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agricultural soil.
where
Ton = (de/)\\[% + (71' - l)jsin op
a = look angle
ay = steering angle
d = element spacing; first element at d/2 above ground

plane
pattern of nth element above screen [eq. (2)].

' (n,a)
For a perfect ground of infinite extent,
n=5

E(oga) = 2 €08 7on COS 7.

n=1

(11)

Figs. 3 and 4 show the results for several steering angles.

Note that the peak of the main beam points in the desired
direction when the steering angle is greater than 10°, which is
approximately one 3-dB beamwidth of the effective aperture (actual
aperture and images), but does not do so below that angle. How-
ever, except for 0°, a case of academic interest only, this limitation

applies also to perfect ground of infinite extent (Section IV).

IV. Discussion oF Low ANGLE STEERING LIMITATIONS

Consider for simplicity an infinite plane of perfect conductivity.
The cosine illumination (9) can be expressed as the sum

3(exp { JL(27/N) ki sin o]} + exp { —jL(27/N)h; sin a]}).

This is equivalent to applying the sum of complex conjugate excita-
tions to every element, one for steering to + oo, the other to —ag.
For vertical polarization one can postulate the existence of image
elements of the same excitation as the actual elements. The terms

exp { —j[(2x/\)h; sin o]}
of the elements and
exp {+jL(2a/A)h: sin ag]}

of the images form precisely the right phase front for steering to
+ag; similarly, the other conjugate sets form a phase front for
steering to —ap. We thus have in effect two patterns, each cor-
responding to twice the aperture, steered in opposite direction
with the restriction, of course, that only that part of the downward
steered pattern exists which lies above the earth. At zero degrees,
the two patterns coalesce into one, but at all other angles there are
various degrees of interference. Within elevation angles of one 3-dB
beamwidth, the interference is sufficiently strong to cause beam
distortions, resulting in significant departures from the desired
pointing direction. Increasing the aperture, therefore, results in an
increase in the potential steering region.

The situation is more complicated in the case of imperfect ground,
which includes the finite ground sereen on any soil. Two rotating
patterns can again be postulated but they are different from those
in the preceeding case and are complex (rather than real). The
interference results in an undercut pattern below the pseudo-
Brewster angle and essentially the same results as before above it.
Consequently, to extend steering to lower angles requires both
a more nearly perfect ground plane and a higher aperture. The
practical way to improve the ground plane is to lengthen the screen.

V. CoxcLusioxs

The analysis demonstrated the utility of the sinusoidal illumi-
nation for elevation steering of the paitern of an array over a
modest ground screen (16 wavelengths = 480 meters at 10 M Hz).
For a screen and an aperture of about 16 and 2 wavelengths, re-
spectively, the effective steering region starts at about 10°. The
steering region can be extended to lower angles by increasing both
the screen and the aperture.

It is reasonable to expect that simple approximations to a
sinusoidal illumination, for example a square wave (1), can be
used to steer the beam if the attendant high secondary lobes, due
to harmonies are acceptable.
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Directivity of Basic Linear Arrays

Abstract—For a linear uniform array of n elements, an expression
is derived for the directivity as a function of the spacing and the
phase constants. The cases of isotropic elements, collinear short
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dipoles, and parallel short dipoles are included. The formula ob-
tained is discussed in some detail and contour diagrams of the
directivity as a function of the spacing and the phase constants
in the above-mentioned cases are exhibited.

I. INTRODUCTION

Among the large variety of arrays of radiating elements, the
simplest type is the uniform linear array. This array is completely
specified by the spacing and the phase progression constants. In
what follows, the directive properties of uniform arrays of iso-
tropic sources, parallel dipoles, and collinear dipoles are considered
as a function of the spacing and phase constants,

II. DERIVATION OF THE DIRECTIVITY

The directivity D(6,¢) of any array is defined by
D(,¢) = P8,V /1, I = (1/471‘)/ P (8,9} da (D
4r

where P(8,¢) is the power pattern and dQ an element of solid
angle. For a linear uniform array with the elements located on
the z axis (6 = 0) of a rectangular coordinate system, the power
pattern is given by

P(6,6) = f*(6,¢)g°(8)

where f(6,¢) is the radiation pattern of the individual element and
g(8) the array factor. When we denote the spacing between con-
secutive elements by d and the phase progression constant by 8,
the array factor

2) |
g(9) = |%i, vy =208+ kdcosd

where 7 is the number of elements. Now

ISOTROPIC ELEMENTS. n=2

5

PARALLEL DIPOLES

o}

6,0 =1 for isotropic elements i~ - -
= sin? ¢ for collinear short dipoles COLLINEAR DIPOLES n=2
=1 — sin? ¢ cos? ¢ for parallel short dipoles )
and it is easily shown that the integral (1) in the three cases may be Fig. 1.
written
I:D = II, Iml = I1 - Ig, Ipar = %(11 + 12) and
where . ! I——1—+2'§1(n_m)
I = .1_ M [ do P T miZ ' mikd
4 7 sin (v/2)
[(1 — 2/m*>d?) sin mkd 4+ (2/mkd) cos mkd] cos mé}
1 5y | SR R(v/2) F . . .
I, = o cos®6 — oy ds. may be found by direct integration. The final result may be sum-
" n sin (v/2) marized as follows:
r-1
D(6,¢) = 1*(0,6)9%(8) / {ao/n + (2/n2) 3~ [(n — m)/mkd]{a sin mkd + a» cos mkd) cos ma} (3)
m=1
By introducing dQ = 27 sin 8d6 and using the finite series [1] where f2(8,¢), @o, a1, and a» are given in Table 1.

The above formula has been derived in [2] using the same method,
sin 7 {v/2) 1 9 n-1 but in a less general and slightly modified form. For § = 0 and
m ;L = Z_ n — m) €os my (2) 5 = —kd, (3) reduces to the formulas derived by Tai [3] by means

s of the mutual impedance concept.
the results III. Discussiox
1 9l _ In Figs. 1-3 are shown contour diagrams of the maximum di-
I = . + o e sm mkd cos md rectivity of arrays of 2, 3, and 6 elements as a function of the
m=1

spacing constant kd and the phase constant 8. Further diagrams
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TABLE I
SH8,9) a0 a as
Isotropic elements 1 1 1 0
Collinear dipoles sin® ¢ ) 2 2
3 (mkd)? mkd
Parallel dipoles 1 —sin*fcos®e 2 1 — —1— 1
(mkd)2  mkd

are presented in [4]. The line 6 = 0 corresponds to broadside arrays
and the line 8 = —kd to ordinary endfire arrays, while the domain
between these lines corresponds to arrays with other or additional
maximum directions. In the area between § = —kd and § = —u,
the array is still endfire but the magnitude of the main lobe is
reduced compared to the magnitude obtained when the condition
for ordinary endfire radiation is fulfilled. For n > 3 the magnitude
of the main lobe may become less than the largest sidelobe. The
part of each diagram corresponding to such values of & and kd
is left empty.

It is seen from (3) that for kd = pr, p = 1,2,3, -, the maximum
directivity is independent of & and equal to the number of elements
n. For a broadside array (8§ = 0), Dy, = n when kd = pr while
for an endfire array this value is obtained when kd = pw»/2. From
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the contour diagrams (for n = 3 and 6) it appears that in addition
a wavy contour D, = 7 exists and that the directivity surface
exhibits saddle points on the lines kd = px. Two absolute maxima
are present in the figures. The broadside maximum is obtained
when kd is somewhat less than 27, and it is noted that the directivity
decreases sharply beyond this maximum due to the appearance
of grating lobes in the radiation pattern. The endfire maximum
is obtained when kd is somewhat less than x. This maximum is
not obtained with an ordinary endfire array § = —kd and it is
in this context interesting to consider the Hansen-Woodyard
condition for increased directivity of endfire arrays [5]. These
authors found that an increased directivity could be obtained,
if, for an ordinary endfire array, the phase constant was changed
to
5= —kd — a/(n — 1)

where 7 is the number of elements. The above expression may be
depicted as a straight line in the present diagrams. It is seen that
it yields larger directivity than the corresponding ordinary endfire
condition, but also that even higher directivity may be obtained
by a uniform endfire array.

The diagram for n = 2 (Fig. 1) is of special interest because the
point (kd,8) = (0,—=/2) is included. It is well known that the
theoretical maximum directivity of an equispaced linear array
is equal to n? [6], but this optimum value is in general not obtained
for an array with uniform excitation. However, in the case of
n = 2, the optimum array is also a uniform array and the optimum
value Dy, = 4 may be obtained from (3) for kd — 0 and § — —180.
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The tricky nature of this optimum is illustrated by the fact that
it is obtained only when the constraint § = $kd — = is introduced,
and the contour diagram illustrates the complicated structure
of the directivity surface in the vicinity of this point.

The center diagrams in each figure apply for arrays of parallel
dipoles. The structure of the diagrams is similar to that for iso-
tropic elements, but some distortion results, especially in the
upper parts of the diagrams. It should be noted that the position
of the broadside and endfire maxima is almost unchanged when
the isotropic elements are replaced by parallel dipoles.

The bottom diagrams apply for collinear dipoles. In this case,
no endfire radiation is obtained and a marked distortion of the
diagrams results. Very low directivities are obtained in the endfire
area and, furthermore, the broadside maximum is shifted in the
direction of kd = 2=.

HexnNive Bacu

Lab. of Electromagnetic Theory
Technical University of Denmark
Liyngby, Denmark
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Electromagnetic Pulse Generation by an
Impedance Loaded Dipole Antenna

Abstract—A theoretical study is made for obtaining the pulse
radiated from an impedance loaded dipole. Numerical results are
presented for an antenna that is slowly charged and suddenly
shorted at the terminals. The impedance loadings are chosen as
those on an existing antenna located at Sandia Laboratory, Al-
buquerque, N. Mex.

I. InTRODUCTION

The radiation of a particular pulse shape by a dipole antenna
usually requires an altogether different voltage pulse driving the
antenna. The determination of the required driving voltage pulse
may be extremely difficult. However, if the frequeney response of
the antenna is essentially flat, then the radiated pulse in the
equatorial plane 8§ = /2 is proportional to the time derivative
of the voltage pulse. Such an antenna, an impedance loaded dipole,
was recently studied [1]. The formulation yields the current
distribution under steady state conditions. The radiated fields also
may be determined for steady state conditions using standard
techniques. In this paper these radiated fields are superimposed
to obtain the appropriate time history of the fields for the specific
voltage pulse excitation. To obtain numberical results the impedance

loadings are considered to be those on the “long-wire” antenna
at Sandia Laboratory, Albuquerque, N. Mex.
I1. AnNavvsis
Current Distribution
Consider a dipole antenna of length 2k to extend from z = —h

toz = k (see Fig. 1). The antenna is driven at the center by voliage
Vo(w), w is the radian frequency, and is symmetrically loaded with
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Fig. 1. Impedance-loaded dipole antenna with Cartesian,
c¢ylindrical, and spherical coordinates.
impedances Z, at points ==z along the antenna axis. For con-

venience, a slice generator driving mechanism is used. Then the
cuwrrent distribution on the antenna is obtained by solving the
integral equation

h
f dz' ] (2, w) Ka(z — 2')

—h

v
~ j4Th/O) 2 Zis(| 2| — 201(2) = —j(dak/t) Po(w)a(2) (1)
=1

where
Ko(z — 2') = (8%/822 -+ k%)

“loxp (—h{(z = ) 4 a2 L — )t + T (2)
and £ = w/c is the propagation constant and { ~ 120z ohms is

the wave impedance of free space.
The solution to (1) may be effected by using a finite Fourier
series representation for the current distribution. It is

I(z o) = — 41-V;(w)
X @m + 1)
-{Z I coS [—m2—”—} 4 Csink(h — | 2| )}. )
M=1 B

The constant €' is chosen to expedite the solution and the expansion
coefficients are obtained by solving a system of linear equations
resulting from substituting (3) into (1) [1]. To obtain the current
distribution on the antenna when driven by a pulsed voltage,
Vo(w) is taken as the Fourier transform of the voltage pulse and
the resulting 7(2,w) is interpreted as the Fourier transform of the
current pulse. Hence the time history of the resulting current is
obtained by taking the inverse Fourier transform of I(ze), ie,

1 bt -
I(=t) = Wz ];w dwl! (2,0) exp { jwt). (4)

If one requires I(z¢) to be real, then ?(z, —w) = /I\*(z,w). This
yields

I(zt) = (2/m)Ve fm dw Re {I(z,0) exp (jol)}. (5)
0
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