
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
DIRECTIONS FOR MEMORY HIERARCHIES AND THEIR COMPONENTS:
RESEARCH AND DEVELOPMENT

Permalink
https://escholarship.org/uc/item/6xp3k2f7

Author
Smith, Alan Jay

Publication Date
1978-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xp3k2f7
https://escholarship.org
http://www.cdlib.org/

- 1 - LBL-3276

REOi T ^

DIRECTIONS FOE> WRX HIERARCHIES AND THEIR COMPONENTS:

SEARCH 4 N D DEVELOpf«NT»

' ' ' - • - —
\"\\ Alan Jay S n i t h "
i ' - ' i . - . , . _ . ' * " • • " •

University of California, Berkeley

ABSTRACT , , . , . ,
The memory hierarchy is usually the largest

identifiable part of a computer system and making
effective ure of it is critical to the operation
and use of the system. We consider the leveT.s of
such a memory hierarchy and describe the stat': of
the art and lively directions for both research and
development. Algorithmic and logical features of
the hierarcny not directly associated with specific
components are also discussed. Among the problems
we believe to be the most significant are the
following: (a) evaluate the effectiveness of gap
filler technology as a level of storage between
main memory and disk, and if it proves to be
effective, determine how/where it snould be used,
(b) develop algorithms for the use of mass storage
in a large computer system, and (o) determine how
cache memories should be implemnted in very large,
fast multiprocessor systems.
•Partial support For this research lias been
provided by the National Science Foundation under
grant MCS75-0S766, and the Department of Energy
under contracts W-7«05-ENG-IiB (to LBL) and
EI-76-C-03-0515 (to SLAC).
••Computer Science Division, EECS Department,
University of California, Berkeley, California
9H720. The author is also on the staff of the
Lawrence Berkeley Laboratory and a visitor at the
Stanford Linear Accelerator Center.
I. INTRODUCTION

Contemporary large computer systems freo.uently
employ a memory hierarchy such as that in figure 1,
where we show cache memory, main memory, drums,
disks and tape. The efficient use of this memory
system is crucial to the operation of the whole
computer system. In this paper, we shall examine
the memory hierarchy both overall and with respect
to its components in an attempt to identify
research problems and project future directions for •
development.

The effects of • the design of the memory
hierarchy can be considered to fall into two
(overlapping) areas: performance and logical view.
Performance denotes those aspects of the hierarchy
design which affect the measures of performanee of
the computer system, such as throughput, speed,
response time, turn around time and cost
effectiveness. Logical view refers to the logical
view given the user of the memory system: how is
the memory addressed?, named?, where is the
information? (virtual vs. real location), how is
this information protected?, etc. These two
aspects interact, since performance is impacted by
the logical view, and the cleanliness or uniformity
of tne logical view is often impaired by attempts
to easily allow the user to tune the system to
improve its performance.

By far the most fertile direction for new
results (research or development) is in the study
and design if memory hierarchies of the future,
rather than in the optimization of current systems.

(CPU)—»("CACHE } —

32K bytes 4 megabytes 3 MIPS
Ficur: 1

5-10
gigabytes

1000 to
50000 reels

In figure 2, we show what we believe represents the
type of large computer system mesory hierarchy that
will become common in the earlv 19oQ's. To figure
1, one will note that we nave added in figure 2 two
levels: gap filler technology and mass store.
Currently, there are orders of magnitude difference
(the access gap) in both cost and performance
between random access (M0S) memory ar.d mechanical
storage devices such as drums or disks. Much time
and effort is expended in most computer systems in
finding efficient ways to accomplish the necessary
transfers of information accross the access gap. A
computer system using a level of storage whose
technoloey occupies the access gap could benefit
significantly in both improved performance and
decreased system complexity.

Three technologies now under development,
and/or production fall into the middle of the
access gap. Charge coupled devices (CCD's) [2.16]
are fast semiconductor shift registers which shift
packets of charge; they should be from 3 to 5 tinns
cheaper [18] than main memory. Magnetic bubbles
are similar shift registers [5,21] but function by
shifting magnetic domains. Magnetic bubbles may be
less expensive than CCB's, depending on the
mechanism finally chosen (e.g. bubble lattice
files [5J, will be very cheap), but they are
considerably slower. The third possibility is
electron bean accessed memory (EEAM) [19]. Small
charge patterns are stored on the face of a CRT,
using a semiconductor target and hyperfine beam
focusing. Only one EBAM development effort exists
at the moment [43] and there is some doubt about
its eventual success, since the engineering
problems appear to be formidable. All three or
these technologies have the potential for inclusion
in memory hierarchies over the next few years.

The second difference between figures 1 and 2
is in what we call "mass store", which is a
non-manual, integrated level of storage at the
bottom of the hierarchy, with the potential for
upwards of a trillion bits of information. Devices
in this class include IBM,'s 3850,tape library [1b],
Precision Instrument's Ur.icon [jJ, IBM's photostore
[23], CDC's 3S500 tape liDrary and Ampen's Terabit
Memory [17]. The difference between tape and mass
store is that between manual and automatic; mass
storage is an integrated part of the memory
hierarchy.

Both gap filler technology and mass storage
devices are only just becoming generally available,
and in both cases, there are numerous orcbiems to
be identified, studied and solved, in contrast with
more mature technologies and devices.

In the remainder of this paper, we shall
consider each of the aspects of the memory
hierarchy and point out what we consider to be the
open problems and likely solutions, both with
regard to research and development. Sections will
be devoted to each of the levels of storage

- !f*'N M a .
by'es , ,
' mecob/tes

M?ure 2
IOO.IOOO jo-co io : a - io ' ! 'ooo reeis

megabytes g>gc2ytes bis upwards

• & j f l 2 E I B l ' i " t M ^ B ' 'FiiiS 1SOCUBSBJJT; ^

-2-
indicated ir. figure 2, as well as to those problems
that do.T't seer to be associated with specific
levels in the hierarchy.
II. CACHa KEKORISS

Cache memories, also known as High Speed
Buffer memories, are very fast buffer memories
managed by the hardware and placed between the CPU
and the main cecsry. Because of the principle of
locality [9], wr.ich states that (a) information in
current use is likely to be used again soon and (b)
informatin near the current locus of reference is
likely to be referenced soon, cache memories are
very effective. A Drogram running in user state on
a large machine will typically find about ?7J to
9SJ of its memory references satisfied by
information contained in the cache memory [27,28].
Even though ".he cache memory in high end machines
is very fast, the processor logic is even faster;
thus, large hign speed computer systems are memory
speed limited. Because of this requirement for
high speed, the implementation details of the cache
are at least as important as the more general
algorithmic features of the design. Our discussion
will trend toward the latter, but the importance of
the former should not be neglected.

Cache memories will become larger and faster,
and will appear on more and more macnines. The
speed of the cache is dependent on circuit
technology, which is improving, and on physical
size, which lower bounds propagation time. The
capacity of cache memories is also limited by two
factors: cost and physical size (cabinet and board
space). Projected increases in density and circuit
speed should aid in solving all of these problems.
Tne largest cache memory to be found in an IBM
comoatable machine is the btK byte cache in the
3033 processor, first delivered this year. If
recent trends continue, this maximum capacity can
be expeCed to double about every 3 years.

Simple cache memories are now appearing in
small minicomputers. Some micros already have some
of tneir addressable memory located on the same
chip, which cakes it more quickly accessable and
oucn like a cache memory, although it is not
architecturally transparent. It seems clear that
as soon as circuit technology permits (1980?),
small hardware managed cache memories will appear
on high end microprocessors (off chip access is
slower, even for the same technology, than on chip
access). This represents a dramatic change from as
recently aa 10 years ago, when the introduction of
a cache memory on the IBM 360/85 [25J was a major
advance in computer architecture.

. The performance issues in cache memories
concern two goals: maximizing the probability of
finding needea information in the cache and
minimizing the time to access it if it is there.
Host of tne published research concerns the former.
The work on c.-:-u,e mapping algorithms [6,35] is
concerned wi • :ne first problem. A subset of the
cache memory *:. always searched (in some sense
associativelyj , and " the problem is to select the
extent of the soarch. If the address can map to a
large number of iocations in the cache, there is a
higher probability of finding it, but looking takes
longer. Tnis is a well understood problem (see
[22J for some data) and set sizes of 2 to 8 are
commonly chosen. Selecting the size of the
information transfer unit (line size) is also a
well understood problem: line sizes cf the order of
32 bytes (e-6t bytes) seem to be standard.
Prefetching information before it is needed [36] is
quite useful for cache memories, although it is not
generally implemented.

The access time issue, mentioned above, leads
to two possioie changes in cache architecture,
neither of which has been fully evaluated in the
published literature. The cache is generally used
for both instructions and data. Instructions are
accessed bv the instruction fetch and decode (I)
unit of the"CPU, whereas the data is used by the
execution • (£) unit. The I and E units are
relatively separate, can both be simultaneously
active, and are usually physically removec from
each other in the CPU. If each o:' the I and E
units had their own cache, access time could be
decreased and bandwidth to the cache increased.
The proolea is that the same piece of information
may be ir, both the instruction and data caches
(especially in current architectures, where
instructions can be modified), and th_s consistency

is a problem. This consistency problem is the same
one that occurs for multiple CFLI's. each with its
own cache, and can oe dealt with in the same way as
discussed below. Software strategies can also be
used. Two computers, the S-l [26j and IBM's 801
[13]1 both of which represent brand new
architectures, have implemented a split cache. The
effectiveness of this idea has been studied only
once in the published literature [iJO]; both that
work and work by the author show that there is a
very significant penalty in such an organization in
terms of increased miss ratio. Further work is
required, though, to see if such an organization is
desirable because terms of its access time
advantages. In particular, the miss ratio increase
(vs. total bytes of available cache) needs to be
quantified, the consistency problem needs to be
looked at and the relative size of the two (I/E)
caches needs to be determined.

Most large cozauter systems have virtual
memory, by which the (virtual) addresses used by
the process are maapea into real physical mair
memory locations. This is done conceptually by ?aee and segment tables, but to soeed access, a
ranslation Lookaside Buffer (TLB) is employed.

The TLB maintains the correspondence between
recently used virtual and real memory addresses, so
that the segment and page tables seldom have to be
referenced. The cache memory in current machines
is accessed using a real address, which implies
that every cache meraorv access requires prior
virtual to real translation through the TLB. To a
large extent the translation ana lookup can occur
in parallel (all of the relevant iines of the cache
are read ou' initially using the virtual address,
and then a selection is made among them using the
now available real address [1]) but some time is
still wasted. A possibility that has not yet been
carefully evaluated in the published literature is
that of a virtual address cache, in which virtual
addresses are used to access the cache and reai
addresses are used only to access main memory.
There are problems with this approach (e.g.
multiple virtual addresses which map to the same
real address), so further research is called for.

When a write operation occurs, information is
changed and this chance must eventually be
reflected in main memory. This can be accomplished
by (a) writing to cache memory and later copying
back to main memory, (b) wriiinc simultaneously to
both cache and main memory or (o7 writing to main
memory only and destroying whatever copy nay exist
in the cache. The first strategy seems to be the
most efficient 132,37], but it results in two or
more different copies of the same information.
This wouldn't be a problem if all references to
that information used tne same cache, but that is
not necessarily the case in systems with channels
or multiple processors. An important problem, yet
to be definitively dealt with, is to design a
scheme for maintaining memory consistency in a
multiprocessor system where each processor has its
own cache. IEM solves this problem by sending ail
stores to both CPU caches [20], which is only
feasible for two processor systems; the bandwidth
of each cache is insufficient for a larger system.
The S-l computer [26] avoids this problem by
enforcing correct operation through the software".
Tang [45] has proposed a schese whereby the main
memGry forces consistency by keeping track of which
caches contain what information. Other methods are
also possible, such as one in which each cache
maintains a record of what information is
potentially shared. There is no generally accepted
solution to thi3 problem and further work needs tc
be done.

A major problem with cache Qemories is address
space swapping during task switching. When the
processor switches processes, the locality of
reference generally changes abruptly " and
completely, with the result that the information
currently in the cacne is no longer in use and
memory locations accessed by the new process will
not be cache resident. This Ls tne crobiem
considered by Eastnn and Bennett [12] who ciscuss
the difference between warm start ifull caone; and
cold start (empty cache) miss ratios. Very little
has been done to see what the effect of this
problem is in real systems or to studv how to
minimize it. One possibility is two caches' - one
for user state and one for supervisor state.

In cache memories, therefore, most of the "hit

-3-

ratio problems" - set size, line size, prefetching
and cache size, are generally well understood. The
regaining problems lie in tne access time and
organization area: split (data/instruction,
user/supervisor) cache, virtual vs. real address
access and multiple cache consistency.
III. MAIN MEMORY

In early computer systems, and in fact until
quite recently, main memory was a scarce and
expensive resource. Thus, a very large amount cf
time and energy has been spent optimizing the use
of main memory, with respect to segmentation,
paging [10], compaction, restructuring, etc.
nithin the last couple of years, main memory has
becoae relatively inexpensive (although not
free(!)). The implication of this is that while
intellectually interesting, the traditional
problems of creating and evaluating paging
algorithms or controlling the degree of
multiprogramming are no longer major factors in the
context of computer system operation.

The genuine current research problems in the
area of main memory have to do with architectural
extensions of main memory to support the software.
For example, main memory can be made "intelligent"
in several ways. Locations in main memory can bo
tagged [15J in which case special tag bits are
associated with memory locations to indicate the
nature of their contents (e.g. real, integer,
capability, etc.). Alternately, 'morv can be
active, as in Dennis' data flow architecture [11],
in which case memory consists cf both processing
ele-aents and storage. A third possibility is to
make memory associative, as has been suggested for
some data base machines (e.g. [30]). Overall, the
difficulty with all of these schemes is that while
main memory is becoming relatively inexpensive,
none of these alternatives would be at all cheap;
therefore there is the need to show significant
benefits from some sort of intelligent memory
before a commercially viable design will appear.

There are other minor changes that will occur
in main memory design. It is likely that some
hardware will eventually be added to aid in paging,
as has been suggested by Denning [10] and Morris
L29J. Main memory may become more complex in order
to salve the cache consistency problem that was
discussed in the last section. These last points
are minor items, though, and represent
implementation decisions, not research problems.
IV. GAP FILLER TECHNOLOGY USE

As we noted earlier, two gap filler
technologies have recently been introduced.
Eecause of the newness of these technologies, this
is an extremely fertile area for study, and there
is very little useable information published
regarding the topics we discuss below.

Will gap filler technology will have any real
place in large computer systems [24.31]? The
access time gap has existed since the earliest
computers, and multiprogramming currently serves
quite adequately to keep the CPU busy while
transfers of information across the access gaD
occur. Research in progress by the author
indicates that a gap filler device will be very
useful in computer systems by the early - aid
ISoO's and will become necessary by the l a ^
19°Q's. If one assumes that disk access times
remain fixed (see below), it can be shown (using Sueueing network models.or simulations) that as the PU becomes faster, the degree of multiprogramming
has to be increased to maintain full CPU
utilization. This process of increasing the degree
of multiprogramming runs into two limits as the"CPU
becomes very fast: (a) the size of the disk system
may not be sufficient to permit enough I/O
operations to occur in parallel (this problem can
be lessened in the case of sequential files by
increasing the block size) ard (b) a high degree of
multiprogramming implies a great deal of main
memory, which aithousft it may not be very
expensive, is still not free. Further, the numter
of disk spindles may decrease with increasing dis*.
densities [17]. Tne result is that while gap
filler technology isn't necessary in current
computer systems, it will serve to improve
cost/performance in very fast future systems for
two reasons: (a) it will allow the degree of
aultiprograaming to be decreased, with a consequent
saving in main memory cost and (b) it will relieve

the bottlenecks in the disk system that will occur
when the desree of multiprogramming approaches or
exceeds the number of disk spindles.

The next question that arises is "which gap
filler technology?" - CCQ's, bubbles or EBAM?
CCC's are available, are very fast, will be limited
to being 3 - t times less expensive per bit than
main memory and are volatile. Bubbles are still
expensive, are available in sr.all auantities only,
are relatively slow, but are not affected by power
failures. Further, future bubble technology
developments (such as the bubble lattice file [5]7,
may make bubbles a lot less expensive than CCD's.
EBAH is a technology that may or may not ever roach
the market, and isn't currentlv available. It
isn't clear which technology will eventually be
dominant; no definitive answer will be available
(if one exists) until the technologies in question
have matured to a greater extent tnan currently.

If gap filler technology (GFTi is to be used
in a computer system, the questions of "how" and
"where" arise. There seeas to be four types of
"how": (1) A separate, stand alone device Te.g, a
drum replacement) could be built and used as would
any other device. (2) A GFT device (GFTD) could be
used, either with hardware or software managment,
as a dynanic fiie migration device - as files were
opened, thev would ce coved to this device. (3)
GFT could be usee as an extension of main memory.
The memory address icnerated would refer to the GFT
and what we call =ain memory currently would be the
lower (slower) of two levels of cache. CO GFT
could be used as a cache for I/O streams. Tracks
or cylinders of a disk could be buffered
dynamically. Measurements available tc the author
(io be published eventually) show that alternative
01 above performs relatively poorly and alternative
m very well. Measurements will soon be available
for tl2t thus completing the currently possible
comparisons. There doesn't seem to be any wav to
directly evaluate the performance of #3, since
there isn't any obvious way to determine how a
system would behave if addressable main memory
(i.e. the address space) increased by an order of
magnitude or more, while "fast" memory didn't.

The use of GFT a: a dynamic I/O buffer (*<0
raises the question of "where"? - should the
buffering be placed in the disk spindle, at the
disk controller, attached to each channel or be
global to the whole I/O system? It is obviously
more efficient in terms of hit ratio to place tne
buffering (cache) as close to the CPU as possible,
but this raises questions of architectural
transparency - the closer the buffering is to the
CPU. the more likely it is to impact the CPU
architecture cr the ODerating system. Euffering
placed in a disk spindle [39] or controller could
be invisible to the CPU and such buffering could be
manaufactured by an independent manufacturer.
Memorex [8] has in fact just announced sucn a
buffered disk.

However and wherever the GFT is used, there
are some associated research problems: (1) Should
the storage be managed by the software or hardware
in terms of search, replacement, placement, etc?
(2) What are the eigration algorithms to be used to
move information to/frem the GFT? (3) What
bandwidth is required? (1) What access time is
sceptsble? -(5) Wnat should the transfer unit or
TSoicsize be? ic) How should the storage be
organized? (7) How are multiple copy problems (as
noted above in the discussion of cache memories)
resolved? (8) Waat are the implication: for disk
architecture, channels, main memory interface, etc.

We should point out here the important
difference between technical and commerical
considerations. It is relatively easy in some
cases to show that certain implementation
strategies are more convenient for the user and/or
yield better performance, but there are the
problems of market and compatabillty. An existing
systems manufacturer usually has to introduce a
device wnich is ccr.patable witn current product
offerings and which requires minimal changes in
hardware and software. An independent manufacturer

can be made solely on the basis of beir.F "right" is
in the ca?e when the system is completelv new.
Thus among the likely product offerings of the next
five years there should be: a stand alone gap

-4-

filler device and a buffered disk (e.g. [8]),
buffered either in the spindle or controller. Les3
likely (and later to appear) are lit i ^ain :..e...ci >
:...<...-n:;z or Jiooal system I/O buffers, for the
reasons noted above.
V.. DISKS AND DRUMS

Disks, like main memory, are a mature
technology, and there are few new problems or
developments associated with them. A good survey
of disk technology appears in [17]. Disks have
been increasing m density fairly steadily;
currently the density seems to be doubling about
every 3 to 5 years. None of the manufacturers (to
the author's knowledge) are projecting any but the
cost minor performance (access time) improvements.
One could expect to see perhaps 10J to 30J
decreases in access time over the next 3 to 10
years, which ia a small enough factor that it will
nave little impact on system performance or
operation.

Drums are no longer cost effective with the
aecreases in co3t for main memory and disk and the
appearance of gap filler technology.

Some of tr.e research activity in disks/drums
has been in analvtic modeling, and [36] provides a
(1976) bibliograpny of the disk literature. There
is modeling work still to be done in evaluating the
effectiveness of the inclusion of gap filler
technology in the disk system [3S] as was discussed
in the last section.

There are a number of techniques which have
been implemented in one or more systems, but which
merit further development, publicity, and/or
research. The disks used for the Cray I at Los
Alamos [33] have a buffer in the controller so that
transfers can be buffered ahead or behind. In this
same system the I/O system has been optimized with
"strategy routines" in two aspects: (a) file
placement in consecutive sectors is encouraged
while minimizing fragmentation and (b) file
transfer delays are minimized by reading ahead and
writing behind. Further research is needed in the
design of such strategy routine algorithms.

One possible direction for disk development is
to make disks "intelligent", since the cost of
logic is declining rapidly with respect to the cost
of the mechanical components of the disk. This is
being dene with drums, as noted earlier, in the SAP
(Relational Associative Processor) system at the
University of Toronto [30]. In that case, the
storage device is programmed to search for the
desired record. Similarly, the disk could be
allowed to do its own error correction [It], a task
which is currently allocated to one or more of the
controller, channel, or CPU.

Overall, therefore, we see onlv three real
research problems having to do with disks:
intelligent disks, disks associated with gap filler
technology, and disk (or I/O system) strategy
routines. The remaining issues are ones of either
straightforward development or more extensive
implementation and publicity. The directions for
development are much the same as those for
research: Eore logic ^intelligent or not) will
appear in the disk spindle or controller and this
logic will serve to operate, correct errors and
buffer the disk.
VI. MASS STORAGE

As noted earlier, mass storage devices
(storage on the order of a trillion bits or more)
have finally achieved ctmmarciai acceptance.
Associated with this new capability are of course
some new and interesting research problems.

All current and projected main storage devices
have long access delays; thus it is important to
keep frequently used data sets resident on faster
devices. We call the problem of deciding when to
move information from mass store to disk and later
from disk back to mass store, the file migration
problem. The only published useful study to date
is by Stritter [itn] (also see [it]); the author has
submitted research on this subject for publication
[11,12}. Both Stritter and t.-.e author ar°.
concerned with data and file access patterns over
many months. Files would migrate after a period of
inactivity of several days or weeks. There is also
a need for research oh file migration ove- short
(minutes to hours: main memory <—> GFT < — ' disk)
and intermediate term (hours to days; GFT <—> disk
<—> mass store). Research on these topics is in

its very early stages by the author and his
students; no otner worrc seems to be in progress or
available.

.Mass storage technologies are not usually
random access, and often are not even erasable-
The photostore [23] uses nonerasable photographic
chips; the Unicon [3] burns holes in metalized
strips. Even the tape based devices, while
erasable, do not usually accept in-piace updates.
One therefore has a whole new set of problems in
the management of this level of storage: how
3hould unused or no longer valid space in the
storage media be reclaimed?, hov/wnen can the data
be ccmcaoted?, should th? information be moved
around so that data used together is physically
stored together? Management policies sucn as these
have to be develcpea for each of the types of
technologies in use for mass storage.

The vast capacity of mass storage creates new
and severe problems in terms of reliability and
back-up. The mass storage device is far too large
to dump periodically. It may or nay not Be
feasible to make incremental dumps, duplicate
important data sets and make special copies of
vital data seta on tapes which can then bo removed
for safekeeping. Extra care must be taken to be
sure that the loss of directory or map information
does not result in the loss of much or any data -
directories can be duplicated and
files/blocks/records can be self identifying.
Carefully thought out schemes for the integrity of
mass storage information must be developed. The
U3e of a separate file system controller (as is
used.in the IBM 3850) may facilitate solutions to
these problems.

Over the next few years, the most visible
changes that will occur in the mass store area will
be in the development of larger and faster mass
store devices. Less visible but no less important
will be imoroved operation for these devices in
terms of algorithms for migration, file placement,
reliability and recovery. Also, we can expect to
see somewhat more intelligent system software,
which isolates the user from the details of the
device to a greater extent than at present.
VII. LOGICAL and USEE VIEW PROBLEMS

One of the most iccortant problems in a memory
hierarchy, and one which is not associated with anv
one type of technology or level is the usee's view
of the memory hierarchy. It was proposed many
years ago (e.g. [7]) that the user be given a very
large virtual address space, sufficient to
encompass not only main memory, but the entire
program and data space of his process. This
virtual address would be mapped dynamically by the
system to the physical storage, and the user would
be encouraged to remain unaware of the physical
location and attribute's of the data. There is
nothing new in this idea, yet despite its obvious
(to the author) advantages, it has been inralemented
to only a very limited extent in most systems. An
important and pressing envelopment problem is the
introduction of such logical/physical independence
for the memory hierarchy into new or existing
operating systems.

Despite the comments in the above paragraph,
there is some question as to how extensive the
address space should actually be. Is it
reasonable, for example, to make mass storage byte
addressable, with tne consequent cost of 40 or more
bits per address? There is cieariy the need for a
means of dealing with mountabie volumes (tapes,
disk). It is probably desirable to allow for
dynamic mapping from one set of logical names
(director.- ar.d file r-ames) to another (binary
virtual addresses). Synonyms (many virtual address
will map ir.to the same physical location) will
probably occur, ar.d there are problems involved in
determining how/when synonyms snould exist and how
they should be handled because sf problems with
consistency. Structures for name soaces, such as
directory structures, have been studied sat without
definite conclusions; there is room for further
work.

Another aspect of =e.-sory hierarchies that has
not beer, fully developed is the interface between
operating systems an? data base systems. A data
base system can be considered to be a powerful
command (query/ language on top of a very-
sophisticated file, system. Both command languages
and file systems are part of operating systems;

-5-
there is considerable need to integrate the two.
The management of the physical storage of the data
basis system should perhaps be subsumed into the
overall management of the unified memory hierarchy
on which the data base system runs.

VIII. CONCLUSIONS
In this paper we have explored the structure

of the computer svstem memory hierarchy with an eye
to noting aspects of such hierarchies which are not
fully understood, developed or optimized. We found
that, there is important research still to'be done
on cache organization, but not on the traditional
miss ratio problems of cache design. Kith regard
to gap filler technology, almost every aspect of
its use poses both research and implementation
problems - should it be used:, where?, when?, how?
•Similarly for mass storage - how should it be
operated? how/when should files be migrated? wnat
snould be done about reliability and recovery?
Those parts of the memory hierarchy of long
standing, such as main memory, disks and drums pose
few new problems. The principal research proolem
for those levels is: how lor if) should these
parts of the svstem be made intelligent? With the
decreasing cost of logic, intelligent memory or
peripherals becomes a viable alternative. We also
noted that there are questions about the logical
structure of the user name space, and how it should
map into the memory hierarchy. All of these
problems are both interesting and important, and we
nope that this paper will stimulate some research
in these directions.

BIBLIOGRAPHY
[I] Amdahl Corp., "170V/6 Machine Reference
Manual", Amdahl Corp., Sunnyvale, Ca. 1976.
[2] G. Amelio, "Charge-Coupled Devices for Memory
Applications", Proc. NCC 1975, pp. 515-522.
[3] C. H. Becker. "Unicon Computer Mass Memory
System", Proc. FJCC 1966, pp. 711-716.
[«] James Bell, David Casasent and C. Gordon Bell,
"An Investigation of Alternative Cache
Organizations", IEEE Trans. Comp., C-23, 1, April,
1971, pp. 316-351.
[5] A. Bobeck, F. Bonyhard and J. Geusic,
"Magnetic Bubbles •• An Emerging New Memory
Technology", Proc. IEEE, 63, 8, pp. 1176-1195,
August, 1975.
[bj C. J. Conti, "Concepts for Buffer Storage",
IEEE Computer Group News, March. 1969, pp. 9-13-
[7] R. C. Daley, and P. G. Neumann, "A General
Purpose File System for Secondary Storage", Proc.
FJCC. 1965, PP. 213-229.

Datamation, June, 1978, p. 251.
Peter J. Denning, "On Modeling Program

Behavior", Proc. SJCC, 1972, pp 937-911.
[10] Peter Denning, "The Working Set Model for
Program Behavior", CACM, 11, 5, May, 1966, pp.
323-333.
[II] J. B. Dennis, "Proposed Research on
Architectural Principles for Large Memory Systems",
Computation Structures Group Memo 132, Project MAC,
Massachusetts Institute of Technology, Cambridge,
Mass. October, 1975.
[12] M. C. Easton, and B. T. Bennett,
"Transient Free Working Set Statistics", CACM, 20,
?, pp. 93-99, Feb. 1977.
[13] Electronics, "Altering Computer Architecture
is Way to Raise Throughput, Suggests IBM
Researchers", Electronics, December 23, 1976, PP
30-31.
[11] Mark Feller, "Intelligent Disk: The Next
Generation", Proc. IEEE Computer Society
Conference, Septecber, 1977, pp. 306-310.
[15] Edward Feustel, "On the Advantages of Tagged
Architecture", IEEETC, C-22, 7, July, 1973, pp.
614-656.
[l6] John P. Harris, R. S. Rohde and N.K.
Arter, _"The IBM 3850 Mass Storage System: Design

I5i

Aspects",
1171-1176.
[17] Kenneth Haughton
Systems", Proc. IEEE
1116-1152.
[18] David A. Hodges,

Proc. IEEE, 63, 8, August, 1975, pp.
"An Overview of Disk Storage
63, 8, August, 1975, pp.

, "A Review snd Projection of
Semiconductor Components for Digital Storage",
Proc. IEEE, 63, 6, August, 1975, pp. 1130-1117-
[19] W. C. Hughes, C. Lemmon, H. Parks, G.
Ellis, G. Possm, and R. Wilson, "A Semiconductor

Nonvolatile Electron Beaa Accessed Mass Merrory",
Proc. IEEE, 63, 6, pp. 1230-1210. August, 1975.
[20] IBM, "System/370 Model 166 Theory oi
Operation/Diagrams Manual (Volune 1) - Processor
Storage Control Function", IBM Maintainance Library
SY22-D931-3 May, 1975.
[21] J. Egil Juliussen, David M. Lee and Gerald
Cox, "Bubbles Appearing- First is Microprocessor
Mass Storage", electronics, Aug. 1, 1977, pp
81-66.
[22] K. R. Kaplan and R. L. Winder. "Cache
Based Computer Systems", Computer, March, 1973, pp.
30-36.
L23J J- D. Kuehler and H. R. Kerby, "A
Photo-Digital Mass Storage System", Proc. FJCC,
1966, pp. 735-712.
[21] Glenn Langdon, "A figure-of-Merit Approach to
a Two Level Hierarchy for a Disk", IBM Research
Report RJ 1778, May, 1976.
[2s] J. S. Liptay, "Structural Aspects of the
System/360 Model o5, II The Cache'1, IBM Systems
Journal, 7, 1, 1968, pp. 15-21.
[26] Thomas McWilliaas, Lawrence Widdoes Jr. and
Lowell L. Wood, "Acvanced Digital Processor
Technology Base Development for Navy Applications:
The S-l Proleec", Lawrence Livermore Laboratcry
reDort UCID-17705, September. 1977.
[27] Earrv Merrill, "370/16S Cache Memory
Performance'1, Computer Measurement and Evaluation
Newsletter, SHARE", July, 197I, pp. 90-103.
[28] G. Kiland.-e and 3. Mikkor. "VS2-R2
Experience at the University of Toronto Computer
Center", Session Report, 11'th SHARE Meeting, Los
Angeles, Ca., pp. 1867-1895.
[29] James Morris, "Demand Paging Through
Utilization of Working Sets on the MANIAC II",
CACM, 15, 10, October, 1972, op. 867-872.
[30] E. A. Ozkarahan and K. C. Sevcik,
"Analysis of Architectural Features for Enhancing
the Performance of a Data Base Machine", ACM
Transactions on Data Base Systems, 2, 1, December,
1977, pp. 297-316.
[31] A. Pohic, "Cost/ferformance Perspectives of
Paging with Electronic and Electromechanical
Backing Storages", Proc. IEEE, 63, 8, pp.
1123-1128, August, 1975.
[32] ftrthur V. Polim, Om. P. Agrawal and Ronald
N. Monroe, "The Cost and Performance Tradeoffs of
Buffered Memories", Proc. IEEE, 63, 6, August,
1975, pp. 1129-1135.
[33] Michael Powell, "The DEMOS File Systec", Proc.
Sixth ACM Symp. on Operating Sys. Principles,
Nov. 1977, pp. 33-12.
[31] Ron Revelle, "An Empirical Study of File
Reference Patterns", IBM Research Report RJ 1557,
April, 1975.
[35] Alan Jav Smith, "A Comparative Study of Set
Associative Meaorv Mapping Algorithms and Their Use
for Cache ana Main Memory", IE&ETSE, SE-1, 2,
March, 1978, pp. 121-130.
[36] Alan Jay Smith, "Seouential Program
Prefetching in Memory Hierarchies'", April, 1977, to Computer (1978?).

.n Jay Smith, ""'
Process and Its Effect on the Update of Main Memory
ITTA! an Jay Smith, "Characterizing the Storage

by Write-Through", January, 1976, to appear, JACM [19]3?).

Fl .

Alan Jay Smith, "Analysis of a Locality Model
for Disk Reference Patterns", . Proo. Second
Conference on Information Sciences and Systems",
The Johns Hopkins University, Baltimore, Md.,
April. 1976, pp. 593-601.
[39] Alar. Jav Smith. "On the Effectiveness of
Buffered and Multiple Arm Disks", Proc. Fifth
Computer Arch. Svmp., April, 1970, Palo Alto, Ca.,

. 212-216.
0] Alan Jay Smith, "Eibiiographv on Paging and

Related Topics", August, 1976, subnittea for
publication.
[11] Alan Jay Smith, "Long Term File Migration,
Fart I - File Reference Patterns", August, 1978,
submitted for publication.
[12] Alan Jay Smith. "Long Term File Migration,
Part II - File Replacement Algorithms", August,
1973, submitted for publication.
[13] D. 0. Smith, "Electron Beam Accessed
Memory", Proc. IEEE Computer Society Conference,
February, 1976, pp. 167-169.
[1«J Edward Stritter, "File Migration", Stanford
Linear Accelerator Report SLAC-200, January, 1977.
[15J C. K. Tang, "Cache Desizn in the Tichtly
Coupled Multiprocessor System", Proc. NCC, 1976,

6-
no. 7*9-753.

" fean Testis, "An Update: CCD and Bubble
Meaories", Speotrua, A p r i l , 1978, pp 22-30.
[47] Manrreei Kildoann, "Terabit Memory Systems: A
Design History", Proo. IEEE, 63, 8, August, 1975,
pp. 1160-1165-

