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ABSTRACT

The application of the wavelet transform in image process-

ing is most frequently based on a separable transform. Lines

and columns in an image are treated independently and the

basis functions are simply products of corresponding one-

dimensional functions. Such a method keeps simplicity in

design and computation. In this paper, a new two-dimensio-

nal approach is proposed, which retains the simplicity of

separable processing, but allows more directionalities. The

method can be applied in many areas like denoising, non-

linear approximation and compression. The results on non-

linear approximation and denoising show interesting gains

compared to the standard two-dimensional analysis.

1. INTRODUCTION

Most wavelet transforms applied on images are separable

transforms, that is, they treat lines and columns indepen-

dently. The resulting basis functions are simply products of

their one-dimensional counter parts.

The advantages of such an approach are conceptual sim-

plicity, low computational complexity and inheritance of

most properties from the one-dimensional case (e.g. reg-

ularity of the basis functions). The drawbacks are a par-

tial treatment of the complexity inherent in two-dimensional

images, which goes well beyond horizontal and vertical di-

rections. Non-separable approaches [4], in particular us-

ing directional filter banks [1, 5], have been investigated,

showing the potential of truly non-separable methods. Such

methods come at a price in terms of design and computa-

tional complexity. Some separable approaches have been

made in [9] but not on discrete space.

In the present paper, we wish to retain the simplicity

of separable wavelet transforms while realizing some of the

potential of non-separable schemes. We do this by intro-

ducing a directional wavelet transform that acts much like

a standard separable transform, but allows more direction-

ality. This is done by introducing ”digital directions” that

partition the discrete plane. Along these directions, it is then

possible to apply orthogonal wavelet transforms or wavelet

frame decompositions. Many useful properties are again in-

herited from the one-dimensional case (e.g. orthogonality).

Techniques like denoising can be applied easily again by

using more directions.

The outline of the paper is as follows. Section 2 de-

fines digital directions and associated partitions of
☎✝✆

. It

also shows how directional elements in an image are treated

by a separable directional transforms. Section 3 develops

simple directional transforms and shows how to build a hi-

erarchy of directional decompositions. Section 4 shows how

to obtain orthogonal transforms and tight frames from these

elementary directional transforms. Finally, Section 5 shows

applications in non-linear approximation and denoising. We

conclude in Section 6.

2. DIGITAL DIRECTIONS

A line in ✞ ✆ is a simple object, but its equivalent in
☎✝✆

is

a bit more complicated, as well known in raster graphics

for example. A solution has been proposed in discrete to-

mography with the finite Radon transform [2] but involves

wrap-around due to periodization. Here, we are interested

in discrete approximations to real lines.

Then, we define a digital line of angle ✟ as a one-dimensi-

onal set of pixels approximately along a line of angle ✟ . In

addition, the digital line and its shifts along orthogonal di-

rection have to tile
☎ ✆

. While there are many solutions to

this problem, a simple and tractable one is to use the analyt-

ical definition of a discrete line [3]. The line is determined

by its slope and shift by the following equation:

✠☛✡ ☞✍✌✏✎✒✑✔✓✖✕✗✡ ☞✍✌✙✘✛✚✜✑✣✢✤✘ (1)

where ✓✥✎✧✦✩★✪☞✬✫ ✟✮✭ represents the slope and belongs to the

range ✯✱✰ ✓ ✰✳✲ , and ✢ represents the real-valued shift

parameter. The definition of a discrete approximation of a

line insures that each pixel belongs exactly to one line for

a chosen slope. Lines with slopes out of the range may be

obtained by symmetry, rotating and flipping vertically the

space. This gives access to a wealth of directions in
☎ ✆

.



Building multi-resolution decompositions along multi-

ple directions permits characterization and compression of

phenomena other than just horizontal and vertical ones, as

in the standard separable wavelet transform.

a) b) c)

Fig. 1. A simple object and its standard and directional transform;

(a) Original image, (b) standard, horizontal-vertical transform, 1

step, (c) 3-direction transform, 1 step.

Figure 1 conceptually shows this. One step of a three-

direction transform does isolate the different directions, as

well as combinations thereof, and this in an intuitive way.

3. SEPARABLE DIRECTIONAL TRANSFORM

In this section, we concentrate on building some simple di-

rectional separable transforms. Among them, the simplest

has four directions, namely ✴✵✯✷✶ , ✸✪✹✺✶ , ✻✮✯✺✶ , ✲✽✼✪✹✾✶✾✿ .
A one-direction analysis leads to separation of an orig-

inal image into two channels [8]. In the multi-directional

case, one-directional analyses are applied direction by di-

rection. Order is not important, since all combinations re-

sult in the same set of channels. For four-directional analy-

sis, application of horizontal, vertical and both ✸✖✹✾✶ and ✲✽✼✪✹✾✶
(or ❀❁✸✪✹✾✶ ) directional analysis gives 16 channels where each

channel contains different combination of kept orientations.

Figure 2 shows an example of the multi-directional anal-

ysis. The original image contains four digital lines with dif-

ferent angles ( ✯✺✶ , ✸✪✹✺✶ , ✻✷✯✷✶ and ✲✽✼✪✹✾✶ ). The 4-direction trans-

form (along ✯✺✶ , ✸✪✹✾✶ , ✻✮✯✺✶ and ✲✽✼✪✹✾✶ ) gives 16 sub-channels

that keep different sets of angles each.

Iteration of such a transform is also possible. Some

practical problems may appear in the downsampling of the

transform sub-bands. The downsampling lattice may be-

come extremely complex for a combination of the angles

other than horizontal or vertical.

An example of the iteration of the 4-direction transform

steps is shown in Figure 3a).

4. DIRECTIONAL ORTHOGONAL TRANSFORMS
AND FRAMES

We show below that directional transforms, when built on

top of one-dimensional orthogonal transforms or tight frames,

again lead to orthogonal transforms or tight frames [7].

First, we need the following result. Assume a set of

matrices corresponding to orthogonal transforms or tight

a) b)

Fig. 2. 4-direction transform of an image with 4 differently ori-

ented lines. (a) Original image, (b) 16 transform channels.

a) b)

Fig. 3. Two decomposition trees: (a) several steps of horizon-

tal and vertical analysis followed by iterated steps of ❂❄❃❆❅✽❇ -degree

analysis applied on high-pass channels; (b) several steps of hori-

zontal and vertical analysis only.

frames, satisfying:

❈❊❉❋❍● ❈ ❋ ✎❏■ ❋ ●✽❑
where ■ ❋ is some positive constant. Then, the frame

❈
de-

fined as:

❈ ✎▼▲ ❈ ❉◆P❖◗❖✽❖ ❈ ❉❘✝❙ ❉

satisfies
❈ ❉ ● ❈ ✎✱■ ●✽❑ , where ■❚✎❱❯ ❘❋❳❲ ◆ ■ ❋ .

So for example, taking an orthonormal wavelet trans-

form on the rows of an image, and separately taking an or-

thonormal wavelet transform on the columns leads to a tight

frame with ■❨✎❍❩ .
For the purpose of proving the orthogonality of such

directional transforms, consider an image as a set of real

numbers defined on a finite lattice ✞ ❘✛❬ . We can divide

this set into a series of subsets by taking directional lines

at some angle as in (1). The division can be represented as

✞ ❘✛❬❪❭ ✴✵✞✗❫✙❴❛❵❜✞✗❫ ❬ ❵ ❖◗❖✽❖ ❵❜✞✗❫❳❝❞✿ , where ❡ ◆ ✚ ❡ ✆ ✚ ❖◗❖◗❖ ✚ ❡✣❢ ✎❏❣ ✆
and ❤ is the number of parallel lines. For example, for a

transform along angle ✐❥✸✪✹✺✶ , ❤ ✎❏❩✺❣ ❀❦✲ .
If a one-dimensional unitary orthogonal transform is ap-

plied on the subsets it results in the same division of the

space ✞ ❘✛❬ . Namely, for a set of transforms ❧ ✎ ✴✽♠ ◆ ❵♥♠ ✆ ❵ ❖◗❖✽❖
♠♣♦q✿ , the following holds:

♠ ❋sr ✞ ❫✉t ❭ ✞ ❫❳t ❵♥✈ ✎ ✲✮❵ ❩ ❵ ❖◗❖✽❖ ❵✇❤ ❖



The transform coefficients can be positioned at the same

place in the lattice as the original pixels resulting in the

same division of the space ✞ ❘✛❬ as in the original image.

Such a set of transforms produces a new set of coefficients

that also belong to the original space ✞ ❘✛❬ . If a new set

of unitary orthogonal transforms is applied along a different

direction, the same equations hold again. Therefore, orthog-

onality holds for any particular direction and for any series

of directions chosen.

Since orthogonality holds in any particular direction, a

frame built from several directions is tight. The frame can

be separated into two parts containing scaling and wavelet

bases. Now, we can write:

❈ ❉❋ ● ❈ ❋ ✎❏① ❉❋ ● ① ❋ ✚❦② ❉❋ ● ② ❋ ✎❏■ ❋ ❑ ❵
where

❈ ❋ ✎✳▲✉① ❉❋ ② ❉❋ ❙ ❉ . For multiple directions, this sepa-

ration principle allows us to write:

❈ ❉ ● ❈ ✎④③⑤
❋✙❲ ◆
❈ ❉❋❍● ❈ ❋ ✎⑥③⑤ ❋✙❲ ◆

① ❉❋P● ① ❋ ✚⑦② ❉❋❍● ② ❋ ✎④③⑤
❋✙❲ ◆
■ ❋

as it was proved above. Therefore, such a frame is tight

regardless of the number of directions.

Since iteration is possible to be done on any sub-band

channel, orthogonality and tightness hold for any step of

iteration. Thus, they hold for the whole transform including

all steps of iteration.

5. APPLICATION IN NON-LINEAR
APPROXIMATION AND DENOISING

Application of the described method is possible in many ar-

eas of image processing where the standard wavelet trans-

form is applied. Below, applications in non-linear approxi-

mation and denoising are presented.

5.1. Non-linear approximation

The number of significant coefficients produced by a hori-

zontal and vertical transform depends on dominant orienta-

tion of objects in an image. If this direction is not matched

with either the horizontal or vertical direction the number

will increase. On the other hand, if some other directional

transforms are applied on the channels, the number of sig-

nificant coefficients related to those objects may decrease.

This property is exploited in non-linear approximation,

where a fixed number of the largest coefficients is kept (the

vectors that approximates the signal are adaptive and there-

fore the approximation is non-linear). A new decomposition

tree is being compared to a standard one. The first is shown

in Figure 3a) and the latter in Figure 3b). The quality of the

reconstructed images in both cases are compared and the

result of the comparison is expressed in terms of the PSNR

factor. Figure 4b) shows the result of approximation of the

image shown in Figure 4a), which is a synthetic randomly

generated image that contains lines with different orienta-

tions. These results indicate that the new method can be

attractive in non-linear approximation.

5.2. Denoising

The standard denoising process is usually done by thresh-

olding of coefficients obtained by a transform along hori-

zontal and vertical direction. Some difficulties may appear

since visibility of objects in an image depends on their ori-

entations.

Also, one-dimensional denoising of an image is not able

to catch most of the two-dimensional interdependencies pre-

sent in images. This is the reason why independent de-

noising in only two directions (line-by-line, or column-by-

column) of an image does not necessarily give the best re-

sult.

However, such an approach has the main advantage of

simplicity. In trying to retain this simplicity, but still mak-

ing a method that better exploits the two-dimensional char-

acteristics of an image, we introduce multiple directional

denoising. An image is processed by taking sets of pixels

in different orientations and denoising them by hard thresh-

olding [6] of wavelet coefficients. The result is compared

to the result of a standard method where horizontal and ver-

tical wavelet decomposition was done in several levels and

the coefficients were hard thresholded as well.

Figure 5 shows an example of denoising of the image

’Cameraman’. The original image is affected by additive

Gaussian noise and both methods were applied. The depen-

dence of the performance of the denoising on the number of

directions in the analysis is shown in the Figure 6a). The

comparison between the new and the standard method is

shown in the Figure 6b). The new method strongly outper-

forms the standard one.

6. CONCLUSION

The standard method of the wavelet decomposition of im-

ages using separable bases involves only two directions of

analysis. Our new method goes beyond this limitation and

calculates separable wavelet transform along sets of differ-

ent directions. Such an approach takes into account two-

dimensional interdependencies among image pixels better

than the standard method. Simplicity and low computa-

tional complexity are still maintained. Application of the

new method is possible in various areas of image process-

ing. Outperforming results are shown in non-linear approx-

imation and denoising.



a) b)

Fig. 4. Result of non-linear approximation. (a) Original image,

(b) Results: full line shows the dependence of PSNR of the re-

constructed image on the number of coefficients kept for the new

method. The dotted line shows the same dependence for the stan-

dard method.
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a) b)

c) d)

Fig. 5. The image ’Cameraman’. (a) Original image, (b) noised

version ( ⑧✝⑨❶⑩q❷❹❸❻❺❽❼✽❾✺❿ ), (c) denoised by the standard method

( ⑧✝⑨☛⑩➀❷ = 20.54dB), (d) denoised by the new method ( ⑧✝⑨❶⑩q❷ =

25.04dB).

a) b)

Fig. 6. Result of denoising of the image ’Cameraman’. (a) The

dependence of ⑧✝⑨❶⑩q❷ of the denoised image on the number of

the directions involved in the analysis, (b) The full line shows the

dependence of ⑧✝⑨❶⑩q❷ of the denoised image on the input ⑧✝⑨☛⑩➀❷
for the new method. The dotted line shows the same dependence

for the standard method.


