conditions are much more stringent with a cyclical or randomly varying
environment, especially if the autocorrelation for a random environment is small. The conditions
for spread of a rare modifier affecting the rate of genetic recombination are also examined, and the
strength of selection on such a modifier determined. Again, the case of a steadily moving optimum
is most favourable for the evolution of increased recombination. The selection pressure on a
recombination modifier when a trait is subject to strong truncation selection is calculated, and
shown to be large enough to account for observed increases in recombination associated with
artificial selection. Theoretical and empirical evidence relevant to evaluating the importance of this
model for the evolution of sex and recombination is discussed.

1. Introduction

Mather (1943) first pointed out that a quantitative
trait under partly directional and partly stabilizing
selection is under two opposing pressures of selection
on the amount of genetic variation in the trait. In a
constant environment, where the mean of the trait
rapidly approaches the optimal value, increased
genetic variability lowers the mean fitness of the
population because of the production of pheno-
typically more extreme individuals with lower fit-
nesses. If the environment is changing, so that the
mean deviates from the optimum, the population
mean fitness may be increased by increasing the
genetic variance of the trait, allowing a faster rate of
tracking of the optimum.

Mather recognized that a major effect of selection
on the genetic variance of a trait is mediated by
linkage disequilibrium between alleles at different loci
controlling the trait. In a constant environment, the
reduction in phenotypic variance in a heritable trait
caused by stabilizing selection results in the generation
of negative linkage disequilibrium, such that 'plus'
alleles affecting the trait tend to be associated in the

population with 'minus' alleles at other loci. If the
loci affecting the trait are approximately additive in
their effects, these associations result in a negative
covariance between the effects of different loci, which
reduces the genetic variance below that expected in
the absence of such covariance (Bulmer, 1974). The
lower the frequency of genetic recombination between
loci, the larger this effect.

It follows that mean fitness in a constant en-
vironment is likely to be largest when recombination
is absent, and so asexual reproduction or genes
causing zero recombination should be favoured in a
constant environment [see Felsenstein (1974) for a
justification of the use of mean fitness in this context].
Conversely, if the environment is changing sufficiently
fast, breakdown of this negative linkage disequilibrium
by increased genetic recombination should be favour-
ed, as the resulting increase in genetic variance will
allow a more rapid response to the resulting pressure
of directional selection. These notions are at the core
of Mather's influential concept of a conflict between
immediate fitness and genetic flexibility. This concept
has usually been interpreted in terms of group selection
rather than selection on genotypes or individuals (e.g.
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Stebbins, 1950, chap. 5). Presumably for this reason,
the role of increased genetic variance in promoting the
response to selection has been neglected in more
modern theories of the evolution of sex and re-
combination (Michod & Levin, 1988).

In the past few years, there has been a revival of
interest in the notion that selection on quantitative
traits may lead to a selective advantage to sex and
recombination in temporally varying environments
(Maynard Smith, 1980, 1988; Bergman & Feldman,
1990, 1992; Korol, Preygel & Preygel, 1990; Crow,
1992). This was preceded by the development by
Bulmer (1974, 1985) and Lande (1975) of detailed
models of the effects of selection on the genetic
variance of quantitative traits, and the realization that
significant effects of linkage disequilibrium may be
detectable at the level of the genetic variance for the
trait even though pairwise associations between loci
are very weak.

There is now no doubt that the type of process
outlined above is mechanistically sound, and capable
of generating advantages to sex and recombination at
both the genotypic and population level (Maynard
Smith, 1988). In addition, there is evidence from
artificial selection experiments that a response to
directional selection on a trait is frequently associated
with a correlated increase in recombination rate
(Flexon & Rodell, 1982; Korol et al. 1990; Gorodet-
skii, Zhuchenko & Korol, 1991), suggesting that this
idea may have an empirical basis. A similar process of
the break-down by recombination of negative linkage
disequilibrium generated by selection underlies the
selective advantage to increased recombination when
there are synergistic interactions among the fitness
effects of deleterious alleles maintained by mutation
(Feldman, Christiansen & Brooks, 1980; Kondrashov,
1988; Charlesworth, 1990).

This paper is concerned with the theoretical analysis
of the conditions with respect to the intensity of
selection and rate of change of the environment that
are required to produce advantages to sex and
recombination. Four modes of selection, respectively
involving a steady shift in the optimum, a randomly
varying optimum, a cyclically varying optimum, and
directional truncation selection, will be considered
here. The effects of sexual versus asexual, recom-
bination on the mean fitness of the population, and
the direction and strength of selection on rare
modifiers of the rate of recombination, will be
analysed. The first topic is relevant to the question of
whether or not sexual populations can be invulnerable
to invasion by asexual variants that evade the
reproductive cost of sex (Maynard Smith, 1978). The
second is relevant to the question of the contribution
of selection in varying environments to the main-
tenance of non-zero levels of genetic recombination,
and to the promotion of differences in rates of
recombination between populations or taxa.

2. Nor-optimal selection with a steadily moving

optimum

(i) Relation of population mean fitness to genetic

variance

Consider an additively inherited quantitative trait
subject to a nor-optimal selection scheme with a
moving optimum, such that in generation n the fit-
ness of an individual with trait value z is
wz = exp — (z — dn)

2/(2(i)2), where 6n is the optimal value
in generation n and 1/w2 measures the strength of
selection. Let the additive genetic variance in the trait
be VG and the environmental variance be VB. Following
Turelli (1984), let Vs = VE + o)2 be a composite of the
environmental variance and the inverse of the strength
of selection. In what follows, all trait values will be
assumed to be measured on a scale on which VE = 1.
From the standard selection equation (Bulmer, 1985,
p. 151), we obtain the following expression for the
change in population mean

where k=VG/(VG+Vs).

If the optimum changes at a steady rate Ad per
generation, this gives

zn - dn = (1 — k) (zn_j — 6n_y)—Ad (2)

and so the difference between the population mean
and the optimum equilibrates at

1-1= Ad/k. (3)

This result has been obtained independently by Lynch,
Gabriel & Wood [1991, eqn (15)].

The mean fitness of the population (Latter, 1970) is
given by

w =
V{va+vs)

exp —
2(vG+vsy

(4)

With a steadily moving optimum, the population
mean fitness thus equilibrates at a value given by

(5)

A related formula is given by Lynch & Lande [1992,
eqn (9)].

The effect of a change in additive variance on mean
fitness can be determined by examining the derivative
of this function with respect to VG. It is convenient to
scale Va and (Ad)2 relative to Vs. Let V = VG/VS and
</> = [Ad)2/Vs. Turelli (1984) suggested that a typical
value of Vs relative to VE is between 10 and 20. Even
if the heritability of the character is extremely high,
this implies that it is safe to assume that Fis small, so
that second-order terms in V can be neglected, to a
good approximation. We then have

lnvv - | l n Vs-\V-<j>/2V2. (6)
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The condition for 8w/dV> 0 is

2<j> > V\

or

(7 a)

If Vs is taken to be approximately 20 VG, in
accordance with the assumptions just discussed, then
the condition for a mean fitness advantage to an
increase in VG is roughly

\Ad\ > O035o-G (7 c)

where aG is the additive genetic standard deviation
and \A8\ is the absolute value of the rate of change of
optimum.

This shows that the absolute value of the rate of
change of optimum must be of the order of ^th of the
genetic standard deviation or more, for the advantage
of an enhanced speed of tracking of the environment
to overcome the disadvantage due to a higher genetic
load under stabilizing selection. If this critical value is
not reached, then there will be a reduction in mean
fitness associated with a small increase in genetic
variance.

It is useful to relate these criteria to the genetic load
imposed by the combination of stabilizing and
directional selection. Following Charlesworth
(19846), the first three terms on the right-hand side of
equation (6) reflects the reduction in log fitness due to
stabilizing selection. The fourth term reflects the
additional load due to directional selection. If con-
dition (7 a) is satisfied, the directional selection load
term is greater than 0-25 V, e.g. 0-0125 with Vs = 20 VG.

Since the stabilizing selection load term under this
condition is approximately 0025, this does not
represent a massive increase in load. At the level of
mean fitness, a modest increase in load due to
directional selection is thus sufficient to create an
advantage to a small increase in genetic variance.

The above condition is conservative; owing to the
nonlinear nature of the dependence of log mean
fitness on V in equation (6), a large increase in V will
cause an increase in mean fitness under much lighter
conditions. If V is multiplied by a factor of C < 1,
then mean fitness will decrease if <j>{C+\) > C2V3, a
lighter condition than (7a). The corresponding di-
rectional selection load is 0-5C2K/(C+l). Thus, a
shift to an asexual mode of reproduction, or to zero
recombination, if accompanied by a sufficiently large
decrease in genetic variance, will result in a lower
equilibrium population mean fitness under quite light
conditions. A population founded by a single asexual
clone, with no genetic variance, suffers an equilibrium
fitness loss of infinity under this model, since it fails to
keep up with the moving optimum, and so will rapidly
decline in abundance in competition with a genetically
variable sexual population (cf. Crow, 1992). This is
somewhat unrealistic, as new variability will rapidly
be introduced into the asexual population by mu-

14

tation. An alternative, and more realistic, perspective
is to consider competition between sexual and asexual
populations which are both in equilibrium with respect
to genetic variance. This is the subject of the next
section.

(ii) Relation of population mean fitness to genetic

variance and breeding system

A crude approach to this question is to assume that
the number of loci affecting the trait is large, and the
effect of each locus is small. With random mating, the
additive genetic variance at the start of a generation
can be partitioned into the genie variance VA,

composed of the sum of the additive variance terms
contributed by each locus, and the linkage disequi-
librium covariance term CL. Under these conditions,
changes in genetic variance reflect only changes in CL

(Bulmer, 1985, p. 150). If this is the case, the genetic
variance will not change as a result of the change in
optimum, since the effect of selection on variance is
independent of 8 (Bulmer, 1985, p. 151). The
equilibrium genetic variances under stabilizing selec-
tion alone can then be used to calculate VG in the
above equations.

For convenience, a model of quantitative variability
maintained by the interaction between mutation and
stabilizing selection will be used here. If recombination
is free, the considerations presented by Turelli (1984)
suggest that, for most biologically realistic parameter
sets, the equilibrium genetic variance under stabilizing
selection for a sexual haploid is approximated by the
Latter-Bulmer formula

VG x 2muVs, (8 a)

where m is the number of loci and u is the mutation
rate per locus. The variance is twice this for a diploid,
for the same mutation rate. This formula should
provide a good approximation provided that u is
sufficiently small compared with the product of 1 / Vs

and the mean square of the effect of a new mutation
on the trait (Turelli, 1984, p. 185).

For a non-recombining or asexual haploid genome,
we effectively have a single locus with mutation rate
mu. Under this circumstance, the Gaussian model of
allelic effects of Kimura (1965), Lande (1975) and
Fleming (1979) becomes appropriate, since the 'per
locus' mutation rate is likely to be high relative to the
product of 1 / Vs and the mean square of the effect of
a new mutation (Turelli, 1984). The equilibrium
genetic variance for an asexual or non-recombining
haploid is given by

where Vm is the variance per generation due to new
mutations. If the mean square of the allelic effects of
new mutations is a2, VM = mua2.

A similar result holds for asexual diploids, but Vm is
now 2mua2, where a2 is the mean square heterozygous
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Fig. 1. The selective advantage to asexual reproduction
(O) and load due to directional selection (#) as functions
of the rate of change of optimum Ad, in the case of a
steadily moving optimum. The selective advantage of
sexual reproduction is measured by the difference in
equilibrium log mean fitness between a high variance
(sexually reproducing) population, and a low variance
(asexual) population. The directional selection load is
expressed as the reduction in log mean fitness of the
population below that in an unchanging environment.
Ad is measured on a scale in which the environmental
variance of the trait is unity; the genetic variance of the
sexual population on this scale is Vo = 0-4, and Vs = 20.
The genetic variance of an asexual population is assumed
to be a factor of C times that of a sexual population
(C = 0-25 or 0-75). For Ad close to zero, there is in fact a
small disadvantage of sex in both cases ( — 00074 for
A6 = 0 and C = 0-25; -0001 for Ad = 0 and C = 0-75).

allelic effect of a new mutation. The argument is
slightly more subtle for non-recombining but sexual
diploids. In this case, segregation of the single
chromosome in each generation removes the co-
variance induced by selection between maternal and
paternal genomes [the ' Hardy-Weinberg disequi-
librium' covariance: Bulmer (1985, p. 158)]. Thus,
only a portion of the reduction in genetic variance
created by selection in a given generation is transmitted
to the next generation, instead of all of it as assumed
in the model leading to equation (8 b) [cf. Lynch &
Gabriel, 1983, equation (6)]. Following Bulmer (1985,
p. 159), it seems reasonable to assume that one-half of
the reduction in genetic variance is due to Hardy-
Weinberg disequilibrium when the number of loci is
large, and so only one-half (that due to linkage

disequilibrium) is transmitted to the next generation.
Using this in the formulation of Lynch & Gabriel
(1983) for asexual populations, we obtain the ap-
proximate equilibrium genetic variance for a sexual
diploid with zero recombination as

VG*V(2VmVs). (8 c)

For values of mu of the order of 001, and with Vs

of the order of 10-20 times VE, it is found that formula
(8 a) predicts a higher equilibrium Va than (8b) or
(8 c), because the genetic variance in (8 b) or (8 c)
increases as the square root of the mutation rate, but
(8 a) is linear in the mutation rate (cf. Turelli, 1984;
Table 1). Thus, with mutation and selection par-
ameters that appear to be biologically reasonable, the
equilibrium variance for a freely recombining sexual
population may be several times that for a population
with no recombination. For example, with mu = 002,
a2 = 0-05, and Fs = 20K£, the equilibrium genetic
variance for a freely recombining haploid population
is approximately four times that of a haploid
population which lacks recombination.

Fig. 1 shows the relation between the difference s
between the log mean fitnesses of a freely recombining
sexual population and an asexual population and the
rate of change of the optimum, for two different
magnitudes of the effect of asexuality on the equi-
librium genetic variance. [The more exact equation (5)
was used in these calculations.] When s is small, this is
approximately the same as the selection coefficient
against an asexual line that has reached mutational
equilibrium, competing against a sexual population,
ignoring any inherent reproductive advantage to
asexuality. For small values of |A0|, there is a
disadvantage to sexual reproduction, as predicted
from the considerations above. For the advantage of
the sexual population to overcome a two-fold re-
productive cost of sex, we require s > In 2 = 0-69.
With a four-fold reduction in genetic variance, this is
accomplished when \A6\ > 003, and the directional
selection load for the sexual population is 0-057.
When the variance is only reduced by 25%, a
sufficiently large advantage to overcome the cost of
sex is not achieved in the parameter range studied
here. Protection against an asexual sub-population
with a two-fold reproductive advantage can thus be
gained with weak directional selection if the genetic
variance is sufficiently reduced by asexuality.

The results are also relevant to the fate of a
dominant gene that suppresses recombination, com-
peting against a recessive allele that allows free
recombination, since the respective long-term mean
finesses determine the fate of the competing alleles in
this case (Felsenstein, 1974). There is no reproductive
cost to recombination suppression, so that the
conditions for maintenance of non-zero recombi-
nation are less stringent than those for maintenance of
sexual reproduction [with the qualification that the
reduction in variance for diploid populations associ-
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ated with recombination suppression is smaller by a
factor of 0-7 than that associated with asexuality: cf.
equations (86) and (8 c)].

(iii) Selection on a modifier of recombination

The conditions derived above therefore suggest that
there will be selection maintaining non-zero recom-
bination when the rate of change of optimum \A8\

exceeds a threshold level, which must be higher for a
diploid than a haploid population. If \A0\ is below this
threshold, the advantage of reducing genetic variance
created by stabilizing selection causes a pressure of
selection for reduced recombination. This leaves open
the question of what genome-wide frequency of
recombination is favoured if there is indeed selection
for non-zero recombination. This can be investigated
by examining the fate of genie modifiers with minor
effects on recombination, and attempting to determine
nature of the ESS frequency of recombination that is
sufficient to ensure immunity to invasion by such
modifiers.

The case of selection on a rare modifier allele
affecting recombination in a haploid population will
be considered in most detail in this section, using an
approach similar to that of Charlesworth (1990) for
the case of mutation-selection balance. As in that
case, the effect of selection on a modifier of re-
combination depends on the asymptotic differences in
mean and variance between carriers of the modifier
and the general population. Let these quantities be Si

and SVG respectively. The derivation of general
equations for these is given in the Appendix, using a
modification of Bulmer's (1985, p. 158) infinite locus
model for selection on a quantitative character
[equations (A 2) and (A 9)]. Given values of 8z and
SVG, the selection coefficient s o n a modifier can be
calculated from the deviation of log mean fitness of
the modifier population from that of the general
population, d\nw [equation (A lla)]. This measures
the asymptotic rate of change in allele frequency x of
the modifier while rare, Ax/x. In general, Sz and SVG

are complicated functions of the numbers of chromo-
somes, their map lengths, and the position of the
modifier within the chromosome on which it is carried
(cf. Charlesworth, 1990).

Some useful insights into the nature of selection on
recombination can, however, be obtained without
taking these details into account. Equations ( A l i a , b)

shows that the direction of selection on the modifier
depends only on the direction of its effect on variance,
and on the sign of a quantity that depends on the
current variance, the magnitude of rate of change of
the optimum, and on the harmonic mean of the
frequency of recombination between the modifier and
the selected loci, pH. With nor-optimal selection, a
modifier which has the same direction of effect on
recombination on all pairs of loci that it affects will be
associated with a change in variance of the same sign

as its effect on recombination [see Appendix, section

equation (A lift), it is easily seen that a
population with free recombination (pH = 0-5 >̂ V)

will be invulnerable to invasion by a modifier that
reduces recombination by a small amount if and only
if

> V2. (9 a)

This can be compared with the corresponding sufficient
condition for immunity to invasion by a factor that
completely suppresses recombination [equation (7 a)].
Since the right-hand side of (9) involves V2 instead of
V3, the condition is considerably more stringent than
that for a suppressor of recombination. If Kis 1/20,
equation (9 a) yields the condition comparable to (7 c)

\Ad\ > 0129crc. (9b)

Equation (7) also gives the condition for the spread
of a recessive modifier that introduces some re-
combination into a non-recombining population (in
which V is expected to be considerably smaller than
with free recombination, reducing the stringency of
the condition). This can be compared with the
condition derived from equation (A 11 b) for a
dominant modifier increasing recombination away
from zero (pH = 0):

V3. (9c)

For small V, the two conditions are nearly identical,
indicating that dominance has little effect on the
condition for invasion of a non-recombining popu-
lation by a modifier that increases recombination.

These results indicate that non-zero recombination
can be favoured under conditions under which free
recombination is disfavoured, suggesting the existence
of an ESS such that the mean recombination frequency
for a pair of trait loci is considerably less than one-
half. Some general notion of the nature of the ESS can
be obtained from equations (9) by noting that, with the
assumptions made here, V depends only weakly on
the recombination frequencies, unless these are mostly
close to zero. From equation (A 3 c), we obtain the
expression

where VA = VA/VS. From the considerations presented
above, second-order terms in VA are likely to be small.
Hence, unless rH is of the same order as \/VA (i.e.
recombination is near zero), rH has only a second-
order effect on V. Over a wide range of recombination
frequencies, V in equations (A l i a , b) can thus be
treated as independent of recombination and equated
to VA, to a first-order approximation. Thus, the
modifier will be neutral when

PH (11)
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While the value of pH is in general dependent on the
position of the modifier on the chromosome on which
it is located, equation (27) of Charlesworth (1990)
shows that this dependence is logarithmic, and hence
rather weak, if the number of trait loci is large. This
means that pH provides an index of the average
amount of recombination in the genome under a wide
range of conditions. Numerical examples show that
pH is very close to the harmonic mean recombination
frequency between a random pair of loci, under the
assumption of no interference and a random dis-
tribution of loci over chromosomes. Note that
pH ^ 0-5, and that the ESS value of pH is zero
unless the condition of equation (7) is satisfied by the
value of V given by equation (Sb).

This analysis provides no insight into the strength
of selection propelling the population towards the
ESS. As discussed above, this depends on the linkage
relations of the modifier with the genes controlling the
trait under selection. Two limiting cases that yield
simple results can be analysed: a single chromosome
with a low rate of recombination, and free recom-
bination between the modifier and the trait loci. The
latter case provides a good approximation to the
strength of selection on a modifier in a genome with
several chromosomes, where most loci affected by the
modifier are unlinked to it. These cases will be
considered in the following two sections.

(iv) A single chromosome with a low rate of
recombination

In this case, the products of recombination frequencies
in equation (A 9) can be neglected in comparison with
the recombination frequencies themselves (this is also
the case if there is complete interference). Following
Charlesworth (1990), it seems reasonable to consider
the case when the modifier affects the map length / of
the chromosome (in Morgans) by an amount 81 = el,
where e is the proportional effect of the modifier on
map length. If loci are uniformly affected by the
modifier, we have Srv « eri} when recombination rates
are low. Assume that a proportion p of loci are
located to the left of the modifier's position on the
chromosome, and a proportion p = 1 —p to the right
(Charlesworth, 1990, p. 209). With a uniform dis-
tribution of loci along the chromosome (Charlesworth,
1990, p. 210), substitution into equation (A 9) and
integration yield the following relation

1

« (In m —p \np — q In #)//.

Using equation (A 9), we find

sv
 eEV2

(12a)

(12b)
1+2VE

Substituting these relations into equation (Alla),

4 6
Map length (cM)

Fig. 2. The selection gradient (x 102) for the proportional
effect e on map length of a modifier of recombination,
expressed as a function of map length, in the case of a
steadily moving optimum and a short map length [see
equation (13)]. The case when A6/<rG = 010 (CO and
when A0/<rG = 0-05 (#). It is assumed that Vc=VE = \

G
and Vs = 20.

and using
obtain

the fact that in this case 1 /pH x (In m)/l, we

= S(lnw)
eE

2(2+VE) I
(13)

This expression indicates that a substantial pressure of
selection can act on a modifier that increases the map
length of a single chromosome with a short map,
provided that the rate of change of the optimum is
sufficiently large in relation to the genetic variance.
Fig. 2 shows some examples of this for the case of a
modifier situated in the middle of the chromosome,
expressed in terms of the selection gradient, s/e. (It is
useful to note that, with / <̂  1 as assumed here, the
selection gradient on map length in Morgans is
considerably larger than that on e.) While this case
gives the greatest intensity of selection, with E in
equation (12a) equal to (\n2m)/l, it is easily seen that
with large m there is very little effect of the position of
the modifier; a terminally located modifier has an E
value of (In m)/l. Even for a moderate rate of change
of optimum, as in the lower of the two curves in Fig.
2, there is a selection gradient of the order of 1 % for
increased recombination.

(v) Free recombination between the modifier and the
trait loci

If the modifier recombines freely with all the trait loci,
and there are J chromosomes of length /, equation
(A 9) yields

SV', (14a)

where EL denotes the expectation over all pairs of trait
loci on the same chromosome. Using the same
assumption as before about the effect of the modifier
on map distance, with general recombination fre-
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40 60
Map length (cM)

Fig. 3. The selection gradient (x 104) on the proportional
effect e on map length of a modifier of recombination,
expressed as a function of map length, in the case of an
unlinked modifier and a single chromosome carrying the
trait loci [see equation (15*)]. A steadily moving optimum
is assumed. The case when A6/crG = 015 (O) and when
A6/crG = 0-10 (#). Other parameters are as in Fig. 2.

selective optimum 6n follows a linear stationary
Markov process, with a mean of zero, variance Vg, and
autocorrelation T,(— 1 ̂  T < 1) between 6 values
which are i generations apart i.e. 9n = rdn_1 + en_l,

where en is a random variable with mean zero and
variance Ve. We have Vg = VJ{\ — T)2. From standard
theory on fluctuating environments (Haldane &
Jayakar, 1963; Gillespie, 1973; Karlin & Liberman,
1974), the most appropriate measure of average mean
fitness is the expectation of the natural logarithm of
mean fitness, i.e.

(16)

This can be evaluated as follows. Assuming that the
genetic variance equilibrates at a constant value VG,

and that Vs is a constant, the following expression is
obtained from equation (1) for the mean phenotypic
value in a an arbitrary generation n:

quencies we have 8rtj < eri}, so that an upper limit to
SV is obtained by equating EL to

In the case of a short map length for each chromosome,
EL re e, and we have

sxe(3<f>-V2)/J. (15 a)

More generally, the mean value theorem applied to
equation (14a) with the Haldane (1919) mapping
function for no interference gives EL re E'Ll/(el — \).

We thus have

(156)
3y(e'-l)

The intensity of selection is inversely proportional
to the number of chromosomes. For a long map, it is
easily seen that this condition produces much weaker
selection than equation (15 a). Fig. 3 shows some
numerical example for the case of a single chromo-
some. (The displayed selection gradients should be
divided by the number of chromosomes for cases
where there are multiple chromosomes.) The maxi-
mum selection gradient for increased recombination
is of the order of 10~3 in the case of the more rapidly
moving optimum; there is selection against increased
recombination for the more slowly moving optimum,
in contrast to the linked modifier shown in Fig. 2.

3. Nor-oprimal selection with a randomly fluctuating

optimum

(i) Relation of population mean fitness to genetic

variance

The above approach can be extended to the case of a
randomly fluctuating environment, such that the

(17)

The first term on the right-hand side may be neglected
for large n. Hence, the asymptotic value of E{{z — d)2}

is given by

(18)

Lengthy but straightforward calculations using the
properties of the linear stationary process lead to the
asymptotic result (valid for k > 0)

(19 a)

Substituting into equation (16), we obtain

E{\nw) re lnw-|ln Vs-\\n(\ + V)

(1 - T ) V6

(\-T[l-k])(2-k)Vs(l + VY
(20a)

For Ve = 0, it is obvious that expected log mean
fitness decreases with increased genetic variance. With
small V, such that k re V, and with T < 1 -O(V), the
following expression is obtained, neglecting second-
order terms in V:

- l ) , (206)

where \jr = Ve/Vs is the variance in optimum scaled
relative to the inverse measure of the strength of
selection (<fr is the analogue of $ in the case of a
steadily moving optimum). Lynch & Lande (1992)
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Fig. 4. The selective advantage to asexual reproduction (O) and load due to directional selection (#) as functions of the
standard deviation of the optimum, in the case of a randomly varying optimum. Four different cases with different
autocorrelations of the optimum are displayed. In each case, the C value for the asexual population is 0-25. Other
parameters are as in Fig. 1.

have derived a related expression for the case of zero
autocorrelation [their equation (9)].

It is obvious from this expression that the condition
for expected log fitness to increase with increased
genetic variance is

2(1- r )
> 1. (21 a)

The stringency of this condition decreases with T,
and is clearly impossible to satisfy when T = — 1.
When there is no autocorrelation in the fitness
optimum, the condition for expected log mean fitness
to increase with increased genetic variance is simply
i/r > 2. For r = 0-5, it becomes i/r > 067, and for
T = 0-9, ifr > 011. As with the case of steadily moving
optimum, it is useful to relate condition (21) to the
load created by the directional selection imposed by
the shifting optimum. This load is enshrined in the
terms involving ifr in equations (20). Since the above
considerations imply that ifr must be of the order of at
least 0-1 for an advantage to increased genetic variance
(unless T is very close to 1), and the dominant
directional selection term in equation (20b) is 0-5^,
the increased load due to directional selection must be
of the order of 005 or more for there to be an

advantage to increased genetic variance. With a low
autocorrelation, an extremely high directional load is
required. Fig. 4 shows some numerical examples of
the magnitude of the difference in expected log mean
fitness between sexual (high variance) and asexual
(low variance) populations for various sets of par-
ameter values, assuming that the genetic variance of
the asexual population is one-quarter that of the
sexual. In contrast to the case of a steadily moving
optimum, the advantage of sex never approaches a
value sufficient to overcome the two-fold reproductive
cost of sex. A high autocorrelation is most favourable
to sexual reproduction.

If T = 1, the process is no longer stationary, but is
a random walk, with Vg increasing indefinitely with
time, at rate Ve per generation. Applying equation (2)
to this case, it is evident that asymptotically we have

E{(z-df}(\-[\-kf)=Ve,

i.e.

and

- VJAVVS.

(196)

(20c)
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Fig. 5. The selection gradient (x 10") on the proportional effect e on map length of a modifier of recombination,
expressed as a function of map length, in the case of an unlinked modifier and a single chromosome carrying the trait
loci [see equation (26)]. The case when f = 0-5 (o-e/<ra = 316) (O) and when f = 01 {<Te/<rG = 1-41) (#) . Other
parameters are as in Fig. 2.

This implies that increased genetic variance is favoured
when

VJ2VS>V\ (216)

which is a much lighter condition than (21a), with
plausible parameter values.

(ii) Selection on a modifier of recombination

The conditions for increase in frequency of a rare
modifier of recombination in the case of a randomly
varying environment can be analysed in a similar way
to Section 2 (iii) above. For the reason given in Section
(iv) of the Appendix, only the case of a modifier that
is unlinked to the trait loci can be analysed easily. As
before, the focus is on the haploid case. The equations
for the effect of the modifier on covariances and
variance [equations (A 5-9)] are unchanged. In order
to calculate the effect of the modifier on the expectation
of log mean fitness, 8E{\nw}, we note that (ignoring
second-order terms in the 8s), equation (16) yields

(22)

In order to evaluate this, we need to determine
E{Szn(zn — #„)}. The details are given in section (iv) of
the Appendix. With small V and T < 1 — O(V),

equations (16) and (A 16) yield the approximate
relation

(23)

As before, the value of 8V is given by equation
(A 9), and has the same sign as the effect of the modifier
on recombination, if this is in the same direction for
all affected loci. There will then be a disadvantage to
a modifier that decreases recombination if

f\±^>\. (24)

It is easily seen that the threshold value of i/r

required to satisfy this relation decreases with in-
creasing T. With r = — 1, a freely recombining popu-
lation will be immune to invasion by a modifier that
reduces recombination if xjr > 3; with r = 0 \Jf > 1 is
required, whereas i/r > 0-33 is required if T is close to
1. It is remarkable that this condition is less stringent
than the population mean fitness criterion derived
above when the autocorrelation is sufficiently low.
This suggests that under these circumstances a loosely-
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linked modifier is more likely to gain a selective
advantage than an absolutely-linked one, for which
the mean fitness criterion is more appropriate. The
free recombination criterion becomes more stringent
than the mean fitness criterion when r > 0-562.

The strength of selection on the modifier can be
calculated by similar methods to those used in Section
3(v). With free recombination between the modifier
and the trait loci, and with J chromosomes of map
length IP V, the analogue of equation (15 b) is

(26)
1- i r

Some numerical results are shown in Fig. 5. It is seen
that, with the parameter sets used here, the auto-
correlation must be very high for recombination to be
favoured.

4. Nor-optimal selection with a cyclically fluctuating

optimum

(i) Relation of population mean fitness to genetic
variance

A cyclically-varying optimum provides a selective
scheme that seems intuitively to be intermediate
between the cases of a steadily moving and a randomly
fluctuating optimum considered above. A simple
model of such a scheme is to write

(27)

where L is the period of the environmental cycle, and
A is the amplitude of the oscillation in the optimum.
A more general representation of a cyclically varying
environment can be obtained from a Fourier series of
cosine functions of the form of equation (27); this will
not be pursued further here.

Substituting this into equation (17), we obtain the
asymptotic result

(28)

If the period of the cycle is sufficiently long relative
to the amplitude, then this expression can be approxi-
mated by an integral:

f* V*COs(—

ITTALVsin (2n(n-l)/L)

V2L2 + 4n2 '
(29)

The asymptotic value of E{(z—d)2} in equation (16)
is approximated by the integral of (I— 6f over one
cycle using equation (29), and dividing by L. For
small V, substitution into equation (16) yields the
approximation:

E{\nw} -iv-- 1-V+-
4n2V2L2

(30)

where £ = A2/Vs, and is the analogue of <j> and i/r in
the previous cases.

For small VL and for very large VL, the condition
for expected log fitness to increase with V is £ > 2,
which is similar to the condition on \(r in the case of a
randomly varying environment with a zero auto-
correlation. Since the additional load imposed by
directional selection is approximately given by ££ in
equation (30), this implies that a very high load is
required to confer an advantage to increased genetic
variance in this case. Equation (30) also suggests that
the period of the cycle has only a small influence on
the condition for a mean fitness advantage to increased
variance.

The magnitudes of the directional selection loads
for populations with different genetic variances, and
the expected asymptotic log mean fitness advantages
of increased variances, are shown in Table 1. The
values are calculated using both the exact equations
(16) and (28), and the approximate expression (30).
The exact results are obtained by iterating the
equations for a minimum of 1000 generations,
verifying that the changes in mean have reached a
steady state, and then taking the means of log
population fitnesses over an entire cycle.

It can be seen from the table that, although the
approximate equation is in quite close agreement with
the exact values for directional selection loads (except
for very short cycles), the effect of changing the
genetic variance is usually so small compared with the
error in the approximation that the magnitude and
direction of the net effect on average log mean fitness
are usually not well predicted. As expected, the
agreement is best for the lowest amplitude of the
environmental cycle that was studied (g = 0-31), but
this case does not yield an advantage for increased
variance. The exact results suggest that the criterion
i < 2 for an advantage to increased variance is too
stringent, and that £ > 1 is a closer approximation. In
all cases, the advantage or disadvantage of increased
variance is small, even when the directional selection
load is very large (e.g. with £, = 2-81). As predicted by
the approximate formulae, there is little sensitivity to
the period length, except for very small or very large
cycles. The exact results indicate that the advantage of
increased variance tends to increase when the period is
very long, presumably because this case converges on
the more favourable case of a steadily moving
optimum.

(ii) Selection on a modifier or recombination

Selection on a recombination modifier can be studied
by methods similar to those used previously. Un-
fortunately, the poor agreement between the analytical
approximation and the numerical results in the mean
fitness analyses described above suggests that it would
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Table 1. Effect of genetic variance on mean fitness in a cyclically varying
environment

L

2
5

10
50

100
200

2
5

10
50

100
200

2
5

10
50

100
200

2
5

10
50

100
200

Directional selection

High Vc

Exact

0150
0075
0075
0075
0068
0054

0-254
0127
0127
0124
0115
0091

0-600
0-302
0-300
0-293
0-273
0-215

1-351
0-675
0-675
0-659
0-615
0-484

Approx.

0077
0-077
0-077
0077
0083
0092

0129
0129
0131
0133
0140
0156

0-306
0-306
0-307
0-314
0-332
0-369

1-392
0-689
0-690
0-706
0-747
0-830

loads Advantage of increased Vc

Mean fitness
Low VG advantage

Exact Approx. Exact

A = 2-5 (g = 0-31)

0155 0078 -0.003
0077 0078 -0.005
0077 0078 -0.005
0077 0078 -0.005
0077 0078 0.012
0077 0078 0014

A = 3-25 (£, = 0-53)

0-261 0131 +0000
0131 0-131 -0.004
0130 0131 -0.003
0131 0132 -0.001
0130 0132 0007
0128 0135 0029

A = 5-0 (f = 1-25)

0-619 0-311 0011
0-309 0-311 0002
0-309 0-311 0.002
0-309 0-311 0009
0-307 0-312 0027
0-302 0-318 0079

A = 7-5 (i = 2-81)

0-689 0-700 0034
0-696 0-700 0.013
0-696 0-700 0014
0-695 0-701 0028
0-692 0-704 0-070
0-830 0-716 0-188

Approx.

-0.006
-0.006
-0.006
-0.006
-0.012
-0.020

-0.006
-0.006
-0.006
-0.008
-0.016
-0.029

-0.003
-0.003
-0.003
-0.010
-0.026
-0.058

0003
0003
0002

-0.012
-0.050
-0-122

advantage*

-0.242
-0.353
-0.318
-0.279
-0.292
-0.336

-0.064
-0.251
-0.193
-0.126
-0.148
-0.222

0.532
0.089
0-227
0-384
0-333
0-215

1-822
0-675
1136
1-489
0-615
0-484

In this case, Vs was set to 20. VG was 0-4 for the high variance (sexual) population,
and 01 for the low variance (asexual) population. The loads and mean fitness
advantage are calculated in terms of the appropriate terms in the expected log
mean fitnesses of the populations.
* The advantage to the modifier is that for an unlinked modifier increasing
recombination, expressed as a proportion of its effect on variance (scaled relative
to Vs), SV.

be unprofitable to obtain such approximations for a
modifier in this case. Instead, the case of an unlinked
modifier was studied by iteration of equations (28),
(29) and (A 12 a), to determine the steady-state
trajectories of z and Sz. Equation (22) was then used
to calculate the mean value of S\nw relative to SV.
The sign of this quantity gives the criterion for
increase in the frequency of a rare modifier increasing
recombination. No assumptions about the linkage
relations among the trait loci are needed.

The last column of Table 1 shows the result of these
calculations. The conditions for an advantage to a
modifier increasing recombination are similar to those
for an increase in the average mean fitness. The
magnitude of selection on the modifier is considerably
affected by period, but its sign is never changed. Since
SV is independent of environmental variation in the

selection regime, this implies that the selection
coefficient on the modifier varies in parallel. Selection
in favour of increased recombination is strongest
when the cycle length is very short or fairly long, but
diminishes again for very long periods.

5. Strong directional selection

(i) Preliminary considerations

As mentioned in Section 1, there is evidence that
artificial selection on quantitative traits can lead to a
correlated increase in the frequency of genetic re-
combination. It is therefore of interest to compare the
consequences of strong directional selection with the
results obtained up to now, which have assumed
relatively weak selection. Since the experiments have
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mostly been carried out on Drosophila, diploid
inheritance will be assumed here.

The standard model of truncation selection on a
metrical trait is used, which assumes that only the
proportion p of the population which falls above a
threshold value T contributes to the next generation
(Falconer, 1989, chap. 11). Assuming a normal
distribution of the trait and large population size, the
selection intensity / (the difference between the mean
of the selected parents and the population mean
before selection, expressed as a standardized normal
deviate) is equal to exp(—\z2)/(p\/2n). Here, zt =
(T—z)/crp is the standardized normal deviate cor-
responding to T, where crP is the phenotypic standard
deviation (Falconer, 1989, chap. 11). The change in
mean additive genetic value due to one generation of
selection is ih2<rP, where h2 is the heritability, Va/ VP.
The corresponding change in additive genetic variance

is

= -i(i-\)VGh2 (31)

(Bulmer, 1985, chap. 9).
The genetic variance in a population subject to

artificial selection of this kind rapidly equilibrates to
the value given by equation (9.47) of Bulmer (1985).
This equilibrium value depends only on the parameters
just defined and on the harmonic mean recombination
fraction rH between a random pair of trait loci [cf.
equation (A 3 c)]. If rH is small, as in the case of
organisms such as Drosophila with small numbers of
chromosomes, the equilibrium genetic variance may
be considerably smaller than that in the starting
population. It will accordingly be used for the initial
value of VG for the population into which the modifier
is introduced.

(ii) Selection on a recombination modifier with
truncation selection

Using the argument that leads to equation (A 19) for
the case of nor-optimal selection and diploidy, we
obtain the following recursion relation for the de-
viation of the additive genetic value at the ith locus in
the modifier population from the value for the general
population

8(ih2aP)

2m '

This yields the equilibrium relation

i\\-\h2)8VG+VG8i
oz « .

l<TPpH

(32 a)

(326)

Using the relation between / and zt [see Section 5(i)
above], we can express Si in terms of the more
fundamental variables 8z and dVG as

(33 b)

A further expression in Sz and SVG can be obtained
from the equations for the covariances in the modifier
population, equation (A 18). Write E for the ex-
pectation over all loci pairs of the sum of the
multiplicands of 8A in equation (A 18), and 8E for the
expectation of the sum of the multiplicands of A.
Using equation (31) to evaluate these multiplicands in
terms of Sz and 8VG, we obtain the relation

(1 + aE) 8VG + bESz = - ASE,

where

(34)

a = ^ V £ + Vp)(i-zt)+\VGzt(\ +zt[2i-zt}))
y
 p

and

b = ih\\+zt[2i-zt]).

Combining these relations with equations (33 a, b),
we obtain

Sz:
-cASE

(\-d)(l+aE) + bcE'

(\-d)Sz

(35 a)

(35 b)

where

rPpH\

and

d =
2VP(TPpH

The selection coefficient on the modifier is given
approximately by —i8zt (Falconer, 1989, p. 202), and
so we obtain

(36)

These equations enable the selection coefficient on a
rare modifier of the rate of recombination to be
calculated, providing that the recombination terms E
and SE are specified. For the numerical examples
considered here, these have been calculated by a
modification of equations (26) and (27) of Charles-
worth (1990). The modification involves dropping
terms involving the selection coefficients on the
underlying loci [see Appendix, Section (ii), for a
justification of this procedure]. The results obtained in
this way should be quantitatively accurate, unless the
map length of each chromosome is small. The model
assumes that there are J chromosomes, each of map
length /, with m loci distributed randomly across the
chromosomes. Recombination occurs at equal rates in
the two sexes, and there is no interference. The
modifier is assumed to affect the map length of each
chromosome by an amount el.

https://doi.org/10.1017/S0016672300031372 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300031372


Sex and directional selection 217
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Fig. 6. The selection gradient on the proportional effect e
on map length of a modifier of recombination in the case
of strong truncation selection (proportion selected 10%,
selection intensity 1-8). The modifier is assumed to be
located in the middle of one of the chromosomes, and to
affect the map length of each chromosome equally. An
initial map length of 50 cM for each chromosome (O)
and an initial map length of 100 cM (#) are assumed.

Some results are shown in Fig. 6. It can be seen that,
especially for the shorter map length, strong truncation
selection leads to a large selection pressure in favour
of a modifier increasing recombination. The case of an
organism like Drosophila that has crossing over in
only one sex can also be modelled by this method, by
writing the frequency of recombination between a pair
of loci separated by a given map distance as one-half
of the value given by the Haldane mapping function.
This yields results that are almost identical to those
obtained with equal rates of crossing over in both
sexes, but with chromosomes half the map length. The
results in fig. 6 with three chromosomes and a map
length of 0-5 should thus approximate what is expected
for Drosophila. The strength of selection on a modifier
is clearly very dependent on the number of chromo-
somes, and falls off rapidly as this increases above five.
The peak at three chromosomes for the case of a map
length of 50 cM for each chromosome may be
artefactual, as the equations for change in covariance
become unreliable for low recombination rates and
strong selection.

6. Discussion

The results presented above show clearly that a
sufficiently strong, sustained pressure of directional
selection on a quantitative trait can favour sexual
reproduction and genetic recombination, in agreement
with results obtained previously, primarily by com-
puter modelling (Maynard Smith, 1980, 1988; Berg-
man & Feldman, 1990,1992; Korol et al. 1990; Crow,
1992). This does not necessarily imply that this process
has been an important factor in the evolution of sex
and recombination. The conditions under which it is
most likely to operate are reviewed below, and

theoretical and empirical evidence relevant to its
plausibility is discussed.

(i) Effects of the selection parameters on selection for
sex and recombination

Inspection of the equations and figures presented
above shows that, for each model of nor-optimal
selection, there is a threshold level of environmental
variability (measured by \A6\ with a steadily moving
optimum, Vg or Ve with a randomly varying optimum,
and A for a cyclical optimum) which must be exceeded
for there to be a selective advantage to sexual over
asexual reproduction, or for selection for non-zero
rates of genetic recombination. If the appropriate
threshold is not crossed, then increased genetic
variance in the trait under selection leads to a decrease
in long-term average population mean fitness, or to
selection against modifiers that increase recombi-
nation. If there is an ESS mean recombination
frequency, its value also increases with the degree of
environmental variability.

Of course, it is not necessarily the case that even
strong directional selection creates a selection pressure
in favour of increased genetic variance (Maynard
Smith, 1988; Bergman & Feldman, 1990, 1992). A
requirement for this is that selection creates negative
linkage disequilibrium (or Hardy-Weinberg disequi-
librium, in the case of a non-recombining but sexual
population), by reducing the variance of the trait. In
the case when fitness is a log-linear function of
phenotype, there is no change in variance, and hence
no advantage to recombination of segregation
(Charlesworth, 1990). More generally, Shnol &
Kondrashov (1993) have shown that selection reduces
the variance in traits for which the second derivative
of the logarithm of fitness with respect to phenotypic
value is always negative. The opposite is true if the
second derivative is always positive. Only in the
former case will there be an advantage to increased
recombination under directional selection, using the
models developed here. Similar results were obtained
by Felsenstein (1965) for a two-locus model.

Under the model of maintenance of variation by
mutation, equation (8 a) implies that the level of
genetic variance for a freely-recombining sexual
population is proportional to the measure of the
inverse of the strength of selection, Vs. Hence, the
standardized genetic variance V = Vo/ Vs which
appears in the selection equations is nearly inde-
pendent of Vs. It follows from this, and from the fact
that the terms involving the various measures of
environmental variability are all divided by Vs, that
(for a given level of environmental variability) the
strength of selection on the quantitative trait has the
same relation to selection for sex or recombination as
the level of environmental variability. In the case of a
randomly varying optimum, selection for sex or
recombination is favoured by large values of the
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autocorrelation in optimum, T. With a cyclical
environment, the period has little influence on the
direction of selection on sex or recombination, but the
magnitude of any advantage seems to be greatest for
very short or very long periods (see Table 1).

As noted previously, the degree of environmental
variability and the strength of selection on the trait
combine to create a genetic load due to directional
selection, which bears a similar relation to the nature
of selection for sex or recombination as either of the
other two parameters considered in isolation. The
magnitude of this directional load provides a good
guide to the relative plausibility of the various models,
as it is unlikely that a selective scenario that requires
an extremely high directional load in order to create
an advantage to sex or recombination will be
compatible with the continued survival of the popu-
lation (cf. Crow, 1970). On these grounds, the cyclical
optimum model and the random optimum model with
low autocorrelation appear to be implausible, as they
both require extremely high loads in a sexual
population to provide even a modest advantage to sex
or recombination (see Fig. 4 and Table 1). While the
random optimum model with an autocorrelation of
0-9 or so can certainly provide a significant mean
fitness advantage to sex, and a strong advantage to
non-zero recombination, it cannot generate a sufficient
advantage to overcome the two-fold reproductive cost
of sex (Maynard Smith, 1978) without an extremely
high directional load. The same applies to the case of
a cyclical environment. Only the model of a steadily
moving optimum [Section 2(ii)] can create such a large
advantage to sex with a moderate directional load in
the sexual population.

The load created by directional selection is closely
related to the time average of the variance in fitness
(cf. Crow, 1970, p. 172), as may be seen as follows.
From the nor-optimal selection formula and equation
(4), the variance of fitness (scaled relative to the
square of mean fitness) in a given generation is

of the scaled genetic component of the variance in
fitness is given by

exp —
(37 a)

Provided that w2 > VG + VE, as we have previously
assumed, the component of the scaled variance in
fitness attributable to the deviation of the mean from
the optimum can be can be approximated by

: exp
va+K

- 1 .

Provided that the expected squared deviation of
population mean from the optimum is small, using
equation (196) we find that the expectation over time

E{V*GW)
VE{{z-6f}

(38)

From equations (4), (5) and (20), the directional load
is 1/(2 V) times the right-hand side of this equation.
With V = 1/20, a directional load that is required to
select for sex or increased recombination thus corre-
sponds to a scaled genetic variance in fitness of one-
tenth the size of the load. Houle (1992) has reviewed
data on fitness components in a variety of different
species, usually measured under laboratory con-
ditions. Traits such as fecundity and longevity often
show scaled genetic variances as high as 0-2 or so
(Houle's Table 1 and Fig. 1), but values that approach
1 are rare. If variance in fitness were due solely to
directional selection, such values would easily be
compatible with a selective advantage to increased
genetic variance, or even to sexual reproduction, with
a steadily moving optimum. They are less easy to
reconcile with an important role for fluctuating
environments, especially as the proportion of the
variance in fitness that is due to directional selection is
unknown, and seems likely to be small compared with
other sources such as mutation (Charlesworth, 1987).

It is fairly easy to see why the case of a steadily
moving optimum is most favourable to sex and
recombination. Any advantage of an increase in the
additive genetic variance must accrue from the fact
that it enables the mean of the trait under selection to
change more rapidly under directional selection
(Mather, 1943; Maynard Smith, 1988). With a steadily
moving optimum, there are no reverses to the direction
of selection; hence, an increase in additive genetic
variance always allows the population mean to
approach more closely to the current optimum,
thereby reducing the load due to directional selection
[equations (3) and (5)]. With a randomly fluctuating
optimum, there will be frequent reversals in the
direction of selection. Since there is always a lag
between the optimum and the mean, an increased
speed of response of selection can lead to the change
in population mean between one generation and the
next being in the opposite direction to that needed to
bring the mean closer to the optimum in the succeeding
generation. This is particularly true if there is a low
autocorrection between the successive values of the
optimum; the overall consequence is that there is a
considerably weaker advantage to increased genetic
variance in a random environment than with a steadily
moving optimum.

But equation (21 b) shows that an optimum that
undergoes a random walk (which is equivalent to an
autocorrelation of one) can provide an advantage to
increased variance under lighter conditions. If Vs =
20 VG, the variance in optimum Ve need only be about
0-1 times the additive genetic variance for increased
variance to be advantageous. The corresponding
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Fig. 7. The cycle of changes of optimum (#) and mean
(O) for a population subject to a cyclical environment of
period 10. The amplitude A is 3-5. Other parameters are
as in Table 1.

directional load is VJAVG = 0-025. This is approxi-
mately one-tenth the value required for a two-fold
advantage to sex under this model, assuming that the
asexual population has one-quarter the genetic vari-
ance of the sexual population. This type of random
environmental fluctuation is thus much more favour-
able to the maintenance of sex or recombination than
a stationary process. It is straightforward to show that
a combination of a stationary Markov process or
random walk and a steadily moving optimum gives a
directional load that is simply the sum of the values
contributed by each process on its own [cf. equations
(5) and (20 c)]. A slowly moving optimum combined
with a random walk about the trend could thus be a
possible source of selection for increased recom-
bination or sexual reproduction.

A somewhat unexpected result is that a cyclical
optimum behaves like a randomly fluctuating opti-
mum with a low autocorrelation. From equation
(30) and Table 1, it may be seen that an advantage to
sex or recombination exists only if the directional
selection load exceeds approximately one-quarter;
this corresponds to the critical value in the case of a
random environment with an autocorrelation of one-
third. The reason for this relatively weak ability of
cyclical selection to promote sex and recombination
appears to be that the lag in adjusting the population
mean to the optimum causes the cycle of population
means to be out of phase by 180° with the cycle of the
optimum [see equation (29) and Fig. 7]. Hence, there
is always a substantial deviation of the mean from the
optimum, even with a large genetic variance.

A. S. Kondrashov (personal communication) has
suggested that the degree of fluctuation in the
character mean generated by variable selection pro-
vides a useful means of assessing the plausibility of
these models as an explanation of the evolution of sex
and recombination. Statistical analyses of data on
evolving fossil lineages suggest that average rates of
change of mean are generally very small over long
periods of time; a change of population mean of one

phenotypic standard deviation every million years
represents exceptionally fast evolution (Simpson,
1953; Charlesworth, 1984a). While there is frequently
evidence for statistically significant variation in rate
around the average rate of change, the magnitude of
these fluctuations appears usually to be several orders
of magnitude smaller than the within-population
variance of the character (Charlesworth, 1984 ft), and
the associated directional selection loads are corre-
spondingly small (of the order of 10~4 at most).
Hence, there are severe difficulties in accepting the
plausibility of any model which requires geologically
fast changes in trait mean.

Kondrashov's model of fluctuating selection as-
sumes truncation selection of individuals who depart
too far from the optimal value; he showed that
excursions in the optimum and mean of the order of
one phenotypic standard deviation are required for
there to be an advantage of sex or recombination. The
model of a steadily moving optimum of Section 2
requires that the rate of change of the optimum (and
hence the mean) be approximately 4 % of the genetic
standard deviation per generation; even if the direction
of selection were to reverse itself every 100 generations
or so, there would be excursions of the mean at least
of the order of a phenotypic standard deviation.
Similarly, with randomly fluctuating selection the
variance in trait mean over time can be shown by the
methods of Section 3 to be

(38)
2(1 - T )

Comparison of this with equation (21) implies that
sexual reproduction is favoured if <TS > aG. This is
quite similar to Kondrashov's result for truncation
selection.

With the random walk model, the variance in mean
increases with time, and so a comparable result
cannot be written down. However, it is easily seen
from equations (2) and (19 b) that the variance of the
change in mean per generation, V&, is approximately
equal to VVJ2. From the condition for an advantage
to increased variance discussed above, the variance in
change in mean must be approximately 00025 VG, with
Vs = 20 VG. Again, although small, this seems much
larger than is indicated by the fossil data (Charles-
worth, 1984 ft).

The detailed numerical results for the cases of a
cyclically varying environment shown in Table 1
indicate that the excursion of the mean over the entire
cycle must be at least 10% of the environmental
variance in the trait, to generate an advantage to sex
and recombination (the case with an amplitude of 5 in
Table 1). This is a more modest condition than the
others discussed here, but the associated directional
selection load is very high.

Finally, the possibility that selection on several
quantitative traits may lighten the conditions for an
advantage to sex and recombination will be considered

https://doi.org/10.1017/S0016672300031372 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300031372


B. Charlesworth 220

briefly. The most extreme and simplest case is to
assume that multiple, independent quantitative traits
are each subject to independent selection regimes. If
this is the case, then log fitnesses can be combined
additively, and the contributions of each trait to log
mean fitness, etc. can be summed. It is easily seen from
equations such as (6), (20) and (30) that, while the
magnitude of the effect of a given change in variance
in each character increases with the number of
characters, the conditions for an increase in mean
fitness with an increase in variance are unchanged
from those derived earlier. There will be a corre-
sponding increase in the directional load. It thus
seems that selection on multiple traits does little to
alleviate the difficulties discussed above.

(ii) The intensity of selection on recombination rate

In addition to the effects of strength of selection on the
trait, level of environmental variability and autocor-
relation discussed above, the intensity of selection for
modifiers that increase the rate of recombination
(assuming that the threshold values of the other
parameters are exceeded) is mainly affected by the
amount of recombination in the initial population, as
measured by the number of chromosomes and the
map length of each chromosome. As has been found
in other models of selection for increased recom-
bination (Charlesworth, 1990), there can be quite
strong selection for increasing recombination away
from zero (see Fig. 2). However, the intensity of
selection is greatly reduced when there are several
chromosomes, and when the map length of each is
appreciable (see Figs 3, 5). The effect of a change in
map length of each chromosome on the average
amount of recombination in the genome is inversely
proportional to the number of chromosomes (cf.
equation (156)], and so almost any selective force
affecting map length is bound to diminish as the
number of chromosomes is increased. Thus, these
results do not necessarily imply that the importance of
varying environments relative to other forces acting to
increase or decrease recombination falls off with map
length and chromosome number.

In the case of a steadily varying environment,
selection acting to increase recombination away from
zero always operates under lighter conditions than are
needed to maintain free recombination [equation (9)],
thus implying that an ESS intermediate level of
recombination can sometimes be maintained. With a
randomly varying environment, and a low autocorre-
lation (T < 0-562), the condition for mean population
fitness to be increased by increased genetic variance is
more stringent than the condition for an advantage to
a modifier that is unlinked to the trait loci and that
increases recombination. Since the mean fitness
criterion is equivalent to that for selection for a
completely recessive modifier increasing recombin-
ation in an initially non-recombining population

(Felsenstein, 1974), and since this case implies com-
plete linkage between the modifier and the trait loci,
this suggests that there are circumstances in which a
loosely-linked, dominant modifier may gain an ad-
vantage when a tightly-linked recessive one would be
eliminated. Unfortunately, it is not possible with the
methods used here to tell whether it is dominance or
linkage that is causing the difference, since the modifier
analysis assumes some degree of dominance and free
recombination [see Appendix, Section (ii)]. On the
basis of computations of populations in a cyclically
varying environment, Korol et al. (1990) report that
close linkage of the modifier can sometimes lead to
selection against recombination under conditions
when a more loosely linked modifier can spread,
which agrees with this finding.

Finally, it is worth noting that the present results
show clearly that stabilizing selection in a near-
constant environment selects quite strongly for a
reduction in recombination to zero; the magnitude of
the selection coefficients on modifiers affecting the
recombination rate in a constant environment can be
calculated from equations (13) and (15) with <j> = 0.
With a 'standard' value of Kof 005 [see Section 2 (i)],
equation (15) shows that a modifier reducing the map
length of each chromosome by el in a population with
J chromosomes experiences a selective advantage of
00025e/7. Thus, despite the very low levels of linkage
disequilibrium maintained among the underlying trait
loci by stabilizing selection (Bulmer, 1985, p. 159), the
cumulative effect is quite significant, and could
contribute to the pressure for 'congealing of the
genome' (Maynard Smith, 1978, chap. 5; Feldman,
Christiansen & Brooks, 1980; Feldman & Liberman,
1986; Bergman & Feldman, 1990). This effect of
stabilizing selection contrasts with the selection press-
ure for increased recombination that arises from
synergistic fitness interactions among unconditionally
deleterious alleles maintained by mutation-selection
balance (Feldman, Christiansen & Brooks, 1980;
Kondrashov, 1988; Charlesworth, 1990), reflecting
the sustained pressure of directional selection against
deleterious alleles in this case. The question of whether
or not stabilizing selection on a quantitative trait is a
by-product of the deleterious fitness effects of muta-
tions affecting the trait (Barton, 1990; Kondrashov &
Turelli, 1992) is thus of great significance for the
evolution of sex and recombination.

(iii) Empirical evidence on the importance of variable
environments in the evolution of sex and
recombination

These theoretical considerations clearly cannot pro-
vide a conclusive answer to the question of whether
variable selection on quantitative traits has been an
important factor in the evolution of sex and re-
combination. At present, there is little empirical
evidence that bears critically on this question. Com-
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parisons of recombination rates or chiasma fre-
quencies between species are not very helpful in
discriminating between alternative theories of the
evolution of recombination rates (Charlesworth,
1989). There are also difficulties in using comparative
data on the eco-correlates of the occurrence of
asexuality (Charlesworth, 1989). While theory implies
that high autocorrelations and intense directional
selection promote increased recombination, which
might suggest possible tests of the models, we lack
knowledge of these for natural populations. There
does seem to be clear evidence that artificial directional
selection in Drosophila is frequently associated with a
correlated increase in recombination rate (Flexon &
Rodell, 1982; Korol et al. 1990; Gorodetskii, Zhu-
chenko & Korol, 1991). The theoretical analyses of
the effects of intense truncation selection in Section 5
show that it can indeed generate selection for increased
recombination that is strong enough to account for
significant increases in recombination rates over the
time-scale of selection experiments. This provides
some modest empirical support for the models
considered here. Comparisons of recombination rates
between natural populations that have been subjected
to varying levels of directional selection in the recent
past might help to provide tests of the models.
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Appendix

(i) Change in mean caused by a modifier of
recombination in a haploid population with a constant
rate of movement of the optimum

The modifier allele is assumed to be rare, and so a
haploid genome carrying the modifier experiences
recombination only with a haploid genome from the
general population. Selection is assumed to precede
recombination within each generation. It is assumed
that the trait is controlled by m interchangeable loci.
The change in mean additive genetic value caused by
selection within a generation can thus be assumed to
the same at each locus, and equal to the overall change
in mean divided by m. Consider a locus / that
recombines with the modifier at rate pt. Let the
additive genetic value with respect to this locus in a
given generation for the general population be Z,
before selection, Z* after selection, and Z\ in the next
generation. The deviations of the values of Zt and
other variables for the modifier population from their
values for the general population are denoted by the
prefix 8. We thus obtain

Using equation (1), and neglecting second-order terms
in the differences in mean and variance between the
modifier and general populations, it is easily seen
that, for generation n, with n taken sufficiently large
that the effect of the modifier on variance has
equilibrated (see Section (ii) below], equation (A 1 a)
reduces to

]
ZBl x(8k(dn_1-zn_1)-k8zn_1)). (A \b)

Using equation (1), we have

8Z[ « (1 -

(Ala)

Using equation (3), this gives the equilibrium relation

. (A2b)

For small k (V <^ 1), we have k « V. In this case, and
summing over all loci, we obtain the following
approximation for the equilibrium value of 8z

81:
(l-pH)Ad8V

(A 2 c)

where pH is the harmonic mean of the pt over all loci.

(ii) Change in variance caused by a modifier of
recombination in a haploid population

Relations which yield 8V can be obtained as follows,
using the approach of Bulmer (1985, p. 150). In
contrast to the case of mutation-selection balance
studied by Charlesworth (1990), no correction for
linkage disequilibrium induced by allele frequency
changes is made here. This is because the changes in
the selective optimum in general induce variation in
the selection coefficients at the trait loci, so that this
correction is hard to apply. If the number of trait loci
is large, and selection is weak, so that the selection
coefficients are small, the corrections for induced
linkage disequilibrium are important only for very
tight linkage. The expressions derived below should
therefore provide good approximations, unless there
is very tight linkage for a typical pair of loci.

Let the covariance between loci / and j for the
general population in a given generation be Ctj; we
have CL = 2SCtf. The values after selection and in the
next generation are indicated in a similar way to that
employed for the means. Since the only source of
covariance in the haploid model is linkage disequi-
librium between loci, the change in variance A induced
by selection in any one generation is divided equally
among the m(m — \) covariance terms in CL. For the
general population, we thus have the recurrence
relation

Z't + 8Z't = ( l - (Ala)
(A 3 a)
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where rtj is the recombination frequency between loci
/ and/ for the general population.

This yields the equilibrium expression

' m ( m - l ) '

Summing over all loci, we have

(A 3 b)

(A 3 c)

where rH is the harmonic mean recombination
frequency between all pairs of loci.

In order to calculate the SCip we need to consider
two possible locations of the modifier with respect to
the pair of trait loci under consideration (Charles-
worth, 1990, pp. 218-219). In the first case, the
modifier lies outside the pair. This generates the
recurrence relationship

C'v + SC'v = (1 -rtj-Srtj)([\ -Pi][C* + 8C*]+ptC*)
(A 4)

where 8ri} is the effect of the modifier on the frequency
of recombination between the two trait loci. Using
equations (A 3 a, b), and ignoring second-order terms
in the 8s, we obtain the equilibrium expression

8CU

1

x((l-p(-[l-pt]r(1)8A-^J. (A 5)

For nor-optimal selection and V <^ 1, we have

A = -

and

V 4- V
Y
 a < * ft

-V2VS

SA~~

(A 6a)

(A 6b)

In the second case, the modifier lies in between the
two trait loci. In this case, we have

Cy + SC',, = (1 - A ) 0 -Pt) (C* + SC*) + p{ p, C*

which yields the equilibrium relation

(A 7)

(A8)

Equations (A 5) and (A 8) determine the value of
the deviation of the variance of the modifier popu-
lation from that for the general population, 8VG =
2£i8Ci}. Write E1 and E2 for expectations over sets of
locus pairs for which the modifier is located outside
and between the loci, respectively. Explicit approxi-

mate expressions for these can be obtained by methods
similar to that used to derive equation (26) of
Charlesworth (1990); the details will be omitted here.
We have

8VG

1

+ E.{x_{Jp][x

(A 9)

Using equations (A 6) and the fact that the multi-
plicands of SA in equation (A 9) are positive, it is
easily seen that a modifier that has the same direction
of effect on all the recombination frequencies ri} that
it affects (i.e. such that either 8ri} ^ 0 or 8rtj 5= 0 for all
pairs of loci) will be associated with a change in
variance of the same sign as its effect on recom-
bination.

(iii) Selection on a modifier of recombination in a
haploid population with a constant rate of movement
of the optimum

Using equation (4), and assuming that V <̂  1, the
deviation of the logarithm of the mean fitness of the
modifier population is approximated by

(A 10)
8V
2

Substituting from equation (A 2 c), we have

2(1 -pH)
+ 1 - 1 . (Al ia)

The magnitude of the selection coefficient on the
modifier can be obtained by evaluating the expec-
tations in equation (A 9). In general, this will require
numerical work. However, using the above result on
the relation between the sign of the effect of a modifier
on recombination and its effect on variance leads to
the conclusion that an increase in genetic variance
caused by a modifier that increases the frequency of
recombination between all the loci that it affects will
be favoured if and only if

-p H )

pH + tt-t
-r+<f>>V*. (A

(iv) Effect of a recombination modifier on fitness in a
randomly fluctuating environment

In order to obtain homogeneous equations in this
case, it is necessary to assume that there is either free
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recombination between the modifier and the selected
loci in the initial population. This guarantees that the
deviations of additive genetic value for the modifier
genotype are the same at each locus, and equal to
Sz/m. From equations (A 1) and (A 2 a), we find that
the asymptotic deviation of the additive genetic value
at locus i for the modifier population from that for the
general population in generation n is given approxi-
mately by

(A 12a)

Using equation (13), this becomes

x 0,_,-[l -k]'zo-kX [1 -kr%_t . (A 12ft)

Using equation (17), we obtain

E{Szn(zn-6n)}

zn £ a - ^ r
1
 en A - ^ { ^ <?„}. (A 13)

Let y4 be the first expectation on the right-hand side of
equation (A 13). A can be approximated as follows,
assuming (without loss of generality) that E{6n) = 0.

n_
-k

kSk
2(1 -\[\-kf)

( 1 - | [ 1 - A : ] 2 ) ( 1 - T [ 1 - A : ] )
-kC\, (A 14)

n 1

where

p-l

A lengthy calculation shows that C is asymptotically
equal to zero, provided that k > 0 and T < 1, and so
it may be neglected.

A similar analysis yields the asymptotic value of the
second expectation on the right-hand side of equation
(A 13) as

E{Szn0n}
T{\-r)VeSk

2 ( 1 - T [ 1 -
(A 15)

If V is small and T < 1 — O( V), this expectation is the
dominant term in equation (A 13). We thus obtain the
approximation

(A 16)

(v) Effect of a recombination modifier with diploidy

In the case of diploidy, the methods of Bulmer (1985,
p. 159) and Charlesworth (1990) yield the following
replacements for equations (A 4) and (A 7):

,, = (1 - r(j - Sr(j) ([1 -pt] [C(j + SC(j] + Pi C,,)

4m(m —

y (A 176)

These lead to the following equivalent of equation
(A 9)

1

In the case of a single chromosome with short map
length, equation (A 18) yields the result that SVis one-
quarter the value for the haploid case with the same
value of V [cf. equations (12) and (13)]. Similarly, the
expression for the case of an unlinked modifier is
approximately one-quarter the corresponding value
for the haploid case with the same value of V [cf.
equations (14a, b)].

Following Charlesworth (1990, equation [A 10]),
the recursion relation for the effect of the modifier on
the trait mean, equivalent to equation (A 1 a), is

zi+sz; =

+ K6n_1-zn_1-8zn_1)). (A 19)

In the case of a steadily moving optimum, this
equation leads to the equilibrium equation [equivalent
to equation (A 2 c)]

Sz-.
A0SV

V(V+2pHy
(A 20)

This can be used in conjunction with equation (A 18)
to obtain the following expression for the selection
coefficient on a modifier, similar to that of equation
(Al ia ) .

"-"•TlFbn^) + 1 - (A 21)

The conditions for a selective advantage to recom-
bination are similar to those with haploidy, e.g. with
free recombination, the condition for immunity to
invasion by an unlinked modifier is again approxi-
mately 30 > V2. With very tight linkage, such that nH

is smaller in magnitude than V, the condition for a
selective advantage to a modifier increasing recom-

GRH 61
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bination is more stringent than with haploidy. The
smaller value of SV with diploidy implies that the
selection coefficient on a recombination modifier is
lower than with haploidy.

The case of a randomly fluctuating environment
with an unlinked modifier can be analysed similarly,
using equation (A 19) to obtain the equivalent of
equation (A 15). Comparison of equation (A 19) with
(A 1 b) with p( = 05 shows that the recursion is the
same as in the haploid case. The selection coefficient
on a modifier is thus one-quarter that given by
equation (26), for the same value of V.
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