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\"\\ Alan Jay S n i t h " 
i ' - ' i . - . , . _ . ' * " • • " • 

University of California, Berkeley 

ABSTRACT , , . , . , 
The memory hierarchy is usually the largest 

identifiable part of a computer system and making 
effective ure of it is critical to the operation 
and use of the system. We consider the leveT.s of 
such a memory hierarchy and describe the stat': of 
the art and lively directions for both research and 
development. Algorithmic and logical features of 
the hierarcny not directly associated with specific 
components are also discussed. Among the problems 
we believe to be the most significant are the 
following: (a) evaluate the effectiveness of gap 
filler technology as a level of storage between 
main memory and disk, and if it proves to be 
effective, determine how/where it snould be used, 
(b) develop algorithms for the use of mass storage 
in a large computer system, and (o) determine how 
cache memories should be implemnted in very large, 
fast multiprocessor systems. 
•Partial support For this research lias been 
provided by the National Science Foundation under 
grant MCS75-0S766, and the Department of Energy 
under contracts W-7«05-ENG-IiB (to LBL) and 
EI-76-C-03-0515 (to SLAC). 
••Computer Science Division, EECS Department, 
University of California, Berkeley, California 
9H720. The author is also on the staff of the 
Lawrence Berkeley Laboratory and a visitor at the 
Stanford Linear Accelerator Center. 
I. INTRODUCTION 

Contemporary large computer systems freo.uently 
employ a memory hierarchy such as that in figure 1, 
where we show cache memory, main memory, drums, 
disks and tape. The efficient use of this memory 
system is crucial to the operation of the whole 
computer system. In this paper, we shall examine 
the memory hierarchy both overall and with respect 
to its components in an attempt to identify 
research problems and project future directions for • 
development. 

The effects of • the design of the memory 
hierarchy can be considered to fall into two 
(overlapping) areas: performance and logical view. 
Performance denotes those aspects of the hierarchy 
design which affect the measures of performanee of 
the computer system, such as throughput, speed, 
response time, turn around time and cost 
effectiveness. Logical view refers to the logical 
view given the user of the memory system: how is 
the memory addressed?, named?, where is the 
information? (virtual vs. real location), how is 
this information protected?, etc. These two 
aspects interact, since performance is impacted by 
the logical view, and the cleanliness or uniformity 
of tne logical view is often impaired by attempts 
to easily allow the user to tune the system to 
improve its performance. 

By far the most fertile direction for new 
results (research or development) is in the study 
and design if memory hierarchies of the future, 
rather than in the optimization of current systems. 
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In figure 2, we show what we believe represents the 
type of large computer system mesory hierarchy that 
will become common in the earlv 19oQ's. To figure 
1, one will note that we nave added in figure 2 two 
levels: gap filler technology and mass store. 
Currently, there are orders of magnitude difference 
(the access gap) in both cost and performance 
between random access (M0S) memory ar.d mechanical 
storage devices such as drums or disks. Much time 
and effort is expended in most computer systems in 
finding efficient ways to accomplish the necessary 
transfers of information accross the access gap. A 
computer system using a level of storage whose 
technoloey occupies the access gap could benefit 
significantly in both improved performance and 
decreased system complexity. 

Three technologies now under development, 
and/or production fall into the middle of the 
access gap. Charge coupled devices (CCD's) [2.16] 
are fast semiconductor shift registers which shift 
packets of charge; they should be from 3 to 5 tinns 
cheaper [18] than main memory. Magnetic bubbles 
are similar shift registers [5,21] but function by 
shifting magnetic domains. Magnetic bubbles may be 
less expensive than CCB's, depending on the 
mechanism finally chosen (e.g. bubble lattice 
files [5J, will be very cheap), but they are 
considerably slower. The third possibility is 
electron bean accessed memory (EEAM) [19]. Small 
charge patterns are stored on the face of a CRT, 
using a semiconductor target and hyperfine beam 
focusing. Only one EBAM development effort exists 
at the moment [43] and there is some doubt about 
its eventual success, since the engineering 
problems appear to be formidable. All three or 
these technologies have the potential for inclusion 
in memory hierarchies over the next few years. 

The second difference between figures 1 and 2 
is in what we call "mass store", which is a 
non-manual, integrated level of storage at the 
bottom of the hierarchy, with the potential for 
upwards of a trillion bits of information. Devices 
in this class include IBM,'s 3850,tape library [1b], 
Precision Instrument's Ur.icon [jJ, IBM's photostore 
[23], CDC's 3S500 tape liDrary and Ampen's Terabit 
Memory [17]. The difference between tape and mass 
store is that between manual and automatic; mass 
storage is an integrated part of the memory 
hierarchy. 

Both gap filler technology and mass storage 
devices are only just becoming generally available, 
and in both cases, there are numerous orcbiems to 
be identified, studied and solved, in contrast with 
more mature technologies and devices. 

In the remainder of this paper, we shall 
consider each of the aspects of the memory 
hierarchy and point out what we consider to be the 
open problems and likely solutions, both with 
regard to research and development. Sections will 
be devoted to each of the levels of storage 
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indicated ir. figure 2, as well as to those problems 
that do.T't seer to be associated with specific 
levels in the hierarchy. 
II. CACHa KEKORISS 

Cache memories, also known as High Speed 
Buffer memories, are very fast buffer memories 
managed by the hardware and placed between the CPU 
and the main cecsry. Because of the principle of 
locality [9], wr.ich states that (a) information in 
current use is likely to be used again soon and (b) 
informatin near the current locus of reference is 
likely to be referenced soon, cache memories are 
very effective. A Drogram running in user state on 
a large machine will typically find about ?7J to 
9SJ of its memory references satisfied by 
information contained in the cache memory [27,28]. 
Even though ".he cache memory in high end machines 
is very fast, the processor logic is even faster; 
thus, large hign speed computer systems are memory 
speed limited. Because of this requirement for 
high speed, the implementation details of the cache 
are at least as important as the more general 
algorithmic features of the design. Our discussion 
will trend toward the latter, but the importance of 
the former should not be neglected. 

Cache memories will become larger and faster, 
and will appear on more and more macnines. The 
speed of the cache is dependent on circuit 
technology, which is improving, and on physical 
size, which lower bounds propagation time. The 
capacity of cache memories is also limited by two 
factors: cost and physical size (cabinet and board 
space). Projected increases in density and circuit 
speed should aid in solving all of these problems. 
Tne largest cache memory to be found in an IBM 
comoatable machine is the btK byte cache in the 
3033 processor, first delivered this year. If 
recent trends continue, this maximum capacity can 
be expeCed to double about every 3 years. 

Simple cache memories are now appearing in 
small minicomputers. Some micros already have some 
of tneir addressable memory located on the same 
chip, which cakes it more quickly accessable and 
oucn like a cache memory, although it is not 
architecturally transparent. It seems clear that 
as soon as circuit technology permits (1980?), 
small hardware managed cache memories will appear 
on high end microprocessors (off chip access is 
slower, even for the same technology, than on chip 
access). This represents a dramatic change from as 
recently aa 10 years ago, when the introduction of 
a cache memory on the IBM 360/85 [25J was a major 
advance in computer architecture. 

. The performance issues in cache memories 
concern two goals: maximizing the probability of 
finding needea information in the cache and 
minimizing the time to access it if it is there. 
Host of tne published research concerns the former. 
The work on c.-:-u,e mapping algorithms [6,35] is 
concerned wi • :ne first problem. A subset of the 
cache memory *:. always searched (in some sense 
associativelyj , and " the problem is to select the 
extent of the soarch. If the address can map to a 
large number of iocations in the cache, there is a 
higher probability of finding it, but looking takes 
longer. Tnis is a well understood problem (see 
[22J for some data) and set sizes of 2 to 8 are 
commonly chosen. Selecting the size of the 
information transfer unit (line size) is also a 
well understood problem: line sizes cf the order of 
32 bytes (e-6t bytes) seem to be standard. 
Prefetching information before it is needed [36] is 
quite useful for cache memories, although it is not 
generally implemented. 

The access time issue, mentioned above, leads 
to two possioie changes in cache architecture, 
neither of which has been fully evaluated in the 
published literature. The cache is generally used 
for both instructions and data. Instructions are 
accessed bv the instruction fetch and decode (I) 
unit of the"CPU, whereas the data is used by the 
execution • (£) unit. The I and E units are 
relatively separate, can both be simultaneously 
active, and are usually physically removec from 
each other in the CPU. If each o:' the I and E 
units had their own cache, access time could be 
decreased and bandwidth to the cache increased. 
The proolea is that the same piece of information 
may be ir, both the instruction and data caches 
(especially in current architectures, where 
instructions can be modified), and th_s consistency 

is a problem. This consistency problem is the same 
one that occurs for multiple CFLI's. each with its 
own cache, and can oe dealt with in the same way as 
discussed below. Software strategies can also be 
used. Two computers, the S-l [26j and IBM's 801 
[13]1 both of which represent brand new 
architectures, have implemented a split cache. The 
effectiveness of this idea has been studied only 
once in the published literature [iJO]; both that 
work and work by the author show that there is a 
very significant penalty in such an organization in 
terms of increased miss ratio. Further work is 
required, though, to see if such an organization is 
desirable because terms of its access time 
advantages. In particular, the miss ratio increase 
(vs. total bytes of available cache) needs to be 
quantified, the consistency problem needs to be 
looked at and the relative size of the two (I/E) 
caches needs to be determined. 

Most large cozauter systems have virtual 
memory, by which the (virtual) addresses used by 
the process are maapea into real physical mair 
memory locations. This is done conceptually by ?aee and segment tables, but to soeed access, a 
ranslation Lookaside Buffer (TLB) is employed. 

The TLB maintains the correspondence between 
recently used virtual and real memory addresses, so 
that the segment and page tables seldom have to be 
referenced. The cache memory in current machines 
is accessed using a real address, which implies 
that every cache meraorv access requires prior 
virtual to real translation through the TLB. To a 
large extent the translation ana lookup can occur 
in parallel (all of the relevant iines of the cache 
are read ou' initially using the virtual address, 
and then a selection is made among them using the 
now available real address [1]) but some time is 
still wasted. A possibility that has not yet been 
carefully evaluated in the published literature is 
that of a virtual address cache, in which virtual 
addresses are used to access the cache and reai 
addresses are used only to access main memory. 
There are problems with this approach (e.g. 
multiple virtual addresses which map to the same 
real address), so further research is called for. 

When a write operation occurs, information is 
changed and this chance must eventually be 
reflected in main memory. This can be accomplished 
by (a) writing to cache memory and later copying 
back to main memory, (b) wriiinc simultaneously to 
both cache and main memory or (o7 writing to main 
memory only and destroying whatever copy nay exist 
in the cache. The first strategy seems to be the 
most efficient 132,37], but it results in two or 
more different copies of the same information. 
This wouldn't be a problem if all references to 
that information used tne same cache, but that is 
not necessarily the case in systems with channels 
or multiple processors. An important problem, yet 
to be definitively dealt with, is to design a 
scheme for maintaining memory consistency in a 
multiprocessor system where each processor has its 
own cache. IEM solves this problem by sending ail 
stores to both CPU caches [20], which is only 
feasible for two processor systems; the bandwidth 
of each cache is insufficient for a larger system. 
The S-l computer [26] avoids this problem by 
enforcing correct operation through the software". 
Tang [45] has proposed a schese whereby the main 
memGry forces consistency by keeping track of which 
caches contain what information. Other methods are 
also possible, such as one in which each cache 
maintains a record of what information is 
potentially shared. There is no generally accepted 
solution to thi3 problem and further work needs tc 
be done. 

A major problem with cache Qemories is address 
space swapping during task switching. When the 
processor switches processes, the locality of 
reference generally changes abruptly " and 
completely, with the result that the information 
currently in the cacne is no longer in use and 
memory locations accessed by the new process will 
not be cache resident. This Ls tne crobiem 
considered by Eastnn and Bennett [12] who ciscuss 
the difference between warm start ifull caone; and 
cold start (empty cache) miss ratios. Very little 
has been done to see what the effect of this 
problem is in real systems or to studv how to 
minimize it. One possibility is two caches' - one 
for user state and one for supervisor state. 

In cache memories, therefore, most of the "hit 
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ratio problems" - set size, line size, prefetching 
and cache size, are generally well understood. The 
regaining problems lie in tne access time and 
organization area: split (data/instruction, 
user/supervisor) cache, virtual vs. real address 
access and multiple cache consistency. 
III. MAIN MEMORY 

In early computer systems, and in fact until 
quite recently, main memory was a scarce and 
expensive resource. Thus, a very large amount cf 
time and energy has been spent optimizing the use 
of main memory, with respect to segmentation, 
paging [10], compaction, restructuring, etc. 
nithin the last couple of years, main memory has 
becoae relatively inexpensive (although not 
free(!)). The implication of this is that while 
intellectually interesting, the traditional 
problems of creating and evaluating paging 
algorithms or controlling the degree of 
multiprogramming are no longer major factors in the 
context of computer system operation. 

The genuine current research problems in the 
area of main memory have to do with architectural 
extensions of main memory to support the software. 
For example, main memory can be made "intelligent" 
in several ways. Locations in main memory can bo 
tagged [15J in which case special tag bits are 
associated with memory locations to indicate the 
nature of their contents (e.g. real, integer, 
capability, etc.). Alternately, 'morv can be 
active, as in Dennis' data flow architecture [11], 
in which case memory consists cf both processing 
ele-aents and storage. A third possibility is to 
make memory associative, as has been suggested for 
some data base machines (e.g. [30]). Overall, the 
difficulty with all of these schemes is that while 
main memory is becoming relatively inexpensive, 
none of these alternatives would be at all cheap; 
therefore there is the need to show significant 
benefits from some sort of intelligent memory 
before a commercially viable design will appear. 

There are other minor changes that will occur 
in main memory design. It is likely that some 
hardware will eventually be added to aid in paging, 
as has been suggested by Denning [10] and Morris 
L29J. Main memory may become more complex in order 
to salve the cache consistency problem that was 
discussed in the last section. These last points 
are minor items, though, and represent 
implementation decisions, not research problems. 
IV. GAP FILLER TECHNOLOGY USE 

As we noted earlier, two gap filler 
technologies have recently been introduced. 
Eecause of the newness of these technologies, this 
is an extremely fertile area for study, and there 
is very little useable information published 
regarding the topics we discuss below. 

Will gap filler technology will have any real 
place in large computer systems [24.31]? The 
access time gap has existed since the earliest 
computers, and multiprogramming currently serves 
quite adequately to keep the CPU busy while 
transfers of information across the access gaD 
occur. Research in progress by the author 
indicates that a gap filler device will be very 
useful in computer systems by the early - aid 
ISoO's and will become necessary by the l a ^ 
19°Q's. If one assumes that disk access times 
remain fixed (see below), it can be shown (using Sueueing network models.or simulations) that as the PU becomes faster, the degree of multiprogramming 
has to be increased to maintain full CPU 
utilization. This process of increasing the degree 
of multiprogramming runs into two limits as the"CPU 
becomes very fast: (a) the size of the disk system 
may not be sufficient to permit enough I/O 
operations to occur in parallel (this problem can 
be lessened in the case of sequential files by 
increasing the block size) ard (b) a high degree of 
multiprogramming implies a great deal of main 
memory, which aithousft it may not be very 
expensive, is still not free. Further, the numter 
of disk spindles may decrease with increasing dis*. 
densities [17]. Tne result is that while gap 
filler technology isn't necessary in current 
computer systems, it will serve to improve 
cost/performance in very fast future systems for 
two reasons: (a) it will allow the degree of 
aultiprograaming to be decreased, with a consequent 
saving in main memory cost and (b) it will relieve 

the bottlenecks in the disk system that will occur 
when the desree of multiprogramming approaches or 
exceeds the number of disk spindles. 

The next question that arises is "which gap 
filler technology?" - CCQ's, bubbles or EBAM? 
CCC's are available, are very fast, will be limited 
to being 3 - t times less expensive per bit than 
main memory and are volatile. Bubbles are still 
expensive, are available in sr.all auantities only, 
are relatively slow, but are not affected by power 
failures. Further, future bubble technology 
developments (such as the bubble lattice file [5]7, 
may make bubbles a lot less expensive than CCD's. 
EBAH is a technology that may or may not ever roach 
the market, and isn't currentlv available. It 
isn't clear which technology will eventually be 
dominant; no definitive answer will be available 
(if one exists) until the technologies in question 
have matured to a greater extent tnan currently. 

If gap filler technology (GFTi is to be used 
in a computer system, the questions of "how" and 
"where" arise. There seeas to be four types of 
"how": (1) A separate, stand alone device Te.g, a 
drum replacement) could be built and used as would 
any other device. (2) A GFT device (GFTD) could be 
used, either with hardware or software managment, 
as a dynanic fiie migration device - as files were 
opened, thev would ce coved to this device. (3) 
GFT could be usee as an extension of main memory. 
The memory address icnerated would refer to the GFT 
and what we call =ain memory currently would be the 
lower (slower) of two levels of cache. CO GFT 
could be used as a cache for I/O streams. Tracks 
or cylinders of a disk could be buffered 
dynamically. Measurements available tc the author 
(io be published eventually) show that alternative 
01 above performs relatively poorly and alternative 
m very well. Measurements will soon be available 
for tl2t thus completing the currently possible 
comparisons. There doesn't seem to be any wav to 
directly evaluate the performance of #3, since 
there isn't any obvious way to determine how a 
system would behave if addressable main memory 
(i.e. the address space) increased by an order of 
magnitude or more, while "fast" memory didn't. 

The use of GFT a: a dynamic I/O buffer (*<0 
raises the question of "where"? - should the 
buffering be placed in the disk spindle, at the 
disk controller, attached to each channel or be 
global to the whole I/O system? It is obviously 
more efficient in terms of hit ratio to place tne 
buffering (cache) as close to the CPU as possible, 
but this raises questions of architectural 
transparency - the closer the buffering is to the 
CPU. the more likely it is to impact the CPU 
architecture cr the ODerating system. Euffering 
placed in a disk spindle [39] or controller could 
be invisible to the CPU and such buffering could be 
manaufactured by an independent manufacturer. 
Memorex [8] has in fact just announced sucn a 
buffered disk. 

However and wherever the GFT is used, there 
are some associated research problems: (1) Should 
the storage be managed by the software or hardware 
in terms of search, replacement, placement, etc? 
(2) What are the eigration algorithms to be used to 
move information to/frem the GFT? (3) What 
bandwidth is required? (1) What access time is 
sceptsble? -(5) Wnat should the transfer unit or 
TSoicsize be? ic) How should the storage be 
organized? (7) How are multiple copy problems (as 
noted above in the discussion of cache memories) 
resolved? (8) Waat are the implication: for disk 
architecture, channels, main memory interface, etc. 

We should point out here the important 
difference between technical and commerical 
considerations. It is relatively easy in some 
cases to show that certain implementation 
strategies are more convenient for the user and/or 
yield better performance, but there are the 
problems of market and compatabillty. An existing 
systems manufacturer usually has to introduce a 
device wnich is ccr.patable witn current product 
offerings and which requires minimal changes in 
hardware and software. An independent manufacturer 

can be made solely on the basis of beir.F "right" is 
in the ca?e when the system is completelv new. 
Thus among the likely product offerings of the next 
five years there should be: a stand alone gap 
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filler device and a buffered disk (e.g. [8]), 
buffered either in the spindle or controller. Les3 
likely (and later to appear) are lit i ^ain :..e...ci > 
:...<...-n:;z or Jiooal system I/O buffers, for the 
reasons noted above. 
V.. DISKS AND DRUMS 

Disks, like main memory, are a mature 
technology, and there are few new problems or 
developments associated with them. A good survey 
of disk technology appears in [17]. Disks have 
been increasing m density fairly steadily; 
currently the density seems to be doubling about 
every 3 to 5 years. None of the manufacturers (to 
the author's knowledge) are projecting any but the 
cost minor performance (access time) improvements. 
One could expect to see perhaps 10J to 30J 
decreases in access time over the next 3 to 10 
years, which ia a small enough factor that it will 
nave little impact on system performance or 
operation. 

Drums are no longer cost effective with the 
aecreases in co3t for main memory and disk and the 
appearance of gap filler technology. 

Some of tr.e research activity in disks/drums 
has been in analvtic modeling, and [36] provides a 
(1976) bibliograpny of the disk literature. There 
is modeling work still to be done in evaluating the 
effectiveness of the inclusion of gap filler 
technology in the disk system [3S] as was discussed 
in the last section. 

There are a number of techniques which have 
been implemented in one or more systems, but which 
merit further development, publicity, and/or 
research. The disks used for the Cray I at Los 
Alamos [33] have a buffer in the controller so that 
transfers can be buffered ahead or behind. In this 
same system the I/O system has been optimized with 
"strategy routines" in two aspects: (a) file 
placement in consecutive sectors is encouraged 
while minimizing fragmentation and (b) file 
transfer delays are minimized by reading ahead and 
writing behind. Further research is needed in the 
design of such strategy routine algorithms. 

One possible direction for disk development is 
to make disks "intelligent", since the cost of 
logic is declining rapidly with respect to the cost 
of the mechanical components of the disk. This is 
being dene with drums, as noted earlier, in the SAP 
(Relational Associative Processor) system at the 
University of Toronto [30]. In that case, the 
storage device is programmed to search for the 
desired record. Similarly, the disk could be 
allowed to do its own error correction [It], a task 
which is currently allocated to one or more of the 
controller, channel, or CPU. 

Overall, therefore, we see onlv three real 
research problems having to do with disks: 
intelligent disks, disks associated with gap filler 
technology, and disk (or I/O system) strategy 
routines. The remaining issues are ones of either 
straightforward development or more extensive 
implementation and publicity. The directions for 
development are much the same as those for 
research: Eore logic ^intelligent or not) will 
appear in the disk spindle or controller and this 
logic will serve to operate, correct errors and 
buffer the disk. 
VI. MASS STORAGE 

As noted earlier, mass storage devices 
(storage on the order of a trillion bits or more) 
have finally achieved ctmmarciai acceptance. 
Associated with this new capability are of course 
some new and interesting research problems. 

All current and projected main storage devices 
have long access delays; thus it is important to 
keep frequently used data sets resident on faster 
devices. We call the problem of deciding when to 
move information from mass store to disk and later 
from disk back to mass store, the file migration 
problem. The only published useful study to date 
is by Stritter [itn] (also see [it]); the author has 
submitted research on this subject for publication 
[11,12}. Both Stritter and t.-.e author ar°. 
concerned with data and file access patterns over 
many months. Files would migrate after a period of 
inactivity of several days or weeks. There is also 
a need for research oh file migration ove- short 
(minutes to hours: main memory <—> GFT < — ' disk) 
and intermediate term (hours to days; GFT <—> disk 
<—> mass store). Research on these topics is in 

its very early stages by the author and his 
students; no otner worrc seems to be in progress or 
available. 

.Mass storage technologies are not usually 
random access, and often are not even erasable-
The photostore [23] uses nonerasable photographic 
chips; the Unicon [3] burns holes in metalized 
strips. Even the tape based devices, while 
erasable, do not usually accept in-piace updates. 
One therefore has a whole new set of problems in 
the management of this level of storage: how 
3hould unused or no longer valid space in the 
storage media be reclaimed?, hov/wnen can the data 
be ccmcaoted?, should th? information be moved 
around so that data used together is physically 
stored together? Management policies sucn as these 
have to be develcpea for each of the types of 
technologies in use for mass storage. 

The vast capacity of mass storage creates new 
and severe problems in terms of reliability and 
back-up. The mass storage device is far too large 
to dump periodically. It may or nay not Be 
feasible to make incremental dumps, duplicate 
important data sets and make special copies of 
vital data seta on tapes which can then bo removed 
for safekeeping. Extra care must be taken to be 
sure that the loss of directory or map information 
does not result in the loss of much or any data -
directories can be duplicated and 
files/blocks/records can be self identifying. 
Carefully thought out schemes for the integrity of 
mass storage information must be developed. The 
U3e of a separate file system controller (as is 
used.in the IBM 3850) may facilitate solutions to 
these problems. 

Over the next few years, the most visible 
changes that will occur in the mass store area will 
be in the development of larger and faster mass 
store devices. Less visible but no less important 
will be imoroved operation for these devices in 
terms of algorithms for migration, file placement, 
reliability and recovery. Also, we can expect to 
see somewhat more intelligent system software, 
which isolates the user from the details of the 
device to a greater extent than at present. 
VII. LOGICAL and USEE VIEW PROBLEMS 

One of the most iccortant problems in a memory 
hierarchy, and one which is not associated with anv 
one type of technology or level is the usee's view 
of the memory hierarchy. It was proposed many 
years ago (e.g. [7]) that the user be given a very 
large virtual address space, sufficient to 
encompass not only main memory, but the entire 
program and data space of his process. This 
virtual address would be mapped dynamically by the 
system to the physical storage, and the user would 
be encouraged to remain unaware of the physical 
location and attribute's of the data. There is 
nothing new in this idea, yet despite its obvious 
(to the author) advantages, it has been inralemented 
to only a very limited extent in most systems. An 
important and pressing envelopment problem is the 
introduction of such logical/physical independence 
for the memory hierarchy into new or existing 
operating systems. 

Despite the comments in the above paragraph, 
there is some question as to how extensive the 
address space should actually be. Is it 
reasonable, for example, to make mass storage byte 
addressable, with tne consequent cost of 40 or more 
bits per address? There is cieariy the need for a 
means of dealing with mountabie volumes (tapes, 
disk). It is probably desirable to allow for 
dynamic mapping from one set of logical names 
(director.- ar.d file r-ames) to another (binary 
virtual addresses). Synonyms (many virtual address 
will map ir.to the same physical location) will 
probably occur, ar.d there are problems involved in 
determining how/when synonyms snould exist and how 
they should be handled because sf problems with 
consistency. Structures for name soaces, such as 
directory structures, have been studied sat without 
definite conclusions; there is room for further 
work. 

Another aspect of =e.-sory hierarchies that has 
not beer, fully developed is the interface between 
operating systems an? data base systems. A data 
base system can be considered to be a powerful 
command (query/ language on top of a very-
sophisticated file, system. Both command languages 
and file systems are part of operating systems; 
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there is considerable need to integrate the two. 
The management of the physical storage of the data 
basis system should perhaps be subsumed into the 
overall management of the unified memory hierarchy 
on which the data base system runs. 

VIII. CONCLUSIONS 
In this paper we have explored the structure 

of the computer svstem memory hierarchy with an eye 
to noting aspects of such hierarchies which are not 
fully understood, developed or optimized. We found 
that, there is important research still to'be done 
on cache organization, but not on the traditional 
miss ratio problems of cache design. Kith regard 
to gap filler technology, almost every aspect of 
its use poses both research and implementation 
problems - should it be used:, where?, when?, how? 
•Similarly for mass storage - how should it be 
operated? how/when should files be migrated? wnat 
snould be done about reliability and recovery? 
Those parts of the memory hierarchy of long 
standing, such as main memory, disks and drums pose 
few new problems. The principal research proolem 
for those levels is: how lor if) should these 
parts of the svstem be made intelligent? With the 
decreasing cost of logic, intelligent memory or 
peripherals becomes a viable alternative. We also 
noted that there are questions about the logical 
structure of the user name space, and how it should 
map into the memory hierarchy. All of these 
problems are both interesting and important, and we 
nope that this paper will stimulate some research 
in these directions. 
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