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Abstract

Primary and N-alkyl arylamine motifs are key functional groups in pharmaceuticals, 

agrochemicals and functional materials as well as in bioactive natural products. However, there is 

a dearth of generally applicable methods for the direct replacement of aryl hydrogens with –NH2/-

NH-alkyl moieties. Here, we present a mild dirhodium-catalyzed C-H amination for conversion of 

structurally diverse monocyclic and fused aromatics to the corresponding primary and N-alkyl 

arylamines using either NH2/NHalkyl-O-(sulfonyl)hydroxylamines as aminating agents; the 

relatively weak RSO2O-N bond functions as an internal oxidant. The methodology is operationally 

simple, scalable, and fast at or below ambient temperature, furnishing arylamines in moderate-to-

good yields and with good regioselectivity. It can be readily extended to the synthesis of fused N-

heterocycles.

Main Text

Arylamine motifs (1, 2) are prevalent in natural products, pharmaceuticals, agrochemicals, 

functional materials, and dyestuffs as well as many synthetic reagents and catalysts (3–5). 

Most traditional methods for their synthesis from a corresponding C(sp2)-H bond involve 

multi-step sequences and/or, harsh conditions (6–8). In many instances, the initial product 

(nitro, azide, azo, nitroso, chloronitroso, amide/imide/sulfonamide, or imine) requires an 

additional step(s) before arriving at a free amine (6). The amination of organic anions is a 

useful and direct alternative (9), but is generally restricted to the introduction of –NR1R2 

(R1,R2 ≠ H) and is not applicable to base sensitive substrates. The seminal studies of Ullman 

and Goldberg into metal-mediated arene C(sp2)-N bond formation at the beginning of the 
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20th century were harbingers (10) of more efficient palladium catalyzed cross-couplings 

between aromatic halides/sulfonates and ammonia or nitrogen surrogates developed 

independently by Hartwig (11) and Buchwald (12) in the early 1990s. In turn, a steady 

succession of technical improvements, up to the present time, has been offered with the aim 

of mitigating the original stringent Hartwig-Buchwald reaction conditions (13–16). All of 

these procedures, however, are restricted by the need for a pre-functionalized arene.

In more recent years, much attention has been paid to catalytic, direct arene aminations (17–

19). Many elegant atom- and step-efficient protocols have been introduced, but virtually all 

require a directing group while others need an excess of arene, high temperatures, or 

generate amides, imides, and sulfomamides instead of free amines (20–31). A noteworthy 

exception is the photoredox driven process of Nicewicz (32) and colleagues that circumvents 

many of the preceding limitations.

Based upon a combination of experimental observations and theoretical considerations, we 

anticipated a reaction dichotomy could be achievable between dirhodium-catalyzed 

aziridination, as reported previously by our laboratories (33), and direct arene amination. 

Following a systematic investigation, proof-of-principle for arene amination vs. aziridination 

was demonstrated (Fig. 1). Treatment of 1-allyl-2-methoxybenzene (o-allylanisole, 1) with 

O-(2,4-dinitrophenyl)-hydroxylamine (2: DPH) (34) and catalytic Rh2(esp)2 (Du Bois’ 

catalyst, 6: 5 mol%) in 2,2,2-trifluoroethanol (TFE) at 0 °C afforded the corresponding 

aziridine (3) as the sole product whereas use of N-methyl-O-tosylhydroxylamine (4a) (35) 

as the aminating agent under otherwise identical conditions furnished exclusively the arene 

amination adduct 3-allyl-4-methoxy-N-methylaniline (5). Consequently, a more detailed 

study of the direct arene amination was begun and ultimately led to a versatile, 

regioselective, operationally simple and mild dirhodium-catalyzed direct arene amination 

suitable for both intermolecular and intramolecular applications. It should be noted that the 

relatively weak N-O bond of the aminating agents, many of which are commercial or readily 

prepared (33–37), functions as an internal oxidant when cleaved during the catalytic 

amination process, thus obviating the need for addition of an external oxidant to the reaction 

mixture. Also, the synchronous release of a stoichiometric amount of arylsulfonic acid 

during the amination is critical since it protonates the arylamines which would otherwise 

inactivate the Rh catalyst. In some instances, acid sensitive functionality such as epoxides 

and acetals do not survive.

Mesitylene (7a) was selected as a model arene to optimize reaction parameters. Use of 2 mol

% Rh2(esp)2 and 1.5 equivalents of aminating agent 4a in TFE as solvent smoothly 

generated N-methylaniline 8a (75%) in just 30 min at 0 °C (Fig. 2, Entry 1); comparable 

yields were obtained with 1 mol% and 0.5 mol% catalyst, except the latter required 1 h for 

complete consumption of starting material. Combinations of TFE with CH2Cl2 or MeOH in 

ratios up to 1:1 were suitable, but aminations run in EtOH or MeOH as the only solvent 

delivered poor yields (~10 to 20%) and those run in only DMF, CH3CN, THF, toluene, and 

dioxane failed. Amongst alternative Rh-catalysts, Rh2(OAc)2 and Rh2(C8H15O2)4 were the 

next best with moderate yields (~40 to 45%) while the performance by Rh2(TFA)4 was poor. 

Results from other catalysts are summarized in Table S1. Generally, reactions were 

quenched as soon as the substrate was completely consumed to minimize by-product 
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formation. Air and water (5% v/v) were well tolerated making this methodology 

operationally convenient.

The successful transfer of a nBuNH- unit to 7a from TsONHnBu (4b) affording 8b in 52% 

yield (Fig. 2, Entry 2) suggested more complex amino moieties should also be suitable. For 

the introduction of -NH2 into 7a, we used 2,4,6-Me3C6H3S(O)2ONH2 (36) (4c, 2 equiv) as 

aminating agent because of its greater stability at room temperature compared with TsONH2 

(37). Although all of 4c was consumed, a considerable amount of unreacted 7a was 

recovered and a modest yield (49%) of 8c was realized (Entry 3). On the other hand, the 

simple and expedient generation of the aminating agent in situ from 2,4,6-

Me3C6H3S(O)2ONHtBoc (4d, 1.5 equiv) and CF3CO2H (2 equiv) proved quite effective and 

boosted the yield of 8c to 70% (Entry 4), although the reaction was much slower than in the 

case of aminating agent 4c (Entry 3) and appeared to be dependent upon the rate of tBoc 

cleavage.

The results from other representative arenes are also summarized in Fig. 2. Despite having 

only a single aliphatic substituent, cyclopropylbenzene (7d) was well behaved, affording a 

1:1 p-/o-mixture (8d & 8e) in 20 min at 0 ºC with no evidence of addition to the strained 

three-membered ring (Entry 5). The directing effect in favor of the para-isomer was more 

pronounced with anisole (7f) and led to a 16:1 distribution of 8f and 8g (Entry 6). This effect 

completely dominated in veratrole (7h) that gave 8h as the predominant regioisomer (Entry 

7) and was equally evident in the conversion of 1,3-dimethyoxybenzene (7i) into 8i, 
although a minor amount (6%) of the ortho-isomer 8j was found despite the increased steric 

congestion at this site (Entry 8). Addition of acetic acid to the reaction solvent for the latter 

three examples (i.e., Entries 6–8) improved the yields and suppressed the formation of 

mauve-colored by-products that we assume arose from further oxidation of the aminated 

adducts. The ortho/para-directing effect of electron donating substituents is typical for 

electrophilic aromatic additions; the preference for the para-isomer vs. ortho might reflect 

the steric demand of the Rh-nitrenoid complex. Consistent with these results, aromatics with 

only electron-withdrawing substituents, e.g., -CF3 and –CN, fail to aminate under these 

reaction conditions.

Aryl bromide 7k (Entry 9) and terminal alkyl bromide 7l (Entry 10) endured to deliver 8k 
and a mixture of 8l/8m (3:1), respectively, leaving the halogens available for further 

manipulation, if desired. The presence of some functional groups, however, partially retard 

amination, e.g., exposure of benzyl alcohol 7n to the standard amination conditions 

generated a modest amount of 8n (42%) after 2 h (Entry 11); on the other hand, protection 

as silyl ether 7o resulted in a much improved yield of 8o (68%) (Entry 12). Fortunately, a 

synthetically useful yield of amine could be obtained even in the presence of an electron 

withdrawing substituent, e.g., 7p→8p (Entry 13). The amination process was also extended 

to fused aromatics: naphthalene (7q) and 1,4-dimethylnapthalene (7r) gave rise to N-

methyl-1-naphthylamine (8q, Entry 14) and N-methyl-1,4-dimethyl-2-naphthylamine (8r, 

Entry 15), respectively, while 2-methoxynaphthalene (7s) readily underwent amination to 

give 8s in 85% yield on a 0.5 mmol scale and in 80% yield on a 5 mmol scale (Entry 16). 

The smooth amination of 2-methoxy-6-bromonaphthalene (7t) into N-methyl-2-methoxy-6-

Paudyal et al. Page 3

Science. Author manuscript; available in PMC 2016 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bromo-1-naphthylamine (8t, Entry 17) succinctly illustrates the chemo- and regio-

selectivities of this methodology.

To validate the suitability of this methodology for late stage functionalization of complex 

molecules, O-methylestrone (7u) was smoothly converted to a mixture of 8u and 8v (1:7.2, 

Entry 18) in very good combined yield while only one regioisomer 8w (Entry 19) was 

obtained from the parent phenol, estrone (7w), thus demonstrating its applicability to 

substrates containing potentially sensitive benzylic, tertiary, and α-keto hydrogens. The 

scope was further defined with the amination of methyl naproxen 7x to 8x (Entry 20) and 

morphine derivative 7y to 8y (Entry 21). The latter required the addition of p-toluenesulfonic 

acid (2.5 equiv) to ensure the teriary amine was fully protonated to avoid passification of the 

catalyst.

The intramolecular version of the amination proved quite facile and represents one of the 

mildest and most efficient aza-annulations currently available to the practitioner (Fig. 3) (38, 

39). The enabling amination functionality was introduced in uniformly good yields via the 

Mitsunobu inversion under standard conditions from the corresponding alcohols. Acidic 

cleavage of the tBoc and subsequent in situ amination proceeded at 0 °C. Fused aza-

annulated bicycles were created in good yields irrespective of additional ring substituents, 

10a→11a (Entry 1), electron donating, 10b→11b (Entry 2), or electron withdrawing 

functionality, 10c→11c (Entry 3) and 10d→11d (Entry 4). Control studies of the reaction of 

10b confirmed that there was less than 2% of the ortho-annulation product, 8-

methoxy-1,2,3,4-tetrahydroquinoline, based upon 13C NMR analysis of the crude reaction 

product (Fig. S5–S6). Secondary alcohols likewise participated readily in the Mitsunobu and 

aza-annulation reactions, 9e→10e→11e (Entry 5). This 2-step sequence, when conducted 

using the chiral alcohol 9f, showed no loss of stereochemical integrity (Entry 6). 

Incorporation of a heteroatom into the ring closure, e.g., 9g→10g→11g (Entry 7), did not 

perturb the chemistry and provided easy access to the dihydrobenzoxazine class of 

heterocycles. The yield declined somewhat for making the 5-membered dihydroindole 11h 
from alcohol 9h (Entry 8), but improved for the 7-membered tetrahydrobenzazepine 11i 
from 9i (Entry 9).

As a beginning towards gaining insight into the mechanism of the amination, a 1:1 mixture 

of naphthalene (7q) and 7q-d8 was treated with a limited amount of amination reagent (4a, 

0.5 equiv) under otherwise standard reaction conditions. Samples were taken and quenched 

at 10, 20, 30 and 40 min. Analysis via SIM-LC/MS revealed the product ratios remained 

constant at ~1:1, a ratio inconsistent with an organometallic C-H activation pathway which 

are typically ~3:1 or higher (40, 41). Based on density functional theory calculations, we 

previously suggested that aziridination of alkenes involves the dirhodium-nitrenoid 

intermediate B shown in Fig. 4 that arises from overall NH transfer from the DPH-aminating 

reagent to the dirhodium catalyst (33). In contrast, reaction of O-tosylhydroxylamine 

reagents with the dirhodium catalyst favor intermediate A because TsO− is weakly basic and 

the equilibrium with intermediates B lies far to the left. The chemoselectivity might be 

explained by the more electrophilic nature of intermediate A versus nitrenoid B. This 

preliminary hypothesis is consistent with the observation that moderate to strong bases such 

as K2CO3, Et3N, and pyridine completely inhibit amination, but not aziridination. Moreover, 
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addition of TsOH (1.5 equiv) to the reaction of 1 with 2,4-DNPONHMe (12) produced only 

the arene amination adduct 5 and no aziridine. As an additional control, it was shown that 

the presence of 2,4-DNP-OH (1.5 equiv) did not alter the reaction manifold in favor of 

aziridination when 4a was utilized as the aminating reagent and only 5 was observed.

It was also instructive to compare our methodology with the intermolecular Rh-catalyzed 

amination procedure of Du Bois to gain a perspective of their respective complementary 

chemoselectivities (Fig. 4) (42). Both have similar efficiency using p-ethylanisole (13), but 

the Du Bois procedure leads to benzylic C-H insertion only whereas our methodology gives 

arene amination exclusively providing 15 and 16 in a combined 67% yield.

The influence of ligands and counter ions on the reactivity of organometallics is well 

precedented (43, 44). However, examples of such dramatic bifurcation of the reaction 

manifold are rare and warrant closer study to understand the energetics and full synthetic 

potential of this metalloid-nitrogen umpolung for direct arene aminations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A dramatic shift in chemoselectivity arises with different aminating agents
o-Allylanisole (1) undergoes chemoselective olefin aziridination in the presence of catalytic 

Rh2(esp)2 (6) and aminating agent DPH (2) in 2,2,2-trifluoroethanol (TFE = CF3CH2OH) to 

give 3. Changing the aminating agent to TsONHMe (4a) furnishes the corresponding N-Me 

aniline (5).
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Fig. 2. Direct intermolecular amination of arenes
Reactions were conducted on a 0.1–0.5 mmole scale at 0.1 M using 2,2,2-trifluoroethanol 

(TFE = CF3CH2OH) as solvent or using mixtures of TFE and other solvents as indicated.
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Fig. 3. Direct intramolecular cyclization (aza-annulation) of arenes
Cyclizations were conducted at 0.1 M using 2,2,2-trifluoroethanol (TFE = CF3CH2OH) as 

the solvent on a 0.1–0.3 mmol scale unless otherwise indicated.
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Fig. 4. 
Proposed intermediates leading to amination versus aziridination and control study of arene 

amination vs benzylic C-H insertion.
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