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DIRECTIONS AND PROJECTIVE SHAPES1

BY KANTI V. MARDIA AND VIC PATRANGENARU

University of Leeds and Texas Tech University

This paper deals with projective shape analysis, which is a study of finite
configurations of points modulo projective transformations. The topic has
various applications in machine vision. We introduce a convenient projective
shape space, as well as an appropriate coordinate system for this shape
space. For generic configurations of k points in m dimensions, the resulting
projective shape space is identified as a product of k − m − 2 copies of axial
spaces RPm. This identification leads to the need for developing multivariate
directional and multivariate axial analysis and we propose parametric
models, as well as nonparametric methods, for these areas. In particular,
we investigate the Frećhet extrinsic mean for the multivariate axial case.
Asymptotic distributions of the appropriate parametric and nonparametric
tests are derived. We illustrate our methodology with examples from machine
vision.

1. Introduction. Consider a configuration of points in R
m. “Shape” deals

with the residual structure of this configuration when certain transformations
are filtered out. More specifically, the shape of a configuration consists of its
equivalence class under a group of transformations. Important groups for machine
vision are the similarity group, the affine group and the projective group. Here
the group action describes the way in which an image is captured. For instance,
if two different images of the same scene are obtained using a pinhole camera,
the corresponding transformation between the two images is the composition of
two central projections, which is a projective transformation. If the two central
projections can be approximated by parallel projections, which is the case of
remote views of the same planar scene, the projective transformation can be
approximated by an affine transformation. Further, if these parallel projections
are orthogonal projections on the plane of the camera, this affine transformation
can be approximated by a similarity transformation. Therefore, the relationships
between these shapes are as follows: if two configurations have the same similarity
shape, then they automatically have the same affine shape; if they have the same
affine shape, they will have the same projective shape. For example, two squares
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of different sizes have the same similarity, affine and projective shape, whereas a
square and a rectangle have the same affine and projective shape but not the same
similarity shape. On the other hand, a square and a kite have the same projective
shape but not the same affine shape.

The word “shape” often refers in statistics to similarity shape where only the
effects of translation, scale and rotation have been filtered out (see, e.g., [4, 5]).
In recent years, substantial progress has been made in similarity shape analysis,
since appropriate shape space (e.g., Kendall’s space) and shape coordinates (e.g.,
Bookstein coordinates) have been available. A simple example of Bookstein
coordinates is for the shape of a triangle where the shape coordinates are obtained
after taking one of the vertices as the origin and rotating the triangle so that the
base of the triangle lies on the x-axis, and then rescaling the base to the unit size.
The motivation behind such coordinate systems is similar to those in directional
statistics, where to analyze spherical data one requires a coordinate system such as
longitude and latitude (see, e.g., [18]).

Affine shape has also received some attention; see, for example, [10, 24].
Sparr [24] has shown that the space of affine shapes is a Grassmann manifold.
For affine shape in 2-D, we can obtain shape coordinates by using three points that
determine the direction and the origin of the axes, and the unit length between the
points on each of these two axes.

Progress in projective shape analysis has been somewhat slow by not having
a convenient shape space, though considerable work has appeared on projective
invariants (see, e.g., [11, 12, 20]). We propose a convenient projective shape space,
as well as an appropriate coordinate system for this shape space.

The plan of the paper is as follows. In Section 2 we propose our approach
in “projective shape analysis,” which has its basis on the idea of constructing a
projective frame selected from the points of a generic configuration. The resulting
projective shape space is a product of k − m − 2 copies of axial spaces RP m. This
axial representation leads to various questions in multivariate directional statistics.
To address these questions, in Section 3 we first discuss some parametric models,
especially for the multivariate circular case. As a starting point, we consider
certain von Mises circular distributions. These provide good approximations to
marginal distributions on the circle of cross-ratios with normal errors at landmarks
(i.e., offset projective distributions), as argued through simulations in [11]. We
then treat the case of concentrated data by using a directional representation in
a tangent space. In particular, the procedure is illustrated by constructing a two-
sample test.

In Section 4 we consider estimation of certain means, both asymptotically
and through bootstrap methods. In particular, we treat the multivariate axial
case, highlighting the extrinsic mean; for m = 1, the circular extrinsic mean
is well studied (see, e.g., [18]) and is generally referred to as mean direction.
Theorem 4.1 provides asymptotic distributions of certain test statistics required
for the estimation of the extrinsic mean of projective shapes for any m, and
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Corollary 4.1 provides some bootstrap approximations for these asymptotic
distributions. In Section 4 we also provide a two-sample test for extrinsic means
of projective shape through a bootstrapping result.

In Section 5 we illustrate our methodology through three examples in object
recognition. The first two examples concern building recognition and use circular
and univariate spherical statistics, whereas the third example is about face
recognition and uses bivariate spherical statistics. Of course, the realm of
applications is much wider, covering other types of multivariate axial data. In
Section 6 we present a strategy for general statistical shape analysis where the
shapes are regarded as orbits of certain Lie group actions on a direct product of a
number of copies of a manifold.

2. The projective shape space. Recall that the real projective space in m

dimensions, RP m, is the set of axes going through the origin of R
m+1. If X =

(X1, . . . ,Xm+1) ∈ R
m+1 \ {0}, then

[X] = [X1 :X2 : . . . :Xm+1] = {λX,λ �= 0}

is a projective point in RP m; we will reserve the notation [·] for the projective
points throughout. In an alternative description, a point p ∈ RP m is given by
p = [z1 : z2 : . . . : zm+1], where

(z1)2 + (z2)2 + · · · + (zm+1)2 = 1.

A linear variety v of dimension d is given by v = {[x], x ∈ V \ 0}, where V is a
(d + 1)-dimensional vector subspace of R

m+1. In particular, a projective line l is
a set associated with a vector plane V in R

m+1, l = {[x], x ∈ V \ 0}. A number of
points in RP m are collinear if they lie on a projective line.

The Euclidean space R
m can be embedded in RP m, preserving collinearity.

Such a standard affine embedding, missing only a hyperplane at infinity, is

x = (x1, . . . , xm) → [x1 : . . . :xm : 1].

This leads to the notion of affine or inhomogeneous coordinates of a point

p = [X] = [X1 : . . . :Xm :Xm+1], Xm+1 �= 0,

to be defined as

(x1, x2, . . . , xm) =

(
X1

Xm+1 , . . . ,
Xm

Xm+1

)
,

as opposed to the homogeneous coordinates of p, (X1, . . . ,Xm+1), which are
defined up to a multiplicative constant only. However, the coordinates of interest
in projective shape analysis are neither affine nor homogeneous. We need
coordinates that are invariant with respect to the group of projective (general linear)
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transformations PGL(m). A projective transformation α of RP m is defined in
terms of an (m + 1) × (m + 1) nonsingular matrix A ∈ GL(m + 1,R) by

α([X1 : . . . :Xm+1]) = [A(X1, . . . ,Xm+1)T ].

The linear span of a subset of RP m is the smallest linear variety containing that
subset. Note that k points in RP m with k ≥ m + 2 are in general position if their
linear span is RP m.

DEFINITION 2.1. A projective frame in RP m is an ordered system of m + 2
points in general position.

In computer vision, a projective frame is called a projective basis by some au-
thors (Heyden [13], page 8; Faugeras and Luong [6], page 81). Let (e1, . . . , em+1)

be the standard basis of R
m+1. The standard projective frame is ([e1], . . . , [em+1],

[e1 + · · · + em+1]). The last point of this frame is referred to as the unit point.

PROPOSITION 2.1. Given two projective frames π1 = (p1,1, . . . , p1,m+2) and

π2 = (p2,1, . . . , p2,m+2), there is a unique β ∈ PGL(m) with β(p1,j ) = p2,j ,
j = 1,2, . . . ,m + 2.

A proof follows on noting that, given a projective frame π = (p1, . . . , pm+2),
there is a unique α ∈ PGL(m) with

α([ej ]) = pj , j = 1, . . . ,m + 1, α([e1 + · · · + em+1]) = pm+2.(2.1)

REMARK 2.1. If k > m + 2, we consider the set F C
k
m consisting of

configurations of points (p1, . . . , pk) for which there is a subset of indices
i1 < · · · < im+2 such that (pi1, . . . , pim+2) is a projective frame.

From Proposition 2.1, F C
k
m is an invariant generic subset of C

k
m. It can be

shown by considering, for example, m = 1, k = 4, that the corresponding shape
space is a manifold. Let us denote the projective shape of (p1,p2,p3,p4) ∈ F C

4
1

by σ .

Any projective shape is in one of the sets U123,U124,U134 or U234, where, for
i < j < k,

Uijk = {σ |(pi,pj ,pk) is a projective frame}.(2.2)

Assume pr = [xr : 1], r = 1,2,3,4. Then, from (2.2) we may define the charts ψijk

by ψijk(σ ) = c(pi,pj ,pk,pl), where c(·) is a cross-ratio defined by

c(pi,pj ,pk,pl) = {(xi − xk)(xl − xj )}/{(xi − xj )(xl − xk)}

and {i, j, k, l} = {1,2,3,4}. On permuting indices, we find that

ψ124 =
1

ψ123
, ψ134 = 1 − ψ124, ψ234 =

ψ134

ψ134 − 1
.
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Since the transition maps between these charts are differentiable, we conclude
that the projective shape space associated with F C

4
1 is a 1-D manifold. Projective

shape spaces associated with F C
k
m are expected to be more complicated. However,

we prefer to restrict ourselves to a subset of generic configurations, such that
the corresponding shape space has a natural structure of symmetric space (see
Proposition 2.3), and for which the computations can be carried out using standard
statistical packages.

DEFINITION 2.2. The axis of a point p ∈ RP m with respect to a projective
frame π = (p1, . . . , pm+2) is defined as pπ = α−1(p), where α ∈ PGL(m) is
given by (2.1). A geometric interpretation of pπ is given below.

Assume fm+2 ∈ R
m+1 is a representative of pm+2. Since (p1, . . . , pm+2) are

in general position, fm+2 can be written in a unique way as a sum fm+2 =

f1 +· · ·+fm+1, where [fj ] = pj , for j = 1, . . . ,m+1. The vectors f1, . . . , fm+1
form a basis of R

m+1, and let f ∈ R
m+1 be a representative of p. Then we denote

Y 1, . . . , Ym+1 as the components of f with respect to this basis. Note that since the
selection of fm+2 and of f is unique up to a multiplicative constant, the projective
point [Y 1 : . . . :Ym+1] is well defined in RP m and pπ = [Y 1 : . . . :Ym+1]. This
representation of projective coordinates is displayed in Figure 1 for m = 1.
Figure 1(a) constructs the coordinates Y1, Y2 of f with respect to the frame
([f1], [f2], [f3]); Figure 1(b) shows the corresponding projective point [Y1 :Y2].

Let us assume that x1, . . . , xm+2 are points in general position and let x =

(x1, . . . , xm)T be an arbitrary point in R
m. In this notation the axis of x with

respect to the projective frame associated with m + 2 points x1, . . . , xm+2 is the
same as the axis of p = [x1 : . . . :xm : 1] with respect to (p1, . . . , pm+2). Using
the above geometric interpretation, we determine the axis of x in the following
proposition.

PROPOSITION 2.2. The projective axis of a point x is given by

[z1(x) : z2(x) : . . . : zm+1(x)],(2.3)

where

zj (x) = yj (x)/‖y(x)‖, j = 1, . . . ,m + 1,(2.4)

yj (x) = vj (x)/vj (xm+2),

y(x)T =
(
y1(x), . . . , ym+1(x)

)
,(2.5)

z(x) =
(
z1(x), . . . , zm+1(x)

)T
, ‖z(x)‖2 = 1

and

v(x) =
(
v1(x), . . . , vm+1(x)

)T
= U−1

m p(x),(2.6)
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FIG. 1. Projective coordinates for m = 1. (a) Projective frame π = (p1,p2,p3) and a projective

point p, (b) projective coordinates of p with respect to π.
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with the (m + 1) × (m + 1) matrix

Um = [p(x1), . . . , p(xm+1)],(2.7)

where p(x) = (xT ,1)T .

PROOF. We note that there is a unique vector β ∈ R
m+1, βT = (β1, . . . , βm+1),

such that β1p(x1) + · · · + βm+1p(xm+1) = p(xm+2). Namely, Umβ = p(xm+2) or
β = U−1

m p(xm+2) ≡ v(xm+2), so that

βi = vi(xm+2), i = 1, . . . ,m + 1.(2.8)

Let A be the matrix

A = Um diag(β).(2.9)

If (e1, . . . , em+1) is the standard basis for R
m+1, then Aei = βip(xi),

i = 1, . . . ,m + 1, and A(e1 + · · · + em+1) = p(xm+2). This means that the
projective transformation α, given by α([x]) = [Ax], has the properties that
α[ei] = [p(xi)], i = 1, . . . ,m + 1, and α[e1 + · · · + em+1] = [p(xm+2)]. Hence,
from Definition 2.2 it now follows that the homogeneous projective coordinates of
[p(x)] are given by

y(x) = A−1p(x).(2.10)

From (2.8) and (2.9) we have

y(x) = diag
(

1

β1
, . . . ,

1

βm+1

)
U−1

m p(x)

= diag
(

1

v1(xm+2)
, . . . ,

1

vm+1(xm+2)

)
U−1

m p(x).

Hence, using the definition of v(x) given by (2.6), (2.5) follows. �

REMARK 2.2. We will say that y(x) are the projective coordinates of x with
respect to the projective frame generated by (x1, . . . , xm+2), and note that [z(x)]

defined by (2.3) is the corresponding point on RP m.

REMARK 2.3. Note that we have v(xi) = ei, i = 1, . . . ,m + 1.

Let G(k,m) denote the set of all ordered systems of k points (p1, . . . , pk) for
which (p1, . . . , pm+2) is a projective frame, k > m + 2. PGL(m) acts on G(k,m)

by α(p1, . . . , pk) = (αp1, . . . , αpk).

DEFINITION 2.3. The projective shape space P�k
m or space of projective

k–ads in RP m is the quotient G(k,m)/PGL(m).
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PROPOSITION 2.3. P�k
m is a manifold diffeomorphic with (RP m)q , where

q = k − m − 2.

PROOF. We define F :P�k
m → (RP m)q by

F
(
(p1, . . . , pk)mod PGL(m)

)
= (pπ

m+3, . . . , p
π
k ),

(2.11)
π = (p1, . . . , pm+2),p

π
i = [z1(xi) : . . . : zm+1(xi)],

where z(xi) = (z1(xi), . . . , z
m+1(xi))

T ,‖z(xi)‖ = 1, i = m + 3, . . . , k, and z(·) is
given by (2.3).

The mapping F is a well-defined diffeomorphism between P�k
m and a product

of real projective spaces.
Note that (2.11) defines an axial representation of the projective shape. In this

representation, for m = 1 we can write (2.11) as pπ
j = [eiφj ], where φj is the angle

of an axis. Then doubling φj takes us to an oriented direction eiθj ∈ S1. Further, we
assume that x1, x2, x3 yield a projective frame π and [x : 1] is an arbitrary point on
the projective line. Following the above algorithm for projective coordinates, from
(2.5) and (2.6) we get

v1(x) =
x − x2

x1 − x2
, v2(x) =

x1 − x

x1 − x2
,

y1(x) = v1(x)/v1(x3), y2(x) = v2(x)/v2(x3).

Thus, from (2.4) we have

z1(x) =
y1(x)

{(y1(x))2 + (y2(x))2}1/2
, z2(x) =

y2(x)

{(y1(x))2 + (y2(x))2}1/2

or, equivalently,

z1(x) =
x − x2

(x3 − x2) d(x)
, z2(x) =

x1 − x

(x1 − x3) d(x)
,(2.12)

where

d(x) =

{(
x − x2

x3 − x2

)2

+

(
x1 − x

x1 − x3

)2}1/2

.

That is, we can write

pπ = [z1(x) : z2(x)], z1(x) = cosφ(x), z2(x) = sinφ(x).(2.13)

This representation of projective coordinates is displayed in Figure 2. Note that on
eliminating x from y1(x) and y2(x), we get (x3 − x2)y

1(x) + (x1 − x3)y
2(x) =

x1 − x2. Since x1 �= x2 �= x3, this equation of a line in the plane (y1(x), y2(x))

confirms that the angle φ(x) lies between 0 and π . �
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FIG. 2. Projective coordinate of a point on a Euclidean line (a) shows the embedding of an affine

line in the projective line and the projective points corresponding to the points on the real line;
(b) shows the projective coordinate of the point p = [x : 1] = [x̃] with respect to the projective frame

p1 = [x̃1],p2 = [x̃2],p3 = [x̃3] and the corresponding angle of this projective coordinate, φ(x),
which should be doubled to get the point θ(x) on the circle.
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EXAMPLE 2.1. We now illustrate our coordinate system for a problem studied
in machine vision by Heyden [13], pages 33–34. He has considered a configuration
of five points from two images of a rectangular sheet of paper. The five points form
a cross. For the first image the coordinates are

x1 = (69,53), x2 = (591,33), x3 = (626,402),

x4 = (69,430), x5 = (344,322).

The first four points are the corners and the last one is the center of the cross.
Here m = 2 and, from (2.7) we have, on registering with respect to the frame x1,
x2 and x3:

U2 =




69 591 626

53 33 402

1 1 1


 .

Hence, from (2.6) we find that v(x4)
T = (1.0683,−1.0862,1.0180) and v(x5)

T =
(0.5057,0.0095,0.4848). Thus, from (2.4) and (2.5) we get the following
spherical representation of the projective shape:

z(x5) = [0.7050 :−0.0131 : 0.7092] = z1, say.

Similarly, for the second image we have x1 = (334,69), x2 = (732,290),
x3 = (428,504), x4 = (43,200), x5 = (373,243), leading to

z(x5) = [0.7074 :−0.0060 : 0.7067] = z2, say.

We will return to these coordinates in Example 4.1.

We now describe the alternative representation of projective shape due to
Goodall and Mardia [11] and show the connection between the two represen-
tations. In their representation the projective shape of (p1, . . . , pk) ∈ G(k,m)

is uniquely determined by its projective invariants. In fact, the projective co-
ordinates, with respect to (p1, . . . , pm+2) and the projective invariants (ιji),
j = 1, . . . ,m; i = m + 3, . . . , k, determine each other by the invariant represen-
tation

pπ
i = [ι1i : ι2i : . . . : ιmi : 1],(2.14)

so that the ith projective coordinate is ι.,i . When m = 1,2, let us consider their
invariant representation. For m = 1, from (2.12) and (2.13) we have

pπ = [x : 1]π =

[
x − x2

x3 − x2
:

x1 − x

x1 − x3

]
= [c(x1, x2, x3, x) : 1].(2.15)

This equation shows that the projective coordinate of [x : 1] with respect to π in our
representation [viz., equation (2.13)] and the cross-ratio c(x1, x2, x3, x) determine
each other. Here x could be any of the k − 3 points. For m = 2 we now assume
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that x1, x2, . . . , xk are k points in RP 2, k > 4. Let z
j
i = zj (xi), i = 5, . . . , k. Then

the invariants ι1i and ι2i in (2.14) are the cross-ratios

ι1i =
z1
i

z3
i

, ι2i =
z2
i

z3
i

,(2.16)

where ι1i and ι2i are the cross-ratios determined on a transversal by the pen-
cil of lines joining the point x1 to the points x2, x3, x4, xi and by the pencil
of lines joining the point x2 to the points x1, x3, x4, xi , respectively. There are
some parallel ideas between coordinates for similarity shape, affine shape and
the projective shape considered here. We now give registration frames for the
three shapes in 2-D. Let us consider planar similarity shape. The shape can
be registered using two points; for example, we can use the registration frame
with the points (0,0) and (1,0). Figure 3(a) shows the original configuration
for k = 4 and Figure 3(b) shows its Bookstein coordinates. Figure 3(c) is dis-
cussed below. In the case of affine shape (“intermediate” between similarity shape
and projective shape), we can choose the registration frame consisting of the
three points (0,0), (1,0) and (0,1). In projective shape in 2-D, using homoge-
neous coordinates, we can select the registration frame consisting of the points
(0,0), (1,0), (0,1) and (1,1). In inhomogeneous coordinates, the registration
frame corresponds to the points (1,0,0), (0,1,0), (0,0,1) and (1,1,1) in 3-D.
The steps in projective shape registration for 1-D and 2-D are as follows:

Case m = 1.

1.0. Start with a configuration of k points.
1.1. Register each of the last k − 3 points with respect to first three points

leading to (2.6).
1.2. Transform these registered points by (2.4), leading to one point on the

Cartesian product RP 1 × · · ·× RP 1 of k − 3 copies of RP 1, that is, the projective
shape of a linear configuration of k points is equivalent to k − 3 axes in R

2.
1.3. Transform these k − 3 axes to directions by doubling the angles. Thus, we

get an observation on a (k − 3)-dimensional torus.

Figure 3(c) gives a schematic diagram of these first two steps for k = 5.

Case m = 2.

2.0. Start with a configuration of k points.
2.1. Register the projective coordinates of the last k − 4 points with respect to

the first four points, say.
2.2. Transform these registered points leading to one point on the Cartesian

product RP 2 × · · · × RP 2 of k − 4 copies of RP 2, that is, the projective shape of
a planar configuration of k points is equivalent to k − 4 axes in R

3.
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FIG. 3. (a) Similarity shape: four points in 2-D with the two base points marked by “×,” and the

other by “◦.” (b) Bookstein registration for Figure 3(a) with respect to the frame (− 1
2 ,0) and ( 1

2 ,0).

These schematic constructions are displayed in Figure 4 for m = 2 and k = 6.
Note that unlike the case m = 1, for m = 2, RP 2 cannot be visualized in three
dimensions, as we need at least four dimensions to immerse the real projective
plane into a Euclidean space without double points (see [25], pages I-9–I-13).
A rigorous geometric construction for m = 1 and k = 4 has already been given
in Figures 1 and 2.
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FIG. 3. (Continued). (c) Projective shape: schematic diagram for five points in R
1 and their

registration steps.

In the subsequent discussion, we will work on the axial z-coordinates derived
from the projective coordinates x with respect to the frame (x1, . . . , xm+2).
From now on the z-coordinates will be written as [X] = ([x1], . . . , [xq]), which
corresponds to an (m + 1) × q matrix. In the case of the directional representation
(for concentrated data), we will write X = (x1, . . . , xq) when there is no ambiguity.

3. Spherical distributions for projective shape. We have shown in Propo-
sition 2.3 that the projective shape of k landmarks in m dimensions can be rep-
resented by q axial variables given by (2.3). Thus, we could use appropriate axial
distributions developed in directional statistics as models for projective shape (see,
e.g., [18]). Simulation studies performed by Goodall and Mardia [11] suggest that
von Mises distributions are appropriate approximations to the angular version of
the cross-ratios under isotropic normal variation at landmarks; see their chi-square
plots in Figures 9 and 10. Also, various applications are given in that paper. That
is, for m = 1 and k = 4, the angle θ = 2φ can be considered to have the von Mises
distribution with probability density function

f (θ;µ,κ) = {2πI0(κ)}−1 exp{κ cos(θ − µ)}, θ ∈ (0,2π], κ ≥ 0,

where µ ∈ (0,2π] is the mean direction, κ is the concentration parameter and
I0(κ) is the modified Bessel function of the first kind and order zero.



DIRECTIONS AND PROJECTIVE SHAPES 1679

FIG. 4. (a) Six points in R
2 and (b) a schematic representation of their projective coordinates.
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In general, for m = 1 and any number of landmarks k, we require a multivariate
von Mises distribution on the torus (after doubling the angles). Mardia [17]
proposed the following family of bivariate von Mises densities:

const. × exp{κ1 cos θ1 + κ2 cos θ2 + κ3 cos θ1 cos θ2

+ κ4 cos θ1 sin θ2 + κ5 sin θ1 cos θ2 + κ6 sin θ1 sin θ2}.

The distribution could be generalized by mapping θ1 → θ1 − µ and θ2 → θ2 − ν.
A particular density of interest is proportional to

exp{κ1 cos(θ1 − µ) + κ2 cos(θ2 − ν) − κ3 cos(θ1 − µ − θ2 + ν)},

where −π < θ1, θ2 ≤ π,−π < µ,ν ≤ π,κ1 ≥ 0, κ2 ≥ 0 and κ1 ≥ κ3 ≥ 0,
κ2 ≥ κ3 ≥ 0. The density has the advantage that the parameters here have no
redundancy for large concentration since the distribution tends to a full bivariate
normal distribution. For another member of this family, see [23]. A multivariate
extension of the distribution for variables θ1, . . . , θq can be written down with
density proportional to

exp{�as cos θs + �bs sin θs + �ast cos θs cos θt
(3.1)

+ �bst cos θs sin θt + �cst sin θs sin θt },

where ass = bss = css = 0, bst �= bts , and s, t = 1, . . . , q .
For concentrated projective shape data of configurations of k points in general

position (x1, . . . , xk) where (x1, . . . , xm+2) yields a projective frame in R
m, one

may simply consider a multivariate directional representation (z(xm+3), . . . , z(xk)),

where z(xi) ∈ Sm are defined by (2.3). If there is no ambiguity, we will denote the
vector (z(xm+3), . . . , z(xk)) as (x1, . . . , xq). A projective shape is represented as a
point in a direct product of q copies of Sm. We now consider models on (Sm)q .

Distributions in the tangent space. For m = 1, let γs be the mean direction
of θs , s = 1, . . . , q . Then for γs = 0, ast = bst = 0, bs = 0 and large as , it can be
shown that (sin θ1, . . . , sin θq) is N(0,�), where � is the “asymptotic” covariance
which depends on the population parameters. If the angle γs is not zero, then we
have approximately

(
sin(θ1 − γ1), . . . , sin(θq − γq)

)T
∼ N(0,�).(3.2)

This approximation can be extended to spherical variables for m > 1. Let X =
(x1, . . . , xq) be an (m + 1) × q random matrix with xs ∈ Sm. Note that these x’s
are not to be confused with the notation elsewhere in the paper. Suppose that µs

is the mean directional vector of xs, s = 1, . . . , q , and let µ = (µ1, . . . ,µq) denote
the population mean directional matrix of X. Then define the spherical tangent
coordinates of xs by

vs = (I − µsµ
T
s )xs, s = 1, . . . , q.(3.3)
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For the circular case with xT
s = (sin θs, cos θs) and µT

s = (sinγs, cosγs), we have
vs = sin(θs − γs)es , where es is a unit tangent vector at µs, s = 1, . . . , q . Then
for concentrated data, it is plausible to extend (3.2) to the joint distribution of
v1, . . . , vq , which has a multivariate normal with zero mean vector and some
covariance matrix. Such tangent approximations are commonly used in shape
analysis (see, e.g., [5], Chapter 7) and found to be very effective in practice. We
now give a few results without any proof since their proofs are similar to those in
shape analysis.

Let Xi, i = 1, . . . , n, be a random sample from the population with random ma-
trix X, where Xi = (xi,1, . . . , xi,q). We estimate the population multivariate mean
directional matrix µ by the sample mean directional matrix µ̂ = (µ̂1, . . . , µ̂q),
where µ̂i, i = 1, . . . , q , are the standard spherical sample mean directions. Let
ṽi,s = [I − µ̂sµ̂

T
s ]xi,s, s = 1, . . . , q . Further, let ¯̃v and S be, respectively, the sam-

ple mean and covariance matrix of ṽi = (ṽT
i,1, . . . , ṽ

T
i,q)

T , i = 1, . . . , n. Then the
Mahalanobis distance squared D2 = ¯̃vT S− ¯̃v has rank M = mq , where S− is the
Moore–Penrose generalized inverse of S.

PROPOSITION 3.1. For concentrated data the approximate distribution of

Hotelling’s T 2 statistic is given by

T 2 =
n − M

M
D2 ∼ FM,n−M ,

and the asymptotic distribution of T 2 is χ2
M , where M = mq .

Tangent space inference. Using the above strategy, we now construct a two-
sample Hotelling’s T 2 test. Let X1i, i = 1, . . . , n1, and X2j , j = 1, . . . , n2, be two
independent samples, where X1i and X2j are two (m+1)×q matrices where each
column lies in Sm. Suppose that µ1 and µ2 are the respective mean population
matrices. We wish to test the hypotheses

H0 :µ1 = µ2 vs. H1 :µ1 �= µ2.

Let µ̂ be the matrix of the combined (sample) mean directions given by
(µ̂1, . . . , µ̂q). Let

vi,s = [I − µ̂sµ̂
T
s ]x1i,s, wj,s = [I − µ̂sµ̂

T
s ]x2j,s,(3.4)

where i = 1, . . . , n1, j = 1, . . . , n2, s = 1, . . . , q, and X1i = (x1i,1, . . . , x1i,q),
X2j = (x2j,1, . . . , x2j,q). Assuming that these two independent samples are from
the normal populations in this tangent space with the same covariance matrix, we
find that the Mahalanobis distance squared between v̄ and w̄ is

D2 = (v̄ − w̄)T S−(v̄ − w̄),

where v̄ is the mq × 1 vector of the means of (vT
i,1, . . . , v

T
i,q)

T , i = 1, . . . , n1.
The mean vector w̄ is similarly defined for the second sample. Further, S− is the
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Moore–Penrose generalized inverse of S = (n1S1 + n2S2)/(n1 + n2 − 2), where
S1 and S2 are the sample covariance matrices. Note that the rank of S is M .

PROPOSITION 3.2. For concentrated data the two-sample Hotelling’s T 2

statistic is given by

T 2 =
n1n2(n1 + n2 − M − 1)D2

(n1 + n2)(n1 + n2 − 2)M
,(3.5)

and under H0, T 2 is approximately distributed as FM,n1+n2−M−1. A general

distribution for nonconcentrated axial data could be taken as a multivariate

Bingham distribution.

4. An extrinsic mean. Here, we define an appropriate location parameter for
a probability distribution on P�k

m. Then for a random sample (X1, . . . ,Xn) from a
given probability distribution Q, we find a consistent estimator for the population
location and derive its asymptotic distribution. We assume that a distance ρ

on P�k
m is specified. Through this distance ρ it is possible to define an index

of dispersion. Given a probability measure Q on P�k
m, following the general

treatment of Fréchet [9] (see also [15]), we define, for y ∈ P�k
m, the function

FQ(y) = E[ρ2(X,y)] =

∫

P�k
m

ρ2(x, y)Q(dx).(4.1)

Assume there is a unique y ∈ P�k
m such that infψ∈P�k

m
FQ(ψ) = FQ(y); such a

y is said to be the Fréchet population mean, y := µF .

REMARK 4.1. For any probability measure Q on R the mean is always
unique. In general, this is true for a probability measure on P�k

m, but there are
some exceptions. For example, for the uniform distribution on S1 = P�4

1 with
chord distance ρ defined by

ρ2(eiθ , eiψ ) = 1 − cos(θ − ψ),

we have FQ(y) = 2π for any point y on S1; thus y is not unique in this case.

Let Y1, Y2, . . . , Yn be independent and identically distributed random variables
with probability measure Q and let Q̂n be the empirical probability measure

Q̂n =
1

n

(
δY1 + · · · + δYn

)
.(4.2)

The Fréchet sample mean set is the set µ̂F = {ŷ ∈ P�k
m,FQ̂n

(ŷ) = infFQ̂n
(y)}.

If µ̂F has a unique element, this element is called the Fréchet sample mean and
is labelled 
YF . Further, Ziezold [29] has established the strong consistency of the
Fréchet sample mean set on a compact metric space. Hence, from this result it
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follows that if µF exists, then any measurable choice ŷ from µ̂F is a strongly
consistent estimator of µF . If the mapping

j :P�k
m → EN

is an embedding into a Euclidean space and we use the chord distance ρ,

ρ(p1,p2) = ‖j (p1) − j (p2)‖, p1,p2 ∈ P�k
m,

then the Fréchet mean is called the extrinsic mean and we denote it by µE,j , or
write simply µE when j is known. One of the main features required in selecting
an embedding is that the resulting mean is easily computable.

First, we consider the case of q = 1 in our formulation, which has already been
studied in directional statistics (see [18, 21]). Note that for m = 1 the extrinsic
mean of Q for a population of projective shapes corresponds to the standard
circular mean direction (see, e.g., [18], pages 29–30).

For m > 1, by Proposition 2.2 the space P�m+3
m is identified with the

axial space RP m. We consider the embedding j of RP m into S(m + 1),
the space of symmetric matrices [16] given for the directional representation
[x] = {±x,‖x‖ = 1} by

j ([x]) = xxT .(4.3)

Here the Euclidean norm of a matrix A ∈ S(m+1) is given by ‖A‖2 = trAAT , that
is, A is an (m + 1) × (m + 1) symmetric matrix, and if A = j ([x]) with ‖x‖ = 1,
then ‖A‖ = 1,A ≥ 0 and rank A = 1.

Let [X],‖X‖ = 1 be a random vector in RP m. Then from [2] it follows that
the extrinsic population mean exists if the largest eigenvalue of E(XXT ) is simple
(i.e., has multiplicity one). In this case µE = [γ ], where γ is an eigenvector of
E(XXT ) corresponding to the largest eigenvalue, with ‖γ ‖ = 1. Moreover, if
[Xr ], (‖Xr‖ = 1), r = 1, . . . , n, is a random sample from a probability measure
Q on RP m and the extrinsic mean µE of Q exists, then the extrinsic sample mean
[X]E is a strongly consistent estimator of µE(Q). Note that when it exists, [X]E
is given by

[X]E = [m],(4.4)

where m is a unit eigenvector of 1
n

∑n
r=1 XrX

T
r corresponding to the largest

eigenvalue. It may be noted that, in this case, [X]E is also the maximum likelihood
estimator (MLE) for the mean of a Bingham distribution ([16, 21]) and for
the mean of the Dimroth–Watson distribution, whose density function at [x] is
proportional to exp(k(µ · x)2), where k is a constant. For these or more general
parametric families, MLE asymptotics or bootstrap methods [7] are commonly
used.
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EXAMPLE 4.1. We find that the extrinsic sample mean shape of the two
projective shapes given in Example 2.1 is given by

[z]E = [0.7062 :−0.0095 : 0.7080].

Since n = 2, we have [z]E = [z̄]E = [(z1 + z2)/2]. Heyden ([13], page 34)
obtained the reconstructed point in our spherical coordinates as [0.7070 :−0.0071 :
0.7071] by using a deterministic method. The two answers are very similar, though
derived from two different methods.

The main argument for using the embedding j in (4.3) is that, for this
embedding, the extrinsic mean is easily computable via statistical packages with
routines to carry out eigenanalysis. Another advantage is that the mapping j is
equivariant as shown in [16], and leads to the following multivariate extension to
projective shapes.

If we use the axial representation of projective shapes, for k ≥ m + 3 or q ≥ 1,
we can define an embedding jk of (RP m)q into (S(m + 1))q in terms of j :

jk([x1], . . . , [xq]) = (j [x1], . . . , j [xq]),(4.5)

where xs ∈ R
m+1,‖xs‖ = 1, s = 1, . . . , q . Again, it can be shown that if the largest

eigenvalues of each of the q matrix components of E(jk(Q)) are simple, then the
extrinsic mean µjk

(Q) exists and is given by

µ := µjk
(Q) =

(
[γ1(m + 1)], . . . , [γq(m + 1)]

)
,(4.6)

where γs(m + 1) is a unit eigenvector corresponding to the largest eigenvalue of
the sth component of E(jk(Q)). If Yr , r = 1, . . . , n, is a random sample from Q,
then in the axial representation

Yr = ([Xr,1], . . . , [Xr,q]), ‖Xr,s‖ = 1; s = 1, . . . , q,(4.7)

where Xr,s is an (m + 1) × 1 vector and Yr is (m + 1) × q matrix. Consider the
matrix of sums of squares and products of entries of Xr,s given by

Js =
1

n

n∑

r=1

Xr,sX
T
r,s,(4.8)

which is a well-defined (m + 1) × (m + 1) matrix. Let ds(a) and gs(a) be the
eigenvalues in increasing order and the corresponding unit eigenvector of Js ,
a = 1, . . . ,m + 1. Then the extrinsic sample mean in this case is


Yn,E =
(
[g1(m + 1)], . . . , [gq(m + 1)]

)
.(4.9)

For q = 1, 
Yn,E reduces to the mean given in (4.4), namely, g1(m + 1) = m.
Arrange the pairs of indices (s, a), s = 1, . . . , q, a = 1, . . . ,m, in their lexico-
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graphic order, and define the M × M symmetric matrix G by

G(s,a),(t,b)

= n−1(
ds(m + 1) − ds(a)

)−1(
dt (m + 1) − dt (b)

)−1(4.10)

×
n∑

r=1

(
gT

s (a)Xr,s

)(
gT

t (b)Xr,t

)(
gT

s (m + 1)Xr,s

)(
gT

t (m + 1)Xr,t

)
.

It can be shown that G is a strongly consistent estimator of the covariance matrix
of jk(Q) restricted to the tangent space of jk((RP m)q) at jk(µ), with respect to
the orthobasis determined by the eigenvectors gs(a), s = 1, . . . , q, a = 1, . . . ,m.

Let Ds = (gs(1), . . . , gs(m)), s = 1, . . . , q , so that Ds is an (m+1)×m matrix.
If µ = ([γ1], . . . , [γq]), where γs , s = 1, . . . , q , are unit column vectors in R

m+1,
we define a Hotelling T 2 type-statistic,

T 2(Y ;Q) = n(γ T
1 D1, . . . , γ

T
q Dq)G

−1(γ T
1 D1, . . . , γ

T
q Dq)T .(4.11)

Note that (γ T
1 D1, . . . , γ

T
q Dq) is a row vector. A proof of Theorem 4.1 regarding

the asymptotic distribution of T (Y ;Q) is available in a technical report of Mardia
and Patrangenaru [19]; the report also examines Fréchet’s intrinsic mean.

THEOREM 4.1. Assume (Yr), r = 1, . . . , n, is a random sample from a prob-

ability measure Q on (RP m)q as above and for s = 1, . . . , q , let λs(a) and γs(a)

be the eigenvalues in increasing order and corresponding unit eigenvectors of

E[X1,sX
T
1,s]. If λs(m + 1) > 0, s = 1, . . . , q , are simple, then T 2(Y ;Q) in (4.11)

converges weakly to χ2
M .

The following result follows the technique of bootstrapping the distribution of
extrinsic sample means on a manifold [3].

COROLLARY 4.1. Let (Yr), r = 1, . . . , n, be a random sample from Q on

(RP m)q , and let Yr = ([Xr,1], . . . , [Xr,q]), XT
r,jXr,j = 1, j = 1, . . . , q . Assume

that Q has a nonzero absolutely continuous component. For a random resam-

ple (Y ∗
1 , . . . , Y ∗

n ) from (Y1, . . . , Yn), denote the eigenvalues of 1
n

∑n
r=1 X∗

r,sX
∗T
r,s in

increasing order by d∗
s (a), a = 1, . . . ,m + 1, and the corresponding unit eigen-

vectors by g∗
s (a), a = 1, . . . ,m + 1. Let G∗ be the matrix obtained from G, by

substituting all the entries with ∗-entries. Then the bootstrap distribution function

of the statistic

T ∗2(Y ∗, Q̂n) = n
(
gT

1 (m + 1)D∗
1 , . . . , gT

q (m + 1)D∗
q

)

(4.12)
× G∗−1(

gT
1 (m + 1)D∗

1 , . . . , gT
q (m + 1)D∗

q

)T

approximates the true distribution of T 2(Y ;Q), given by (4.11), with an error of

order Op(n−2).
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In imaging applications, we may be given a template (population) mean in terms
of k landmarks. The aim could then be to test for identification, that is, to assess
if a given sample of images of a scene is from this population. Such a test can
be based asymptotically on the test statistic given in (4.11). For small samples we
need to use the bootstrapped statistic (4.12).

We compare extrinsic means of projective shapes with respect to the embedding
jk of P�k

m = (RP m)q in (S(m + 1))q . Using our axial representation, we reduce
this problem to axial statistics. Since for b = 1,2, µb ∈ (RP m)q , we set in axial
representation µb = (µb,1, . . . ,µb,q). Without loss of generality, we may assume
that for each j the angle between µ1,j and µ2,j is π

2 or less, and we consider the
unique rotation ρm,j ∈ SO(m + 1) such that ρm,j (µ1,j ) = µ2,j and the restriction
of ρm,j to the orthocomplement of the plane determined by µ1,j and µ2,j in R

m+1

is the identity.
The equality µ1 = µ2 is equivalent to ρm,s = Im+1, s = 1, . . . , q , where

Im+1 is an (m + 1) × (m + 1) identity matrix. Assume (Y1,r), r = 1, . . . , n1,
(Y2,t ), t = 1, . . . , n2, are random samples from Q1,Q2, respectively. A consistent
estimator of the Lie group valued parameter ρm = (ρm,s, s = 1, . . . , q) is rm =

(rm,s, s = 1, . . . , q), where, for each s = 1, . . . , q , rm,s ∈ SO(m + 1) is the unique
rotation defined as above. This rotation brings the extrinsic sample means (mean
directions) in coincidence, that is, superimposes m1,s onto m2,s . Here ma,s is
the unit eigenvector of

∑q
s=1 Xr,asX

T
r,as , where Ya,r = ([Xr,a,1], . . . , [Xr,a,q]),

r = 1, . . . ,ma, a = 1,2.

Case for m = 2. A particular case of practical interest is when m = 2. We
write here, for this particular case, ρ for ρ2 and r for r2. Here we will consider
only the subcase k = 5, for which we give an application in the next section. To
test the equality µ1 = µ2 amounts to testing

ρ = idRP 2,

where idRP 2 is the identity map of RP 2 in the group of isometries I (RP 2)

of RP 2. Any isometry ρ of RP 2 can be represented in a unique way by a rotation
T ∈ SO(3) of the angle θ , with 0 ≤ θ < π,ρ([x]) = [T X]. Note that a rotation
T of the angle θ = π acts as the identity idRP 2 . If ρ �= idRP 2 and T ∈ SO(3)

represents ρ, there is an orthonormal basis V1,V2,V3 of R
3 such that T (V3) = V3.

We set

H(ρ) =
[(

V1 · T (V1), (V1 × T (V1))
)T ]

,

for ρ �= idRP 2 and H(idRP 2) = [1 : 0 : 0 : 0]. The map H : I (RP 2) → RP 3 is
a well-defined isomorphism from I (RP 2) to the axial space RP 3. Modulo
the diffeomorphism H , the equality µ1 = µ2 amounts to H(ρ) = [1 : 0 : 0 : 0].
The distribution of the resulting consistent estimator H(r) of H(ρ) is essen-
tially given in [1], Theorem 2.1. Assume neither n1 nor n2 is small compared
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with n = n1 + n2. Let G(ρ) be the affine coordinates of H(ρ); if H(ρ) =
[H0(ρ) :H1(ρ) :H2(ρ) :H3(ρ)], then G(ρ) = (G1(ρ),G2(ρ),G3(ρ)), with
Ga(ρ) = Ha(ρ)/H0(ρ), a = 1,2,3. Using equation (5.13) of [1], page 489, it
turns out that n1/2(r − ρ) has asymptotically a trivariate Gaussian distribution and
is independent of n. Then by the delta method of Cramér (see, e.g., [7], page 45), it
follows that, under the null hypothesis, if there are two constants c1, c2, such that
nb/n → cb, for b = 1,2, then n1/2{G(r) − G(ρ)} has asymptotically a trivariate
Gaussian distribution which is independent of n. Consequently, if we consider the
resamples under the empirical distribution n1/2{G(r∗) − G(r)} by a nonpivotal
bootstrap, then this distribution will have asymptotically the same distribution as
that of n1/2{G(r) − G(ρ)}.

Concentrated data case. For each projective coordinate from concentrated
projective shape data, we may select only one representative on the sphere.
Therefore, we may use the directional representation on a product of q copies
of Sm.

In this case, if Q is a concentrated distribution on (Sm)q , let µD = (
µ1

‖µ1‖
, . . . ,

µq

‖µq‖) be the mean multivariate direction and ȳD = (
ȳ1

‖ȳ1‖
, . . . ,

ȳq

‖ȳq‖) be the
corresponding sample mean corresponding to a random sample (y1, . . . , yn),
yj = (y1

j , . . . , y
q
j ) ∈ (Sm)q . The asymptotic distribution of ȳD can be described

in terms of an orthonormal frame field (e1,1(y
1), . . . , e1,m(y1), . . . , eq,1(y

q), . . . ,

eq,m(yq)) defined around µD ; here y = (y1, . . . , yq) ∈ (Sm)q and for each
a = 1, . . . , q, ea,i(y

a)T ea,j (y
a) = δij , i, j = 1, . . . ,m, where ea,i(y

a) ∈ R
m+1. Let

G(y) be the M by M matrix made of q by q square matrices of size m,Gab(y),
where

Gab(y) = n−1(‖ȳa‖‖ȳb‖)−1

(
n∑

r=1

(
ea,i

(
ȳa

‖ȳa‖

)T

ya
r

)(
eb,j

(
ȳb

‖ȳb‖

)T

yb
r

))
,

i, j = 1, . . . ,m.

We studentize the tangential component of the difference between the sample and
population directional means and obtain the following result.

THEOREM 4.2. Let ȳD − µD =
∑q

a=1
∑m

j=1 da,jea,j (
µj

‖µj‖
) + ν be the

decomposition of the difference between the directional sample mean and

directional mean into its tangential and normal components. If da = (da,j )
T ,

j = 1, . . . ,m, and d = (d1, . . . , dq)
T , then T 2(Y,Q,µD) = n · dT G(y)−1d

converges weakly to χ2
M .

REMARK 4.2. For concentrated data, Proposition 3.1 and Theorem 4.2 show
that asymptotically the squared norm of the Studentized sample mean and of the
Studentized extrinsic sample mean vector both have a χ2

M distribution, where M is
the dimension of the projective shape space.
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COROLLARY 4.2. Assume Y ∗
1 , . . . , Y ∗

n is a random resample with replace-

ment of a random sample (Y1, . . . , Yn) from a probability measure Q on (Sm)q

such that µD exists and Q has a unique absolutely continuous component with

respect to the volume measure of (Sm)q . Let Q̂n be the empirical distribution, and

let d∗,G(y∗) be the corresponding bootstrap analogs of d and G(y) obtained by

substituting Y ∗
1 , . . . , Y ∗

n for Y1, . . . , Yn, 
Y for µ, and 
Y ∗ for 
Y . Then the distribu-

tion function of T 2(Y,Q,µD) can be approximated by the bootstrap distribution

of T 2(Y ∗, Q̂n, 
YD) = nd∗T G(Y ∗)−1d∗ with a coverage error of order Op(n−2).

COROLLARY 4.3. A (1−α)100% bootstrap confidence region for µD is given

by the following:

(a) Rα(Y ) = {µ ∈ (Sm)q |T 2(Y,Q,µ) ≤ T ∗2
α }, where T ∗2

α is the (1 − α)100%
percentile of the bootstrap distribution T 2(Y ∗, Q̂n, 
YD).

(b) Sα(Y ) = {µ = (µ1, . . . ,µq) ∈ (Sm)q |T 2
j (Y,Q,µj ) ≤ T ∗2

j,α/q , j = 1, . . . , q},

where T ∗2
j,α/q is the (1 − α

q
)100% percentile of the bootstrap distribution T 2

j (Y ∗,

Q̂n, 
Y
j
D) corresponding to the j th directional component only.

While Corollary 4.3(a) is useful when M = 1 or M = 2 (see Example 5.1),
for larger values of M the computations are very intensive. To decrease the
computational complexity, one may use Corollary 4.3(b), which is based on a
Bonferroni type of argument and gives the confidence region as a Cartesian product
of confidence regions for the directional components of µD . This is used in
Example 5.3 below.

5. Applications. To illustrate our methodology, we consider machine vision
applications involving data extracted from photographs. In the first two examples
we use architectural features of two buildings, which form the preliminary stage of
object recognition. In the third example we consider a problem in face recognition
where two different views are available. We have assumed here that the coordinates
of points are already recorded from a digital image; image processing software
often has built-in procedures to extract coordinates of landmarks. There are various
algorithms in practice to carry out this task (see, e.g., [12]). Our main aim is
to show how we can use the one-sample and the two-sample tests when the
underlying hypotheses are plausible. We show the type of computations required
and indicate how the approximations work. We also examine how the parametric
and the nonparametric tests perform. In Example 5.1 the problem is illustrated
for m = 1, k = 4 so q = 1 and involves circular statistics. In Example 5.2 m = 2,
k = 5, whereas in Example 5.3 m = 2, k = 6, so q = 1 and q = 2, respectively, so
that Example 5.2 involves the univariate spherical statistics, whereas Example 5.3
involves bivariate spherical statistics. These ideas can be extended to problems in
machine vision such as in identification, classification and so on. Note that in these
illustrative examples the number of landmarks k and the sample size n happened
to be small, but the methods are applicable to any values of k and n.
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FIG. 5. One view of the Education Building (University of Leeds) with four collinear points on four

consecutive windows marked by white rings at the centre of the windows of the first floor.

EXAMPLE 5.1. In this example we selected randomly five photographic views
of a building (the Education Building) from a large database of buildings at the
University of Leeds. One view is shown in Figure 5. It can be seen that the windows
are equi-spaced. We selected four landmarks which are four central points of four
consecutive windows (see Figure 5). The observed values of these landmarks are
given in Table 1. Note that here m = 1, k = 4, q = 1 and n = 5.

We fix the projective frame π = ([x1 : 1], [x2 : 1], [x3 : 1]) and determine the
cross-ratio c and projective coordinate of pπ of p = [x4 : 1] given by (2.15). After
doubling the angles, for each view, we get a direction θ . These values are shown
in Table 1, together with the coordinates.

If the landmarks are equidistant, their cross-ratio is c = 4/3 and the correspond-
ing direction is θ0 = 1.287 rad. Therefore, testing the hypothesis for projective
equidistance is equivalent to the problem

H0 : θ = θ0 vs. H1 : θ �= θ0.
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TABLE 1
Horizontal coordinates of collinear points on the Education Building

at 5 different views

View x1 x2 x3 x4 c φ θ

1 22.90 35.7 48.3 61.10 1.340 0.641 1.282
2 23.10 29.1 35.5 42.50 1.338 0.642 1.284
3 41.40 44.3 47.3 50.70 1.353 0.636 1.273
4 39.00 47.0 53.9 60.00 1.337 0.642 1.285
5 42.25 46.9 50.5 53.85 1.373 0.629 1.259

A parametric approach. Under the assumption of the von Mises distribution,
as in [11], we consider the Watson–Williams [28] test statistic

F (1) = (n − 1)
(
R − (cos θ0, sin θ0)R

)
/(n − R),

where R is the length of the resultant column vector R =
∑n

r=1(cos θr , sin θr)
T .

Under H0, for concentrated data F (1) is approximately distributed as F1,n−1. For
this data F (1) was found to be 2.826, which has p-value 0.168. Hence, we fail to
reject the null hypothesis at the 5% significance level.

Indeed, here 
R = R/n = 0.99994, so that data is highly concentrated. Hence,
we can assume the tangent approximation of Section 3 is valid. Under this
assumption the one sample t-test yields the p-value 0.170. So again we fail to
reject H0 at the 5% significance level.

A nonparametric approach. Assume now that the population distribution Q is
arbitrary and has a mean direction µD = exp(iθD). We consider the hypotheses

H0 : θD = θ0 vs. H1 : θD �= θ0.

Since the sample size n = 5 is very small, we base our p-value on Corollary 4.1.
Using 5000 resample values of T 2(Y ∗, Q̂n, 
YD), we found the p-value to be 0.201.
Thus, we again fail to reject H0 at the 5% significance level. In conclusion, we fail
to reject the equidistance hypothesis at the 5% level using either test.

EXAMPLE 5.2. In this example we illustrate the two sample tests for m = 2
and k = 5 so that q = 1. Again, we have used the Leeds University Buildings
database. In addition to the Education Building used in the previous example,
we now consider an additional building—the Careers Building. Two groups of
identically positioned noncollinear landmarks A1,A2,A3,A4,A5 were marked
on five frontal photographs of the Education Building and four of the Careers
Building, so that n1 = 4 and n2 = 5. One of the buildings with the landmarks
is shown in Figure 6.
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FIG. 6. One view of the Careers Buildings (University of Leeds) with five landmarks.

We obtain the spherical coordinates of the landmarks for the two samples
following the calculations similar to those in Example 2.1, and these are given in
Table 2. Assessing this part of architectural similarity between the two buildings is
equivalent to performing a two-sample test for means. It is clear from our images
that the architectural style of the windows based on these landmarks is very similar.
We will also show that the Hotelling T 2 test based on projective invariants leads to
a contradictory result, which indicates that we should prefer the use of the spherical
projective coordinates.

A parametric test. For the Education Building and for the Careers Building,
we find using Table 2 that the mean resultant lengths are 0.9997 and 0.9979,
respectively. Hence, the data are highly concentrated in projective shape space.

TABLE 2
Spherical coordinates for the Education Building ( five views) and the Careers Building ( four views)

View Education Building View Careers Building

1 0.8142 0.5547 0.1718 1 0.7859 0.5768 0.2228
2 0.8038 0.5610 0.1977 2 0.8170 0.5712 0.0791
3 0.8067 0.5591 0.1917 3 0.7639 0.6041 0.2268
4 0.8150 0.5513 0.1787 4 0.7893 0.5766 0.2110
5 0.7773 0.5890 0.2211
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Thus, we use Hotelling’s T 2 test in the tangent space given by (3.5). The combined
mean direction and the mean resultant lengths are

(0.7980,0.5722,0.1892),0.9988,

respectively. We find the value of F for Hotelling’s T 2 test is 2.6075, which is F2,6.
In fact, Pr(F2,6 > 2.6075) ≃ 0.225 so that we fail to reject the null hypothesis.

A nonparametric test. We selected the projective frame π = ([A1 : 1], [A2 : 1],
[A3 : 1], [A4 : 1]) and determined the coordinates of the views in the sample, using
a spherical representation; these spherical coordinates are displayed in Table 2.
Here the extrinsic sample mean projective shapes of views from the Education
Building and Careers Building are given in the spherical representation by 
Y1,E =
[0.8037 : 0.5632 : 0.1922] and 
Y2,E = [0.7907 : 0.5834 : 0.1855], respectively. Now
consider the problem of estimating the distribution of the axis H(r) defined in
Section 4. Since the smaller sample size is 4, and the eigenanalysis has to be
repeated for each resample, we limited ourselves to 250 pseudorandom resamples
and determined the corresponding nonpivotal bootstrap distribution of G(r∗). The
corresponding distribution of 3G(r∗) is displayed in Figure 7, which indicates that
the sample mean of G(r) is close to (0,0,0).

The rotation that brings 
Y1,E in coincidence with 
Y2,E is identified with a 4-D
axis (see Section 4), which turns out to be

H(r) = [0.9997 :−0.0077 : 0.0029 : 0.0231],

where we have used the dot product and cross-product of 
Y1,E and 
Y2,E . We
determined the coordinates of the distribution of 3(G(r∗) − G(r)) and, for this

FIG. 7. Affine view of the bootstrapped distribution of size 250 of the nonpivotal vector (3G1(r∗),
3G2(r∗), 3G3(r∗)) used in the comparison of the projective shapes of five landmarks on the

Education and Careers Buildings.
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distribution, we successively sorted and trimmed the distribution of 3G(r∗) =
{3G1(r

∗),3G2(r
∗),3G3(r

∗)} and obtained the following 93% simultaneous boot-
strap confidence intervals: [−4.36,3.02] for 3G1(r

∗), [−3.59,2.67] for 3G2(r
∗),

[−2.70,3.40] for 3G3(r
∗). This analysis shows that (0,0,0) is in the 93% per-

centile confidence region, that is, the identity is in the corresponding 93% boot-
strap confidence region for ρ2 on SO(3). Therefore, we fail to reject µ1 = µ2 at
significance level α = 0.07.

A test based on invariants. Using Table 2, the projective invariants ι1 and ι2,
defined at (2.16), are given below for the two buildings, respectively:

Education Building: (4.739, 3.229), (4.068, 2.838), (4.208, 2.917), (4.561,
3.083), (3.516, 2.664),

Careers Building: (3.527, 2.588), (10.325, 7.219), (3.369, 2.664), (3.741, 2.733).
We find that the observed value of F for the Hotelling T 2 test is 12.22 and

P(F2,4 > 12.22) = 0.0077. Thus, we reject the hypothesis of similarity between
the two buildings. This conclusion is quite different than the one we get using
projective spherical shape coordinates. Indeed, this aspect of the architecture is so
similar that we should be accepting the hypothesis. The difference is explained by
the fact that the data is not normal, and the test based on invariants is sensitive to
departures from normality.

EXAMPLE 5.3. We now apply the method to a face recognition problem.
Figure 8(a) shows the seven frontal views (n1 = 7) of the same person (an actor
posing in different disguises) and Figure 8(b) shows his seven side views (n2 = 7).
We recorded six landmarks (four corners of the eyes, “canthus,” and two end
points of the lips, “mouth edge points”). Using the four eye-corner landmarks as
the projective frame, the Cartesian landmarks were converted into the directional
representation (bivariate spherical), leading to the spherical projective coordinates
x1 and x2 in the same way as in Example 2.1. This data is displayed in Table 3.

A parametric test. First, it can be seen that, for frontal views, the mean
resultant lengths of x1 and x2 are 0.9995, 0.9955, respectively, whereas for the side
views, the mean resultant lengths are 0.9995, 0.9996, respectively. These values
imply that the data is highly concentrated. For the combined data, the respective
mean resultant lengths are 0.9995, 0.9996. Thus, we could use the tangent space
to test the hypothesis that the two means are equal (Section 3). We find that the
combined mean directions are given by

µ̂T
1 = (0.6889,0.6735,0.2681), µ̂T

2 = (0.7015,0.6874,0.1882).

We calculated the tangent coordinates using (3.4), which, from (3.5), leads to the
value of F = 0.8269; this has an F -distribution with degrees of freedom 4 and 5.
Since Pr(F4,9 > 0.8269) = 0.5402, there is strong evidence that these frontal and
side views are of the same person.
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FIG. 8. Photographs of an actor posing in different disguises. (a) Frontal views. (b) Side views.
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TABLE 3
Bivariate spherical coordinates x1 = (x1

1 , y1
1 , z1

1) and x2 = (x2
2 , y2

2 , z2
2) corresponding

to the 14 views (1–7 frontal, 8–14 side) of the actor

View x1
1

y1
1

z1
1

x2
2

y2
2

z2
2

1 0.700780 0.657783 0.276096 0.708981 0.676761 0.198344
2 0.685337 0.675546 0.271939 0.697420 0.691293 0.188996
3 0.688405 0.650635 0.320581 0.709839 0.669692 0.218266
4 0.690658 0.673332 0.263846 0.706231 0.681266 0.192651
5 0.691832 0.668204 0.273626 0.700515 0.685421 0.198688
6 0.688246 0.667378 0.284470 0.703869 0.680057 0.205158
7 0.681884 0.685515 0.255155 0.692303 0.697768 0.183948

8 0.679369 0.669555 0.300255 0.694591 0.683580 0.224191
9 0.686636 0.687718 0.235742 0.698689 0.696648 0.162835

10 0.684002 0.685272 0.250087 0.694651 0.701190 0.160603
11 0.667353 0.699274 0.256235 0.679292 0.713641 0.171112
12 0.717523 0.665701 0.204944 0.726679 0.673698 0.134419
13 0.694639 0.669937 0.262035 0.705996 0.686475 0.174132
14 0.723910 0.649280 0.233215 0.735734 0.656621 0.165965

A nonparametric test. The 95% pivotal bootstrap confidence region in the
mean bivariate spherical direction based on Corollary 4.3(b), using 1500 random
resamples was found to be T ∗2

1,0.025 = 3.21 and T ∗2
2,0.025 = 1.84 and the statistics

T 2
1 (ȳD, y), T 2

2 (ȳD, y) obtained, using the seven side views, were 1.54 and 1.33,
respectively. It is seen that the bivariate mean projective shape corresponding to
the seven side views falls in the 95% pivotal bootstrap confidence region for the
mean projective shape from frontal views. Thus, both methodologies lead to the
same conclusion.

REMARK 5.1. We have used an edge registration method in developing
the projective coordinates which are points in a curved space. The underlying
projective shape space has the features of Kendall’s shape space, since it is a
symmetric space. For large samples, the choice of edge registration will have
no influence on the analysis. For a similar discussion on the Bookstein shape
coordinates, see [5], page 30.

6. A strategy for general shape analysis. We now give a unified strategy
underlying the three statistical shape spaces: similarity, affine and projective,
leading to general statistical shape analysis. Each of these spaces is a space of
orbits (orbifolds) of group actions on a finite set of points on a manifold. In general
shape analysis, the group actions of interest are the following:

1. In the case of similarity shape the group of direct similarities or, more generally,
the group CO(m) ⋉ R

m of conformal linear maps of R
m, and the manifold

is R
m.
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2. In the case of affine shape, the group GL(m,R) ⋉ R
m of affine transformations

of R
m and the manifold is R

m.

3. In the case of projective shape, the group PGL(m,R) of projective trans-
formations of RP m and the manifold is RP m, or the pseudo-group action
of PGL(m,R) on R

m, regarded as the subset RP m \ RP m−1 of RP m.

Note that the groups are hierarchically ordered in these three types of shape.
Let k be a fixed positive integer, and let C

k
m be the set of all configurations of k

labelled points in R
m (or in RP m). Assume G is a group of transformations of R

m

(or of RP m) that acts on the left on C
k
m, via

g
(
(x1, . . . , xk)

)
=

(
g(x1), . . . , g(xk)

)
, g ∈ G,x = (x1, . . . , xk) ∈ R

m.

The orbit G(x) of such a configuration x = (x1, . . . , xk) ∈ C
k
m is defined by

G(x) =: {g(x)|g ∈ G}. The full G-shape space, G�k
m, is the set of all G-orbits,

G�k
m = {G(x), x = (x1, . . . , xk) ∈ C

k
m}. Note that the similarity planar shape

space �k
2 (see [14]) is not a full shape space, since the orbit of x = (0, . . . ,0) is

removed from the full CO(2) ⋉ R
2-shape space. If this singular orbit is removed,

the corresponding shape space has the structure of a manifold, namely, the complex
projective space CP k−2 ∼= �k

m.

The strategy used for similarity shape or affine shape can be extended to the
general context by taking the following sequence of steps for any group action
on C

k
m whose orbits are closed:

1. Identify C
k
m with R

km via (x1, . . . , xk) → (x1
1 , . . . , xm

1 , . . . , x1
k , . . . , xm

k ),
xj = (x1

j , . . . , xm
j ), j = 1, . . . , k, and consider the topology on C

k
m inherited

from the Euclidean topology of R
km.

2. Consider the quotient topology on the orbit space G�k
m and let π :Ck

m → G�k
m

be the quotient map. A subset U of G�k
m is open if π−1(U) is open in C

k
m.

Recall that a subset V is generic if it is open and dense in the quotient topology.
Note that if π :Ck

m → G�k
m is the quotient map, then V is generic if π−1(V)

is a generic subset in C
k
m. Consider a generic subset V ⊆ G�k

m that has a
homogeneous structure (see [27]) or even a structure of symmetric space.

3. Whenever possible, find generic shape spaces that admit homogeneous struc-
tures. In such a situation find an equivariant embedding of V into a Euclidean
space which yields easily computable extrinsic sample means.

4. Derive the distributions for marginal distributions on V resulting from noise at
landmark locations, and if these distributions are intractable, approximate them
with simpler distributions.

5. Determine asymptotic distributions of Fréchet sample means on V and, in
particular, of extrinsic sample means. Then use associated statistics to design
large sample confidence regions for population extrinsic means. For small
samples derive corresponding bootstrap distributions for sample means and
confidence regions.
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In this paper we introduced the projective shape space of configurations of
points in general position following this strategy. In this case, given that the
projective transformations in R

m form only a pseudogroup, it was more convenient
to regard R

m as an open affine set of RP m, and to consider points in RP m

and the group G = PGL(m). We considered the generic set V ⊆ G�(RP m)k of
projective shapes of configurations of k points in RP m with k ≥ m + 2 in general
position, for which the first m+ 2 of these points form a projective frame in RP m.

This generic set V was called P�k
m and we showed that P�k

m is a manifold
diffeomorphic with (RP m)q, thus having a structure of homogeneous space. We
embedded this manifold in a space of matrices, and computed extrinsic sample
means and their asymptotic distributions and derived bootstrap results to deal with
small sample sizes. In the case of linear projective shapes, we also approximated
distributions on the space of projective shapes, resulting from noise at landmark
locations, by distributions that are easier to handle, thus completing the general
program presented above. In the case of planar similarity shape, for k > 2, the
group of similarities acts freely on the space of configurations C

k
2 . In general, if

the restriction of the action of the group G on C
k
m to a generic subset of orbits

is free, the dimension of each orbit is equal to the manifold dimension of the Lie
group G. In this case one may locally select a submanifold of C

k
m that is transverse

to all the orbits, that is, dim(G�k
m) = km−dimG. Table 4 gives the dimensions of

similarity, affine and projective shape spaces. Note that the number of degrees of
freedom of the chi-square distributions needed for confidence regions of Fréchet
means is equal to the dimension of G�k

m.

REMARK 6.1. Although less studied in statistics, projective shape analysis is
the most relevant in image analysis, since the pinhole camera principle is based on
central projections. Affine shape analysis and similarity shape analysis are valid
in image analysis only when such central projections can be approximated with
parallel projections, or even orthogonal projections.

REMARK 6.2. Comparison of projective shapes is made easier due to
homogeneity of the projective shape space. Recall that a space M is homogeneous
if there is a Lie group G of transformations such that, for any points x1,

TABLE 4
The appropriate dimensions for different shape spaces with k points in a configuration

Shape type Similarity Affine Projective

Group CO(m) ⋉ R
m Aff(m,R) PGL(m,R)

Dimension m(m+1)
2 + 1 m(m + 1) m(m + 2)

Dimension of mk − m(m+1)
2 − 1 m(k − m − 1) m(k − m − 2)

shape space
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x2 ∈ M, there is a g ∈ G with g(x1) = x2. In this way we may define a map
from M × M to G [which is what we did in Example 5.2, where M = P�5

2
and G = SO(3)] and the comparison of two means is transferred on G. This
method of comparison of projective shapes can be used to compare means of two
populations on an arbitrary Riemannian homogeneous manifold and, in particular,
on a Grassmanian manifold. Indeed, recently a need for population means on
Grassmannian manifolds has arisen from signal processing; see [26].
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