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Abstract. General Purpose Graphics Computing Units can be effec-
tively used for enhancing the performance of many contemporary scien-
tific applications. However, programming GPUs using machine-specific
notations like CUDA or OpenCL can be complex and time consuming.
In addition, the resulting programs are typically fine-tuned for a partic-
ular target device. A promising alternative is to program in a conven-
tional and machine-independent notation extended with directives and
use compilers to generate GPU code automatically. These compilers en-
able portability and increase programmer productivity and, if effective,
would not impose much penalty on performance.
This paper evaluates two such compilers, PGI and Cray. We first iden-
tify a collection of standard transformations that these compilers can
apply. Then, we propose a sequence of manual transformations that pro-
grammers can apply to enable the generation of efficient GPU kernels.
Lastly, using the Rodinia Benchmark suite, we compare the performance
of the code generated by the PGI and Cray compilers with that of code
written in CUDA. Our evaluation shows that the code produced by the
PGI and Cray compilers can perform well. For 6 of the 15 benchmarks
that we evaluated, the compiler generated code achieved over 85% of the
performance of a hand-tuned CUDA version.

Keywords: Directive-based compiler, OpenACC, GPGPU, evaluation,
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1 Introduction

GPUs have started to play an important role in performance critical applica-
tions in computer graphics, scientific computing, gaming consoles and mobile
devices, primarily because GPUs offer massive parallelism and computational
power that is not available with the heavyweight multicore CPUs. GPUs have
also shown better performance per watt in studies [15] conducted in the past us-
ing applications that represented varying domains and computational patterns.
Many supercomputers including NCSA’s Blue Waters supercomputer [31] at the
University of Illinois employ GPUs. With the introduction of NVIDIA Tegra
processor in tablet devices [27, 26], the applicability of heterogeneous architec-
tures, i.e., architectures that combine a traditional general purpose CPU and
specialized co-processors like the GPU, seems evident in all forms of computing.



As parallelism increases, memory bandwidth becomes a bottleneck. GPUs
try to hide memory latencies by maintaining a large pool of thread contexts
and switching between these contexts at virtually no cost. Thus, GPUs perform
best when its multiprocessors are kept busy with hundreds or even thousands
of threads that execute in parallel. However, extracting the best performance
out of GPUs using APIs that are closer to hardware and C-like programming
languages such as CUDA [28] and OpenCL [19] is a time consuming process
for programmers. Correctness issues like avoiding deadlocks and race conditions,
and performance issues like making optimal use of device memory bandwidth,
avoiding cyclic CPU-GPU data movement and pipelining of asynchronous data
movement have to be dealt with explicit instructions or algorithms by the pro-
grammer. Thus, increased performance comes at the cost of programmer produc-
tivity. On top of the existing programmer productivity drains, manually writing
code using CUDA and OpenCL often leads to programs that are fine-tuned
to perform only on a particular device. Performance portability thus becomes
another major problem.

Loops are the natural candidates for translating to GPU kernels. A pro-
grammer can use CUDA or OpenCL to manually translate loops into GPU
kernels. However, today a new programming paradigm for heterogeneous sys-
tems is emerging. Programmers can now use compilers to translate conventional
CPU programs to heterogeneous code that is fine-tuned to the resources of the
GPU being used. These compilers may need the programmer to provide hints
or instructions in the form of directives. Providing directives in an OpenMP-like
manner usually takes less efforts than writing a CUDA or OpenCL program.
The heterogeneous code can then offload loops to the GPU and take care of
host-GPU data communication. This approach has the potential to obtain the
best of both worlds - good performance, if not the best as that obtained with
optimized CUDA or OpenCL programs, and increased programmer productivity
and code portability.

The goal of this work is to evaluate the limitations of the PGI [30] and Cray [9]
compilers to generate efficient accelerator codes when using compiler directives:
PGI programming model’s proprietary directives and OpenACC [5], respectively.
For the version of PGI compiler that we used, the OpenACC directives were
not available. More recent versions of the PGI compiler support the OpenACC
directives, and it has been shown that heterogeneous programs using the PGI
directives have the same performance as those using the PGI compiler with the
OpenACC directives [22]. The paper makes the following contributions:

1. We first evaluate standard loop transformations developed for autoparal-
lelization, such as distribution and privatization. Our experiments show that
the compilers studied applied few of the studied transformations - loop align-
ment, distribution, interchange, privatization, reversal and skewing. Further-
more, the compilers were able to generate optimized code for reduction, but
not for prefix scan or histogram reduction loops.

2. We present a comprehensive set of the transformations that programmers
should apply so that compilers can generate efficient code for accelera-



tors. For this study we applied a sequence of manual transformations to
15 OpenMP programs from the Rodinia benchmark suite to convert them to
a form that can be understood by the PGI and Cray compilers. Our results
show that with the Cray compiler, fewer manual transformations were needed
in the case of 8 out of 15 benchmarks. We also demonstrate the impact of
each transformation on the performance of the heterogeneous programs.

3. We assess the performance obtained by these compilers. We compare the per-
formance of the heterogeneous versions of Rodinia benchmarks compiled by
the PGI and Cray compilers with that of the manually-optimized OpenMP
and CUDA versions of those programs. Our results show that the code gen-
erated by the compilers achieves more than the 85% of the performance of
6 out 15 manually optimized versions of Rodinia, and perform worse for
other benchmarks depending on various factors such as data communication
between the host and the device, non-coalesced device memory accesses, etc.

The rest of this paper is organized as follows: Section 2 briefly discusses
related work; Section 3 describes experimental framework; Section 4 is an eval-
uation of the abilities of these compilers to analyze dependences and perform
loop transformations; Section 5 presents the transformations required to convert
OpenMP programs to their heterogeneous versions and the impact of each trans-
formation on their performance; Section 6 evaluates the performance of Rodinia
benchmarks when compiled with the PGI and Cray compilers and discusses the
performance bottlenecks; and finally Section 7 concludes.

2 Related Work

GPUs are an attractive platform for scientific simulation and general purpose
applications that can exploit the data parallelism they provide. However, pro-
gramming and tuning for these devices is onerous [2, 11]. Compilers such as
CUDA [28] and OpenCL [19] aim at easing the low level programming of GPUs,
but they expose the GPU architecture (including the different memory domains
and the SPMD/SIMD architecture) to the programmer, which makes a pro-
gram implementation hardware dependent. This also increases the learning and
development phase, what makes the programming task more error-prone.

Cray [9], CAPS [4], and PGI [30] have recently introduced a high-level pro-
gramming paradigm, similar to that of OpenMP [29], called OpenACC [5]. In
this paradigm, the programmer uses pragmas or directives to annotate the se-
quential code and specify the loops and regions of code that can be offloaded
from a host CPU to a GPU, as well as the data to be transferred.OpenMP4.0
[29] has also recently introduced extensions to support accelerators.

hiCUDA [12] sits between the two extremes described above. It relies on
pragmas, but it does not ease the programmer task as much as the Cray, CAPS
or PGI compilers. Other experimental compilation tools like CGCM [16] and
PAR4ALL [1] aim at automating the process of CPU-GPU communication and
the detection of the pieces of code that can run in parallel. The work by Lee and



Eigenmann [20] proposes OpenMPC, an API to facilitate translation of OpenMP
programs to CUDA, and a compilation system to support it.

Previous studies, like [8, 24, 13, 17, 32, 14, 22, 10] also evaluate directive-based
compilers that generate code for accelerators. The main difference is that this
work covers more programs and includes a study of transformations. While some
of the previous works have performed assessments similar to those presented in
this paper, they typically focus on one or two applications or on benchmarks
sets containing small and regular kernels, such as Polybench. In this paper we
evaluate the Rodinia v2.0.1. benchmark suite [6, 7], which contains regular and
irregular applications from different domains. Also, this paper evaluates two
of the three currently available commercial compilers (CAPS is the only other
commercial compiler that we did not consider in this work).

While we perform our evaluation using the Rodinia benchmark suite, which
contains applications from different domains, most previous works only exper-
iment with 1 or 2 applications, except for the project discussed by Grauer et
al. [10] and Lee and Vetter [22]. The work by Grauer et al. uses the PolyBench
collection which contains regular kernels mostly from the linear algebra domain.
We intend not to limit our results to a reduced type of applications and we show
results for a larger variety of benchmarks, in an effort of covering the real world
application spectrum, including irregular benchmarks like PathFinder for Dy-
namic Programming and Breadth First Search for Graph Traversal. The work
by Lee and Vetter [22] is the most comprehensive with respect to the number of
applications and compilers evaluated. Lee and Vetter evaluate 8 Rodinia bench-
marks (out of the 15 we evaluate) and some scientific kernels, such as Jacobi or
kernels from the NAS benchmarks. They also evaluate the PGI, CAPS, Open-
MPC [20, 21], and R-Stream [23] compilers. However, the main difference with
this study, is that the work reported here also includes the transformations steps
that programmers must follow to transform OpenMP programs into directive-
based programs so that these compilers can generate efficient accelerator code.
In our work we also evaluate whether the studied compilers perform standard
transformations, such as loop distribution or privatization to enable parallelism.
We have not found a similar study on previous works. Only the work by Grauer
et al. [10] evaluates the use of three of the CAPS-specific pragmas (permute,
unroll, and tiling) intended to drive code transformations for code optimization.
However, this work has a much more limited scope than ours.

3 Environmental Setup. Target Platform and Compilers

Our experiments were performed using a single Cray XK6 node. Table 1 presents
characteristics of this experimental hardware platform, and Table 2 shows for
each compiler, the compiler version and flags used in our experiments.

We evaluated two directive-based compilers for heterogeneous systems: PGI [30]
and Cray [9] compilers. With the Cray compiler we used the OpenACC [5] di-
rectives, while with the PGI compiler we used the PGI programming model’s
proprietary directives [30]. For the version of PGI compiler that we used, the



Table 1. Hardware characteristics

Type CPU GPU

Name AMD Opteron 6200 NVIDIA Tesla X2090

Cache L2/L3 - 512kB/12MB L2(shared) 42Kb(Multiprocessor)

# cores 16 cores 512 CUDA cores

Peak Perf. 294.4GFLOPS 1331 GFLOPS

Frequency 2.1 GHz 1.3GHz

Table 2. Compilation flags for each compiler

Specification/flags PGI CRAY XK NVCC/GCC

Version 11.10-0 CCE v 8.1.0.139 4.0.17a / 4.3.4
PrgEnv-cray v 4.0.46

Baseline optimizations -fast -fastsse -O3 -O3 -O3 / -O3 -Ofast

Platform optimizations -tp=bulldozer-64 -h cpu=interlagos -arch=sm 20
-march=bdver1

Sequential flags None -h noacc -h noomp NA
-h noomp acc NA

OpenMP flags -mp=allcores -h noacc -h noomp acc NA

Heterogenous flags -ta=nvidia,keepgpu -h noomp acc NA

Compilation Report -Minfo -hlist=m NA

OpenACC directives were not available. More recent versions of the PGI com-
piler support the OpenACC directives, but it has been shown that heterogeneous
programs using the PGI directives have the same performance as those using the
PGI compiler with the OpenACC directives [22]. The PGI and the OpenACC di-
rectives are semantically equivalent (as they both enable the same functionality),
but they differ syntactically.

3.1 Benchmarks

We used two benchmark suites. First, a micro-benchmark suite that we devel-
oped for this project and the other is the Rodinia benchmark suite 2.0.1 [6, 7].
Our micro-benchmark suite consists of a set of loops to assess the ability of the
compilers to perform standard loop transformations for exposing parallelism.
These micro-benchmarks were designed to verify if the PGI and Cray compil-
ers can perform loop transformations that remove loop carried dependences to
expose parallelism.

In the experimental section, we used the Rodinia benchmark suite 2.0.1 [6,
7]. Out of the 16 benchmarks available in the Rodinia benchmark suite, we
have used 15. We did not include Mummer-GPU in our analysis because of the
limitations of using unions in the compilers that we studied. These applications
are provided with two different implementations, OpenMP and CUDA. The
CUDA implementation exploit the different types of memories available in the
GPU: global, shared, constant and texture memories.

3.2 Performance Measurement

Our time measurement excludes any setup and initial I/O performed by the pro-
gram. In case of CUDA programs and heterogeneous programs, we also measure
the time spent in three separate components of the program using the CUDA
profiler [25]: time spent in the GPU kernels, time taken to transfer data between
CPU and GPU, and the summation of the time spent in any sequential com-
putation that is an integral part of the program and the overhead of launching
GPU kernels and initiating data transfers.



Table 3. PGI and Cray: loop transformations to micro-kernels

Transformation Improves GPU kernel
Speedup Conclusions

PGI Cray PGI Cray

Alignment Yes 299.14 33.73 No No

Distribution Yes 212.22 15.59 No No

Interchange No, threads spawn once 1.00 1.00 Not needed

Privatization Yes 0.99 1.00 Yes Yes

Reversal Yes 13.59 30.42 No No

Skewing No, skewed iteration space 0.72 0.28 No No

4 Micro-Kernels

In this section, we report the results of our analysis that determines the ef-
fectiveness of the PGI and Cray compilers in automatically applying standard
transformations that remove cross-iteration dependences that prevent a loop
from being parallelized. For this analysis, we wrote a set of 9 loop nests. In 6
of the loop nests, application of a single transformation among alignment, dis-
tribution, interchange, privatization, reversal and skewing will allow iterations
of that loop nest to run in parallel with each other using multiple threads [18].
The other 3 loop nests perform reduction, prefix scan, and histogram reduction
operations, and can be parallelized on a GPU by changing the algorithm.

Table 3 shows the first 6 loops. The first column shows the name of the
transformation; the second column states whether the transformation enables a
loop nest to efficiently use the GPU.

We used the compiler reports to determine if the compiler applied the trans-
formations automatically. However, since these reports were not always clear,
for each case we executed both the original and the transformed loop nests and
recorded their execution times. The original loop nest needs to be transformed
to be parallelizable. If the compiler is not able to automatically apply the trans-
formation, then the transformed version of the loops executes significantly faster
than the original version. The third column of Table 3 shows the speedups of
the transformed versions of the loop nests over the original loop nests. The last
column of Table 3 shows our conclusions on whether the compilers were able to
automatically perform the corresponding transformation.

Table 3 shows that out of all the transformations, the ones that enable a
loop to make efficient use of GPU parallelism are alignment, distribution, pri-
vatization and reversal. Interchange and skewing are not helpful in improving
performance on a GPU.

Loop interchange can improve performance when an outer loop executes se-
quentially with an inner parallelizable loop. If the inner loop is parallelized, each
outer iteration spawns and joins the multiple threads executing the inner loop.
In this case, the inner parallel loop can be interchanged with the sequential
outer loop as long as no dependences are violated, thereby spawning threads
only once. However, this transformation is not necessary to parallelize loops on
a GPU while using the PGI and Cray compilers, because the PGI and Cray
compilers split the inner parallel loop across multiple threads and execute all
the iterations of the sequential outer loop in each thread (redundantly). The
skewing transformation is not suitable for GPUs, because the code that results



Table 4. PGI and Cray: automatically parallelizing computational patterns

Idiom
Conclusions

PGI Cray

Reduction Yes Yes

Prefix Scan No No

Histogram No No

after applying the transformation executes in a skewed iteration space, that leads
to warp divergence.

We also wrote 3 loop nests that perform reduction, prefix scan and histogram
reduction. These computational patterns, in particular reduction, are used of-
ten among scientific applications and they can be parallelized only by a change
of algorithm. However, compilers can potentially recognize these patterns and
produce the parallelized algorithms automatically. When the compilers do not
recognize the computation patterns, the generated code results in a naive GPU
implementation that executes serially and obtains low performance. As there is
no equivalent parallelizable sequential loop nests for these patterns, these com-
putational patterns can only be parallelized in a programming language like
CUDA or OpenCL that gives the programmer a fine grained control of the code
executed by each thread and memory barriers. The first column of Table 4 shows
the transformation; the second column shows whether the compilers were able to
automatically parallelize the computational patterns. Table 4 shows that none of
the compilers was able to parallelize prefix scan and histogram reduction auto-
matically. In such cases, providing a finer control over parallelism would benefit
programmers when the automatic recognition/parallelization of computational
patterns does not succeed.

In the second part of this work, we study 15 benchmarks from the Rodinia
suite. We observed that in these benchmarks loop distribution, privatization, re-
duction, and prefix-scan optimization transformations were necessary. The other
loop transformations were not applicable , but might be useful for a different set
of applications.

5 Transformation Steps

We have used the Rodinia benchmarks to assess the transformations that were
necessary to convert the OpenMP programs to a format that the PGI and Cray
directive-based compilers can understand and compile to produce device kernel
code. Section 5.1 describes the transformations steps that we had to follow to
transform programs. Section 5.2 describes the reasons for applying each trans-
formation and the performance impact of each transformation.

5.1 Transformations

While most previous works discuss the individual transformations applied to
each benchmark, in this Section we have tried to synthesize the overall strategy



that we followed to transform all the OpenMP Rodinia benchmarks. Next, we
describe the transformations in the order in which were applied:
T1: Convert the program to C99 from C++, if using the PGI compiler.
The version of PGI compiler used did not allow C++ code in the parallel regions.
T2: Insert parallel regions, in order to delimit parallel loops.
T3: restrict attribute, PGI explicitly requires removing array aliasing.
T4: Convert a multi-dimensional array to an array stored in contigu-
ous memory. When GPU kernels work with sub-dimencions of a multi-dim
array, host-device communication must be conscious of multi-dim array memory
mapping. Flattening these arrays improves these communication tasks.
T5: Remove pointers to arrays in structures and stop the use of unions.
T5 is applied because the compiler cannot de-reference the pointers to the arrays
in the structure to perform the data transfer between CPU and GPU. Similarly,
the compilers could not correctly allocate space on the GPU when unions were
used inside the parallel regions 3.
T6: Inline procedures. The PGI compiler required all the procedures inside a
parallel region to be manually inlined. The Cray compiler could inline procedures
with primitive data type arguments.
T7: Add data clauses to parallel regions. Both compilers were able to
automatically generate a CPU-GPU memory copy command to transfer data
between CPU-GPU when the array size is known at compilation time. Otherwise,
the programmer has to manually specify the array size in data clauses.
T8: Use the independent clause. The programmer can enable compiler paral-
lelization using the independent clause to inform the compiler that the following
loop does not carry dependences across iterations. Reasons:

a. The loop iterations have an output dependence, but parallelizing the loop
results in a benign data race in which threads write the same value to a given
memory location (BFS).
b. The compiler detects false dependences between iterations due to array index
calculations that involve runtime variables, whose values are unknown to the
compiler. Programmers can assert that there are no data dependences (NW).
c. Compilers could not analyze the array index calculations.(PGI: KM, BP, HS,
LUD, CFD, LC, PF, HW; Both: SRAD)
d. The Cray compiler generated incorrect GPU code due to a bug. As a workaround
we used the independent clause. This bug will likely go away in the coming com-
piler releases.(KM, BP, LUD, SC, LC, PF, HW)

T9: Insert data regions. They help to avoid cyclic data movement between
the CPU and GPU. The programmer can specify the variables or arrays to be
copied into the GPU memory at the entry point of the data region and the
variables or arrays to be copied out at the exit point of the data region.
T10: Change the size and/or number of parallel regions with respect
to the OpenMP code. Exploiting parallelism in tightly nested loops is crucial

3 In the PGI version of CFD Solver, we also had to separate the individual float values
included in a structure, but this was most probably due to a bug.



Table 5. Summary of directives and transformations applied in 15 Rodinia Benchmarks

Directives and Transformations Total Others
PGI Cray

Parallel Regions (T2) 15 15 0
Data Clausues (T7) 13 14 0
Independent (T8) 11 10 0
T8.a 1 1 0

Directives. Programmer applied T8.b 1 1 0
T8.c 9 1 0
T8.d 0 7 0

Data Regions (T9) 14 14 0
Collapse (T11) 0 6 0

Privatization 15 15 0
Compiler Applied Reduction 5 5 6

C++ to C99 (T1) 5 0 0
restrict (T3) 15 0 0
multi to single (T4) 3 3 0
remove pointers (T5) 6 5 0

Transformations inline (T6) 9 1 0
distribution (T10) 11 11 0
T10.a 2 2 0

Programmer Applied T10.b 3 3 0
T10.c 3 3 0
T10.d 3 3 0

alignment 0 0 0
reversal 0 0 0
skewing 0 0 0
prefix-scan 0 0 1
histogram 0 0 0

to obtaining high performance. Also, expanding the parallel regions, changing
the loops that are parallelized etc. can help in obtaining higher performance.
Our results show that this is an important step that requires manual effort and
manual tuning from the programmer. Reasons:

a. Distribute a parallel loop over an inner loop if the inner loop is parallel
and contains sufficient amount of computation. The resulting loop is a good
candidate for GPU computation. For some applications distribution has to be
applied after procedure inlining.
b. Remove the reduction from an accelerator region to facilitate compiler opti-
mization of the remaining code. The reduction can be performed in a separate
parallel region or on the CPU depending on the amount of computation and
the amount of CPU-GPU data communication involved.
c. Change the boundaries and/or number of the parallel regions. Depending on
the availability of statements that can execute in parallel, we can expand the
parallel regions to include more computation in them and/or generate new par-
allel regions. On the contrary, we should not run in GPU a loop that has a small
amount of computation and requires a large amount of CPU-GPU transfer.
d. Change loops that are parallelized while maintaining the same number of
parallel regions. This is achieved by interchanging loops or by merely changing
the position of parallel directive if the loops are loosely nested and interchanging
those loops is not possible without substantial manual effort.

T11: Use collapse clause, for CRAY only (PGI does automatically). Using
a collapse clause leads to an increase in multiprocessor occupancy which is a
ratio of the number of threads executing on the GPU at a given time to the
maximum number of threads that could execute on that GPU. This may increase
the utilization of the GPU parallelism and reduce the execution time.

Table 5 classifies these transformations as insertion of compiler directives and
other transformations. Compiler directives must always be inserted by the pro-
grammer, the other program transformation can be classified based on whether



they are applied by the compiler or the programmer. The Column Total shows
for how many benchmarks each directive or transformation was applied when
using the PGI and the Cray compilers. Column Others shows the number of
times a transformation could have been applied, but was not applied for reasons
that will be explained next.

With respect to transformations, privatization and reduction are the only two
transformations that were automatically applied by the compilers. Privatization
was needed in all the benchmarks and both compilers applied it successfully.
Both compilers applied reduction to 5 benchmarks (BP, BFS, LMD, PF, SC),
but both failed to take advantage of it for 6 benchmarks. When the reduction
appears alone in a single loop both compilers can recognize it. However, when
several reductions appear in a single loop or the reduction is intermixed with
other computations in the same loop, the compilers usually fail to recognize it.
This occurred in 6 benchmarks (CFD, HW, KM, LUD, SRAD, SC), as shown
in the column Others. When we manually distributed the loops to isolate the
reduction in a single loop the compiler recognized it.

For the PGI compiler, the use of the restrict keyword and procedure inline
was needed for 15 and 9 benchmarks, respectively. With the Cray compiler we
did not have to use the restrict keyword and inlining is necessary only for one
benchmark. PGI also required to transform the codes from C++ to C99. With
respect to the other directives and transformations, both compilers perform very
similar. Therefore, we conclude that Cray requires less effort than PGI.

The transformations alignment, reversal, skewing, and histogram were not
needed for these benchmarks although they could be helpful for other bench-
marks. Prefix scan was present in HW, it was not recognized (Section 4).

5.2 Impact of Each Transformation on Performance

Table 6 shows the performance impact of the previous transformation steps
on the Rodinia benchmarks for the PGI and Cray compilers. Each row in the
table specifies the last transformation that has been applied and the the slow-
ness in performance with respect to the performance obtained after applying
all transformations in Section 5.1 (step T10 for PGI and T11 for Cray). In the
same column, the same slow-ness means that the transformation was either not
needed or it had no effect. We show results only after applying T7, because
heterogeneous compute regions can execute in the GPU in most cases only after
T7 has been applied. To assess the impact on performance of a transformation
we need to compare two consecutive rows. Thus, to asses the impact of T8 we
need to compare the data in row T7 with the data in row T8. Notice that the
Cray compiler was still under development and some benchmarks (PF, LC, HW,
LMD and SC) could not be compiled correctly (shown as CF in Table 6) due to
internal compiler bugs. In some cases, executing a program version took so long,
that we decided to stop the execution and label it as ∞.

In Figure 1, we show results for BP and SRAD (the rest are not shown due to
space limitations) with both compilers. Each chart shows for each transformation
step, the breakdown of the program execution time into its three components



Table 6. Relative slow-ness after each step with the PGI and Cray compilers.

PGI PFDR KM BFS BP HS LUD NN NW SRAD SC CFD LC PF HW LMD

T10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

T9 1.0 100.5 2.5 1.0 1.0 1.0 1.0 1.0 2.7 ∞ 1.0 ∞ 1.0 ∞ ∞
T8 5.3 102.4 6.7 5.0 13.7 537.1 1.0 ∞ 10.6 ∞ 14.2 ∞ 3.3 ∞ ∞
T7 5.3 ∞ 128.3 59.4 ∞ 5859.7 1.0 ∞ 858.6 ∞ 14.2 ∞ 3.6 ∞ ∞

Cray PFDR KM BFS BP HS LUD NN NW SRAD SC CFD LC PF HW LMD

T11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 CF CF CF CF

T10 1.0 1.0 1.0 1.0 4.5 1.0 1.0 1.0 4.7 1.0 1.0 CF CF CF CF

T9 1.0 ∞ 2.7 1.5 4.5 1.0 1.0 1.0 6.7 CF 1.0 CF CF CF CF

T8 350.8 ∞ 7.5 4.3 34.1 20.4 1.0 ∞ 19.2 CF 50.6 CF CF CF CF

T7 350.4 ∞ 170.2 11.2 34.1 21.1 1.0 ∞ 26.3 CF 50.6 CF CF CF CF

Fig. 1. Distribution of time after the application of transformations

GPU-comp Time taken by device kernel execution

CPU-GPU-comm Time required for CPU-GPU data transfer

Seq&Over

Time taken by sequential computation on the CPU

plus any overhead of launching GPU commands over the PCIE bus

- The transformation was not applied

- device kernel execution time in the GPU, time of CPU-GPU data communi-
cation, and the time of sequential computation and any overhead of launching
the device commands over the PCIE bus. The bars for the three components of
each program are plotted such that the sum of these three components (which
equals the overall program time) represents the slow-ness with respect to the
performance obtained after applying all transformations in Section 5.1. Thus,
the three components of transformations T10, in case of PGI, and T11, in case
of Cray, sum up 1 (note the logarithmic scale). In the charts, label - states that
the transformation was not applied/needed. As expected, performance improves
as more transformations are applied to each benchmark. From Figure 1 and Ta-
ble 6, we can observe that there is not a single transformation responsible of the
whole performance improvement. For each benchmark, each transformation step
has a varying degree of impact on the performance.

The impact of each transformation on the individual components (kernel,
communication and seq. and overhead time) of the overall program time can be
seen in Figure 1. The application of T8 reduces the time spent in device kernel
execution. The application of T9 reduces the time spent in CPU-GPU data
communication. The application of T10 has an effect on all three components.
The magnitude of these components can increase or decrease depending on which
combination among T10.a, T10.b, T10.c and T10.d is applied and how effective
each of these transformation is for that program. Finally, the application of T11
reduces the time spent in device kernel execution.



Fig. 2. Speedups over sequential programs compiled with PGI

6 Performance of Rodinia Benchmarks

In this section, we evaluate the performance of five versions of the Rodinia bench-
mark suite: OpenMP, sequential, CUDA and two heterogeneous versions (follow-
ing the steps in Section 5). For each benchmark, the suite provides two versions
- an OpenMP version and an optimized CUDA version [6, 7]. One heterogeneous
version uses OpenACC directives (Cray compiler), while the other uses the PGI
programming model directives (PGI compiler).

Figure 2 shows speedup of the OpenMP, heterogeneous, and CUDA versions
against the performance of the sequential version compiled with the PGI com-
piler. Since PF, LC, HW, and LMD could not be correctly compiled by the
Cray compiler, the corresponding spaces in the figure have been left blank. The
comparison of heterogeneous versions and the CUDA counterparts will help us
to identify the performance bottlenecks and understand the effectiveness of the
PGI and Cray compilers in exploiting the GPU resources.

For a total of 6 benchmarks (PFDR, BFS, BP, NW, CFD, PF) at least one
of the heterogeneous versions managed to reach a performance over the 85% of
the CUDA performance. In fact, three benchmarks were able to achieve close to
100% of the CUDA performance (BFS, BP, and PF). Even more, in some cases
the heterogeneous version performs slightly better than the CUDA version. This
is due to T10 (Section 5) transformation which parallelizes portions of code
that were not formerly running in parallel. However, 8 benchmarks (KM, HS,
LUD, NN, SC, LC, HW, LMD) obtain less than 50% of the CUDA performance.



The poor performance of the heterogeneous programs is due to issues such as
poor computation to data communication ratio, excessive device global memory
accesses, non-coalesced memory accesses and inefficient use of shared memory
etc. We briefly explain the reasons behind the poor performance achieved by
individual heterogeneous programs as compared to their CUDA versions.

The heterogeneous versions of KM suffer from both high amount of data
transfer and non-coalesced memory accesses in the GPU kernels, hence they pro-
duce slow performance. In the case of HS, the heterogeneous versions perform a
data copy within the GPU as part of the stencil computation, whereas CUDA
achieves the same effect by a pointer swap. Thus, the heterogeneous versions of
HS shows reduced performance. LUD involves triangular matrix operations and
has many row-wise and column-wise dependencies [7]. The heterogeneous ver-
sions make a lot of non-coalesced accesses to the device memory since the device
cache or shared memory is not big enough to hold the entire matrix involved
in the computation, which leads to reduced performance in GPU computation.
The CUDA version of LUD implemented tiling which improves the cache perfor-
mance. The heterogeneous versions of NN do not parallelize enough part of the
kernel, thereby leading to a slower performance compared to the CUDA version.
The heterogeneous versions of SC suffer from cyclic CPU-GPU data communi-
cation and thus become inefficient. The extraordinary performance of LC with
CUDA is obtained by using a technique called persistent blocking [6, 3] wherein
all the iterations are performed in a single device kernel call and all cells are
processed concurrently with one thread block allocated to each cell. In the ker-
nel of heterogeneous HW, each thread loads data from memory in a loop which
causes a lot of non-coalesced global memory loads. The number of misses in L2
cache of the GPU in the heterogeneous version are also about 48X as compared
to the CUDA version. In case of LMD, heterogeneous version perform very little
computation for the number of device global memory accesses it performs, which
results in bad performance.

Focusing on OpenMP vs. heterogeneous versions will give a comparative per-
spective of the speedups that could be obtained using directive-based parallel
programming techniques that exploit parallelism from the CPU and the GPU.
We can observe that for 9 benchmarks, at least one heterogeneous version has
performed better than its corresponding OpenMP version. However there are
certain benchmarks whose heterogeneous versions do not perform as well. The
slow performance of the heterogeneous versions of KM, SC, LUD, HW, and LMD
has been already explained. In case of PFDR, the CPU-GPU data communica-
tion itself in both the CUDA and heterogeneous versions takes more time than
the whole OpenMP program, so communication/computation ratio is quite bad
for GPU approach.

7 Conclusions

In this paper, we have evaluated the effectiveness of two directive-based com-
pilers, PGI and Cray, in: i) dependence analysis and automatic application of



transformations ii) the programming effort to transform OpenMP programs to
heterogeneous versions iii) performance as compared to OpenMP and CUDA.

From the dependence analysis, we found that out of the 6 transformations
and 3 idioms studied, both compilers were only able to privatize and generate
code for reduction. Thus, the PGI and Cray compilers still seem to rely on the
programmer to expose the parallelism.

We have proposed a sequence of steps to transform OpenMP programs to
their heterogeneous versions. In this analysis, we observed that the Cray compiler
was able to automatically inline most functions inside the parallel regions as
opposed to the PGI compiler, which led to considerably reduced programmer
efforts. The difficulty of programming with the directive-based compilers is closer
to OpenMP programming than to CUDA programming.

In terms of performance, the versions compiled Cray performed faster than
the ones of PGI compiler for 8 out of 15 Rodinia benchmarks. In comparison
to fine-tuned CUDA versions, 6 out of 15 heterogeneous versions ran over the
85% of the CUDA performance. This shows the potential of these heterogeneous
directives-based compilers to produce efficient code and at the same time increase
programmer productivity. In comparison to OpenMP, heterogeneous versions of
the code ran faster in 9 out of 13 benchmarks at a similar programming effort
to OpenMP. Degradation in performance of heterogeneous versions occurred
because the compilers produced inefficient code and we could not overcome such
inefficiencies due to not being able to express low-level optimizations using the
directive-based compilers in the way CUDA versions did.
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