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Directionlets Using In-phase Lifting For Image

Representation
D Jayachandra Student Member, IEEE, and Anamitra Makur, Senior Member, IEEE,

Abstract— Directionlets allow construction of perfect recon-
struction and critically sampled multi directional anisotropic
basis, yet retaining the separable filtering of standard wavelet
transform. Due to the spatially varying filtering and down-
sampling direction, it, however, is forced to apply spatial seg-
mentation and process each segment independently. Because of
this independent processing of the image segments, directionlets
suffer from the following two major limitations when applied to,
say, image coding. 1) Failure to exploit the correlation across
block boundaries degrades the coding performance and also
induces blocking artifacts, thus making it mandatory to use
de-blocking filter at low bit rates. 2) Spatial scalability, i.e,
minimum segment size or the number of levels of the transform,
is limited due to independent processing of segments. We show
that, with simple modifications in the block boundaries, we can
overcome these limitations by, what we call, in-phase lifting
implementation of directionlets. In the context of directionlets
using in-phase lifting, we identify different possible groups
of downsampling matrices that would allow construction of
multi level transform without forcing independent processing
of segments both with and without any modifications in the
segment boundary. Experimental results in image coding show
objective and subjective improvements when compared to the
directionlets applied independently on each image segment. As
an application, using both the in-phase lifting implementation
of directionlets and the adaptive directional lifting, we have
constructed an adaptive directional wavelet transform which has
shown improved image coding performance over these adaptive
directional wavelet transforms.

Index Terms— Directionlets, Directional DWT, Directional lift-
ing, Image representation, Image coding.

I. Introduction

Standard separable wavelets are very successful for image

representation over Fourier basis. However, due to its limited

directionality and isotropic nature of the basis, the standard

wavelet transform (WT) fails to exploit the correlation along

the edges. Over the past decade or so, there has been lot of

interest in developing directional transforms that can represent

edges better than standard WT. The aim is to exploit the

correlation along the edges by filtering and downsampling

along the edge direction. Ideally, the goal is to build a critically

sampled, multi-scale, and multi-directional transform. Critical

sampling is important for image coding.

To go beyond standard WT for image representation, dif-

ferent directional transforms have been developed. Out of

them, some are signal independent (non-adaptive) and some

are signal dependent (adaptive). Most of the non-adaptive di-

rectional transforms, like curvelets [1] and contourlets [2], are
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over sampled. There are few critically sampled non-adaptive

transforms, like the ones in [3], [4], but in these transforms,

designing filter banks with good characteristics (for example

with directional vanishing moments along arbitrary direction)

is a nontrivial task. On the other hand, there are signal

adaptive directional transforms that are critically sampled,

multi-directional and multi-scale. Prominent examples in this

class include orientation adaptive WT [5], directionlets [6],

[7], directional lifting [8], [9], curved wavelets [10], etc.

Most of the adaptive directional wavelet transforms that are

based on directional lifting, like the ones in [8], [9], [10]

and many more, keep the down sampling pattern same as

that of standard WT, i.e, vertical downsampling followed by

horizontal downsampling or vice-versa, and vary the filtering

direction locally. By adapting the filtering direction to the local

content direction as close as possible, these transforms try to

contain the signal in the low pass approximation as much as

possible. However, due to the possible mismatch between the

downsampling and the filtering directions, these transforms

may suffer from aliasing. On the other hand, orientation

adaptive WT [5] and directionlets [6], [7] are the transforms

that apply both filtering and downsampling along the edge

direction. The orientation adaptive WT [5] allows filtering

and downsampling along any two arbitrary directions using

an invertible re-sampling involving interpolation of pixels at

arbitrary locations, whereas, directionlets [6] allow filtering

and downsampling along any two arbitrary rational directions

by applying 1-D WT along the lines defined on integer

lattices. Directionlets don’t involve any interpolation. Both

these conceptually similar methods apply spatially varying

re-sampling followed by separable filtering, and hence, are

forced to process each image segment independently. Recent

works on directionlets focus on its application in solving

different image processing problems like despeckling [11],

watermarking [12], enhancement [13], fusion [14], etc. In

this work, we study the limitations of directionlets due to

independent processing of image segments, and give a lifting

based implementation to overcome them.

Notations: Matrices and vectors are denoted by boldfaced

letters. MT represents the transpose of the matrix M, and

diag{a, b} =

[

a 0

0 b

]

.

II. Background review andMotivation

A. Directionlets

In the following, we briefly review the construction of

directionlets using the digital lines defined on integer lattices.
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Let us say we want to apply 1-D WT along two rational

directions, with slopes r1 = (b1/a1) and r2 = (b2/a2), where

ai and bi are integers. Denote the directions in vector form as

d1 =
[

a1 b1

]T
and d2 =

[

a2 b2

]T
.

Directionlets apply 1-D WT on the co-lines generated by

the full rank integer lattice Λ. The integer lattice Λ can be

represented using the non-unique generating matrix MΛ =
[

d1 d2

]

=

[

a1 a2

b1 b2

]

. The pixel locations on the integer lattice

are obtained as a linear combination of the direction vectors d1

and d2, where the weights are also integers. Given MΛ, the cu-

bic integer lattice Z2 can be partitioned into |det(MΛ)| number

of cosets of the lattice Λ, where each coset is determined by

the shift vector sk ∈ Z
2 for k = 0, 1, ..|det(MΛ)|−1. The integer

lattice Λ and its cosets, partition the digital lines with slopes

r1 and r2 into co-lines with the same slopes, respectively. The

pixels in the co-lines with slopes r1 and r2 can be obtained

using Eq.1 below.
[

i

j

]

= c1

[

a1

b1

]

+ c2

[

a2

b2

]

+

[

sk,1

sk,2

]

(1)

On each coset determined by the shift vector sk, varying c1 ∈ Z

for each c2 ∈ Z in Eq.1 gives the co-lines along r1 (denoted

as CLsk
(r1, n)), and varying c2 ∈ Z for each c1 ∈ Z in Eq.1

gives the co-lines along r2 (denoted as CLsk
(r2, n)). These lines

are free from any rounding operation, hence a pixel to next

pixel distance is the same for all the pixels on these co-lines.

Applying 1-D WT (filtering and downsampling) on the co-

lines CLsk
(r1, n) will not disturb the edge coherence along

the co-lines CLsk
(r2, n). This means, the retained pixels after

downsampling along CLsk
(r1, n) belong to the same co-line

CLsk
(r2, n) as they were before downsampling. To summarize,

directionlets apply 1-D WT (filtering and downsampling) on

the colines CLsk
(r1, n) and CLsk

(r2, n) separately on each coset

of the integer lattice Λ represented by MΛ.

To construct anisotropic (elongated) directional basis, di-

rectionlet applies different number of 1-D WT along the

directions d1 and d2 at each level in the 2-D WT. The resulting

transform is referred as Skewed Anisotropic WT denoted by S-

AWT(MΛ, n1, n2), where n1 and n2 are the number of levels the

1-D WT is applied along the directions r1 and r2, respectively.

In this work, we limit our study to the case where n1 = n2 = 1,

and denote the resulting Skewed-Isotropic WT as S-IWT(MΛ).

B. Motivation

As the directionality of edges in images is a local feature,

to apply directionlets, the given image is divided into non-

overlapping segments with edges in one or two dominant

directions in each segment. Then for each segment, multi level

S-IWT (or S-AWT in general) is applied along the two chosen

transform directions of the segment. In essence, directionlet

applies spatially varying downsampling and fixed separable

1-D filtering. As the downsampling pattern is varying across

the segments, in the direct implementation of the directionlets

[6], each image segment is processed independent of others.

Therefore, the correlation across the segment boundaries can-

not be utilized in the transform, which in turn will affect the

image coding performance. Further, independent processing

of segments leads to blocking artifacts at low bit rate image

coding, which is not desirable. Also, the maximum number of

levels in S-IWT is limited by the segment size, which in turn

limits the segmentation process, and hence possibly affects the

coding performance. In this work, using lifting factorization of

filter banks, we aim to construct multilevel directionlets (par-

ticularly the S-IWT) without forcing independent processing

of segments.

Lifting factorization [15] of filter banks, due to its structural

perfect reconstruction (PR) property, added great flexibility to

build space / time varying transforms. There are many adaptive

transforms based on lifting, for example the directional lifting

in [8], [9], lifting based spatial switching between arbitrary

filter banks in [16], and many more, which adapt either the

direction of filtering or the filter coefficients, but keep the

downsampling pattern unchanged across the image segments.

The authors in [17] built directional lifting with downsampling

pattern that varies spatially between Row-Col, Col-Row and

Quincunx. To handle the transition between the down sampling

patterns, an interpolation based phase completion process is

used. Inspired by the work in [17], to support filtering across

the segments in directionlets, we conceptualize the lifting

implementation of directionlets by separating the spatially

varying downsampling and the invariant lifting steps of the

1-D filter bank, and call it as “in-phase lifting.” As will be

shown later, in-phase lifting implementation takes care of the

transition between different sampling patterns by default. We

propose to estimate missing polyphase components at any

location from the available neighboring polyphase components

to avoid usage of faraway pixels during the transition, similar

to what is suggested in [17]. Within the directionlets, not

all sampling matrices would allow switching between them

without forcing independent processing of segments. Hence,

within the scope of the in-phase lifting, we also determine

different possible groups of sampling matrices that would

allow construction of multi level directionlets without forcing

independent processing of segments, both with and without

the need to estimate any pixel during the transition.

Rest of the paper is organized as follows. The in-phase

lifting implementation of directionlets is discussed in Section

III and the scope of in-phase lifting in Section IV. In Section

V, with in image coding, the advantages of in-phase lifting

implementation of directionlets over direct implementation is

discussed first, and then, a new adaptive directional wavelet

transform based on in-phase lifting implementation of direc-

tionlets is constructed and its image coding performance is

discussed. Finally, Section VI concludes the paper.

III. In-phase lifting

Directionlets, as discussed, apply spatially varying down-

sampling pattern while keeping the filters fixed. On the other

hand, most of the lifting based adaptive transforms for image

representation, adapts the filters to the image local behavior,

while keeping the downsampling pattern fixed. In this section,

using the lifting implementation of directionlets, we study

the possibility of achieving spatially varying downsampling

pattern, yet, not forcing independent processing of image

segments.



3

�

��	
 
���

LL

HL

LH

HH

�

��

���

Fig. 1: Separable lifting implementation of 1-level of S-IWT(MΛ), with |det(MΛ)| = 1.

A. Directionlets using lifting

First we discuss the lifting implementation of directionlets.

To simplify the discussion we consider the direction vectors

d1 and d2 such that |det(MΛ)| = 1. One useful subset of

matrices with |det(MΛ)| = 1 are of the form

[

1 a

0 1

]

and
[

0 1

1 a

]

, where a ∈ Z. Varying a leads to rich subset of

transform direcctions. For such examples, reader may refer to

the image coding application in Section V. If |det(MΛ)| > 1,

the cubic integer lattice Z2 is divided into |det(MΛ)| number

of cosets, and the same lifting based transform may be applied

on each coset separately. Also we limit to the construction of

S-IWT(MΛ). The proposed lifting implementation that we are

going to discuss can be easily extended to the construction of

S-AWT(MΛ, n1, n2). After 1-level of S-IWT(MΛ) the resulting

downsampling matrix will be given by M = DsMΛ, where

Ds = diag{2, 2}.

Fig.1 shows the lifting implementation of 1-level of S-

IWT(MΛ) where a FB with 2 predict and 2 update steps

followed by scaling is used. In Fig.1, the predict (or the update)

lifting step P
jl

i
(z) (or U

jl

i
(z)) is the ith predict (or update)

lifting step of the chosen 1-D FB applied from polyphase

component j to polyphase component l. First, the given image

segment is decomposed into polyphase components according

to its chosen generating matrix MΛ. We number the polyphase

components as 0, 1, 2, and 3 in such a way that the 1-D WT

(and hence its lifting steps) along d1 is always applied between

the polyphase components 0, 1 and 2, 3, and the 1-D WT along

d2 is always applied between the polyphase components 0, 2

and 1, 3. Accordingly, the resulting subbands are LL, LH, HL,

and HH. The same transform can be repeated on the resulting

LL subband to construct multilevel decomposition of the given

segment.

As an example, Fig.2 shows both the polyphase decompo-

sition and the corresponding transform directions for MΛ0
=

[

1 0

0 1

]

and MΛ1
=

[

1 1

0 1

]

. After applying 1-level of S-

IWT(MΛ), the polyphase components 0, 1, 2 and 3, denoted by

the symbols circle, triangle, star and square, will become LL,

LH, HL and HH subbands, respectively. We call the resulting

subband association of pixels as subband pattern. The double

sided arrows indicate the filtering direction. Note that in this

example, though the resulting downsampling matrices M0 and

M1 represent the same downsampling pattern, i.e, the LL band

coefficients of M0 and M1 are on the same downsampling

grid, they lead to different subband patterns. All the generating

matrices with |det(MΛ)| = 1 will lead to the same down

sampling pattern. In general, different transform directions

may lead to the same or different downsampling patterns.

�� �� �� �����	
�������
�������������

�	�����
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(b)

Fig. 2: (a) Symbols used to denote polyphase components

0, 1, 2 and 3, which will respectively become LL, LH, HL and

HH subbands. (b) Resulting polyphase components (Subband

patterns) and the transform direction of the generating matrices

MΛ0
and MΛ1

, showing the interaction across the block

boundary during the change from MΛ0
to MΛ1

.
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Our aim is to switch from one generating matrix to other

without forcing independent processing of image segments.

Consider switching from MΛ0
to MΛ1

. As shown in Fig.2(b),

the difference between the resulting subband patterns of MΛ0

and MΛ1
is that the pattern of the polyphase components 2, 3

with respect to the polyphase components 0, 1 is different.

With such different subband patterns and different filtering

directions, the resulting interaction across the block boundary

is also shown in Fig.2(b). Clearly, there is phase incoherence

during the change from MΛ0
to MΛ1

, meaning, at some

pixel locations across the boundary, in place of an expected

polyphase component, another component is encountered. For

example, while modifying the polyphase component 3 (square

pixels) using the polyphase component 2 (star pixels) along

horizontal direction, from either sides of the block boundary

polyphase component 2 (star pixels) is expected, but polyphase

component 3 (square pixels) is seen instead. In Fig.2(b), the

shaded pixels are the ones experiencing phase incoherence

whereas the dotted double sided arrows depict the filtering

locations where there is phase incoherence. In general, switch-

ing between arbitrary generating matrices can lead to different

scenarios of such phase incoherence.

B. In-phase lifting

To allow spatial switching between arbitrary transform

directions (and hence the generating matrices) in directionlets,

first we separate the polyphase decomposition and the lifting

based filtering. As shown in Fig.1, the lifting based 1-D filter-

ing is independent of the polyphase decomposition. Once the

given image is divided into segments and optimal directions

are chosen for each segment, then the entire image is divided

into polyphase components according to the spatially varying

generating matrices. The invariant lifting transform is applied

on the resulting polyphase components. We define in-phase

lifting, as the process of applying invariant lifting transform

on a fixed set of polyphase components, in spite of the fact

that the polyphase components from each segment are defined

according to different generating matrices. Fig.3 depicts the

concept of in-phase lifting.
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Fig. 3: In-phase lifting: Spatially varying polyphase decompo-

sition followed by invariant lifting transform.

Formally, given the 2D signal x(n), the spatially varying

polyphase components y0
i
(n), for i = 0, 1, 2, 3, are given by

y0
i (n) = x(M(n)n + ki), ki ∈ N(M(n)). (2)

Here N(M(n)) denotes the set of all integer vectors

M(n)x, with x ∈ [0, 1). Note that the downsampling

matrix M is varying with space index n. Let Y0(z) =

[Y0
0
(z) Y0

1
(z) Y0

2
(z) Y0

3
(z)]T , where Y0

i
(z) is the z transform

of the polyphase component y0
i
(n). Similarly, let Y(z) =

[Y0(z) Y1(z) Y2(z) Y3(z)]T , where Yi(z) is the z transform

of the resulting subband signal yi(n). Now the invariant lift-

ing transform, represented using the polyphase matrix E(z),

applied on the polyphase components y0
i
(n) can be expressed

as

Y(z) = E(z)Y0(z) (3)

The resulting spatially varying filters H(z, n) =

[HLL(z, n) HLH (z, n) HHL(z, n) HHH(z, n)]T are given by

H(z, n) = E(zM(n))dM(n)(z) (4)

where dM(n)(z) is the delay vector.

In-phase lifting makes sure that all the polyphase compo-

nents are available even across the segment boundaries, and

hence, solves the problem of phase incoherence. For the pixels

well within a segment, in-phase lifting leads to filtering along

the chosen transform directions of that segment. For the pixels

across the segment boundaries, depending on the generating

matrices, one of the following two scenarios can be seen.

In one case, both the generating matrices may lead to the

same subband pattern so that filtering across the segments is

by default seamless, refer to Fig.5. In Section IV, we will

identify all such groups of matrices. In the other case when the

generating matrices lead to different subband patterns, across

the segment boundaries some of the polyphase components

may be coming from a geometrically different location than

that of the same polyphase components that are well within

the segments. Note that only the same polyphase components

are used in in-phase lifting. However, they may be spatially

far away pixels. To avoid this, we propose to estimate the

pixel of required polyphase component as the average of the

available pixels of the same polyphase component within 3×3

neighborhood, similar to the one proposed in [17].

The advantage of in-phase lifting implementation of di-

rectionlets over direct implementation will be experimentally

validated within image coding application in Section V.

IV. Scope of In-phase lifting

In this section we analyze the scope of in-phase lifting

within directionlets. We identify all the generating matrices

that would allow switching between them, with and without

any modifications in the segment boundaries, and would

allow construction of multilevel transform, yet without forcing

independent processing of segments. The following analysis

considers all the generating matrices with |det(MΛ)| ≥ 1.

Throughout this section consider the case where we want

to transform the spatially neighboring segments, say i and j,

using the generating matrices, say MΛi
and MΛ j

, respectively.

A. Switching between arbitrary generating matrices

As mentioned earlier, the directionlets apply transform

separately on each coset of the integer lattice given by the

chosen generating matrix, and by definition no interaction

is allowed between the cosets. To switch between any two

generating matrices MΛi
and MΛ j

using in-phase lifting, both

the generating matrices should lead to the same number of

subbands, and hence to the same number of cosets. Hence, we



5

can conclude that having |det(MΛi
)| = |det(MΛ j

)| is a necessary

and sufficient condition to be able to switch between MΛi
and

MΛ j
in one level of the transform.

B. Possibility of constructing multilevel transform

Ability to switch between MΛi
and MΛ j

in one level of the

directionlet doesn’t guarantee the possibility of constructing

multilevel transform. To understand the required conditions on

MΛi
and MΛ j

to get multilevel transform, first we need to relate

the resulting subbands from using any given generating matrix

MΛ with the cosets of the integer lattice given by the resulting

downsampling matrix M. It is well known that in a critically

sampled filter bank, the cosets of the integer lattice given by

the downsampling matrix are the polyphase components, and

they will be transformed to subbands. The above result is true

even in the case of directionlets. We state the result as a fact.

Fact 1: Given any arbitrary generating matrix MΛ =
[

d1 d2

]

=

[

a1 a2

b1 b2

]

, after 1-level of S-IWT(MΛ), the retained

coefficients in each subband lie on the cosets of the integer

lattice given by the downsampling matrix M =
[

2d1 2d2

]

,

and the offset vectors of the cosets containing the LL, LH,

HL and HH subbands are k
′

i
= ki, k

′

i
= d1 + ki, k

′

i
= d2 + ki,

and k
′

i
= d1 + d2 + ki, respectively, where ki ∈ N (MΛ) for

i = 0, 1, ...|det(MΛ)| − 1 are the offset vectors of the cosets of

MΛ.

Using the division theorem for integer vectors [19], it is

straightforward to verify that the offset vectors given in Fact 1

are indeed the offsets vectors of the cosets of the integer lattice

given by the downsampling matrix M. Note that there are

|det(MΛ)| number of LL, LH, HL and HH subbands coming

from |det(MΛ)| number of cosets of MΛ. Also note that even

in the case of S-AWT(MΛ, n1, n2), Fact 1 is still valid, except

that 1-level of such directionlet transform will lead to more

than 4 subbands on each coset of MΛ.

Now, consider any two generating matrices MΛi
and MΛ j

such that |det(MΛi
)| = |det(MΛ j

)| = K ≥ 1. Let us denote the

cosets of the integer lattice given by MΛi
and MΛ j

, respectively

as, Coseti
k

and Coset
j

k
, where k is the coset number and i, j

are the segment indices. On each coset the transform needs to

be applied separately. To construct multilevel directionlets, LL

subband of Coseti
k

and Coset
j

k
should be on the same sampling

grid. For this to happen, the generating matrices MΛi
and MΛ j

should represent the same downsampling pattern. Note that

any two matrices representing the same downsampling pattern

are related by MΛi
=MΛ j

U, where U is an unimodular matrix

[19]. In this case, the cosets can be ordered from k = 0 to

k = K − 1 such that Coseti
k

and Coset
j

k
represent the same

partitioning of the sampling grid, except with the possible

difference in the coset offsets of the respective generating

matrices. On each coset, LL subband coefficients start from the

coset offset. As the offset of the Coset0 of both the matrices

is the same, the LL subband of Coseti
0

and Coset
j

0
is on the

same sampling grid. The LL subbands on the other cosets

may be on different sampling grids depending on the coset

offset. To allow multilevel decomposition, chose MΛi
, say, as

the primary generating matrix, and use the offset of Coseti
k

to

determine the LL subband of Coset
j

k
for all k. This will ensure

LL subband of Coseti
k

and Coset
j

k
is on the same sampling grid

for all k. Hence, multilevel directionlets can be constructed

using in-phase lifting. On the other hand, if MΛi
, MΛ j

U,

then Coseti
k

and Coset
j

k
are not the same, hence, in-phase

lifting fails to construct multilevel transform without forcing

independent processing of segments. We summarize the above

discussion in the following theorem, and omit the proof as it

is obvious from the above discussion.

Theorem 1: In-phase lifting allows construction of multi-

level directionlets with switching between any two generating

matrices MΛi
and MΛ j

, provided |det(MΛi
)| = |det(MΛ j

)|, and

MΛi
=MΛ j

U for some unimodular matrix U.

���������	
���

Fig. 4: Top Row: From left to right, indicates the transform

directions and the resulting subband patterns of the generating

matrices MΛ2
and MΛ3

. Bottom row: Shows the subband

patterns on both Coset0 (symbols with solid lines) and Coset1
(symbols with dotted lines) along with the locations (indicated

by the double sided arrows) of phase incoherence. Notice that

starting the LL subband from the same offset vector on Coset1
leads to the same sub sampling pattern of LL subband on

both segments, hence, allows iteration of the transform on LL

subband.

For any given downsampling ratio (|det(MΛ)|), some dis-

tinct downsampling patterns are possible [20]. Each distinct

downsampling pattern can be represented by infinitely many

matrices. Theorem 1 implies that unless otherwise the given

generating matrices MΛi
and MΛ j

represent distinct downsam-

pling patterns, in-phase lifting enables construction of mul-

tilevel directionelets without forcing independent processing

of the segments. As an example, let us consider that we

want to transform the segments i and j using the generating

matrices MΛ2
=

[

2 0

0 1

]

and MΛ3
=

[

2 0

1 1

]

, respectively.

Here, |det(MΛ2
)| = |det(MΛ3

)| = 2 and MΛ3
= MΛ2

U, where

the unimodular matrix U =

[

1 0

1 1

]

. With determinant of

2, 3 distinct downsampling patterns are possible [20]. Both

MΛ2
and MΛ3

represent horizontal downsampling pattern, at

the same time supporting different transform directions. The

offset vectors of Coset2
1

and Coset3
1

are
[

1 0
]T

and
[

1 1
]T

,

respectively. According to the Theorem 1, starting the LL
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subband of Coset2
1

and Coset3
1

from either one of these offset

vectors would allow construction of multilevel transform using

in-phase lifting. Fig.4 shows the transform directions and the

resulting subband patterns when the LL subband of Coset2
1

and

Coset3
1

is started from the offset vector
[

1 0
]T

. Notice the

same sub sampling pattern of LL subband on both segments.

With that and handling the phase incoherence (at the locations

indicated by double sided arrows in Fig.4) on both the cosets

using in-phase lifting, allows the transform to iterate on the

resulting LL subbands without forcing independent processing

of segments.

In the case of |det(MΛ)| = 1, only one distinct downsam-

pling matrix is possible. Although this case looks constrained,

quite a number of useful transform directions are possible,

and the same will be shown in the image coding application

in Section V.

��

���������	
���

Fig. 5: Interaction across the block boundary during the change

from MΛ0
to MΛ4

. As the subband patterns are the same,

filtering across the block boundary is seamless.

C. Enumeration of subband patterns

Within the matrices representing the same downsampling

pattern, there are matrices that would lead to the same subband

pattern when used in directionlets. For example, Fig.5 shows

switching between MΛ0
=

[

1 0

0 1

]

and MΛ4
=

[

1 2

0 1

]

. As

can be seen, with both the sampling patterns leading to the

same subband pattern of pixels, filtering across the segment

boundary is by default seamless (no phase incoherence). It is

easy to show that all the generating matrices with |det(MΛ)| =

1 can be classified into 6 different groups based on the

resulting subband patterns. Fig.6 shows the 6 possible groups.

If |det(MΛ)| > 1, the resulting subband patterns of pixels on

any of its cosets belong to one of the 6 groups in Fig.6, and

the subband pattern will be the same on all the cosets.

Given that MΛi
= MΛ j

U for some unimodular matrix U,

one can verify if they lead to the same subband pattern or

not. One way is to verify if the cosets containing the resulting

subbands of segment i and j are the same using the offset

vectors in Fact 1 and the division theorem for integer vectors

[19]. Instead, here we give a simpler way to verify the same.

On any one of the cosets of the integer lattice of MΛi
(or MΛ j

),

let us denote the horizontal and vertical distance (in pixels)

between the horizontally and vertically neighboring pixels in

a subband as sh and sv, respectively. Denote them in vector

form as sd =
[

sh sv

]T
. Notice that as MΛi

and MΛ j
represent

��

��

Fig. 6: The six different possible subband grouping of pixels

using the generating matrices with |det(MΛ)| = 1. Switching

between any two generating matrices leading to the same

subband patterns needs no modification across the block

boundary.

the same downsampling pattern, resulting sd is the same for

both MΛi
and MΛ j

. With that, Lemma 1 below describes a

way to verify if they lead to the same subband pattern, and

the proof is omitted as it is simple to verify.

Lemma 1: Given MΛi
= MΛ j

U for some unimodular ma-

trix U, MΛi
and MΛ j

lead to the same subband pattern if

and only if MΛi
mod sd = MΛ j

mod sd. Here, MΛ mod sd =
[

a1 mod sh a2 mod sh

b1 mod sv b2 mod sv

]

.

As an example, the generating matrices MΛ0
,MΛ1

and MΛ4

lead to sd =
[

2 2
]T

after 1-level of S-IWT. As expected,

MΛ0
mod sd , MΛ1

mod sd, indicating different subband pat-

terns (refer to Fig.2), and MΛ0
mod sd = MΛ4

mod sd, indicat-

ing the same subband patterns (refer to Fig.5). Further, the

other generating matrices MΛ2
and MΛ3

lead to sd =
[

4 2
]T

,

and MΛ2
mod sd , MΛ3

mod sd, indicating different subband

patterns (refer to Fig.4).

D. Summary

Consider any two generating matrices MΛi
and MΛ j

. The

scope of in-phase lifting for directionlets, discussed above, can

be summarized as follows.

(1) If |det(MΛi
)| = |det(MΛ j

)|, in-phase lifting allows switching

between them atleast in one level of the transform.

(2) If both the generating matrices represent the same down-

sampling pattern, i.e, they satisfy MΛi
= MΛ j

U for some

unimodular matrix U, then, in-phase lifting allows switching

between them in multiple levels of the transform.

(3) Apart from representing the same downsampling pattern,

if MΛi
mod sd = MΛ j

mod sd, then the generating matrices

lead to the same subband pattern, and in-phase lifting allows

switching between them in multiple levels of the transform

without any modifications in the segment boundary.

V. Image coding

In this section, within image coding, first we show the effect

of in-phase lifting implementation of directionlets over the

direct implementation of directionlets. Then, we come up with

an adaptive directional wavelet transform using both the in-

phase lifting implementation of directionlets and the adaptive

directional lifting, and compare its performance with respect

to these directional transforms.
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In all the transforms, we use the lifting factorization of the

9/7 filter bank used in JPEG2000 [18] as 1-D WT. All the

transforms are iterated to 5-levels, and SPIHT [21] coder is

used to code the transform coefficients.

A. Effect of in-phase lifting implementation of directionlets

Consider the following 12 direction vectors.

d0 =
[

1 0
]T
, d1 =

[

3 1
]T
, d2 =

[

2 1
]T
,

d3 =
[

1 1
]T
, d4 =

[

1 2
]T
, d5 =

[

1 3
]T
,

d6 =
[

0 1
]T
, d7 =

[

−1 3
]T
, d8 =

[

−1 2
]T
,

d9 =
[

−1 1
]T
, d10 =

[

−2 1
]T
, d11 =

[

−3 1
]T
. (5)

Using these 12 directions we form 13 generating matrices as

follows. Directions d0 and d6 form the standard generating

matrix MΛ0
=
[

d0 d6

]

=

[

1 0

0 1

]

. The close to horizontal

directions d1, d2, d10 and d11 are paired with horizontal

direction d0. The close to vertical directions d4, d5, d7 and

d8 are paired with vertical direction d6. That completes 9

generating matrices. Each of the diagonal directions d3 and

d9 paired with both horizontal and vertical directions, d0 and

d6, forms the rest of the 4 generating matrices. Note that

all the 13 generating matrices satisfy |det(MΛ)| = 1. Along

the horizontal (d0) and vertical (d6) directions the sampling

density is maximum (pixel to pixel distance is minimum)

compared to the sampling density along the other directions.

Though it is possible to construct matrices with |det(MΛ)| = 1

using arbitrary directions, we choose to keep d0 or d6 as one of

the transform directions, particularly for image coding. Pairs

of directions that would form multiple cosets (|det(MΛ)| > 1)

are not considered for image coding to avoid the division

of spatially adjacent pixels into different cosets [7]. Also, at

every level of the transform only one level of 1-D transform

is applied along each direction, i.e, we limit to S-IWT(MΛ)

for image coding.

For a given image segment, the transform directions and

hence the generating matrix that minimizes the following

Lagrangian cost function is selected as the best generating

matrix,

M∗
Λ = arg min

MΛ

{

D (MΛ) + λR (MΛ)

}

(6)

where D (MΛ) is the distortion induced in coding the segment

using the generating matrix MΛ. For the given image segment,

3-levels of S-IWT(MΛ) is applied and the largest 5% of the

coefficients are retained. Then the distortion is approximated

with the absolute sum of the discarded transform coefficients.

R (MΛ) is the number of bits used to represent the selection

of MΛ, and λ is the Lagrange multiplier chosen empirically

(λ = 40) in our experiments.

In our experiments, transform coefficients of all the trans-

forms are coded using SPIHT1 coder [21] to get embedded

1Space-Frequency quantization [7] can be used to optimize the transform
and quantization for every bit rate to produce better results. But, as our main
purpose is to show the improvements with in-phase lifting, we simply use
SPIHT [21] coder to produce embedded bit stream.
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S−IWT−64x64

S−IWT−IPL−64x64−1

S−IWT−IPL−16x16−3

Fig. 7: Coding results of Barbara test image with different

transforms using SPIHT coder. Notation: S-IWT-IPL-m×m-n

refers to the in-phase lifting implementation of S-IWT with a

min block size of m×m in quad tree and direction selection at

first n levels. S-IWT-m×m refers to the direct implementation

of S-IWT. Clearly, S-IWT-IPL-16× 16-3 out performs others.

bit stream. In case of direct implementation of directionlets,

where each segment is transformed independent of others,

the subbands from all the segments are re-arranged such that

overall they give the same tree structure as that of the standard

WT. Note that such re-arrangement doesn’t affect the inter-

scale relation of the transform coefficients, and hence allows

to use SPIHT like tree coding.

In direct implementation of directionlets, minimum segment

size is limited by the number of transform levels, and vice-

versa. For a given image, quad tree segmentation upto the

minimum block size 64 × 64 is applied. In the quad tree,

the best sub division and its best coding mode is selected by

comparing the Lagrangian cost in Eq.6 with the Lagrangian

cost of sub dividing and coding each sub block with its

best coding mode. On each of the resulting image segments

a 5-level S-IWT is applied, independently. We denote this

transform as S-IWT-64×64. The corresponding in-phase lifting

implementation is denoted as S-IWT-IPL-64 × 64-1, the 1 at

the end is used to denote that direction selection is performed

only at level 1 of the transform. Fig.7 shows image coding

results with these transforms for the test image Barbara. As

expected, due to the ability to exploit the correlation across

the segments, in-phase lifting implementation outperforms the

direct implementation.

Compared to the independent processing of segments in

direct implementation, in-phase lifting improves the spatial

scalability of directionlets. Particularly, it allows direction

selection at multiple levels and allows the use of smaller

segments so that directionlets can be well adapted to the

locally varying directionality in images. We implement a

transform using a minimum block size of 16×16 and direction

selection at first three levels. Denote the transform as S-IWT-

IPL-16× 16-3. For the transform levels from three and above,

the directions selected at level three are used. Fig.8 shows

the resulting segmentation along with the selected pair of

directions at first two levels of the transform. The chosen
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(a) (b)

Fig. 8: Direction selection at (a) level 1, and (b) level 2 using

quad tree with minimum block size of 16 × 16.

transform directions are well adapted to the local content

direction. From the segmentation at level two, shown in

Fig.8(b), we can observe that the transform directions are well

adapted to the changes in the content orientation after 1-level

of the transform. From the coding results in Fig.7, we can

see that the direction selection at multiple levels and using

block sizes upto 16× 16 in the transform S-IWT-IPL-16× 16-

3 has improved the results as compared to the transform with

direction selection only at level one in S-IWT-IPL-64 × 64-1.

(a) (b)

(c) (d)

Fig. 9: (a) Original Barbara image. Corresponding recon-

structed images at 0.1 bpp with SPIHT coding of 5-level

transforms of (b) 9/7 DWT (PSNR: 23.38 dB), (c) Direct

implementation of directionlets, S-IWT-64× 64 (PSNR: 23.56

dB), and (d) In-phase lifting implementation of directionlets,

S-IWT-IPL-16 × 16-3 (PSNR: 24.13 dB).

From Fig.7, for Barbara image, which has strong directional

content, S-IWT-IPL-64×64-3 gave around 1.4 dB PSNR gain

over DWT and around 0.6 dB PSNR gain over S-IWT-64×64.

Fig.11 shows the difference in PSNR of different directional

transforms with respect to S-IWT-64×64. For Lena, Monarch

and Pentagon, which have moderate directional content, S-

IWT-IPL-16 × 16-3 consistently gave around 0.3 dB PSNR

gain over DWT and S-IWT-64×64. Similar improvements have

been observed for other test images as well. Fig.9 and Fig.10

shows the reconstructed Barbara and Monarch images at 0.1

bits per pixel (compression ratio of 80). Clearly, with in-phase

lifting implementation, the blocking artifacts are eliminated

and hence the visual quality is improved. With that, we can

say the in-phase lifting implementation S-IWT-IPL-16 × 16-

3, consistently outperforms S-IWT-64 × 64 and DWT both in

terms of PSNR and visual quality.

(a) (b)

(c) (d)

Fig. 10: (a) Original Monarch image. Corresponding recon-

structed images at 0.1 bpp with SPIHT coding of 5-level

transforms of (b) 9/7 DWT (PSNR: 24.87 dB), (c) Direct

implementation of directionlets, S-IWT-64× 64 (PSNR: 24.70

dB), and (d) In-phase lifting implementation of directionlets,

S-IWT-IPL-16 × 16-3 (PSNR: 25.08 dB).

B. Adaptive directional wavelet transform using in-phase lift-

ing

Adaptive directional lifting [8], [9], denoted as ADL trans-

form, is one of the most successful lifting based adaptive

transforms for image coding. ADL, just like in the standard

WT, applies vertical downsampling followed by horizontal

downsampling or vice-versa. Then, instead of applying lifting

steps just along vertical and horizontal directions, the lifting

steps are applied along a locally optimal direction so that the

correlation along the edge structure is exploited. Both ADL

and directionlets have their own advantages. For a given local

edge in some direction, by adapting the lifting direction, ADL

tries to push the edge completely into the low pass approx-

imation (LL band). However, due to the possible difference
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between downsampling and filtering directions, ADL may

suffer from aliasing. Directionlets, on the other hand, have the

advantage of applying both downsampling and filtering along

the same direction. However, as only one of the transform

directions can be adapted to the edge direction, the edge

cannot be completely pushed into the LL band. Intuitively,

we can say that ADL may be good for unidirectional edges

and directionlets may be good even for curved edges. As it is

more probable to find unidirectional edges at the finer (top)

levels of a multi level wavelet transform, ADL may be good

for top levels. It has been observed that ADL [8], [9], applied

only at first 2 levels of a transform has shown good coding

results, which has also been observed in our experiments. To

take advantage of both the in-phase lifting implementation of

directionlets (S-IWT-IPL-16×16-3) and ADL, by appropriately

combining both these transforms, we define a new transform

denoted as ADL-S-IWT-IPL. In ADL-S-IWT-IPL, ADL is

applied only for the first level, and S-IWT-IPL is applied for

the rest with direction selection at only one level.

We consider ADL both with and without using pixels at

fractional locations for prediction.

ADL-Fullpel: In vertical downsampling, except the direc-

tions d0, d4, d8, rest of the 9 directions in Eq.5 are used.

Similarly, in horizontal downsampling, except the directions

d2, d6, d10, rest are used. With limited number of directions,

it may not be possible to push an edge completely into LL

band. For example, for a diagonal edge, say along d3, lifting

steps will be applied along the direction d3 during vertical

downsampling, but after downsampling, the resulting edge di-

rection d2 =
[

2 1
]T

is not supported by the lifting directions

in horizontal downsampling; lifting has to be applied along

any one of the available directions.

ADL-Subpel: In vertical downsampling, the following

9 subpel directions
[

±1 1
]T

,
[

±3/4 1
]T

,
[

±1/2 1
]T

,
[

±1/4 1
]T

, and
[

0 1
]T

are used. Similarly, in horizontal

downsampling 9 subpel directions around the horizontal direc-

tion are used. We use the 6-tap interpolation filter of the H.264

video coding standard [22] to interpolate the pixels at subpel

locations. For a diagonal edge, say in the direction
[

1 1
]T

,

just as in ADL-Fullpel, lifting is applied along the same

diagonal direction in vertical downsampling. Fortunately, the

resulting direction
[

1 1/2
]T

after downsampling is supported

in horizontal downsampling. With that, we can say ADL with

subpel directions can push the diagonal edges completely into

the LL band. However, notice that edge directions close to

horizontal are not supported in vertical downsampling, and

vice-versa.

For both ADL-Fullpel and ADL-Subpel, we apply a quad

tree segmentation with minimum block size of 16×16, similar

to that applied for S-IWT-IPL-16 × 16-3. Direction selection

is applied at first two levels of the 2-D transform, and for

the rest, lifting is applied along the standard directions. For

any given image segment, the lifting direction giving the

minimum Lagrangian cost, defined in Eq.6, is selected as the

best direction. The distortion D(.) in Eq.6 is calculated as the

absolute sum of the coefficients in the high pass band after

1-level of 1-D transform with directional lifting.

ADL-S-IWT-IPL: ADL-Subpel is applied for the first level

of the transform, expecting it to push unidirectional edges

into the LL band. Then for the levels 2 to 5, in-phase lifting

implementation of directionlets (S-IWT-IPL-16×16) is applied

with direction selection at only level 2. Note that the transform

directions selected at level 2 are applied to the levels 3 to

5 as well, and hence, S-IWT-IPL-16 × 16 is expected to

give directional subband decomposition suitable for the local

content direction.

For each of these directional transforms, statistics of the

selected directions is obtained by measuring over 30 test

images. The direction selection information is coded using an

entropy coder designed with these statistics.

Fig. 11 shows the differential PSNR results of the above di-

rectional transforms with respect to the direct implementation

of directionlets (S-IWT-64×64) for test images Barbara, Lena,

Monarch, and Pentagon. As mentioned earlier, S-IWT-IPL-

16×16-3 consistently performs better than S-IWT-64×64. Be-

tween ADL and S-IWT-IPL-16× 16-3, both ADL-Fullpel and

ADL-Subpel performs better for Barbara, which has strong

directional edges. Whereas, S-IWT-IPL-16 × 16-3 performs

better for images Lena, Monarch, and Pentagon, which have

moderate edges. The new adaptive directional wavelet trans-

form, ADL-S-IWT-IPL, with the addition of ADL-Subpel at

level one, for Barbara image, shows comparable performance

with respect to ADL-Subpel and significant improvements

over S-IWT-IPL-16 × 16-3. For other images, ADL-S-IWT-

IPL shows improved performance over both ADL-Subpel and

S-IWT-IPL-16 × 16-3.

ADL-S-IWT-IPL shows the application of in-phase lifting

implementation of directionlets in the context of adaptive

directional wavelets for image coding, and it may encourage

further development of better adaptive directional wavelet

transforms suitable for different applications, not just limited

to image coding.

VI. Conclusion

We have shown the possibility of implementing directionlets

without forcing independent processing of segments by sepa-

rating adaptive polyphase decomposition and invariant lifting

transform, which we called as in-phase lifting. Particularly,

we have shown that using the generating matrices representing

unique down sampling pattern, multilevel directionelets can be

constructed using in-phase lifting, yet not forcing independent

processing of segments. The in-phase lifting implementation

may in general be useful to construct adaptive transforms with

spatially varying re-sampling patterns.

In image coding, we have shown that in-phase lifting im-

plementation of directionlets successfully eliminates blocking

artifacts and improves coding performance by exploiting the

correlation across the segment boundaries. Appropriately using

both the in-phase lifting implementation of directionlets and

the adaptive directional lifting, we have constructed a new

transform which has shown improved coding performance over

these directional transforms.
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Fig. 11: Difference in PSNR results with respect to S-IWT-

64 × 64 for test images (a) Barbara, (b) Lena, (c) Monarch

(Butterfly) , and (d) Pentagon. All the transforms are applied

to 5 levels and coded using SPIHT.
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