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DIRICHLET AND NEUMANN PROBLEMS FOR PLANAR
DOMAINS WITH PARAMETER

FLORIAN BERTRAND AND XIANGHONG GONG

ABSTRACT. Let I'(-,\) be smooth, i.e. C>, embeddings from Q onto ﬁ,
where Q and Q* are bounded domains with smooth boundary in the complex
plane and A varies in I = [0,1]. Suppose that I" is smooth on QxTITand fisa
smooth function on 8Q x I. Let u(-,\) be the harmonic functions on Q* with
boundary values f(-,\). We show that u(I'(z, ), \) is smooth on  x I. Our
main result is proved for suitable Holder spaces for the Dirichlet and Neumann
problems with parameter. By observing that the regularity of solutions of the
two problems with parameter is not local, we show the existence of smooth
embeddings T'(-, \) from D, the closure of the unit disc, onto Q* such that T is
smooth on D x I and real analytic at (v/—1,0) € D x I, but for every family of
Riemann mappings R(-,A) from Q> onto D, the function R(I'(z,)), ) is not
real analytic at (v/—1,0) € D x I.

1. INTRODUCTION

Let £ > 0 be an integer and 0 < a < 1. Let Q* (0 < XA < 1) be a family of
bounded domains in C of C*¥*1+% boundary. Let f* and g* be C® functions on
0Q*. We consider the Dirichlet problem with parameter

(1.1) Au* =0 on Q*, ut = A on 90,
By analogy, the Neumann problem with parameter is
(1.2) Av* =0 on QY I =g on 0Q*.

Here A is the Laplacian and »* is the outer unit normal vector of 9Q*. For the
existence and uniqueness of solutions v*, we impose conditions

(1.3) / g do* =0, / v} do* =0,
o0r oA

with do? being the arc-length element of 9Q*. We are interested in the regularity of
solutions u*, v* in the parameter \. To state our results, we first define two Holder
spaces. Let integers k,j satisfy k > j > 0. By an element {u?} in Ck¥+*J(9Q)
(resp. C¥TJ(Q)) we mean a family of functions u* on 9Q (resp. Q) such that, for
every integer i with 0 < i < j, A — 9iu’ is a continuous map from [0, 1] into
CF=i2(9Q) (resp. Ck~+(Q)). We will prove the following.
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160 F. BERTRAND AND X. GONG

Proposition 1.1. Let non-negative integers I,k and j satisfy k > j and k + 1 >
1>j. Let0 < a< 1. Let Q be a bounded domain in C with C**1 boundary. Let
T (A € [0,1]) embed Q onto Q*(C C) with {T*} in C¥1+3(Q). Assume that f>
and g* are functions on OQ* such that {f* oT*} is in C'H9(0Q) and {g* o T} is
in Ck+ed(9Q). For each X, let u* € C*(Q) be the unique solution to (L1) and let
v € CH) be the unique solution to (L2)-(L3). Then {u* o T*} is in CHHed(Q)
and {v* o T} is in CFH1+ed(Q).

We observe that if a function u is harmonic on the unit disc D and is continuous
on D, then the product b(\)u(z) for a function b on [0,1] is still harmonic on D.
Thus, even if bu is real analytic near a point (p,0) € 9D x [0,1], bu might not
be C! near the same point (p,0) € D x [0,1]. Such an example is provided when
u|op vanishes near p but is not identically zero and b is continuous on [0, 1] but not
differentiable at 0. Therefore, the regularity of solutions for the Dirichlet problem
with parameter is not a local property. By contrast, the harmonic function u must
be C¥ near p € D when ulgp is C¥ near p € dD. The observation leads us to
demonstrate the failure of the local Schwarz reflection principle with parameter by
the following result.

Theorem 1.2. There are embeddings T'(-, \) from D onto Q* such that T is C> on
E =D x [0,1] and real analytic at (1,0) € E, but R(T'(z,\), \) is not real analytic
at (1,0) € E for every family of Riemann mappings R(-,\) from Q> onto D.

The existences of solutions u*, v* in Proposition [T are classical results; see Kel-

logg [8] for the Dirichlet problem and Miranda [I1] (p. 84) for work of Giraud on
the Neumann problem. For a higher dimensional Dirichlet problem, see Gilbarg-
Trudinger ([4], p. 211, Theorem 8.34). The reader is referred to [I1] for extensive
references. We will use the Fredholm theory on compact integral operators. Of
course, the compactness of the integral operators is valid when the parameter is
fixed and it will play important roles in our arguments, although there is no com-
pactness when all variables are considered. With some modifications, we will follow
Kellogg’s approach to the Dirichlet problem ([6]-[9]). For instance, by construct-
ing a second resolvent, Kellogg proved the C'*#-regularity of the solutions to the
Dirichlet problem for C'*® boundary ([7]). Instead, we will obtain the regularity
of solutions to the Dirichlet problem via the integral equations associated to the
Neumann problem. The reduction can be achieved because solving the Dirichlet
problem on a simply connected planar domain can be reduced to finding a har-
monic conjugate of the solution. We do not meet difficulties in the reduction for
multi-connected domains. Using the Cauchy transform, we will also refine Kellogg’s
original arguments to recover a loss of regularity. We mention that Courant proved
a version of Carathéodory’s Riemann mapping theorem for variable Jordan domains
(see [14], p. 383). Courant’s theorem implies the continuous, i.e. C°, dependence
of solutions to the Dirichlet problems for Jordan domains with parameter. One
of the applications of solutions of the planar Dirichlet problem is Kellogg’s theo-
rem on the boundary regularity of Riemann mappings for Jordan domains of C!*+¢
boundary [7]. Warschawski proved the sharp version of Kellogg’s Riemann mapping
theorem for Jordan domains of Ck¥*% boundary for all k& > 0 ([I6], [17]); see also
Pommerenke [13] (p. 49). As an immediate consequence of Proposition [[I] we get
a parameter version of Kellogg’s Riemann mapping theorem in Corollary
The paper is organized as follows.
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DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 161

In section 2, we define various Holder spaces for domains and functions with
parameter. We discuss the dependence of function spaces on the parameterizations
of domains and their boundaries. Section B contains some standard estimates on
Cauchy transform (see Vekua [I5]). We present details, as the arguments are used
in the parameter case. In section Hl we refine Kellogg’s estimates on kernels for
the integral equations; lacking a reference to the sharp regularity on solutions to
the integral equations, we provide some details. These arguments are generalized in
section Bl for the parameter case. In section[fl after collecting results about compact
operators for the Dirichlet and Neumann problems, we deduce the C! regularity of
solutions of the integral equation for the Dirichlet problem in Lemma [6.3]

Section [7l consists of our main results about the regularity of solutions of integral
equations with parameter. For the proofs, we differentiate integral equations and
orthogonal projections onto the null spaces of I + K* and I + (K*)* and we then
derive estimates by using the compactness of integral operators X* and (C*)* for
fixed parameter A. In section 8] we thoroughly discuss the Holder spaces defined in
section [2] before we define the spaces for exterior domains with parameter. In sec-
tion @ we solve the real analytic integral equations for the Dirichlet and Neumann
problems with a real analytic parameter. Our main results, Theorems and [[2]
are proved in section [@ Proposition [[L1lis contained in Theorem

Note that when domains Q* are fixed and only the boundary values vary with
a parameter, our results essentially follow from the solutions of Dirichlet and Neu-
mann problems without parameter. Furthermore, the results hold for general
Holder spaces with parameter (see the remark at the end of section [@). With
Holder spaces to be defined in section 2] we state the following open problem.

Problem A. Let k,[,j be non-negative integers. Let [ < k+1and 0 < a < 1. Let
' embed Q onto Q*, where Q and Q* are bounded domains in C. Let u* € CO(Q*)
be harmonic functions on Q). Suppose that 9Q € Ck+1+e I e A9 (Q), and
{u* o T*} € LT3 (09). s {u* o T*} in CLT*9(Q) for j > 07

We would expect that, with minor modifications, analogous results for the Dirich-
let and Neumann problems with parameter hold for the higher dimensional case.
However, precise regularities remain to be studied. In our estimates for planar
domains, we will take advantage of the Cauchy kernel in the proof of Proposition
Besides the higher dimensional Dirichlet and Neumann problems, the following
problem remains open.

Problem B. Let n > 2. Let Q7 and 2 be two C* families of bounded domains in
C™ with C* boundaries. Assume that Q7 and 23 are biholomorphically equivalent
for each A € [0,1]. Does there exist a family of biholomorphic maps f* mapping
Q7 onto Q3 for X € [0, 1] such that A — f* depends smoothly on \?

2. HOLDER SPACES FOR INTERIOR DOMAINS WITH PARAMETER

To deal with the Dirichlet problem with parameter, we will introduce two types
of Holder spaces with parameter, Ck*%J(Qr) and BX+*J(Qr). Both are suitable
for the formulation and proofs of our results. In this paper the parameter A will
vary in [0, 1], unless it is restricted to a subinterval.

We first define spaces when a domain is fixed. Let k,j be non-negative integers
and let 0 < a < 1. Let © be a bounded domain in C. Let C*¥*(Q2) be the standard

Holder spaces with norm | - |p4o on . Let u* be a family of functions on .
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162 F. BERTRAND AND X. GONG

We say that {u*} belongs to BT (Q), abbreviated by u = {u*} € Bt/ (Q),
if A = 9iu® maps [0,1] continuously into C*(Q) and boundedly into Ck¥+(Q) for
each i with 0 < i < j. We say {u*} € CFT*9(Q) if 9w maps [0,1] continuously
into Ck+(Q) for 0 < i < j. We define BE¥T*7(9Q) and its subspace CL*7 (8Q) by
substituting Q with 9Q € C¥** N C" in the above expressions.

Next, we define spaces on domains with parameter. Let r* (0<A<1) bea
family of C! embeddings from Q onto Q*, and let 4> (0 <X <1) be a family of C!
embeddings from 99 onto dN*. Suppose that u* is a family of functions on Q* or
on 0. Define the following:

o {ur} € BFTI(Qr) if {u* o T} € BFTI ()

o {u*} € CETI(Qr) if {u* o TA} € CFT I (Q);

o {ur} € BET™I(90,) if {u* 04>} € BET*I(00);

o {ur} € CFTI(00,) if {ut oy} € CET (50).
For integers k > j > 0, define

J J
Bred (@Qp) = () BETH(@r), €M (@p) = () CET Q).
i=0 i=0

Substituting Qr with 92, in the above identities, we define B**®J(9Q,) and
Ck+"’j(897); dropping the subscripts I and ~ from the above identities, we de-
fine Bk (Q), Ck+i(Q), BF+*J(9Q) and CF+*7(9Q), respectively. The norms
on these spaces are defined and abbreviated as follows:

(21)  Julkgay = sup  {|Ou}|kra} if ue BIT(09Q) or BitI(Q),
0<i<j,A€[0,1]

(2.2) [ulktay = {u* o T Migays  [ulkray = {ut 07 Higa

(2.3) lullk+a,; = max{[ulp—ita,i: 0 <i<j}, j <k

The definition of spaces BE %7 (99) requires 8Q € Ck+*NC! implicitly. Throughout
the paper, we assume that Q is bounded, 99 € C!, T' € C10(Q) and v € C10(90).
For X = 99 or Q and 0 < j,k < oo, define BET™(X) = (2,4, ;501 BEH(X).
For j < k < oo, define BFt*J(X) = Nicichiticii Bi*ei(X). Define analogous
spaces by replacing B and B, with C and C,, respectively.

Having defined the spaces, we now briefly discuss how they depend on the em-
beddings. We first need a fact to change the order of differentiation. Let 0; = 0,
be derivatives on R™.

Lemma 2.1. Let f be a continuous function defined on an open subset  of R™.
Assume that on Q, 0;, ---0;, f = g is continuous and (%].1 ~-~8i].lf are continuous
forall1 <jiy <--- <ji <k. Then Oy --- 0y [ exists and equals g, where 9;, -~-8i;€
is a change of order of 0;, - - 0;, .

Proof. Let x be any smooth function with compact support in 2. Replace f by x f.
Then f satisfies the same hypotheses and it suffices to verify the assertion for the
new f. Assume that supp f C (a,00)” for a finite a. Let X be the set of continuous
functions on R™ with support in (a,00)”. Define Z;: X — X by

Ii¢(x):/ A1, T, t, T, -, o) dE.
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DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 163

Then Z,Z; = I;Z; on X. Also, 0;L;f = f = Z;0;f if f and 0;f are in X. Now
f=1,-Ti,g =1y -1y g, which yields 0y --- 0y f = g. O

The above lemma shows that 8Ly7/\ = 8£’y8§ holds on C¥7(Q) if |I] = k and OF

, z, Y\
is obtained from 9! &} by changing the order of differentiation. Also, 87{: \ = 0Fs
on CF7(8Q) if 3£ , is a change of order of 3581. Here 7 is a continuous unit tangent
vector field on 0€.

Lemma 2.2. Let Q be a bounded domain with 9Q € C*** N CL. Let T} and T3
embed Q onto Q*. Let 47 and 3 embed Q) onto 9N,

(i) A C' mapping from Q into Qy pulls back C*° (1) and B*O () into C*0 ()
and B*°(Q), respectively.

(i) Let ©* map Q into an open subset D of R™. If F is a function in C1(D)
and ¢ € BY0(Q), then {Fop*} € B*9(Q). If F € C*(D) and p € C*° (),
then {F o o*} € C*9(Q).

(iii) If T; € B*t*3(Q) NnCH0(Q), then B*+*3(Qr,) = B**3(Qr,).

(iv) Let a > 0. If (I'3)"'T'y are independent of A\ and T'; are in C*+*3(Q) N
ChO(Q), then CF+3(Qr,) = CF+3(Qr,).

The assertions in (i)- (iv) remain true if 9Q, 0, 00, and ~y; substitute for Q,
Q1, O, and T;, respectively. The identical spaces in (iii) and (iv) have equivalent
norms.

Proof. (i) Since 9Q € C!, then |p(22) — p(21)| < Clza — 21| if ¢ € C1(Q) or C1(59).
The assertions follow immediately from the definition of the spaces.

(ii) We take a bounded open subset D’ of D such that D’ has piecewise smooth
boundary and contains ranges of all ¢*. Since F is C', then F' is Lipschitz on D’.
It is easy to check that {F o ¢*} is in B*?. Assume now that ' € C2. We already
know that {F o ¢} is in B*?. Without loss of generality, we may assume that
|A2 — A1] is so small that the range of tp*2 4+ (1 — )™ for 0 < ¢ < 1 is contained
in D’. Then VF is Lipschitz on D’. Write

(F(™) - F(p™))(z) = (9™ — ™) (x) - / (VF)((t0™ + (1 — t)g™)(2)) dt.

We obtain [F(¢*2) — F(p™M)la < Clp* = oM a(l + [02]a + [¢*|a). Hence,
{Foyp*} e C*0.
(iii) Let I'} o'}y = I'y. Since I'} are embeddings with T'; € C19(Q), we have

€= 2l/C < T5(¢) = T12(2)] £ CI¢ — 2.

Note that on C*7(Q) all mixed derivatives of order & — j in x,y and of order j
in A can be written as 9%~J *aagai. Abbreviate the latter derivatives as a set by
ok—1 81. For a latter purpose of expressing a commutator, it will be convenient to
write first-order derivatives of a function in a column vector. So let us form the
Jacobean matrix (T'})’ of the (real) map I'} in such a way. Then the chain rule
takes the form

(1) = (I'}y) ([Y) 0Ty,  9AI% = (0xI}) o'}y + 0I5 (I}) o Iy
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164 F. BERTRAND AND X. GONG

We solve for '}, and 9xI'}y; in general, for k > j, we express 9%~7 8§F{‘2 as a
polynomial in

(2.4) [det(I'}) o T3] 7Y, 0°O/T3, (9°RIY) 0Ty, a+b<kb<j
To repeat the above computation for 77, let (v7') 073, = 73. Then
0r73 (2) = 9:715(07 1) © 11,
915 (2) = (Oa17) 01y + e (9:m1) 077 (2)-
Hence 8f’j8§;'yf‘2 is a polynomial in
(2.5) [(0-91) o] OO%3. (9703 ) oMy, a+b <k, b<j.

Assume that I'1, Ty are in B¥T®J. Then functions in (4] are in B*?, so I'15 €
BF i (). Foru € B¥ i (Qr,), we express 978 (u*ol'}) as a linear combination
of (8“1821 (ur 0 T3)) o'}y € B> whose coefficients are polynomials in entries
of (24). Here we replace the (a,b) in Z4) by (asz,be); also a; +b; < k and
by + by < j. Therefore, u € B**J(Qr,). Assume now that u € B (9Q,).
Then 9578 (u* 073) is a linear combination in 9219 (u* 0 73') whose coefficients
are polynomials in (Z5]) with (a, ) being replaced by (a2, b2). Here a; +b; < k and
b1 + by < j. Thus, we get u € BF¥F*3(90,,).

(iv) Assume that I'y, Ty are in C¥+%J(Q). By the independence of I'}, = I'j5 in
A and (i), we know that all functions in (Z4)) are in C*°(Q). Furthermore,

(000 (u! oTH)) 0Ty — (0™ 03 (u* o T7)) o Tafa
< Clo™ 8 (ut o TY) — 9 0Y (u 0 T7) o

Let u € Ck+%J(Qr,). The above inequality shows that (8“185’\1 (ut oT'})) 0T}y are
in C*9(Q). By (ii), the latter is closed under addition, multiplication, and division
(for the non-vanishing denominator); hence, u is in C¥**J(Qr,). By analogy, we
can verify that C**®J(9Q,,) = C*+*3(99,,). For (iii) and (iv), the equivalence of
norms is easy to verify too. O

We now set up some notation to be used throughout the paper.

We assume that Q and Q* are bounded domains of at least C! boundary. We
denote by 4 the outer boundary of Q and by 44, ..., 4., the connected components
of its inner boundary. Without loss of generality, we choose the standard orientation
for 09 and 00 and assume that C' embeddings v*: 092 — 90 preserve the
orientation and send outer boundary to outer boundary. Denote by 7 and 7> the
unit tangential vectors of 9Q and 9Q* that agree with the orientation, and by v and
v the outer unit normal vectors of 9Q and 9Q*. The arc-length elements on 9
and 90" are denoted by do and do?, respectively. Sometimes we parameterize 02
by 4(t) in arc-length such that dt agrees with the orientation of 92, and we regard
7. and 4/(t) as complex numbers instead of vectors. With the above notation, on
09 we have

(2.6) df =0, fdo, do(¢)=7¢d¢, do*=|0.4"|do.

__To simplify the use of the chain rule, we need to compute derivatives in o0 or
QN At 22 =47 (2), we define (Oyu?)(2}) = Ox(u* (7)) and

(2.7) 72 =100 (2), (0put)(2Y) = 1097 (2) 1O (W (V) (2).
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DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 165

Note that [dy,d,] = 0 on C+'(9Q). On Co' (99, with v € CH(89) we define and
compute the following commutator:

(2.8) 00, 0-2]1(F2(21)) = Oa[0,2 (S} (2M)] = D2 [OA (S ()],
(2.9) (07, 0r2] = |0 7MOA] 07777102 = —(Ox10g [0 7))

Therefore, for v € C27(92) N C+°(99Q), we have

Drx: CHI(02,) — CE719(0Q,),  Ox: CH(09,) — CHI71(0Q,),
[0, 0-3]: €7 (892,) — €771 (09,

whenever the exponents are non-negative. For v € C*7(9), we have

Do CHI(00,) — CF19(09,), k— 1> j;
On: CFI(0Q,) — CF1I71(90,);
[0, O;2]: CFI(0Q,) — CF2971(0Q,), k>j+1>2
[0, 0,2 CF9(09,) — CF1971(9Q,), for v € CFHI(0Q) and k > 1.

Throughout the paper, we denote by Cj4q,; or C a constant which depends on

(2.10) Sl;pldet(FA)'lal, [T N0, 1Tkt 11717 oy 3]0 1Alk+as

where 4 is a parameterization for 9Q of class ¥+ N C'. We also denote by Cjyq
or C' a constant which depends on the last three quantities. The constants C/, 5. j
will depend only on quantities in ([ZI0), where ||T'||x+q,; is replaced by |T'|ita,;-

A consequence of ([271)-(29) is the following.

Lemma 2.3. Let 92 € CFreNCL. Let v* embed 9Q onto 90N with v € BE+:3(99)
N CHO(8Q). Then {ur} € BM*3(09,) if and only if {0%05u*} or {930 ur} is
in BY0(9Q,) for every (a,b) with a+b <k and b < j. Moreover,

Crtailtliras; < > sup 05850 a0 < Chrayllullita-
a+b<k,b<j

These conclusions remain true if CktJ and C*° substitute for BF*J and B0,
respectively.

We distinguish the first-order derivatives on Q* by 9, in real variables z* and
denote the first-order derivatives on Q by d,. Then for z* = I'*(x),

(2.11) Opru = (0,TN) 710, (ut o TH).

Combining with [0y, ;] = 0, we define and compute on Ci’l(ﬁp) with " € Ci’l(ﬁ)
the following commutator:

(2.12) [0, 05 ](F2(27)) = 0x[0r (S (@™))] = Do [ (S (=),
(2.13) [Ox, Opr] = 8A((8x1“’\)*1)8x1“’\8mx.
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A

We denote by 92, the derivatives of order a in 2. The following can be easily

verified.

Lemma 2.4. Let I embed Q onto QX with T € BF+i (Q) ﬂle(ﬁ). Then {u*} €
BE+ed (Qr) if and only if {9%.05u} or {050%ur} is in B*0(Qr) for every (a,b)
with a +b < k and b < 5. Moreover,

Citallulliras < Y0 10085t ao < Crrallullita:

a+b<k,b<j

The conclusions remain true if C*+t*J and C*0 substitute for B¥+*7 and B>,
respectively.

We have seen the dependence of spaces C*¥T®7J in parameterizations through
Lemma Throughout the paper, we assume that v is the restriction of I'* on
9. In section§ we will return to further discuss the spaces C¥+1+@.J and Bk+1+a.J
and define Holder spaces for exterior domains.

We conclude the section with further notation. Recall that Q € C' is bounded
and has the standard orientation. On 99 x 9Q and off its diagonal, define K(z,() =
19, arg(z — ¢). By [Z0), we have K(z,{)do({) = Ld arg(z — (), and hence

G

K(z,{)do(() =1, =€ 0.
[219]

A basic property of kernel K is that |K(z,¢)] < C|¢ — 2|*7! for ¢,z € Q when
9Q € C'™ with 0 < a < 1. By Fubini’s theorem and Hélder inequalities (or
Young’s inequality), we have two bounded operators on LP(9) (p > 1):

Kf(z)= [ f(OK(2,¢)do(C), K'f(z)= [ FQOK(( z2)do(C).
o9 o9

These two operators play important roles in solving the Dirichlet and Neumann
problems. We will regard K and K* as operators on L'(9f)), unless otherwise
specified.

3. INTEGRAL EQUATIONS FOR DIRICHLET AND NEUMANN PROBLEMS

In this section and the next, we will present some standard estimates about
integral operators. For the sake of exposition clarity, we include some details for
the estimates. We will then adapt these estimates in section [ for the parameter

case.
Let Q be a bounded domain in C with C! boundary and let f € L}(9€). On Q
and Q' = C\ €, the double and single potentials with moment f are respectively

(31) U = 1 [ £(Q0 ane (= O o),

(32) Wi = [ F(Oogls—¢ldoc).

The following formulae lead the classical solutions of the Dirichlet and Neumann
problems via the Fredholm theory; for instance, see [10] (pp. 381-390).
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Proposition 3.1. Let 9Q € C with 0 < a < 1. Suppose that f is a continuous
function on Q. Then W f is continuous on C and U f extends to functions Utfe
C°(Q) and U~ f € CO(Y). On 09,

(3.3) Utf=f+Kf, U f=-f+Kf;
(3.4) OWf=f+Kf, -0 Wf=—f+KFf

Proof. Recall that we parameterize 92 by v(t) such that dt is the arc-length element
agreeing with the standard orientation of 0€2. Let [ be the arc-length of 9Q). We
abbreviate f(y(t)), 7(v(t)), and v(v(¢)) by f(t),7(t), and v(t), respectively.

Write v(t) = v(s)+7(s)(t—s)+ R(t, s) with |R(¢t, s)| < |t—s|/4 for |t—s] < 1/C.
Then

(3.5) h2 + |t — s]2/2 < |v(s) + hv(s) — y(t)] < 24/h% + |t — |

For a latter purpose we remark that the above merely needs v € C'. Note that

v(t) - (v(t) —v(s)) = v(t)- fst(*y’(r) —~/(t)) dr. Returning to the condition v € C1*,

we have, for |t — s| < 1/C,

v(t) - (&) = ()| _ Cls —t]™*e
t

(3:6) A(s) + harls) —

< Cls—t|* .
B =i e =

In particular,

) £t~ = 1 SO

satisfies |k(s,t)| < C|s —t|*~1, and k(s,-) is integrable.
Recall that

l
U = 1 [ 109 =)

Fix a small € > 0 and v(s) € 99. Let § = dist(z,0). Choose s, such that
|v(s+) — z| = §. Note that as v € C'T® with a < 1, s, may not be unique even if
0 is sufficiently small. Nevertheless, z = v(s.) + dv(s«). Let |z — v(s)| be so small
that |s. — s| < €/2. We have

v(t) (v(t) =(s)) | v() - (v(ss) —2)

Orarg(z —(t) = = G RIOEETR

By (85)-(B), we get

|0 arg(z — (1)) =

. — _ 14+«
vt - () — )| St s+
(&) =z T 24t = s?

Since s, depends only on z, this shows that

l
(3.7) / 0, ara(= (1) dt < Co, zeC.
0

Here (Y is independent of s,z and §. We have

l
I/0 (f(t) = f(5))(Brarg (= — (1)) — Brarg (v(s) — (1)) dt|

< 2 fllo sup |0 arg(z — () — O arg(v(s) — (1))
IC=(s)|>e

+2Co sup |f(t) — f(s)].

[t—s|<e
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By B and the continuity of f at s, we conclude

l
(3.8) fim / (F() — F(5))0 arg (= — A(1)) dt
0

ONFz—(s

l
- / (F(t) — F(s))0y axg (v(s) — 7(1)) dt.

Expand both sides. By the values of fé Oparg(z —y(t)) dt on C, we get (B3).
For ([B4]), recall that

l
=~ [ #®0zlz (0 .

We want to show that the interior and exterior normal derivatives of W f exist at
~(s). Let |h| > 0 be small. By the fundamental theorem of calculus, we have

Wf(7(5)+h’/( )) / / (v(s) = (1)) drdt
+7“hV( ) = (@O
t)rhdrdt def
/ / —H"hz/ ) =@ [alsh)+ Ra(s:h).
We see that Ry(s,h) tends to fo f(t)% dt as h — 0, by ([B.6) and the

dominated convergence theorem.

Decompose Ry into integrals R., R/ in (t,r) with [t — s| < € and |t — s| > e,
respectively. It is immediate that, for fixed € > 0, R/ (s, h) tends to 0 as h — 0.
Note that the integrand in R, does not change the sign when f > 0. By the
continuity of f, it remains to show that when f =1,

(3.9) lim hm R.(s,h) =m, lim lim R.(s,h) = —
e—0 h— e—0 h—0—

Let E(s,t) = v(s) —v(t)+7'(s)(t—s). Then |E(s,t)| < C|s—t|*T<, and for |h| < 1,
[Y(s) + hv(s) =y () = | = 7(s)(t = 5) + hw(s) + E(s, 1)
= (s —t)2+ h® + E(s,t,h),
|E(s,t,h)] < C(|h||t — s|*T + |t — s|>F) < 2C€*(h? + |5 — t]?).
Let h tend to 0T and then let € tend to 0. We get

R.(s,h) = (1+ Ce%) / / rhdrdt — .
t—s|<e S_t T‘h)

This yields the first identity in ([B.9]). The second is obtained by analogy. O
Let Q be a bounded domain in C with C! boundary. Recall the Cauchy transform
1 f(Q)
3.10 = — d
(310) e = g | Lol ac

on C\ 09 for f € L(99Q). Away from 99,
Uf =2ReCf, for f=f; 0.Wf=—iC[Ff].
We will derive estimates of U f, W f via Cf when f is in Holder spaces.

Lemma 3.2. Let 0 < o <1 and let k,1 > 0 be integers. Let 2 be a bounded domain
in C with 0Q € C' and let ' = C\ Q.
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(i) Let f be a function in C*(0SY). Then Cf extends to functions CTf € C*(Q)
and C~ f € C*(SY). Moreover, on 05,

N T N
R g M= S oy (O R VO (E)
(ii) Let f € C'T(09Q) and 0Q € C*T1+ with k+1 > 1. Then C*Tf € C1+2(Q)
and C~ f € CHe (V). If f and 0K are real analytic, then C* f € C*(Q).
(w5i) If f € L™>(0R), then W f extends to a continuous function on C.

Proof. (i) Let z ¢ 0Q and let z,. = 7(s) satisfy |z — z,| = dist(z,002) = §. Assume
that § is small. We have

/ _ L f(C) — f(z*)
€)= 5oz | T de
By B3, [(Cf) (2)| < Cfooo(r +9)272dr < C'571T = C' dist(z,002) "1 7. By the
Hardy-Littlewood lemma, Cf is of class C® on Q and .
To find the boundary values of C* f and C™ f, it suffices to compute limits of C f
in the normal directions. Let z = (s) + dv(s) € Q' and z, = (s). Write
_ 1 — f(z«

270 Jag C—=z
By ([3.3), we obtain

t —

FOO) = FOE] _ gy ot
[y(t) — 2|

By the dominated convergence theorem, we find on 92

C™ f(z) = 1 qu

271 80 C—Z*

Analogously, we can verify the formula for CT f.
(ii) For higher-order derivatives, for | < k + 1 we get from (2.6

0.01() = 5 [ FOE - [ 7o) %

T2 Joa (C— 2 270 Jog =
I _ 1 (T0)'f(Q)
(3.12) oLes(z) = o /8 I
gy - L[ F0)Q ~ (7)1 ()
9;7Cf(2) = 5 /{m =L dc.

By (B3) again, we obtain

(3.13) |0.CF(2)] < 1(70:)! flo + CLl(TO:)! fla,
01 F (2)] < Ch[(70-)' fla dist(z,00) 1.

Therefore, Cf is of class C'** on Q and .

For the real analytic case, we note that the constant C in ([3I3)) is independent
of . By Taylor’s theorem, a function f on Q with 9Q € C¥ is real analytic if and
only if o o

0201 f(2)| < iljtCTH
for some C' > 1 independent of z. Note that |(70,) f|lo < C|(70;)"*1f(2)|o. By
@BI3) it suffices to show that near each point zy € 9, we have

(3.14) |(F0,) f(2)] < CHHLL.
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Let © — ¢(x) be a local real analytic parameterization of 9 with ¢(0) = zy. Then
(de~1)(70,) is given by A(x)0, with A # 0. Extend ¢(z), A(x) and f(p(x))
as holomorphic functions and denote them by the same symbols. We find lo-
cal holomorphic coordinates z = 1 (w) such that (d,v) *(A49,) = 8,. Then
(TN f(C) = 0L (f o @ o)(w) with ¢ = ¢ o(w). Since f o ¢ o1 is holomor-
phic, we easily get ([B.14).

(iii) One can verify the continuity of W f via ([B.3]). O

4. DERIVATIVES OF KCf AND K*f

In this section, we recall some calculations on kernels by Kellogg [7], [8] and
express K and K* via the Cauchy transform. We write v, = v(t), 7,4 = 7(1)
and f(y(t)) = f(t). Let l; be the length of the j-th component v; of 9€2. Recall
that v is the outer boundary of 9. Set [_; = 0.

Lemma 4.1. Let 0Q € CFT1H with k>0 and 0 < a < 1. On 9Q x 99, we have

(4.1) 105 K(C,2)] < Chsrralz — ¢7,
|22 — 21|
. — < s -
(4 2) |K(227C) K(ZhC)‘ —Cl+a|<_zl|2fo¢’
(43) 08 K(C,2) — 08 K(C20)] < Chpryal 222"

¢ ==zl

where the last two inequalities require | — z1| > 2|22 — #1].

Proof. We first verify (£2). We have
= 6D e —uw . [ ) — o () dr
Ouare(r(s) = 2(0) = — XN N = wlt)- [ (/)= @)
First, we obtain |N(s1,t)| < C|t — s1|'™ and
[I7(s2) = v(@)1* = [7(s1) = ¥ ()] < Cls2 = sal([t = sa| + [t = s2)-
Note that s
N(sa,t) = Nswst) = —v(t) - [ (/) =/(0))

S1
Using [7/() — 7/ ()] < 17/(r) — 7/ (s1)] + [¥/(£) — 7/(s1)], we obtain
[N(s2,8) = N(s1,8)| < C(|s2 = 51| + [s2 = sult — s1]%).
Combining the above, we get for |t — s1| > 2|s2 — s1],

|s2 — s1]
K t <C—
|K (s2,t) — K(s1,1)] =T

To verify ([A3]), we may assume that z'(t) # 0 for ¢ near s. For later use, we
remark that the rest of the computation does not need dt to be the arc-length
element. The condition 2’(t) # 0 is only to ensure that C~ |t — s| < |z(t) — z(s)| <
C|t — s|. Following [8], let

(@(t) — x(s))a(s, t) = y(t) — y(s)-
By 1), we have d,u(y(t)) = |0yy| 710 (u(y(t))). By arg(z + iy) = arctan(y/z)

mod 7, we get
K => Q) q(s,1),
i<k

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 171

where Q; are C* functions in |9yy|~', 0, ...,9; 7y, and q(s,t). Hence (&3)
follows from
|tz — ta|*

(4.4) 96,4(5:2) = O a(s, )] < O — o

Differentiate the equation and solve for 8. Then (z(t) — z(s))*t20F 1 ¢ equals the

determinant
x(t) — x(s) 0 0 0 y(t) —y(s)
x'(t) x(t) — x(s) 0 e 0 y'(t)
a’(t) (Da'(t) z(t) — z(s) Y (t)
2By (Da® D) et - a) —als) vy ()
k1 (1) (k;rl)x(k) () (k;rl)x(kfl) ) --- (’“Zl)x’(t) yFHD (1)

Multiply the i-th row by % (s — ¢)" and add it to the first row. The entries in the
first row become

5=t (Prajalst) — (s, 05 <k Puayls.t) = o(s)

where Py f(s,t) denotes the Taylor polynomial of degree k of f about s =¢. Then
the remainder Ry f(s,t) = f(s) — Prf(s,t) can be written as

(s—1)*

ka(svt) = kl ka(87t)7 ka(svt) = /0 {f(k)(t + T(S - t)) - f(k) (t)} dr

Therefore,

k+1
(45) (als) = o()*20F q(s.0) = (s = " { RoRusy(s.t) + 3 Pltia(s, 1)},

where P;(s,t) are polynomials in 8,7,...,0F 1y, z(s) — z(t). Then @) follows
from |Ri+17(8,t)| < ClY|kt1+als — t|*. Assume that |s —to| > 2|t2 — t1|. We have
|R;v(s,t2)| < Cls — t1]|* and

|(Pi, Ri17) (s, 82) = (P, Reray)(s,10)] < Clksavalta — 0]
Using [ty —t1| < |s — t1|"~*[ta — t1]*, we get
(s = t2)* 1 = (s — 1) < Cls = 1"+ 7ta — 111,
[(@(s) = x(t2)) 772 = (2(s) — 2(t1)) "2 < Cls = ta| F27ta — 1.
By the above inequalities, we get (4] and hence ({Z3)). O

We need a function © which plays an important role in Kellogg’s first-order
derivative estimate. Define a single-valued continuous function 7©(t,t) on [0,],
which measures the angle from the z-axis to the tangent line of 9Q at ~(t). Set

O(s,t) = O(s,s) + %/ Or arg(y(s) —y(r))dr, s,t€]0,1].

Then 0;0(s,t) = K(s,t),0(s,t) = O(t, s), and O(s,l) — O(s,0) = 1.
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Lemma 4.2. Let 00 € CF1FY with k >0 and 0 < a < 1. Let I; = (lp + -+ +
Licilo+ -+ 1)
(i) Let o € L*(09Q). In the sense of distributions,

!
(4.6) 8/ O(s,t)dt = /Oap(’y(t))K(’y(t),v(s))dt, sel;,
a7 o /a AOK(C.2)dr(0) = /d POPK(C2) o).z e 0n

(ii) If ¢ and O, are in L*(0N2), then on O and in the sense of distributions,

(48) o | S(QOK (=0 do(C /mafso ) do(C).

o0

Proof. (i) Note that ©(s,t) is a continuous branch of L arctan ygsg ;’Eg on [0,1] x

[0,{]. Then
9, / O (s, 1) dt = / o (£)0s axg((s) — A(1)) dt

holds on I; when j # i. It suffices to verify that on I,

0s / (s,t)dt = /1 ()05 arg(y(s) — ~v(¢)) dt.

Thus we may assume that 02 = ~;. We have

L L le)

Therefore, fé l0(5)05s0(s,t)| ds is in L(9S2). For a test function ¢ on (0,1),

/Ol @' (s) /Olgo(t)@(s,t) dtds :/ / ¢ (5)O(s,t) dsdt

- / o(s) / £()0,0(s, 1) dtds,

Hence,

which gives us ([4.6]).
To verify ([1), we let £ > 1 and use

o5 / P(Q)K (¢, 2) do(¢) = / P(Q0r K (¢, 2) do(C).

Let ¢ be a C! function on 9. Let x.(¢,2) — 1 be a C! function on 9Q x 9§ which
has support in |[¢ — 2| < € such that |y.| < 1 and |0,,x.((, 2)| < Ce~!. Now

1= [0.06) [ ()05 K (¢ 2) do(c) do2)
~ lim / / Xe (62 2)05.[6(2) — HOVOETK (G, 2) do(2) do(C).
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Write the last double integral as —I’ — I’ with
= [ 0l6) [@rxel¢.)lo(:) ~ 6010 K (6,2 do(2) do(c),
17 = [ 6l6) [ xl6.0)l6(:) (00 K (G, 2) do(z) dor(c)

Then I/ tends to 0 uniformly in ¢ as € — 0 because as € tends to 0,

| [ @ xc.2l60:) - (00 K 6,2 doz)

<t sup |6(2) - B(C)] /EBQ K ) doz) 0

|z—(|<e

Since |x| < 1 and [(¢(2) — ¢(¢))d* K(¢,2)| < C by @), then lim.,o I/ equals

1" = [o(¢) [166:) - 6(0)08 K (<. 2) do(z) do(c).

Since k > 1, then
/ OF K(¢,2)do(z) = lim oF K (¢, z)do(2)
e—0 |Z <|>5

= lim {977 (¢, ¢) = 05 K (G, ¢ =

Here we have used the continuity of 0¥ 1K((,z) and the identities {¢/,(/} =
NN{z: |z =] =€} for small € and lim._,o ¢! = z = lim._,¢ (/. Now (@) follows

from
I=- / #(0) / $(2)0 K(C, 2) do(z) do ().

(ii) When 0f) is parameterized by «(t), at z = 7(t), we have 0, f(z) do(z) =
df (=) = 0u(f(~(¢))) dt. Then (L) is obtained by integration by parts and [@6). O

We have seen from ({8) that differentiating integral operator K inevitably leads
to the kernel C*. To recover a loss of regularity in Kellogg’s arguments, we will need
to combine (1)) and (@3]) with estimates on I, * from the Cauchy transform.

Lemma 4.3. Let 0Q € CFH14 with 0 < a < 1. Then for a real function v €
Co(09),

Ky = 2R6{C+¢} -, K =1 — 2Re{TC’+(ﬂ/})}.
In particular, K*(C*+*(0)) C C*+*(09), and for | < k+ 1, K(C**(0Q)) C
I (90).

Proof. The first formula follows from [BI1]) immediately. Parameterize 9 by ~ in
arc-length. By a simple computation we obtain

(4.9) ds arg(v(s) — v(t)) = = Re(v' ()7 (1)) 8s arg(y(s) — 7(t))
—Tm(~/(s)7/(£))0; log [ (s) = (£)]-
To verify the second one, we use ([@9) to decompose

K (z) = [ 009, a8l = ) do(O) = () + (2

™
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with
1 _ _

Dz = =) + 1 Refr. | (@7 - w00, are( — O do(0) .
T o0
1 _ _
72) = 2tm{r. [ @) = 9O oz |2 — cldo(0) .
By a simple computation,

Kro() = =0 + 2 tm{r [ - vomz 2 )

(—=z
Therefore, K*¢p = —1p—2Re{7C~ (T4))}. The assertions follow from LemmaB2 O

5. KERNELS WITH PARAMETER

We have derived estimates for K, C* and Cf. In this section we modify the
arguments for the parameter case. The requirement that k > j in the Holder spaces
CF+i(9Q) will be evident in identity (5.I7) below and in the proof of Lemma [5.4]
for the Cauchy transform with parameter.

Lemma 5.1. L(at_Q be a bounded domain in C with 0 € Cl; Let T embed Q onto
QN with T € CH7(Q). Let 2> =T*(2) and k > 0. For z,¢ € Q with ¢ # z,

1 1 |TH — T
. - <Cpo_—- 11
oy e~ e <o e
1 1 |zt — 2|y
. — < ' _
I =)k o wreyes B o
(5.3) | log|¢* 2| <07, j=1,
(5.4) |89 log|¢! — 2| — & log |t — 2| < OF ;T =T, >0,

where [5.2)) is for ¢,z € 9Q and under the assumptions that |0,, x| > 1/Cs and
|z — 21, |¢ — 2| are sufficiently small. Assume further that T € BLT*7(9Q). Then

for ¢ € 090,
j A A o 1¢ =2t dist(2,00)
(55) |a§\8~ré arg((: -z )‘ < Cl+o¢7j ‘C — Z|2
Proof. Since I'* are embeddings with I' € C*°(Q), we have
(5.6) ¢ =2/ <=2 < Cl¢ -,

Take a path p in Q such that p(0) = z,p(1) = ¢ and |p’| < C|¢ — z|. When j = 0,
E4) follows from |log(1l + )| < 2|x| for |z| < 1/2 and
1
6.1) 10U =) = B¢ = = | [ V@ - TNl o 1) di
0
<O =T 14(¢ = 2],

and (5.1)) follows from (B.6)-(E.7) too. By analogy, one can verify (5.2). For j > 0,
& log|¢* — 2*| is a linear combination of

R/ (S BN (S
QNG == (¢r— z’\A)“
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and their conjugates, where a > 1 and 4; < j. Using |8§((A — 2N < Cy4l¢ - 2,
we obtain (5.4) by (5.7), and (5.3). Note that Q* may not extend continuously to
z=_C.

To verify (B.H), we choose local C¥+17% coordinates such that Q contains [—1, 1] x
(0, 1] and 052 contains [—1, 1] x{0}. Assume that { = £+i0, z € Q and |(|+]z| < 1/2.
Then 77 (z,y) = 0,7 (x,y) is tangent to Q> and

1 ME,0) (YA E,0) — A (x,
0, arg(C* — ) = P (E,0)| Im{”ig(” G y”}.

Set ’yﬁ‘(w,y) = ay’y)‘(a?, y). We have

D) =60 = [ {0+ rie-9.0)+mdle ) o
Im{vl (€0 0NE D) — @) |

= 1m {22 0)[(x — )R} (w,9,€) + yRind (@, 3, )]}

1
68) R = [ DNE+rE-.0 -0 dr
0
1
69 BREuo = [
0
Therefore, 8137.2 arg(¢* — 2%) is a linear combination of

(5.10) I (€ 0) {93 (€ 0)l(@ — O a9 (., €)

+yR; 02275 (2,9, €)] }q?g (& z,y).

Here ig+ i1 + 42+ 43 = j and qi)‘3 & z,y) = aﬁf’hA(f, 0) — v (x,y)| 2. We can verify
that

[0 1R (€,0)[ 1 < Crg, 01 (€,0)] < Cuy.
By the arguments for (5.3))-(2.4), we obtain
|43, (&2, y)] < Clz = (|72
By B8)-E3), we get |R10377 (w9, 6)| < Cryayle — £ and [R702 72 (2., )| <

C1;. In (BI0), we have y = dist(z,09) and |z —¢| < |z —{|. Combining the above
estimates, we get (B.5l). O

Given a family of continuous functions f* on 9Q*, let C* f be the Cauchy trans-
form defined off 90* by BI0). Let C} f be restrictions on Q*. Denote by W f
and U*f the single and double layer potentials with moment f* on 9Q*. De-
note by Wﬁ fand U jﬁ f their restrictions on Q* and extensions to Q* if continuous
extensions exist.
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It will be convenient to use the notation

(5.11) [uMi4a,; = max |95 (u* o TN [iras  [[uMlkta,; = max [u |k ra—ii,
I<j 1<j

(5.12) [t —wMia; = e |0/, (u" o TH) = 85 (u* o T |ias

(5.13) [ = Mkt = max [uf” — WP h—itai  J <k

Define analogous norms by replacing I'* with 4.

Proposition 5.2. Let T embed Q onto Q* with T € BFT14i(Q). Let j < k and
J<1<k+1. With the norms defined by 2I)-23) and GEII)-EI3), we have

(5.14) IC+flloo < Crolflao, NIC+fllitays < Crhsrvasllflliras,
(5.15) ICEf = C3 flloo < Cro(IT" = TAu| o+ 114 = [ las0)s
(5.16) ICEf = C2 fllivay < Crprvag(IT = TMlet14aul f liva

£ = FMlitan)-

If 08) is real analytic, and T*(2) and f* oT'*(z) are real analytic on Q x [0,1], then
CYfoT*z) and W2 f oT*(2) are real analytic on € x [0,1] too.

Proof. Let z € Q. Take z, € 05 such that |z, — z| = dist(z, 9Q). We have

1) - PED

¢,
27 Jaa A — 2 ¢

CM(2Y) = fA(20) +

Denote the last integral by A*(z). By (B.)) it is easy to see that

A7 = Ml < Cro(1* = o + Pl =T [ BZ2 g
a0 ¢ — 2|

The last integral is bounded by a constant; indeed, when § = dist(z, ) is suf-
ficiently small, for z, = 7(s) and ¢ = v(¢) we have |( — z.] < C|s — t| and
|z = ¢| > (64|t — s])/C. This verifies (5.I5). By Lemma B2 C} f is continu-
ous when A is fixed. Then (5.I5) also implies that C f is in C%°(Qr). One can also
verify the first inequality in (5.14)). Notice that the proof merely needs I € C1:°(Q).
Next, we will verify (E10) and the second inequality in (BI4)).

Denote by 0, the derivative in z on Q. By analogue of Lemma 24 it suffices
to estimate norms for d,x Ci f- We first consider the case where j = 0. Differentiate
C* f and then apply Stokes to transport the derivatives to f(7*(¢)). By B12) we
have

g’\(z/\) galkc)\f(z)\) _ 1 / 5f—>\f>\(<k)d<)\ g/ h)\(Ck) dCA
z C )

210 Jecpa G — 22 con =2

where 0,5 = 728,». We have

AN - A (A
0.7 () = .TN )M (2), TM(2) = /8 ) %d@.
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Note that by the product rule, (g)i ~ () involves derivatives of order at most [ in
¢* and fA(¢Y). Thus |h* e < Cri1yalfMite- We can verify that

PGP [ 16 =2 do <O [ 1622 do
o0 20
< Crrital f|iga dist(z,002)* 7!
Combining with the first inequality in (BI4]), we get its second inequality for j = 0.

Also, by (1))
|[1#(2) = I*(2)] < O = 1Moo + [P a1 ~ FA\l)/m € = 2*7*do(¢).
Thus, |I#(2) — I*(2)| < C dist(z,002)*" L. For | < k + 1 we obtain
19" = 9*laso < CUIR* = hMa0 + [P a|T* = T [kt14a)-

Note that [|h* — hMla,0 < Crriva(lf* = P leti+as + 1 et1+a 7" = PP i+a) for
I <k -+ 1. This gives us (B.I6]) for j = 0.

Assume that j > 0 and (B5I6) is valid when j is replaced by j — 1. Here we need
a crucial cancellation. By (Z8]), we have dy* = 0,7 do, i.e., d(* = 5T<C’\ do(¢).

Thus
Aprayy o L N[0 ()]
) = 5 /< 2
L[ G0N
211 Jeeon (Cr—2)? '
We apply integration by parts to the second term and write the above as
1 N[0 ()] 1 Or [N = 0x2) f(C)]
i oo —Cg_ZA dU(C)—%/m . B do ().

Cancelling two second-order derivatives, we arrive at
L O E) = hN B ) D ()
211 Jeeon ¢r =22

A\ -1 A
P22 [ O
(eon

2mi ¢ — z)‘

(5.17)  OA(CHf(Y)) = d¢*

¢,

Now (BI6) follows from the induction hypothesis where (j,1) is replaced with (j —
1,1 — 1). By a simpler computation, estimates (5I4]) for 7 > 0 follow from (GEI7])
too.

The proof for real analyticity in Lemma cannot be applied to the parameter
case, as generally we cannot normalize two differential operators simultaneously.
Instead, we will prove it by estimating Taylor coefficients. We start with

9.2 720, (S ()

A Ay Yz ¢Yr A

(5.18) 0. () = %2 /< T

An analogous formula holds for 6-(C* f (z)‘)) By (G17)-(EI8), we express
(5.19) .0l e Z P i (NCH QY 1 (C)HED).
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Here P} Nz )QQMJ(O) is the product of elements of the form
QUL TIA gratlgle g A graglat s A,
LRI, o (0.0, T
OO (FH(C) L(G 2 4) = (9327, 0.2%, 0228, 05, (0-¢) 7 70),

Let us explain how the above terms are used. Let L denote all first-order derivatives
appearing in the right-hand sides of (5.I7)-(E.I8) and dz2* in the formulae analo-
gous to (B.I8), except those of f. To count the total of the orders of derivatives
efficiently, we will count the first-order derivatives appearing in L separately, when
BT or (BI]) is used each time. Set bg = ¢4 = -+ = ¢ = 0. For the purpose
of counting, we duplicate the above terms associated to (ay, by, cy,) for n < 7 and
denote by m,, the number of the copies associated to (ay,by,,c,) that appear in
Pf"j’k le"j,k’l. Since 8‘7’76?\7(f)‘(c)‘)) appears once in P} ok lQ” k1o We set my = 1.
By an abuse of notation, we have not expressed the dependence of my on i, J,k, [,
an, by and ¢,/. Nevertheless, we have
7 7
di, = mamen (an + by +cn) <k, H(an!bn!cn!)m" < k!l
n=1

N et
Since z* and f*(¢*) are real analytic, we have
IL| < Co, 0202052 < (a+b+ec—1)ICETe a+b+c>0,
8283 (On6™, (0-C)H T SAHEI < (a+0)1C5

Here the last inequality is obtained by using real analytic parameterization in arc-
length. Thus, the product of the terms in P ik le AL excluding those in L, is
bounded in sup norm by

7
(520) H(an'b le,! )mncmn((ln-‘rb ntcn) < Ckk'
n=1
Next, we count I, the maximum number of first-order derivatives in L which appear
in each P} ik lQ” k1 as i,j and [ vary. From (5.I7), taking one derivative in 0y
produces at most two terms in L; from (B.I8), taking one derivative in z or Z
produces two terms in L. Therefore, [, < 2k + 1. Thus, the product of the terms in
L that appear in P ik le i 18 bounded in sup norm by C’l" < C2k+1 Combining
with (520), we get
7
< O[] (antbnlenl)™Cgrnentbnten) < o3k g,

n=1

(5.21) P k@2 lo

Finally, we count the maximum number of terms in (5.I9). When we take one
derivative in A on C} f, we get three terms by using (5.I7); when we take one
derivative in z or Z on Ci f, we have just one term in (B.I8]). Therefore,

(5.22) Ny & max N, o < 3%
1,7

We have |Q; j.x—1,(,)]a <C1|Qi jk—1.1(,-)|1. Taking a ¢-derivative on PZ)‘j ko1
Qf‘%k_l)l introduces at most N; terms of the form P, g X Q) jr k- This shows
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that
|Pig k=10 (ol @i k-1 (o = NiCr masc [Py e (4)lo]Qur g (4o

< CRCE (by G20, G2).
By (&19), (14) and the above inequality, we obtain

02820 HCY AN <€ Nim1 CrolPr—1-i (ol Qie—1-i0 (4 )l
< C1C 3% IOk

Using k! < dlj!'(k — 1 — i — j)!13¥~1k, we obtain the desired estimate on Taylor
coefficients to show that C} f*(z*) is real analytic on Q x [0,1].

It is clear that W f(2) is real analytic on © x [0,1]. We need to show that it
is real analytic near (z1,\;) € Q x [0,1] for z; € Q. We use local real analytic
coordinates to find a real analytic function ¢(zg, z,t) defined on U x U x [0, 1] such
that ©(20,2,0) = 2o and (20,2,1) = z, where U is an open set containing z;.
Moreover, ¢(zg, z,t) is in  when t € (0,1) and zg, z are in U N Q. Fix zo € UNQ
and vary z € U N €. We have

WA F(TA(2) =WA (I (20)) +2Re/0 {0:((WAf) o TN} (¢(20, 2, 1)) (20, 2, 1) dt.

Since I WA f = —2iC} (7> f*) and 9. W f* are real analytic in (z,\) € Qx [0, 1],
then 0,W*f is real analytic in z and \ by the chain rule. Thus, the integrand in
the above mtegral is real analytic in (29,2, \,t) € (U N Q)2 x [0,1]2. This shows
that W2 fA(2) is real analytic in (2,\) € Q x [0, 1]. O

We have seen that the kernels of Uf and W f behave better than that of Cf
for spaces of continuous functions. In the parameter case, we have the following
analogue of (B3] and Lemma (iii).

Proposition 5.3. Let T embed Q onto QX with T' € Ci](ﬁ) Suppose that r
preserves the orientation. Assume that f € CY7(9Q,). Then W f € CY7 (Qr) and

1

1) =13 (2 [ a0 1P osic) - Ao, 2 <7

=0

Assume further that 9Q € C'T* and T € Bi*7(Q). Then Uf € C27 (Qr) and

AU (2) = LN 10720100 arg(¢F — 21} do(€)
- L) [, APt oo

+3]( )
holds on 0Q. Under the norms defined by 21)-23) and (GI1)-EI3),
(Wi flog < Crjlflogs IWHEF=W2Flos < CF (10" =TA1 i1 oy + 1 = Foy)-

In particular, if Q € Ck+1te T e BF1+ai(Q) and f € BE+*3(0Q.,) with k > j,
then W, f € B¥+1+%3(Qr); the same assertion holds if C substitutes for B.
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Proof. We write do* = a* do on 9. Recall from (2.6) that a*(z) = 0:-72(2)|. Fix
zo € 0. For z € Q we have KU f(z) = Y (1) Ix(z) with

R =+ [ AN M0 (08, arg( — V) do
o9
Using (5.5) for v € BiT*7, we get for | < j
(5.23) / 1040, arg(=> — (V)| do < Ce®, 2o € D,
CeaR|¢—z0|<e ‘
(5.24) / 1040, arg(2* — (V)| do* < C, z € C.
cean ¢
Then, by analogue of ), from f € C>7, v € BY and (5.24) we get
(5.25) /6 RGOl O ()1 e (¢)0rx arg(2) — M)} do (¢)
= [ O} = B N a0 o= = )} (0

as 0S) ¥ z — zg, where the convergence is uniform in A. Let 0 < I < j. Note that
O3 {a(¢)0, axg(2* — (M)} do(¢) =0, = & 09
For z = 2y € Q and v € C+, the last integral equals

lim 05{a*(¢)0,» arg(z) — ¢} do

€0 Jeeaq,|c—z|>e ¢

= lim 04 {r — arg(7" 0 §(e2) = 7" 0 4(0)) — arg(v* 0 4(0) =7 0 (e1))}

LW o) re)dr o re)dr
fol(xA)’(reg) dr fol (x) (req) dr
Here we have used arg(z + iy) = arctan(y/z) mod 7 and a local C! parameteriza-
tion 4 of 0N near zy with 4(0) = 2. Also, IQ intersects {|¢ — 29| = €} at (1),
4 (ea) for € sufficiently small. We have also assumed without loss of generality that
0-2*(z0) # 0. Expanding both sides of (525 we get the formula for U7 f. Com-
bining the formula with (5.23)), we see that U2 f(z}) is continuous in A. Then, the
uniform convergence of UNf(2)) as z — 2o yields U, f € C27 (Qp).
Write (‘X\W)‘ f as a linear combination of

03,5 (2) = /m RO ()R Log|2* = (Mdo, ji+j2 = j

Using (£.3]) and B3.3]), we obtain

052 10g|C* = 2| < C, o > 05 [log|¢* = 23| < C([log |t — 5| + 1),
where z = 4(s) + h(s), ¢ = 4(t), and ¥ is a parameterization of 9. We conclude
easily that h;l j,(2) are continuous on Qx [0, 1]. This verifies the formula for RW2LS.

By the formulae of 8§\VVA f, we obtain W, f € cli (Qr) and the desired esti-

mate for Wy f by G3)-6A), [y [log[¢* — 22| do* < C and dist(z,09) [, ¢ —
2|72do < C for z € Q. The assertion on higher-order derivatives follows from

0, W f = —iC|7 f] and Proposition O

= 111% o4 {71’ — arctan + ar
€E—
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To prepare our estimates in section [1 for integral equations with parameter, we
use the rest of the section to extend Lemma [£.1] to the parameter case.
For convenience, we will use the following difference operators:

5)\Hf:fﬂ_f)\7 5t1tzg:g(t2)_g(t1)'

For clarity we will also write the above as 6* f* and d,+,9(-), where - and e indicate
the variables used in the operators. Both satisfy the product rule to the extent that

6)\H(fg) = 5)\#«ng + fué')\,ug’ 5251152 (fg) = 5t1t2fg(t3) + f(t3)6t1t2.g,
where v = X or pu (and two v’s are different), and t3 = ¢; or t5. For v €
BEF1I+e.3(90), with the above notation we have
K y(¢h %) = 007 Ron farg(C = 2N}, (2t e 00,

MKy (C,2) = K (CH, 24) = KR (Y, 2%), ¢,z € 00

Lemma 5.4. Let v* embed 02 onto 00 with v € C*H1+3(0Q) and k > j. Then
on 00 x O and off its diagonal,

(5.26) |Kp_; (N 2| < CrirganglC — 2271

|22 — 21]*
(5.27) ‘Kli\—j,j((:)\’zg\) - Kli\—j,j((:)\vzi\)‘ < Chtitaj = Z1|
(5.28) |62 Kj—j.5(C, 2)| < Chargayll?” = YMltr4al¢ — 2171,

2o — 2
(529) [ Kiy (6] < Crrrrasln® — 7 isreas o 1'|
* VA z

(5.30) [0 Koj(22:€) = 0¥ Ko (21 O < Ol =7 v cl - |21|a,

where (0.27), ((:29) and B30) are for | — 21| > 2|22 — z1].

Proof. Tt suffices to verify (5.20)-(529) for (, 21,22,z near a point w € 90 at
which [0, 2*| # 0. We may assume that w = 0 and 9 contains (—1,1) + 0.
We may assume that ||[v# — v*||1,0 is sufficiently small; otherwise, (528)-(5.29)
follow from (5.26)-(5.27). We may further assume that 992* is embedded through
A (t) such that, for [t| < 1, (2*) > 1/C and |(2*(s) — 27 (#))7| < Cls — t|7L.
In the following, we assume that s,¢,¢; and t, are in (—1,1). Define ¢*(s,t) =
(5(5) — 9 (1)/(2\(s) — (1)) and

KR i(s,t) = 807 g0 (s, 1), M Kijj(s,t) = K, (s, t) = K2 (s, ).
By (7), we have (9,au?)(72 () = |87~ 10 (u(1)). Hence
K]i\f.]vﬂ(’y)\(s)”y)\(t)) = Z Q 'k' Kk?'*j’ j/(S t)
J'<j,k'<k

k+1_ X\
%

Here Q) are C* functions in |97, 9™, .., , and

f() M —5)) dr'
fo ) ( —s))dr

(s, t) =
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We have for Q* = Q;‘,k,,
|QM(t)] < Crgryr 1@Mt2) — QMt1)| < Crgrgaltz — 1],
Q" — QM(t2) — (Q" — @M (t1)] < CrgrtalV = Y Mlkt14anlte — ta] -

Therefore, to show (5.26)-(5.30), it suffices to verify them when K*(¢*, z*), ¢, and
z are replaced by K A(s,t), s, and t, respectively.

Recall that Ry f(s,t) = fol{f(k)(t—i—r(s—t)) — f®) ()} dr. We apply formula (@5
and obtain for (z*(s) — 2*(t))g*(s,t) = y*(s) — ¥ (¢),

(aX(s) =2 () 2T (s, 1)

kt1—j
=(s— t)kH*j{PO)‘Rk_H_ij(s, t)+ Z PARia™ (s, t)},
i=1

where P (s,t) are polynomials in s — ¢, 0;(z*,¢%), ..., 8f+1_j(x)‘,y/\), OFH1=inA,
and z*(s) — 2 (). Hence 818;”1_]@(8, t) is a linear combination of L*(s,t) of the
form

(5 — £)F+1-7 & (27(s) = 2 (1) - 8 (a2 (5) — aA(1))
(z2(s) — 2 (¢))kt2—ita

Here j1 + -+ ja+ o+ je=jand i +j < k+ 1. Assume that 5/ < j. We first
bound each term in L*(s,t) as follows:

(5.31)  [(BA(s) = B < Cls =], [(@M(s) —ar (1) < Cls —#] 7,
(5.32) | Riv (s, 8)| < Cls =], [BPMs,t)| <O, i4j<k+1.

By G31)-E32) we get |LA(s,t)] < C|s — t|*~ L, which gives us (5.26). We now
assume that |s — ta| > 2|t — ¢1]. Then

O PR Ry, y7) (s, 1),

(5.33) (s —t2) = (z = t)| < [s = ta[ 't — 1],

(5.34) |82 (t2) — K (t1)] < Cls — ta|' |2 — 1],

(5.35) (@ (s,82)) 7" = (2™ (s,11)) T < Cls = 1|7tz — 11|,

(536)  |O4(P), Ry (s, ta) — R (P, By (s, t1)| < Clyllksrsaglts — 2]

Here i+j < k+1. Comparing the exponents in (5.31))- (5:32) with the ones in ([B.33])-
(BE36), and using the exponent in (5.20]), we obtain (5.27)) by a simple computation.
Applying 6™ to each term in L*(s,t), we get

(5.37) |6%(032% (5) — 0d2* ()] < Clv™ = 7 Mergls — tl,

(5.38) 6% ((2(s) = () )] < Cln* = 7P let14ls — 8,

(5.39) |6%(01 P (5, )] < ClIY* = Mk

(5.40) [ (DR (5, 0)| < Clv* = Plkrragls =% i+ <k+1.

We see that (5.37)-(540) and (G31)-(G32) differ by a factor [[7* — ¥ [k+1+a.5, as
E20) and (B28) do. A simple computation gives us (5.28). We have

P (a(s) = a(t) 7 = (2(t) — at(s) M@ (s) — 2t (0) TV (a(s) — 2 (t)).
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Note that d;,4, and 6* commute. Assume that |s —¢1] > 2|tz — ¢1|. Then
16616, (2(5) = 2(-)) 7| < 200t2 = talls — 02 29" — 7 Mols — 11
+Cls — 1] 2y = PMilte = ta] <30I = ils = ta| 70t — 1]

Therefore,

(5.41) 626102 (937 (8) = DIV ()] < Oy = 1 gls — ta|' =tz — 111,
(5.42) 061,15 (2(s,)) T < Oy =M ols — ta| T fta — 1],

(5.43) |63 81,0, (PP, Rin*) (s, )] < ClIY* = Pl 1+asltz — 0]

Here i + j < k+ 1. Comparing (5.34)-(E30) with (531)-(E32) and (GAI)-(GA3)

with (B33)-(536), we see that applying 6** introduces a factor [v* — Y k114a,s

as shown in (5.27)) and (5:29]). A simple computation gives us (5.29)).
To verify (5.30]), we start with

R I [P0 — 9,4 d
Bt s) = Tm 20 {t(n 7 )27“
0577 (s) = A (2)]

Then 8§;IA{)‘(t, s) is a linear combination of J*(s,t) = A7 (s)A3(s,t)A3(s,t) with
AY(s) = R 0AMNT10), AR (s,t) = 3 (197 (s) = (B)72),

AS(Svt) = 6§\3 / (87"’7)\ - 65’7)\) dr
t

and j; + j2 + j3 = j. Then |A}| < C and
|43 (s, )| < Cls = t]72, [A3(s,0)] < Cls — t['72, [JA(s, )| < Cls —#|*7".
Assume that |s — t1| > 2|ta — t1|. As in the proof of [{.2), we write

/ (8,«7)‘ - 687)‘) dr — / (6r”y)‘ - 837)‘) dr

to ty

tl tl
=/ (0 — 01,7) dr—/ (0,7 — 0s7™) dr

t2 t2

Applying 8{ and then 6* to the above, we get
| As(s,t2) — As(s, 01)] < CMigalta — talls — t2]%,
16261,1, As(s, )| < CIv* = 31 galta — talls — 2]

We can also verify that

42 (s,0)] < Cls = |72, 0¥ Ax(s, )] < Oy = agls — 472,

A ‘tz _t1|04 Ap m A |t2 _t1|a
|0¢,¢, A2 (s, )| < Oma |04,6,07 Az (s, )| < Cy* = |ij~
By a simple computation, we get (5.30). |

Define K3 _; 50(2*) = [0 @M CN KR ;(2*,¢*) do* and

(Ki—j) (") = /am K¢ 2% do.
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We will also denote K*¢p = {(K*)*¢}, Ki P = {(Kp_ j.i) ¢} and
P 0(C2) = (KE_ )7(CH ) — (R )7 (Ch ), Gz € 0
The reader is referred to (2.1))-(23)) and (G.II)-(EI3) for the definition of norms.

Proposition 5.5. Let k> j and 0 < < a. Leta’ =« for >0 and o’ < « for
B =0. Let Q be a bounded domain in C with OQ € CkKT1+. Let 4 embed 0Q onto
AN with v € BF1FT%I(99). Suppose that k > j and k+1>1> 5. Then

(5.44) [Kojrela,j—jr < Cliayleloi—in  1KGyelarj—ir < Clia leloi—i
(5.45) 162 Kojr#lai—ir < Citatani (10M@loj—ir + 6™ 140)s

(5.46) (K5 elh—itarj—jt < Crtrta,jleli-jr+8,-

(5.47)  [™K5jlh—itari—ir < Crritag (1830l —jrepimir + 10V ks14ar ),
(5.48) IKijrblimita,i—jr < Chtital@li—j+14p,5—5

(5:49)  |0MKijrolimitarj—i < Crarran (1M 0l—jrr1tp—50 + 16V llkt140,5)-

Proof. Recall from Z8) that a*(¢) = |0-.4*| and do*(¢*) = a*(¢) do(¢) on 0.
Since |35 K*(¢*, 2*)| < C|¢ — 2|*~1, by the mean value theorem we can change the

order of differentiation and integration in 8173‘ ,ICSjAp. The latter is then a linear
combination of

/a @O R @ QNN Koy (2P, ) do”, e ==
By replacing (a’\(Q))_lail(a)‘(C)wk(C\)) with ©*(¢?), it suffices to verify (5.44)
when j' = j. Analogously, we only need to verify (5.44)-([E49) for j' = j.
We have [Kg ;0(2*)] < Clpo [oq ¢ — 2% do < C'|p*o, and by @I)-E2),
5 50 ‘/ C)\ KO](Z2 ) C)\) KOA,j(Z{\7 CA)) dO’A‘
<l [ 20¢ — 2| dor(()
[(—z1]<3|z2—21]
+f 22— 2llc = a P do(Q)} < C'lPlolez — 2l
[C—21[>|z2 —21]
which gives us (544). We have
PR se(e) = [ 8 a(Op(O)IE (4 ¢ do
4 [ NI Ky (2,0 dor S 1 (2) + L),
0

Also, [1(2)] < C(1g#* — Mo + Iy — 1*1) by (6:28). By analogue of (), we
get |Ii]a < C(l¢" = o + 7" = 7*|1). Using (5.28) and (E30) we get |Ifao <
Cl¢ 010 v]1+a,0- This shows (5.45).

By 1), (Kf:j)*w satisfies (.40)- (547 if and only if 6f;i7j(Kf:j)*<p satisfies es-
timates (548)-(GAT) (with i = k,j' = j). By @), (K)_; ;)" ¢ = 057 (KY) .
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(The proof of ([£.7) is still valid when (5.26]) substitutes for (4.1]).) Hence, we have re-
duced (E40)-(247) to the case where i = k—j and j' = j. Using |K,;\_j7j(g“’\,z’\)\ <
C|¢ — 2|71, we obtain |(Kj_ ;i) #lo < Clplo. For the Hélder norm, we recover a
loss of regularity in Kellogg’s arguments [7] by decomposing

(D) 0(z2) — (KD )"olz)
= ) / (KR ,(C2) — KR, (¢ =)} do™ ()
o0
+ / () — PENED (N 2) — KD (¢ )} doN (),
o0

The first integral equals (K _ 5.i) Uz2) — (Kgfj’j)*l(zl). The second integral is
bounded by C|e*|s times

_ |zg — z1]*
C-al o)+ [ 2ol o),
/|C—21|S3|Z2—21| [¢—21]|>2]|z2—21] |<: - Zl|1 B

Here the sum does not exceed C|zo — 21|* when 8 > 0. If § = 0, it does not exceed
Corlza — zl|a/ for any o < a. We have

(Kijy)"1() = / AMQOEI R KN, 2} do(€)
o
:alj;j/ GA(C)(?{\{IC/\(C)\,Z)\)}CZU(C)
o0
=R | AN ORNE. ) de o),

1<j
By Lemma 3] and Proposition 5.2 we get for b = (a*) =0} a*

(M) Bilk—jtaj—t < C 1K) b = (K bilk— a1 < Ol = Y k110,
We have verified (540). We have

P (K ) 0l(2) = / P (a(Qp(OVKL, (¢, =) do

[219]

+ / A ONC)PET (¢, 2) do
o0

By analogue of estimation for (K3 _ ;)" we obtain (5.47) by (B.27) and (5.29).

Finally, we obtain (5.48)-(G49) by (.44)-EAT), and 9K g = —(K2)* (9.2 07).
O

6. NULL SPACES OF I = I AND I £ K*

In this section, we describe results on integral equations for the Dirichlet and
Neumann problems. Lacking a reference to the precise regularity in derivatives
on solutions to the two problems, we derive some details. The estimates will be
used in arguments for the parameter case in section [[l As mentioned in section [I]
we reduce the C! regularity of solutions, which is an important step in Kellogg’s
proof [7], to the integral equations for the Dirichlet problem to the C° regularity of
the integral equations for the Neumann problem.
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Proposition 6.1. Let 0Q € CFTH with k>0 and 0 <a < 1. Let 0 < B < a.
(i) Let p>1/a. Then
|K:(p|a71/p < Cl+a“p|LP> |K:*(p|0/ < ClJrOtCO/‘(p'LP
for any o < a— % with o < a.
(ii) Let L be one of K, —K,K*, and —K*. Then
loler < CreaCp(lelir + o+ Lolr), p>1,
lpls < Citallel + 1o+ Lolg).

(iii) Let £L=K* or —=K*. Then |plptp < Cry1tallelrr + o + Lo|k+p).
(iv) Let L =K or =K and 1 <1 < k+ 1. Assume that | > 2 or 0.p € L'.

Then |@livs < Crprvallelr + 1070l + @ + Lolirp)-
Proof. (i) We adapt Kellogg’s arguments in the proof of Proposition 5.5 Let 1/p+
1/q = 1. Decompose K¢(z2) — Kp(z1) as

{/K z1|<2|z2—2 +/< 21]>2|22—2 ‘}QO(O(K(ZZ’C) = K(21,()) do(¢).

We estimate the first integral by |K(z;,¢)| < C|¢ — 2;|*~! and get

1/q
(6.1) / |K (22, O)|* + |K (21, )| do(C) < Clag — 2|1
[(—2z1]|<2|z2—21]

We estimate the second integral by {2, i.e.,
|K(22><) - K(21,<)| < C|22 - Zl'lc - Zl|(y_2
for |¢ — 21| > 2|22 — z1|. Thus

1/q
. / K (22,¢) = K (21, )| do(€) <Clza— 2= =3
|< Zl|>2|z2 Zl‘

Therefore, ¢ € LP implies K¢ € co .
We now estimate K* f, for which we use Lemma [l Thus, when K is replaced
by K* we still have ([@2]) for 1 < p < oo and (61]). However, for p = oo,

/| o M)~ K (G 2)1d0(0) < Cloa = (1 + 1og 2 = 1)
(—z1|>2|z2—21

which results in K*¢p € C*'

(ii) We follow some standard estimates for compact integral operators (Bl, p- 120;
[10], p. 178). Let L = +K or £K*. Define Ty = [(¢)L(2,¢)do(¢). Let
Xx(z,¢) = 1 for |z — (| < ¢/2 and x(z,{) = 0 for |z — (| > e. Let p > 1 and
1/p+1/q =1. We have

¢)do(z _
L[ 1eor T < catiop,.
o0 J O |

71€o¢(1——

Thus, we obtain |T)r¢|rr < Coa 2| e from
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Therefore, I 4+ T, ,: LP — L? has an inverse with norm < 2 when C’ooz_lea(lfi) <
1/2. Since (1 — x)L is continuous, it is easy to obtain
T —yyLplre < Celop|pr.
Using p = (I +Tyr) '(I +T1)p — (I + Tyyr) T (1)L, We estimate two inverses
and obtain
ol < Clo+ Lolr + Celgl L1
When 8 = 0, we get » € L> and hence ¢ € C° by (i). Assume that 3 > 0. Using
0 = (¢ +Lyp) — Lo, we obtain |p|g/5 < Clp+ Lo|g/+ C'||pr, from which we get
lels < Cilp + Lolg + Calplg/2 < Cslo + Lolg + Calpl 1
(iii) This follows from (544)) with j = 0 and (ii).
(iv) When k& > 1 > 2, we know that K is of class C'. Hence ¢ € C! if v+ Ky is
additionally of class C!. Since 9,4 € L', by Lemmald2] (ii) we get 0, p(2)FK*drp =
0r(p £ K¢). The rest follows from (ii)-(iii). O

For applications to integral equations with parameter (Lemma [(T]), we empha-
size that the constants Cky14, in Proposition depend only on |(§')7!|o and
|9]k+14a if O is parameterized by 4.

Proposition 6.2. Let 90 € C*t. Let eg =1 on Q. Fori >0, lete; =1 on ;
and e; =0 on 00\ ;. Let 0 < 8 < a.

(i) Let L be one of K,—K,K*, and —K*. Then ¢ + Lo =1 € CP(0Q) admits
an L' solution ¢ if and only if ¢ | ker(I + L*). All L' solutions ¢ are in
CP(0%).

(7) {e1,...,em} spans ker(I + KC) and ey spans ker(I — K).

(iii) ker(I +K*)Nker(I + K)t = {0} and ker(I — K*) Nker(I — K)*+ = {0}.

(iv) ker(I + K*) is spanned by {¢1,...,dm}, where ¢; satisfy f7 ¢jdo = d;;
for i,j > 0 and f(m ¢ido = 0 for i > 0. Moreover, Weq,..., Wy,
are locally constant on 02 and vanish on the outer boundary of 052, and
(Wily,; )1<ij<m 18 non-singular when m > 0.

(v) ker(I — K*) is spanned by ¢o and Weq is constant on 9. Moreover, ¢q
vanishes on 9\ o, fBQ ¢odo =1, and ¢g depends only on .

Proof. (i)-(iii) The first assertion follows from the compactness of £ on L? ([10],
p. 162, p. 167) and ¢ € C? follows from Proposition (ii). The proof of (ii)
is in [3] (p. 135). For (iii), assume that ¢ € ker(I + K£*) Nker(I + K). We have
P+ K* =0, and by (i) ¥ = ¢ + K*p. For ¢ € ker(I — K*) Nker(I — K), we have
Y —K*p =0and ¥ = ¢ — K*¢. In both cases, we have ¢, € C*. Then Wy and
W are in C'T by Lemma [3.2] (iii). One can show that 1 = 0; see [3] (p. 137),
where the use of Green’s identities merely requires that 02, Wy, W1 be of class
cite,

(iv) By compactness of £, we have dimker(I + £*) = dimker(I + £) =1 ([3],
p. 24). Note that if ¢q,. .., @, span ker(I +K*), the matrix A = (fv ¢ do)1<ij<m
must have rank m. Indeed if ¢ = c1¢p1+- - -+ ¢ @y, is orthogonal to ey, . . ., e, then
by (i) and (iii), ¢ = 0. With A being non-singular, we can normalize ¢; such that A
is the identity matrix. This verifies the first assertion. To show that W ¢, are locally
constant on 0f), we integrate ¢; + K*¢p; = 0 and get fBQ ¢;do = 0 for i > 0. This
shows that ¢; € ker(I + K*). Hence, W@, is locally constant on €’ and vanishes on
the unbounded component of Q'. By the continuity of W;, it is constant on the
inner boundary of 02 and vanishes on the outer boundary. Assume for the sake
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of contradiction that (W¢;|,,)1<i j<m is singular. Since W¢; are constants on ~;
and vanish on o, then Wy, ..., Wo,, are linearly dependent on 9. Therefore,
for some ¢; which are not all zero, we have W(c1¢1 + - - + ¢mdm) = 0 on 0. This
implies that c1¢1 + « -+ 4+ ¢ is in ker(I + K£*) Nker(I — K*). Since ¢1,...,dm
form a basis, we get ¢; = 0 for all 4, a contradiction.

(v) By (iii), we know that if ¢g spans ker(I — K*), then faﬂ ¢odo # 0. Let ¢g
be the unique element in ker(I — K*) such that f{m ¢odo = 1. We want to show
that ¢g = 0 on 7; for j > 0 and that ¢¢ depends only on ~q.

Let ¢ be the bounded domain bounded by the outer boundary g of 2. Let ¢,
with f ¢do =1, span ker(I — Kf) C L*(080). Here K3(¢,2) = 20, arg(¢ — 2)
for (,z € 0Q. Let W(;S be the single-layer distribution with density ¢ on . Since
ng is constant on g, then 0, ng = 0 for the normal vector v of any C' curve
in 9. This shows that ker(I — K*) is spanned by ¢ if ¢ equals ¢ on o and is zero
on 9\ vo. The condition [, ¢o do =1 implies that ¢o = o O

For convenience, we will use {e1,...,em},{eo}, {d1,...,0m}, and {¢o} for bases
of ker(I + K), ker(I — K), ker(I + K*), and ker(I — K*), respectively.

Lemma 6.3. Let 002 € C'1* and 0 < B<a. Let L=K or —K. If o+ Lo =g €
CHHA(0Q) and p 1 ker(I + L), then ¢ € C*HP(99Q) and it is determined by
=@+ coeo +cre1 4+ Cmem,
— L =09, @1 €ker(I — L) Nker(I +L£)*,

0.0 =1~ doto — iy =+ o, [ pdo =0, 120

Moreover, ¢; and d; are determined as follows:
(i) If L= K, then

1 R
cozﬁ/m(g—&p)da, €1 =""=Cm = —Co
d():/ wleoda, d1=~'~:dm:0.
o0
(i3) If L = =K, then

1 / : 1
amop [G-Lpdn izt a=—g [ (- Lode
22 /.. D22 Joan, !

di = / Y1€4 dO’, ) 2 1, do =0.
o0

Proof. (i) Assume that p+ Ky = g € C'*#. Recall that ey, ..., e, span ker(I +K).
Since 0,9 L ker(I — K), there exists ¢, € C# Nker(I — K*)* such that ¢, — K*p; =
0rg. Let j > 0. Since f%‘ K*p1do = — f%‘ 1 do, then fw p1do = 0. Recall that

$o = 0 on ~; and f% podo = 1. Let dy = [, p1do. Then @1 = @1 — dogy is

orthogonal to eg, . . ., e, and hence there is a unique ¢ € C**# such that ¢, = 9,¢
and f,y pe;do =0 for all ¢ > 0. Thus, we obtain

O-(p+ Kp) =0-9g=¢1 —K*"¢1 = 0-¢ + dopo — K*(0-¢ + dopo)
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Hence, ¢ — ¢+ K(p — @) = 2¢co + D, Ciei. We rewrite it as

(p—p—co) +K(p—p—co) = Zéiei-
i>0
Being in the range of I + I, the right-hand side must be orthogonal to ker(I + IC*).
Hence, ¢; = 0 and consequently o — @ —cy = Zj>0 cjej. This shows that ¢ € CcHh,
Since ¢ and ¢ are orthogonal to e; for ¢ > 0, then ¢; + ¢o = 0. We substitute
D+ coeg + -+ Cmem for g in ¢ + Ko = g to get g = ¢ + Kp + 2¢pey. Therefore,
2¢0l* = [40(9 — K@) do.

(ii) Assume that ¢ — Ky = g € C*P. We find ¢; € C” Nker(I + K*)* such
that o1 4+ K*p1 = ;9. By [y, K*p1do = [, ¢1do, we get [, o1 do = 0. Since
¢; € ker(J + K*) satisfy f% ¢jdo = 0;5 for 4,5 > 0, then for d; = f%_ prdo, ¢1 =
w1 —di¢p1 — - - — dp Py is orthogonal to eq, .. ., e,,. We still have o1 +K*¢1 = 0-¢;
in particular, f% Prdo = [, ¢1do = 0. We write @) = 9-¢ with f,ﬁ pdo =0 for
j > 0. Asin (ii), we get 0, (¢ — ¢ — K(p — ¢)) = 0, and hence ‘

m
(p—@)—Klp—@)=c+2) ce

i=1
The right-hand side must be orthogonal to ker(I — K*), the span of ¢g. As ¢
vanishes on ~; U - -- U7, by Proposition (v), we obtain ¢y = ¢ fBQ ¢o do = 0.
Then ¢ — ¢ =3, cje; € ker(f — K), so it is a constant co. Therefore, ¢ € clh.
Also, g =9 —Kp=¢—Kp+2(cre1+ -+ cmem). We get 2¢;12 = f% (9 — K@) do
for i > 0. Using 0 = (p,eq) =

>0 ci|li]? + col?, we get the formula for co. a

The above lemma allows us to study integral equations for the planar Dirichlet

problem via integral equations for the Neumann problem. We now strengthen
Proposition (iv) as follows.

Corollary 6.4. Let I > 1, 0<a <1 and 0 <8 < a. Let Q be a bounded domain
with 0Q € CH*. Let £ be K or —K. If o + Ly € CHB(0Q), then ¢ € CHHA(09Q).

7. REGULARITY OF SOLUTIONS FOR INTEGRAL EQUATIONS WITH PARAMETER

We first describe the main difficulty if we use the Fredholm resolvent directly to
formulate our solutions for domains depending on a parameter. Such a formulation
via the resolvent for the Dirichlet problem on a fixed domain is in [8]. Assume for
simplicity that 9Q is C2, and parameterize 9Q by ~(¢) in arc-length. The kernel
K(s,t) = 10, arg(y(s)—(t)) is then continuous, and the resolvent L(s, ¢, z) satisfies

!
K(s,t) = L(s,t,z) + 2/0 L(s,r, 2)K(r,t)dr.

It is a basic theorem of Fredholm that there exists d(z) with 6(0) = 1 such that
0(z) and 6(z)L(s,t,z) are entire functions in z (see, e.g., [7]). It is known that
L(s,t,z) is analytic at z = 1 when € is simply connected (see [7], or [3], p. 133); by
a theorem of Plemelj [12], it has a simple pole at z = 1 otherwise. One can verify
that (1) # 0 when 2 is simply connected ([9], p. 294), and in this case the zeros of
0 do not accumulate at 1 as domains vary. However, we do not know if the zeros of
0 accumulate at 1 as § varies with 2, when 2 is multi-connected. Without resolving
this issue, we will estimate solutions by taking the limit and differentiating in A on
the integral equations directly.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



190 F. BERTRAND AND X. GONG

This section consists of three results. Lemma[l.Tlshows the uniform boundedness
of solutions of integral equations in L? and Holder norms; Lemma [7.3] provides for-
mulae to differentiate the integral equations; Proposition [[4] contains the estimates
for the solutions of the integral equations.

Recall that for a family of functions f* on 92 € C*** N C!, we define for k > j

1 ktay = max |03 k—itar (17" = Hlkta; = max|8,f* — O3S k—ita-
i<, 1<j
For a family of embeddings z — v*(z) from 0Q onto 9Q*, we use the notation
2A =4 (2) and
9(2,A) = (7 (2))-

Let {£*} be one of {K*}, {—K*}, {(K*)*}, {—(K*)*}, and let {¢3,...,42} be the
canonical basis of ker(I + £*), described after the proof of Proposition Define

(mmﬁzwvma/gmm&
oA

Lemma 7.1. Let v* embed 0Q onto O0* with v € B1T0(9Q). Let 0 < a < 1 and
0< B <a. Let o* € LY(0Q*) and define 1 according to the following two cases:

a) Let {L*} be {K*} or {—K*}. Also, let
(LN =vp, () =), 1<i<n
b) Let {L*} be one of {K M}, {—=K*}, {(KM)*}, and {—(K*)*}. Also, let
P L =Yg, (PN =9, 1<i<n
Then the following hold:

(i) Let 1/a < p < co. Suppose that A — 3 oy € LP(0) and X — 1 are
bounded (resp. continuous) maps on [0,1]. Then A — o> o> € LP(99) is
bounded (resp. continuous) on [0, 1].

(ii) If vl € LP(O0) and v € LP(OQ*) with 1 < p < oo, then
(7.1) fe( ) =0 M)er < CriaoCp(le(, 1) = (5 M)l + [o(, 1) = Yo A Le
+ (1o (s 1), %o (5 M)z + (05 1), (5 M) = 7 14a)-
(i33) If vf € CP(OQH) and ) € CP(ONY), then
(7.2) (1) — (M) < Crraolle( 1) — @ M) + [Yo(, 1) — Yol A)ls
+ (19518 + 1M L)V = Y ra)-

Proof. We first verify the assertions for case a). The verification for b) will be
simpler, after we establish ¢; € B*%(d€,) via (i) of case a). The proof of (i) is
given in Steps 1 and 2 below. The proofs of (ii) and (iii) are in Step 3.

Step 1 (Boundedness in L? norms). Fix 1/a < p < oco. We are given

(7.3) P(CA) + / (0, NI (7, €) do™ (1) = (G ),

neoN

/ o, N do () =), 1<i<n.
neon
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Assume for the sake of contradiction that A; = [p*|» — oo for some \; — 0.
Normalize in the LP norm by letting p = A;lgo’\f and 1;2)” = A;lej. We get

(T4 PG+ /a AN ) dr ) = Dol )
(7.5) 1302 = 1, / B AN do™ () = G
o0

Since the LP norms of ¢ are bounded, by Proposition (i) the C*/2-norms of
(LY)*pY on 9N are bounded too. Thus, ((£LY)*p*) o 4% have bounded C*/2-
norms on Jf). Passing to a subsequence 1f necessary, ((£*)*¢p*) o~y converges
uniformly on 9. Since 1o (-, \;) converges to 0 in the LP norm, (4] implies that
@(+, A\;) converges to some ¢, = ¢* 040 in the LP norm. Recall that do*(z*) =
a*(z) do(z) with a*(2) = |9,7*(2)|. Since a® converges to a’ in sup norm, then
@(+, Aj)ai (-) approaches to ¢.a’(:) in the LP norm. Decompose

[ oo ) de o) - [ e, der)
o o2
<| [ @A) ) = oulma ) (. ¢ dt)|

] [ elma ) e, ) = 26, dotn)] = 1) + 1)

From p > 1/a, |[K*(¢*, 22)| < C|¢ — 2|71, and Hélder inequalities, we see that
I; = 0in LP as A; — 0. From Holder inequalities and the dominated convergence
theorem, we see that I]’/ — 0in LP for A; — 0 also. Thus, letting j tend to oo in

(C4)-([T3), we get
0" (¢%) + /m ©*(n°)L°(1°,¢°) do®(n°) = 0,
lo*r =1, / o (M) de®(°) =0, i=1,....n.
20

By Proposition [6.2] (iii), the first and last n identities imply that ¢* = 0. The latter
contradicts to the second identity. Therefore {|¢*|r»} is bounded. By Proposition
[611 (i) and (ii), we obtain

(7.6) [(£Y)* M sz < Crrale?os

(7.7) 0% < Crvalle + 145]5)-

Step 2 (Continuity in LP norms). Fix 1/a < p < oco. Assume for the sake of
contradiction that |¢o(-, A;) — @(-,0)|» > 6 > 0 for a sequence \; tending to zero.
By ([6l), passing to a subsequence if necessary, we may assume that the sequence
of continuous functions ((£L*)*¢*i)o~*i converges uniformly as A\; — 0. Hence by

@3), ¢(-, Aj) converges to v, = ¢* 0~® in LP. We have |p(-,0) — ¢*(-)|z» > §. By
the same arguments in Step 1 we know that ¢*, ©° satisfy the same equations,

() + / L0V LO (1, ¢0) do® (1) = ¥(C%),
o0

/ ") do®(n°) =47, 0<i<n.
o0
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By Proposition (iii), ¢° = ¢*, a contradiction. This proves the continuity of
©(z,A) in the LP norm.

We proceed to repeat Steps 1 and 2 for case b). From case a), we know that
G0, - - - ¢m are of class B*?. Thus the basis {¢1,...,4,} of ker(I + L) is of class
B0 in all cases.

We are given

(78) P L =), / PP =), 1<i<n.
neoN

We first repeat Step 1, which is simpler now. Assume for the sake of contradiction
that there exists a sequence );, approaching to 0, such that |ap;‘j |r» = Bj tends

to co. Then ¢; = B{lw;j has bounded L? norms and £)‘J'<,Zaj has bounded C*/?
norms. Passing to a subsequence if necessary, we may assume that (£ @;) oy
converges uniformly on 0€2. Hence ¢, o = (B;le — L @;)© i converges to
0« = ¢* 0% in LP(09). Reasoning as in Step 1 shows that * satisfies

O+ L% =0, ¢ Lker(I+£L%, |¢*r =1.

The first two expressions imply that ¢* = 0, a contradiction. This shows that ¢*
have bounded L norms. Thus the C%/? norms of £ ¢* on 9Q* are bounded, and
every sequence ¢ oy (2) with A\; — 0 has a subsequence converging uniformly to
some @(z,0) = @° 0 79(2) on 9. It is clear that @°, ©° satisfy the same equations
(C8) with A = 0. Therefore, ° = ©° and consequently ¢* o 4* are continuous in
the LP norm.

Step 3 (Estimates in LP and Holder norms). This step works for a), b). We first
consider case a) and derive (T.2)) for # > 0. We have L = K or —K. It suffices to
verify it for 8 = a. For z € 99, write

4N =D o). D) = STl - ol A,

We set A = p in (Z3)) and then multiply it by a*(z)/a*(z). We subtract the new
equation by the original (Z3)) and get

(7.9) D(z)+ [ D(QLN¢, 2*)doM(Y) = Eo(z) — Ei(2) — Ea(2)

o0
with

(7.10) Eo(z) = Zig Yo(2, ) — o2, A),

(1) B = /C L LA ) = IO ) do (),
w1 = {51 [ e@ne i)
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Note that |Zi8 — 1o < Civ(+, 1) = v, A))14a- We immediately obtain

|E0|a < Cl(|¢g|a|7('aﬂ) - 7('7)\)|1+a + WO(';#) - 7/’0(%)‘)‘04)'
By (546) with ¢ = j/ = 0, we obtain
|Balo < Cly(5 1) =705 M ligale”|a-

Define the trivial extension @) (2%) = ¢#(2#), so it is actually independent of A. In
particular, since (-, 1) € BY, then @, is of class C*%(98,). Also, define df;(z)‘) =
a*(z) so a, € CkT*J(99Q,). By Lemma 3] for L = eK* with € = £1,

(7.13) eEi(z) = ¥ (1 - Zigz;) — 2Re{r"Ck (FF@)} + 2 Re{r)‘Ci (T_Az—‘i‘@) }

By the Cauchy transform with parameter (Proposition [(.2)), we obtain
[Erla < Cle"faly(s i) =7(5 Aivan
Applying Proposition [6.1] (ii) to [Z9]), we obtain
[Dla < C(ID[pr + (I9"[a + W5 la) V(1) = (5 Mlata + [0 (5 1) = 1o (5 A)a)

SOl p) = oA [+ (e o+ [0 Ta) v 1) = (5 N 14
+ |1/}0("/’L) - QZ}O(’)‘) oc)'

Here the last inequality is obtained by the definition of D and (7). The proof of
[T2) is complete when 8 > 0.

To verify (1)) for case a), we start with ([_I0) and get
|Eol e < C([$0(, Mo 7" = 1+ [0 (- 1) = o (-, M)l ).
By (5:28)), we obtain
|LH(¢, ) = LM 2| < " =P 1alC — 2177

By Holder inequality and Fubini’s theorem (or Young’s inequality), we have |Eq|»
< Clp# e[ = YMita- Also, |Ealre < C(|¢#|e)[7* =7 14a- By Proposition 6]
(if), we have |o"|L» < C(|¢"[p1 + 1 |Lr). Thus,

|(Eo, Ev, E2)| e < C(|[o(-, 1) — to(, M| re + (9722 + [00]20) 17" = Y 14a)-

By (Z9)) and Proposition (ii) again, we get (ZI). Note that (1) for the L*>
case gives us (Z2) for 5 = 0.

For b), the above arguments are still valid for (ZI)-(Z2) after minor changes.
Formula (7I3) for E; needs to be changed when L = K or —K (see Lemma [A.3).
The use of Cauchy transform with parameter is still valid, and the same estimate
for F4 holds. The proof for (ii) and (iii) is complete. O

Remark 7.2. The norms of 91, . ..,, do not appear in (I))-(C2). However, when

we use ([Z.I)-(Z2)), we need ©* to have bounded L' norms at least. The boundedness
is established via Lemma [T] (i), so restrictions on ¢; for i > 0 enter.
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We want to use (Z9)-(12]) to compute the derivatives in parameter. Define

(7.14) 0 (2Y) L [ (M)} + 0 (V)0 log 0.4,

£ele) = [ N0 I} o)

oQr

£ () = Oalog 0.7 [ AOINE ) a ()
o) = [ NN} a )

Lle(:) = 010 0.2 [ PHOINE ().

Set Lip = {LMp}. Let {y,..., ¢, be the standard basis of ker(I + L).
Lemma 7.3. Let 4 embed 0Q onto 00 with v € B*+1(99).
a) Keep the assumptions in a) of Lemma [l Assume further that ¢y €
CPM(80) and ; € C1([0,1]) fori > 0. Then ¢ € C2'(9Q) and
(7.15) N + (LX) Ong™ = i — (L£1% + L37),
(7.16) / (Or™) 0} do™ = axi).
I9R)

b) Keep the assumptions in b) of Lemma [l Assume further that ¢y €
C(09Q) and ; € C1([0,1]). Then ¢ € C1(99Q) and

(7.17) Onp* + L2 = Dt — (L} + L£3)”,

(7.18) / (DM} do? = Anip) —/ MO dor, 1 <i<n.
o0 onA

¢) Let 0 < 8 < . In a) and b) of Lemma [T, we have ¢ € vaﬂ'(am)
provided vy € B> (082, i € CI([0,1]), and v € BIF1HBI(00); the same
assertion holds if C substitutes for B.

Proof. For simplicity we express ¢ € B*(0Q,) as ¢ € B*, and v € B*(09) as
v € B®, etc.

a) Let us recall some identities in the previous proof. Fix A. Recall that ¢; are
locally constant when L = K or —K. We also use the notation f*(z*) = f(z,\).

By (C9)-([712), the difference quotient

D(z,p) = ﬂ—iA (Zzg e(z, 1) — (2, A))

satisfies
D)+ [ DCWINC ) dN) = Byl = Ba(eun) = Bl

/ D) doNC) = —— (@ ), 1<i<n
cean B—=A
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with
ot 10 = = (S ol = (. )
~ BB o) — AN 2)‘
R I e e ]
- ar(z) — a*(z)

Bz, ) = /C  PCLH ) o),

a*(2)(n = A)
As p — A, it is clear that 1/30(2, 1) converges uniformly to 5,\1#3‘. We want to show
that as p tends to A\, D(z, 1) converges uniformly to a continuous function. Then
the existence of the limit function implies that dy¢* exists and the limit function
must be 55\@)‘.

By Lemma [Z1] ¢ € C%9. It is easy to see that E\, E, are continuous at w#E A
Also, Ey(z, 1) converges uniformly to (£3*¢)(z*) as p — A; in particular, {E4}
extends to an element in C%°. For ¢ # z, by the mean-value theorem and (5.28])
we obtain

K#(C'uv Z#) — K)\(CAv ZA)

T <C|¢— 2>t

Thus ) (z, 1) converges uniformly to £3*p(2*) as i1 — A, and {E"; i # A} extends
to an element in C%°. By Lemma [ (ii) with 3 = 0, we conclude that as p — X,
D(-, ;1) has a limit dy¢* satisfying (Z15)-(ZI6).

b) By a), ¢o,...,¢m are of class Ct! when v € B2>T*1. Thus, in all cases, we
have ¢; € C1''. Fix A\. We need some minor changes in the above arguments. The
difference quotient D(z, 1) satisfies

ﬁ(’z’/i) + /aﬂ b(ﬁ,,u)L’\(zk,C)‘) d(f/\(c)\) = EAO(Zvﬂ) - EAT(Z’/”L) - E;(zalu’)a

~ N e =) M) =6 L
L, Pemear @) ==t [ et e
with
ok _ LM(ZMaé'M) _ LA(Z)\aé'/\)
O R do(¢"),
e ) () @)
Byt = S n S [ e ¢ docr),

By Lemma [ZI] ¢ is continuous. It is easy to see that Ef,E’; are continuous at
1 # A Also, (E3)"(z") def E3(z, 1) converges uniformly to £3¢(2*) as u — A, and
{(E3)*; 1 # A} extends to an element in C%°. In addition, E;(z,u) converges to
L3p(2*) as p— A, and {(Ef)*; 1 # A} extends to an element in C%°. By Lemma
71 (ii) with 8 = 0, we conclude that as u — A, D(z, ) converges uniformly to a
limit function, which is denoted by (9x¢p*)(2*) and satisfies (ZI7)-(ZI).

¢) When j = 0 we get p € B9 from Lemma [T1] (i) and (ii) and Proposition [61]
(ii) and (iii). We further have ¢ € C#? for 1)y € C#0 and v € C1T*0. Assume that
the assertions hold when j is replaced by j —1. Thus ¢ € B2~ We first consider

case a). Then, we have (ZI5)-(ZI6). By (5.40) with j' = j, we know that Lj¢p
and L3 are in B2 Also {dxip)} is in BYT™! and {9y} are in C71(](0,1])
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for i > 0. By the induction hypothesis, we conclude that {5‘)\@)‘} € B2~ Hence
{Orp*} € B2 Combining with ¢ € B, we get ¢ € B27. We can also verify
that ¢ € C* by Lemma [T (iii) and (5.47), when ¢ € C27 and € ¢I+1+ed,

For case b), we first apply results from a) and conclude that ¢, ..., ¢,, are in
B2, This shows that { [oor ¢ do*} are in CI71([0,1]) if ¢ € 7t We sub-
stitute ((CI7)-(CI8) for (CIH)-(I6) and substitute (5.44)-(G.45) for (5.40)-(E.47)
with j/ = j. With minor changes in the arguments, we verify the assertions for b)
too. (]

By Proposition [6] (iv) and Corollary [6:4] we have proved the required regu-
larity in higher-order derivatives of solutions to the integral equations for a fixed
parameter. We are ready to study the regularity of higher-order derivatives for the
parameter case.

Proposition 7.4. Let 4 embed O onto 0. Let k> j >0 and 0< B < a < 1.
Let B > 0 when k > 0. Suppose that v € BEFIT231(9Q), vy € B¥53(0Q.,),
P € CI([0,1]) for 1 <i <n, and p* € L}(0QY).

a) Let {£*} be {K*} or {—K*}. Suppose that
P LN =0, (PN G) = v, 1<i<n

Then ¢ € B¥+5:3(05).,).
b) Let {L£L*} be {(K*)*} or {—(K*)*}. Suppose that

(7.19) O+ L =y, (M) =4}, 1<i<n.

Then ¢ € B¥+5:3(05),).
¢) Letl < k+1 and 8> 0 whenl > 0. Let {£*} be {K*} or {—K*}. Suppose
that 1o € BHPI(08,). Then the solution ¢ to (TI19) is in BFF3(99,).

a), b) and c) remain true if the symbol C* substitutes for B® in all conditions and
assertions.

Proof. To simplify notation, we express ¢ € B*(9€2,) as ¢ € B®, and v € B*(09)
as v € B®, etc. The proposition is proved when £ = 0 and 8 = 0, by Proposition
(ii) and Lemma [Tl (i) and (ii). We may assume that 8 = «.

a) We first verify the assertions when j = 0. When k = 0 we get ¢ € B%C by
Proposition [6.1] (i) and ¢ € C?° by Lemma [Z1] (i) and (iii). We apply Proposition
Then (548) implies ¢ € B¥+A0 for v € BF+1+e0. [EA7) implies ¢ € CF+A0
for v € CFH1+e0 and oy € Ck+e0,

For j > 0, assume that a) is valid when j is replaced by j—1. Thus, ¢ € BF+Fi—1,
Also, ¢ € CFtBI=1 for v € CFH1Fai=1 and 4y € CFt*I~1. Since ¥y € C' and
¥; € C1([0,1]) for i > 0, Lemma [Z.3] implies that

Org™ + (L)' O = ) — (LY + L3>, (Oag™ 0)) = Dy, i > 0.
Here {Ox1);} € C7~1. Also, dyiby € BF—1+i—1 by

MUY (2) = A (22) + ) (2)Ox1og |9,7|, {Oxlog|0-4*|} € BF 1T =L,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 197

Combining ¢ € BFtAJ—1 ¢ k=141 with
26 = [ ORI ) e,

£6(:) = @log o ) [ AOINC ) (@),
we see from (540) that Lip € BF1+®i=1  Thus {dyo*} and {dy¢*} are in
BE=1+ei=1 Combining with {9\¢*} € B¥+*0 we see that {p*} is in B¥+*9. To
verify o € CF+®d for v € CFH1Hd | we use (5.47) instead of (5.46)).

b) Note that the case where k = [ = 0 is established by Lemma [Il So we
agsume that £ > 1. Although we are dealing with the same integral equations as
in a), i.e. p* &+ (K*)** = 9, the functions ¢; which appeared in (¢*, £}) = ¥
are no longer constants in general. Nevertheless, a) implies that ¢, ¢1,. .., d,, are

of class B*T®J or are of class C*T®J when v € CFt1T®J. In any case, we have
¢; € BFt@i Then

[ @Nedrt —owd - [ D)o

GOl o

are in C771(]0,1]), if we know ; € C/ and ¢ € C27~'. The latter is ensured if
¢ € BF1+ed=l with k > j and j > 1. Then, £;(B*~1T*J~1) is contained in
BE-1+ei—1 by (5486) and

Lro(z) = / AV LN N doNCY),
oNA

£3¢(:) = Ol 0 () [ MO ().
Finally, {0y log [0-7*|} is in BF~1T®=1 which implies that if {dy¢*} € B~ 1Hedi—1)
then {0x*} remains in B/~1T*J~1 With these observations, the induction proof
in a) is valid without essential changes. To verify ¢ € C**t®J when v € CkFit+a.J

and 1y € C*+9 we use (5.47) instead of (5.40).

¢) To show ¢ € BF+1+®J we cannot use the induction proof in b) when v; €
BFtIted - For that {dye*} € B¥*i=1 defined by (Z14), does not imply that
{0zp?} is in BrFad—L,

Instead, we apply induction on [. If { = 0, by Lemmal[Z.3]c) we get ¢ € B and
¢ € C&7 when ¥y € C27 and y € Cit1+ed In particular, ¢) is valid when [ = 0.
Assume that ¢) is valid when [ with > 0 is replaced by I — 1. We have

8TA</7)‘ - (ﬁ)\)*&.xgp)\ = 87./\7,/}8\, aTAgDA do* =0, i>0.
Vi

Note that {9, } is in B/ =179 when [ —1 > j and it is in B/ =1+ ~! when [ = j.
By b), we conclude that 9, € B~ for k >1—1> j or in B/~1T®J~1 when
| = j. Combining with ¢ € B, we conclude that ¢ € B+, We can also verify
that ¢ € C'*t*J when 1y € C!**J and v € Ck+1+ed,

One can give another proof for c¢) by using Lemma and a), which avoids the
induction argument. We leave the details to the reader. (Il

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



198 F. BERTRAND AND X. GONG

8. HOLDER SPACES FOR EXTERIOR DOMAINS WITH PARAMETER

In this section, we return to the definition of Hoélder spaces with parameter.
However, the reader can turn to the proof of Theorem for interior domains
by skipping this section. Lemma shows that elements in B**#7(99,) extend
to elements in B*TA7(Qr). Lemma shows that possibly by restricting A to a
subinterval, we can extend a family of embeddings v* of 99 with v € B*¥T5:7(9Q) N
C10(09) to a family of embeddings I'* of Q with T' € B¥+5:7(Q) N CY(Q). The
two lemmas and Lemma form basic properties of Holder spaces for interior
domains with parameter. We also define Holder spaces for exterior domains with
parameter. Finally, we extend estimates on Cauchy transforms and single and
double layer potentials to exterior domains for our Holder spaces. To extend families
of finitely smooth embeddings from 9 into Q, we apply a type of Whitney extension
with parameter. However, the real analytic extension is more subtle, for which we
need the real analyticity of solutions to the Dirichlet problem with real analytic
parameter. The connection between extensions of functions and solutions of the
Dirichlet problem was observed by Whitney [I8]. When an exterior domain Q' =
C\Q is considered, we assume without loss of generality that 2 is simply connected.

Lemma 8.1. Let J, K be non-negative integers or oo, and let 0 < g < 1. For
0 <k < K, let ex41 be decreasing positive numbers and 0 < ji < J + 1 be non-
decreasing integers. Suppose that ji, = J for some k if J < 0o and ji tends to J if
J and K are infinite. Let Q be a bounded domain with 9Q € CK+P N CY. Suppose
that f; € BE=57(0Q) (resp. CEX77P7(9Q)) for 0 < i < K + 1. There exists
Ef € Berﬂ’J(ﬁ) (resp. Cerﬁ"](ﬁ)) satisfying OLEf = f; for 0 < i < K + 1.
Furthermore, Ef has the following properties:

(i) The extension operator f — Ef depends only on i, Q and the upper bound
M; of ¢;' and |fili—isp.j,_, for 0<1<i and0<i< K + 1. Moreover,

(8.1) |Eflk+8.50 < €ns1 + Crle f) Z filk—i+pgis k<K < o0,
i<k
(8:2) |Eflkips < Crle, ) |filk-ivpi, K <oo, 0<j<J+1.
i<K

Here Ci(e, f) depends only on k, 0Q and M; for 0 <1 < k.

(ii) Assume further that fo is constant and f; vanish in a neighborhood U of
p in I x [0,1] for all i > 0 with i+ J < K. Then Ef is constant on some
neighborhood V' of p in Q x [0,1]. Moreover, V depends only on U.

Proof. We cover 9 by open subsets U, of  and find C* functions y,, with compact
support in U, such that 22021 Xp = 1 on 9Q. Here pg is finite. We may assume
that there exist an open subset V), of Q, which contains U, and a cE+8 ¢t
diffeomorphism 1, on V,, which maps V,, onto V* = (-2,2) x [0,2) and U, onto
U* =(—1,1) x [0,1). We also assume that ), sends 9, into A,0, + B,J, such that
1/C < |A,| < C. Here A, and B, are of class CX=1+5 N0 on V*. It suffices to
find h, € BEP7(Q) such that supph, C V, x [0,1] and 8k, = xpf; = hpi on
(V,n0R2) x [0,1]. Then Ef =3 h, is a desired extension.

We now drop the subscript p in all expressions. In the new coordinates, we still
denote f, h;, x, and v by the same symbols. For instance, h; denotes hy; oz/Jp_l. We
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have

OL=A0L+ Y > Bum0yT'ol, 0y=AT0,+ > Y Bundy o,

0<m<i I<m,l<i 0<m<i I<m,l<i
Note that Bjjm and By, are in CE—iHm=1+8 0 on V* To achieve dih = h; on
V*, we need
(8.3) Oph=A"hi+ > > Bundy 'hi.

0<m<i 1<m,I<i

Changing notation, we write ([83]) as 8; f = fi. The support of f; is contained in
[—1,1] x [0,1], and f; is in BX 77 ([=2,2]). If necessary, we will replace ¢ by
er,/C with C depending on the numbers of sets U, and diffeomorphisms 1),,.

Fix 0 < 0 < 1/2. Let ¢ be a smooth function on R with support in (-4, d) such
that [, ¢(y) dy = 1. We first need to replace y'f;(2,A) by y'gi(z,y,\) to achieve

the BE T4/ smoothness; when K = oo, we still need the replacement to estimate
the | - |54+, norm of y'g;(z,y, ) via |filk—it+p;. This requires us to correct the
i-th y-derivative of y'g;(x,y,\) due to the presence of y'g; (x,y,\) for i; < i.
Take a cutoff x(y) which has support in (—1,1) and equals 1 on (—1/2,1/2). Let
a; € BE7P7([=2,2]) have support in [—1,1] x [0, 1]. With constants &; > 0 to be
determined, consider

84 gl = [ o=y o dz bl d) = Fo'nt s )

It is clear that 8§\gi(-, ) are C* away from y = 0 and g; € C2/(V*). Also g; have
support in V* x [0, 1]. ‘ ‘
To show that b; € BE %9 (V*), it suffices to show that &]87b; extend to functions

in B20(V*) for all I with |I| = k < K 4+1. We first derive a formula for derivatives.
Write I = I + Iy with |I3| = min{k, K — i}. We have

0" [ ailw~yz No(2) dz = [ 0(aslo — y2 o) dz
= /(3”2|ai)(a: —yz, )\)gbgg)(z) dz.

Here and for the rest of the proof, ¢>(km)(z) denotes a linear combination of z/¢(™)(z)
with | < k and n < m. Assume now that y # 0. Changing variables and inter-
changing the differentiation and integration, we get

1 I Tr—z
" / (0121 a;) (@ — y=, N, (2) dz = / e (07 (2, Mol (T) dz.
Changing variables again for the last integral, we get the formula

85) 05 [aita—yz Nol2)dz =y 1 [@ e -y2)oli) () ds y 20,

First consider the case where i <k < K + 1. For |I| =k and y # 0, we have

8I(yigi(xa Y, A)) = Z Cil[zagi/l yi812 /al(a: — Yz, )‘)¢(Z) dz

i1+|12‘:k}
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with iy <. Write Iy = I3 + Iy with |I3| = k — i and |I4] =i —¢;. By (B3] we get

86 O o ) =Y [0 @) -y N @ de 1=k

11 <1
It is obvious that the right-hand side extends to a function of class B J(V*). Also,
the C#(V*) norm of &, D' (y'gi(z, y, \)) in variables z, y is bounded by Cy ;|a;|k—i+ 5 ;-
By dilation, it is easy to see that x%(z) = x(d;'z) with 0 < &; < 1 satisfy
X% ktp < C;C(Si_k_ﬁ. Therefore,
(8.7) Bilkts,s < Cradi *laile-irgys 0<i<k.

Next, we want to verify that 8;(yigi(x,y, A) = dlaj(x,\) at y = 0. Fix x.
By a; € CY7([-2,2]), suppa; C [-1,1] x [0,1] and (8B) with k = 4, the value
of 9 (y'gi(x,y,\)) at y = 0 depends only on a;(x). However, the identity holds
trivially for any é; € (0,1), when a; is constant. We now determine a; by taking
ag = fo, and

(8.8) a; = fi = O ly=o(bo(z, 4, A) + - -+ + bi_1 (2,9, \)).
By @), for j < J+1landi+k < K+ 1 we get
(8.9) Jailirsg < ilkrsg + Y Corndi T larlirioirs
1<i
< |filkssg + 6 TS Ll Alkricies -
<1

Here we have assumed that & decreases. In particular, a; is in BX 777 ([-2,2]).
We have achieved

Now consider the case where ¢ > k = |I|. By the product rule and (&3,

(811) al(yigi(x7 Y, A)X((S;ly)) = Z Ciliz[gazl 822 (6;111/) : alsgi(xu Y, >‘)

= Cirinr, 02 X(5; y) -yt /ai(w— vz, N0 (2) dz.

Here the summation runs over iy + iy + |I3| = k. The C® norm of (6i_1y)i_i1_|l3| .
x'%2)(8; 1y) is bounded by C’(Si_ﬁ. Thus for any ¢; € (0, 1),

(8.12) 8§(bi(ac,y, A))=0, y=0, k<i,

(8.13) ‘bi|k+6,j < Ck,i(sz_k_ﬁmi

By [8I3) we inductively choose decreasing d; such that

k <i.

€; .
(8.14) bili145,5 0 <6 Plaalg g max Cp; < 57, 021

Take Ef(z,y,A) = 3251 j<r bi(z,y,A). By B14), we get 30, [bilkrpn < €hs1
for 0 < k < K. Combining it with (810), (812) and 1), we obtain 0, Ef = f; at
y = 0 and (&), respectively. Combining [87) for £ = K and B3] gives us [82).
From [BZ) and B0), we see that b, € CETP7(V*) when f € cEF07 (7).
Using the convergence of ) |b;|x+3,5, again, we obtain Ef € CEFPT(V¥). The
dependence of E'f and Ci(¢, f) on norms of f;, as stated in the lemma, is determined

by B3]), §Q) with k£ = 0 and (8I4).
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Note that (ii) immediately follows from the extension formulae. Indeed, the
partition of unity for O preserves conditions 82 f = 0 for i > 0 and f, being
constant in a neighborhood of 2y in 99, by starting with one of the x,’s to be 1
near zo and all other x,’s to be 0 near zy. From (&3], we have (%f =0fori>0
near zg. By (84) and shrinking the support of ¢ if necessary, Ef is constant near
z20- O

Lemma 8.2. Let J, K, 3, €x11, jr be as in Lemma Bl Assume further that J < K,
and K > k+ ji for 0 <k < K. Let Q be a bounded domain with 0Q € CK+8 nCt.
Suppose that f; € B*K*Hﬂ"]((p)ﬂ) (resp. CffHﬁ"](aQ)) for all i > 0 satisfying
i+J < K. There exists Ef € BE+57(Q) (resp. CEK+57(Q)) satisfying OV Ef = f;
fori+ J < K. Furthermore,

(815)  |Eflerpg < ernn +Culef) 30 Ifillicirps, k<K <o,
i<k, i+J<K

(8.16)  Bfllxeps < Cxlef) S Wil iros K<oo, 0<j<J+1,
i<K—J

where the extension operator f — Ef depends only on i, 0X), and the upper bound

M; of e and || filli—14ji 1484 for 1 < i, i >0 and i+ J < K. PFurthermore,

Ci(e, f) depends on k, 0Q and M, for | < k; Ef is constant near (z,0) € Qx [0, 1]

if mear zg € 09, fo — fo(z20) and f; vanish for i >0 andi+ J < K.

Proof. We use Ef = >, ;_p bi, with b; being of the form (84). We still have
azljbi =0 for k < i and aébi = a; at A = 0 as they hold for é; € (0,1), provided
a; € BE=H8:7(90)(c BE~77"7(9Q)). We rewrite previous estimates in norms |- ||

instead of | -|. Assume that i +J < K, j < J+1,and (j <) k < K+ 1. By (1)
and (BI3), we have

(8.17) 1031455 = max [bil -5 < max{Cr,id; ik, 5.}
1<j 1<j
< Crib; " Plailli+pg, i<k
Here k1 = max{k — ! — 4,0} and ko = max{k — i,j} < K —i. By (813)) again, we
have
(8.18) billisss = max bile-—r4ps < Ck8;"laillss, i > k.

Assume further that I <i. By [8I7) we get

ladllesps < Iillsrss + Y Nbmllsties.;

m<l
< fillwtpg + 653" Cillamlliti-me+s.5,
m<l
(8.19) latlersg < Ifillksss + 0SS Cll fanllisi—mes -
m<l

Thus, by §I9) with | = i, a; is in BX=i87. by BI7)-E®IF), b; € BEEI.
Therefore, by ([BI8)-([®I9), we can inductively choose decreasing d; such that

1— €
1Billi-14550 < Citi Pl pis < 5o
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where d; depends on the upper bound of C; > 1,¢; " and || filli—14j; 1+, for
I <. The rest of the arguments in the previous proof are valid.

The above proof for the non-parameter case without estimate on norms is in [5]
(pp. 16 and 18). See also [2] for different spaces with parameter. For the proof of
Theorem [[.2] we need the following extension lemma to prescribe A-derivatives.

Lemma 8.3. Let J, K be integers or oo and let 0 < [ < 1. Let Q be a bounded
domain with 0Q € CK+8 N L.
(i) Suppose that f; € CETP(OQ) for 0 < j < J + 1. There exists Ef €
Cf<+ﬂ"](8§2) satisfying BiEf =fifor0<j<J+1atA=0.
(i) Let J < K. Suppose that f; € CK=3+5(9Q) for 0 < j < J + 1. There
exists Ef € CK+8(9Q x [0,1]) satisfying 8§;Ef =fifor0<j<J+1at
A\ = 0; in particular, Ef € BE+AK(9Q).
(#33) In (i) and (i), if near p € 0, fo is constant and f; vanish for i > 0,
then Ef is constant on 'V x [0,1] for some neighborhood V' of p.
(iv) (i), (ii) and (iii) hold if 0 substitutes for OS).

Proof. (i) When J is finite, we simply take Ef(z, \) = ijo N fj(x). Assume that
J = 00. Let x(A) be a C* function which has support in [0,1/2] and equals 1 near
A = 0. We choose 0 < §; < 1/2 satisfying 8;|f;|2;|x|; < 277. Then Ef(z,\) =
SN (x)x(é;l)\) is a desired extension.

(ii)-(iii) The extension Ef is a special case of Lemma [8I] where the parameter A
is absent and the variable y in its proof is replaced by A. We first find an extension
Ef € BEA7(9Q). Using a partition of unity and local change of coordinates
of class CX+# N C!, we may assume that JQ contains [—2,2] x {0}, Q contains
[—2,2]x][0, 1], and f; have support in [—1/4,1/4] x{0}. Locally we find an extension
Ef € CKP([=2,2] x [0,1]) such that dJE f(x,0) = f;(z) and supp Ef C [-1,1] X
[0,1/2]. Then Ef(z,\) is a desired extension. It is clear that (iii) follows from the
extension formulae.

(iv) For the extension Ef € CX*+#(Q x [0,1]), again by partition of unity for €,
we may assume that all f; have support in (—1/4,1/4) x [0,1/4). Next, we apply
Lemma [B] for the non-parameter version and extend f; across the boundary of
o0 to (—1/2,1/2) x (—1/2,1/2). We still have f; € CX~i8 and f; has compact
support. We substitute (84]) with

8200 o) = [ ailo =)o) dz, b = §Ngi( VX ),
R2 .

where a; € CKTA=%([~3/4,3/4]?) and suppa; C (—1/2,1/2)2. The arguments
in the proof of Lemma [BJ] are written for one variable . However, when x €
R? or in higher dimensional Euclidean spaces, the identities require only minor
changes. We will leave the details to the reader. In conclusion, one can find
Ef(x,\) = Y bi(x,\) such that Ef € CK+A([-2,2]? x [0,1]) c BEFAK([-2,2)2),
supp Ef C [~1,1]2 x [0,1] and &, Ef = f;. O

Remark 8.4. As shown in Lemma [2.2] the composition of functions is restrictive
for spaces CkT®J. We do not know if the g; in ([820) are of class CX+*J(Q) when
K + « is finite but not an integer; therefore, we do not know if there exists an
extension Ef in (ii) of Lemma B3] that is of class CEX+*7/(Q).
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Lemma 8.5. Let 1 < k < oo and 0 < 8 < 1. Let Q; be bounded domains of the
CF*8 boundary. Let v be an orientation preserving C+P diffeomorphism from 0,
onto Oy, which sends outer boundary to outer boundary. Then ~y extends to a C**7
diffeomorphism from 0y onto Qs and it also extends to a C*+8 diffeomorphism from
Q—’l onto 9_’2 which is the identity on |z| > R when R is sufficiently large.

Proof. We first prove the assertions when §2; are simply connected. Let ;: 0D —
09, be a C**# parameterization. Approximate ~1 in C! norm by a C*° parameteri-
zation 7 : 0D — 9€). Then 197+ = I has a small C' norm on 99;. By Whitney’s
extension theorem, it extends to a C**# mapping ¢ which maps from Q; into C
with a small C' norm. Then I 4+ ¢ is a C**# diffeomorphism mapping Q; onto
Qf with C> boundary. Therefore, we may assume that 9; have C*° boundary.
Thus, we may further assume that €2; are the unit disc, say, by Kellogg’s Rie-
mann mapping theorem. Since  preserves the orientation of the unit circle, then
v(e?) = €®+a®) Here a is 27-periodic and 1+ a’ > 0. Let p: [0,00) — [0,1]
be a smooth function which has support in (1/2,2) and equals 1 near 1. Then
Lo(re??) = ret0+r(Mal®) ig a desired extension.

To extend v to the unbounded component, using time-one mappings of vec-
tor fields of compact support, we may assume that 0 € €2;. Using the inversion
to(z) = 1/z it suffices to show that in the above arguments we can extend v to
a C**# diffeomorphism from Q; onto Qg, which is the identity map near the ori-
gin. Composing I'g with the time-one map of a vector field which vanishes near
091, we may assume that ['o(0) = 0. Using a dilation, we may assume that
Lo(z) = Do(2) + E(z), where |E| + |0E| < € on |z| < 1/2 and Ty is the linear part
of Tgat z=0. Let x=0o0n |z|] <1/4 and x = 1 on |z| > 1/2. When € is small,
['1(2) = To(2) + x(|z]) E(2) is still a C**P diffeomorphism. Now T'; is linear near 0.
Since I'} (0) preserves orientation, by the Jordan normal form of 2 x 2 matrices we
find two flows X* and Y of vector fields vanishing at 0 such that I} (0) = X1 oYL
Let p be a cutoff function which equals 1 near the origin and has support in a small
neighborhood of the origin. Then (pY)~!o (pX)~! oI is a desired extension.

The general case for bounded domains is obtained by induction on m + 1, the
number of components of 9€2;. We have proved the lemma when m = 0. Let C; be
a component of the inner boundary of ; and let Cy = v(C1). Let w; be bounded
components of C\ C;. Applying results proved in the previous paragraph, we find
an extension I'y of |g., to w—i Replacing v by I'; oy, we may assume that ~ is the
identity on . Using a diffeomorphism of class C**# from W_1 onto C\ D, we may
assume that C; = Cy is the unit circle. Let Q = 09Q,; UD. We know that v extends
to a Ck*+# diffeomorphism T’y from Ql onto Qz By the argument in the previous
paragraph, we may achieve I'g to be the identity on |z| < e for some 0 < € < 1.
Let T'y be a C*° diffeomorphism on C which is the identity on the complement of
the disc D, and sends D into D.. Here p > 1 and D, is contained in Q1. Then
1“;1 oT'g oI is a desired extension of « to Q. O

The proof of the next lemma needs Theorem for the Dirichlet problem for
interior domains. Our arguments are valid because Theorem is for embeddings
4* which are restrictions of T'*.

Lemma 8.6. Let j, k be non-negative integers or oo. Let 0 < 8 < 1 and let 2 be
a bounded domain in C with 0 € CF*P N CL. Let 4> be a family of orientation-
preserving embeddings from 92 onto O with v € C0(9N). Assume that v sends
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outer boundary to outer boundary. For each g € [0, 1], there exists § > 0 such that
if I = [0,1]N[Xo—6, Ao +0] substitutes for [0,1] in all function spaces, then v extend
to C' embeddings T* from Q onto Q* with T’ € Ch0(Q). Furthermore, if 7y is in
BEFPI(90),CETPI(9Q), BRI (0Q) (k > §) and CFPI(0Q) (k > j), there exists
an extension T in BET59(Q), cEP9(Q), B3 (Q) and C*+8+3(Q), respectively, and
if O and vy are real analytic, then T € C¥(Q x I).

Proof. With § to be determined, set I = [Ag — d, Ao + ] N [0,1]. As stated in the
lemma, the space C*°(Q) and others depend on 6.

(i) We apply Lemma and extend Y2 to a C' diffeomorphism Fé‘“ from Q
onto Q*o. Approximate 1“3‘0 by a smooth map I‘i‘“ and set I'} = I‘i\‘) for all A.
We have [y* —T7|1 < € < ¢ for A € I when § is sufficiently small. We apply
Lemma R1] and extend y — I'y to an element 'y € B9 (Q) N ¢10(Q) such that
ITal10 < €0 + Cleg)e < 269. Then T* = I'y + I'} are extensions of 4*. Also,
ITh — T30, < 2€. Since I')° is an embedding, then T*° is also an embedding
when ¢ is sufficiently small. By continuity in the C' norm, we know that I'* are
embeddings for A € I when ¢ is sufficiently small. Analogously, we can find the
extensions for the other three cases.

(ii) For the real analytic case, the proof in (i) via extension does not apply.
Instead, we solve a Dirichlet problem with parameter. We extend 4*° to a smooth
embedding I'° and approximate T'° by real analytic embeddings I''/7 such that
T/ —F0\3/2 < 1/j. For f € C3/2(9Q7), let T; f be the unique harmonic function
€1; which is continuous up to the boundary and has boundary value f. Thus T}
maps C3/2(9Q/7) into C3/2(Q1/3). We know that T} is injective and the range of T}
is the Banach space of harmonic functions on Q; of class C3/2(Q1/4). The inverse
mapping of T} is the restriction mapping, which is obviously bounded. By the open
mapping theorem, T} is bounded with norm ||T}||. Next, we want to show that the
norms ||T}|| are bounded too. Define

PO/GHOF=0/5 — gr1/G+D) L (1 _ T 0 < g <1,

Then {T*} € €3/29(Q)). When A is sufficiently small, ' embeds Q onto Q*. Assume
for the sake of contradiction that ||T}|| are not bounded. We find f'/7 € C3/2(9Q/7)
such that |T;f1/7|3/5 =1 and |f1/9]3/5 — 0 as j — co. Define

FOLGEDFA=0)/ o O/GEDFA=0/5 — g p1/GHD) o P1/GHD) 4 (1 — 9y f/3 o TV3

Then f € C3/20(0Qr) for f° = 0. Let u* be the harmonic function on Q* which is
continuous up to boundary and has boundary value f*. Thus u € C3/ 29(Qr) and
u® = 0 because f° = 0. However, |u1/j|3/2 =1, a contradiction.

Let u}\/j be harmonic on Q'/7 such that v} = u}\/j oTVi(2) = M 2) = TYi(2).
We have |u}\/j|3/2 <\l - I - Fl/j|3/2 — 0 as j — oo and A\ — 0. Hence
vj)»‘ +T'Y/7 approach to I'? in C3/2 norms as A and 1/ tend to zero. Fix a j such that
v} + /7 are embeddings for all [\ — Xg| sufficiently small. Then I'y = v} + ['*/J

are extensions of 4. Finally, I')(z) is a real analytic function on Q x I by the
analyticity of solutions of the Dirichlet problem with parameter. |

We now introduce spaces for exterior domains. Let Q' = C\ Q. Without loss
of generality, we assume that {2 is bounded and simply connected. Motivated by
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the definition that a function h(z) is harmonic at oo if h(1/z) is harmonic at the
origin, we define inversions

(8.21) ta(2) = ! +a, Q={aUwQ, Q) ={br}Uwu, (2

zZ—a

for a € Q and by € Q*. For a family of embeddings I'* from € onto (Q*)’, define
(822) Fg\ = lpy © FA’ Fé,b = lp, © F)\ Ola, Wli\ = lpy © /7>\7 ’72\,17 = lp, © /YA O lg-

Set I‘ib(a) = bx. Then I‘f;b is a fractional linear map from €, onto 2.

We denote f € C*+2(QY) if fou,, which is not defined at a, extends to an element
in Ckt(Q,). Denote f = {f} € CF+*3(Q) (resp. BF+7(V)) if f o1, extends to
an element in C*+*3(Q,) (resp. B**#7(Q,)). We emphasize that as in (821)-(822)
we require a € ). The extended functions are still denoted by f ot,. It is easy to
verify that the definitions are independent of the choices of a. Let I'* be a family of
C' embeddings from € onto (Q*)". Denote f € CF+®J(QL) (vesp. B (Qf)) if
{f o} € CF+d (V) (vesp. BFTAI(Q))). The spaces for functions on boundaries
of exterior domains will be the same as those for boundaries of interior domains.

To use the spaces C***J(QL) and BFt*J(QL), we will need good control of
embeddings T'* at infinity. Suppose that by and dy are in Q* and a,c are in Q. It
is obvious that Fé’b = 1p, 0" 04, extends to a C! embedding from €, onto Q3

if and only if I‘g ; extends to a C! embedding from €’ onto Q_é‘ for any ¢ € Q and
dy € Q*. By {bx} € C’([0,1]), we mean that A — by is of class C7([0,1]). Then,
Ly € CETI(Q,) if and only if T g € CFF9(Qy), provided b and d are in C7([0, 1]).

To put the above definitions into context, we restate Lemma (i) as follows:
The space B*+57(QF.), which is obviously dependent of {(Q*)'} and €/, is indepen-
dent of embeddings T from ¥ onto (Q*)’, provided there exists {bx} € €7([0,1])
such that I‘Q‘J) extend to C' embeddings from €, onto Q_l’,\ for some a € Q and
Loy € BEFi(Q,) NC1O(Q,). Finally, we always assume that v* are the restric-
tions of I'* on 9, which preserve orientation.

Proposition 8.7. Let k > j and k+1>12> 0. Let Q be a bounded and simply

connected domain with 0Q € CKT1+ and let T map ¥ onto () for 0 < A < 1.
Let by € Q* satisfy {bx} € C7([0,1]) and let a € Q. Suppose that Ty, extend to C'

embeddings from Qg onto Q_,’)\ with Ty € CL0(Qy,).
(i) If Ty € B7(QY) and f € BH*9(9,), then {C2f} € BH*I(Qf). The
analogous assertion holds if Clred substitutes for BT,
(ii) If OQ € C¥, Tup € C¥(Qy x [0,1]) and {f oTH 01,} € C¥(9Q, x [0,1]),
then {C* foT*o1,} € C¥(Q, x [0,1]).
Proof. By our definition of orientations of boundaries, ¢, reverses the orientations

of 0 and 99, for a € Q. Let by € Q*, 2} € C \W, and z) € Q. Applying the
inversion 15, to replace (* — by by (¢ — by) "1, we get

Apray 2~ by (O = bx) A (e, (CN))
C-1E =~ 2mi /asz; Oy — 2

To0(2) —ba / (F35(¢) =bx) " f* 0T 0.44(¢)
02, L350 =T75,(2)

gy,

(Crf)oTP 0 1,(2) = —

dry 4 (0).

211
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We know that {f* 00T ,} = {f* oy 01} is in BFY*9(9Q,) and CF7(992,),
when f is in B¥%J(98,) and C*+23(9Q,), respectively. The lemma follows from
Proposition O

Proposition 8.8. Keep the assumptions in Proposition Bl Let f € C> (092).

(i) Assume that [, fAdo* = 0. If Ty, € Ci7(QUr), then W_f e C27(Qp).
Assume that 00 € CF*te Ty e BFHI+ai(QV/r) and f € BEF*I(9Q,).
Then W_f € BF1+a3(QV1). The analogous assertion holds if C substitutes
for B. Assume further that O € C¥, {by} € C¥, Tayp € C¥(Q, x [0,1]) and
{fAoy*t € (99 x [0,1]). Then {(WAf)oT*o1,} € C¥(Q, x [0,1]).
(ii) If Ty € BEYI(Qp), then U_f € C27 ().
Proof. Let A be an orientation preserving map from 9§ onto 9. Let A(t) be a
parameterization of Q. Then ~(t) = A(5(t)) is a parameterization of dQ. Assume

that dt agrees with the orientation of 9Q and A extends to a C! map defined near
09). We have

do = |0, AG3(D) | dt = 0. A + 5/ (1) 5 (D)0=A] do.

Let da? be the arc-length element on 39?. Since u, 2* — z, reverses the orien-
tations of 9Q* and 927, we obtain

doy
8.23 do* = ——b—
(8:23) |G — bal?
on 9 or 9N* (via pull-back or push-forward). By ([B.2), a simple computation
yields

WA = 2 [P oglG - 2] do?
o0

1
- = FACM) log|(Cn = ba)(2a — ba)|do™, 2y # by
™ JaoAr
Since fam fAdo* = 0, we can remove (zx — by) and the restriction z) # by from
the last integral. By ([823]), we get

1 1
A Ay A I B \
WZ2f(") = —— o0 f (LbA(C,\))K/\ SYNE log |Cx — 2| do;
1
+ p oo f)‘(LbA(C)\)) [RENE log ‘C)\ — b)\| do‘l/)\7 2z € Q?
b

Let Tb):c be the unit tangent vector of Q) at (. Fixing z € Q, we have darg(z* —
) = (0, ara(Cr — ) — Dy, ar(Gr — b3)) do (G) and by @)

1

UXF(2) === [ P ea ()0 arg(Cn = 20) dop (G2)
T Joq) o
+1 e, (G0)0 — , )
b2 (CA)0rx arg(Cx — bx) oy (Cr),  2x € Q.
™ BQbA NS
The assertions follow from Proposition (5.3 and the last two formulae. O
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9. MAIN RESULTS AND PROOFS

In this section, we first prove the real analyticity of solutions to real analytic
integral equations arising from the Dirichlet and Neumann problems. We then
collect results from previous sections to formulate the solutions of Dirichlet and
Neumann problems with parameter. Finally, we prove Theorem

Proposition 9.1. Let Q be a bounded domain with 0Q € C¥. Let v embed 09
onto OO with v € C*(0Q x [0,1]). Let L be one of K,—K,K*, and —K*. Let
P € C¥ (00 x [0,1]). Suppose that p* € L*(90*) satisfy

(9.1) o+ LN =9, (PN ) ecr, 1<j<n.
Then ¢ € CY(0Q x [0,1]). Furthermore, the functions ¢o, ..., ¢m in Proposition
are in C¥ (082 x [0,1]).

Proof. We already know that ¢, ¢; are of class C*°. We apply Cauchy majorant
methods to estimate the growth of their Taylor coefficients. By Taylor’s theorem,
a function f on 9Q x [0, 1] is real analytic if and only if

max| 90 £ (1), V)| < Cillp"™,

where 4 is a real analytic parameterization of 92 and C, p are constants. We first
need uniform bounds for solution operators in sup-norms. Let {¢},£3,...,¢)} be
the basis of ker( + £*) described after the proof of Proposition By Lemma
[Tl (i), we know that £q,...,4, are in C*%(982,). Then Ly sends C%°(92,) into
(C°([0,1]))™, where

Lop = (™ 0), (0, 63), -, (0, 63)-
Consider bounded linear maps
(I+L,Lo): C*(09Q,) — (C%°(99Q,) Nker(I + L)) x (C°([0,1])" = X,
(I+L* Loy):C"00Q,) = X« L=Kor —K.
It is clear that (I 4+ L, L) is injective. By Proposition (iii), the second map is
also injective for both cases. By Proposition (i) and Lemma [Tl (i), I 4+ £ maps

C%0(99,) onto C%° N (ker(I + L£*))L. Since £3,...,¢) are linearly independent

for each A, then ((ff‘,é;‘>)1§i7j§n are invertible. Since ¢; are in C%°(99,), given

¢ € (€C°([0,1]))™ we can find é € (C°([0,1]))" such that >, (N, = ¢i(N).

jori

This shows that (I + £, Lg) is surjective. That (I + L*, Ly) is surjective for £ = K
or —K follows from [, eiqﬁ;‘ do* = 6;; for 1 < i,j < m, and [, eoy do* = 1.
By the open mapping theorem, we have

(9.2) leloo < Cu(I(T + L7)@lo0 + [Loplo), L =K or =K,
(9.3) l¢loo < Cu(I( + L)ploo + [Loplo), L=K,—K,K*, or =K.

Here the ¢ is in C®°(9Q,) and C, is independent of .
(i) We first consider the case where £ = K or —K. We express (0.1)) as

(9.4) o) + /a ACNLLGA) do(0) = (=),

(9.5) /a ACNRACN () = 02 =T,
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Note that L(z,¢,\) is real analytic on 92 x 9Q x [0,1] and a(¢,A) = 9.27*(¢)
is real analytic on 9Q x [0,1]. We know that ¢; are locally constants. However,
we want to reason in such a way that the proof is valid whenever @(C ) are real
analytic in A and ¢. Thus, the proof applies to £ = K* or —K* after we prove (ii).

Differentiating ([@.4)-(@.3) yields
(9.6) 31;‘»0(2’)\) EA@W *3/\1/10(2 A)

k—1

Y (3) [ hetendtnie e 0 do(o)
1=0 oQ
k—1
0 Lotk = 04w - 3 (}) [ ohelc. Nak I Qalc ) do )
1=0 89

Set Ay = & maxc x [05¢(¢, A)| and
1
ax = 17 amax {IAL(C, % M1, 950 C. M. 05 (WL, 195 (€ha(c. M) .

We have |(4|3|¢a| < C1. Denote by |09 the length of 9Q. Then we obtain from

@.1), @.3) and (@.6)
1 k—1 k—1
SIL305 < ax+ 1091 Y Avar, Ak§2C%ﬁk+M%M§:Amh4}
’ =0 =0

Denote Y. Arw! < Y brw! if Ay < by for |I| > 0. The above implies that

Z Ak < 20, Z apw® + 2C, 09w ZAkwk Z apr1w”.

Therefore, > Apw" converges near the origin. Set By,; = k,ij, max; 5 |00 p(3(t), N
and

mwa@(() NI, 18780 (3 )

1
brj = Klj!

Taking 8] directly onto the real analytic kernel d¥L(5(t), ¢, \) in (@6), we get

D0k (3(1), N =02k o (3(1), N) — 3 () || dhele N0i0k L 06,0 do ),

=0

By < by + (09| ZAlb(k—l)ja k,j >0,
=0

ZBkjw]fwg =< Zbkjw’fw% + 09 ZAkw’f Zbkjwfw%.

Obviously, > By;t? A\F converges near (¢, \) = 0.
(ii) We still consider L = K or —K. The elements in the base {¢2} of ker(I+L£*)
are not constant, so we need to first establish their analyticity. Recall that

i @yet =0 [ 60anOdr =5, 1<ij<n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 209

We write both in vectors and matrices and get

k—1
ANz ) — — k ! UL 5 ) do
09 U@ =3 (7) [ Aotc Vo 16N (@)

k—1
choke = ofdins(t,.... 1) = 3 (7) [ ohotc. 0ok (Palc. ) doc).
1=0 o9

We use ([@.2) instead of (@3) and get, for Ay = & max¢ 1<x<n |05Pa(C, V)],
1 k—1 k—1
E|£88§(Z5)\| S 1+ |8Q| ZAlak—lv Ak S 20*{1 + |8Q‘ ZAlak—l}-
=0 =0
Therefore, - Agw* < 20, + 2C,|0Qw Y Apw* Y- ap 1w and Y Agw* converges
near the origin. Next, we apply 9] to (@.8) and get

k
j ok 44 _ k I J k1 . >
oioo0.0 = =3 (7) [ Ahotc Voo A0 a0

As before, we obtain real analyticity of ¢(5(¢), A).
With the real analyticity of ¢;, the proof in (i) is valid for £ = K* or —K*. O

The Dirichlet problem for exterior domains with parameter is
Au =0 on (Y, u = f* on 9.
To ensure that the solutions are unique, we require that «* be harmonic at oo,

i.e., that u*(1/2) is harmonic in a neighborhood of 0. The Neumann problem for
exterior domains with parameter is

Av* =0 on (QY), It =g*  on OO

Here 1 is the unit outer normal vector of 9Q*. Again, we require that v* be har-
monic at co. For the existence and uniqueness of solutions v*, we impose conditions

(9.9) / g do* =0, / v de* =0, 0<i<m.
7 7

The v* which satisfy conditions (I3)) or (@) are called normalized solutions. By
Hopf’s lemma, if u is harmonic on 2 and continuous up to the boundary with
08 € C'**, then 9,u determines v up to a constant. In fact, one can locally reduce
to the case where Q is a unit disc by Kellogg’s theorem; see also [10], p. 7. Thus,
the normalized solutions are unique.

Recall that function spaces for interior domains are defined in section 2] and
function spaces for exterior domains are defined in section8l The reader is referred
to Lemma[Z2 for independence of spaces BXT7:9(9Q,) and B¥+#9(9Qr) on v and T
for k > j, respectively. Recall that Lemma shows the existence of extensions of
~* to I'*. We now summarize the solutions to the Dirichlet and Neumann problems
with parameter as follows.

Theorem 9.2. Let 0 < j <k, 0 < a <1, andj <1l < k+1. Letﬂbea
connected bounded domain in C with 9Q € CFH1te Let T* embed Q@ onto QX with
[ € B2 (Q) for interior Dirichlet and Neumann problems. Let T* embed

onto (Q*) such that ty» o T o 1, extends to C' embeddings from Q, onto Q_g‘ with
I, € BEFIFI(QL) for exterior Dirichlet and Neumann problems. Here a € S,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



210 F. BERTRAND AND X. GONG

by € Q* and {b\} € C7([0,1]). Let v be the restriction of I'* on 9Q. Suppose that
(P} econ,).
(i) (Interior Dirichlet problem.) There exists a unique harmonic function
uw? on O such that u € C27(Qr) and v = f> on Q. Moreover,

(9.10) N =Uko+ Y ulWie;,

i,7=1

PN =g P Lker(T+KY), ¢* = A=) e,
J=1

(W)\¢i|7})1§i7jﬁm = ()" = Ao do.
o0
(ii) (Exterior Dirichlet problem.) Assume that Q* are simply connected.
There exists a unique harmonic function u™ on (Q*) U {oco} such that u €
CH (L) and v = f> on dQ*. Moreover,

ut = Uy +/ e do?,
o0X

o =Kt =g ¢ Lker(I-K"), ¢*=f"— . ey do.

(iii) (Interior Neumann problem.) Let |0Q*| be the arc length of 90>,
Assume that fam fAdo* = 0. There exist u* which are harmonic on Q*
and satisfy {u*} € CO7(Qr) and d,xu> = f>. The normalized solutions u™
are given by

<P>\ - (K)\)*gok = f)\a 90)\ € ker(l - (ICA)*)v
1
A A A A
=Wio — —— Wlodo.
R NPT /a L

(iv) (Exterior Neumann problem.) Assume that Q* are simply connected
and f,y_x fAdo* = 0 for all j > 0. There exist functions u® which are
J

harmonic on ()" U {oo} and satisfy u € C27 () and dau> = f*. The
normalized solutions are u® given by

O+ (KN = A o Lker(I + (K,

1

A A A A
=W2p— W2pdo™.
U 2 ‘3QA|/6(2* Zpdo

(v) (Regularity.) If f € B (0Q,), then u € B (Qr) for (i) and u €
BiFed (Vr) for (ii); if f € B* I(9Q,) then u € BFF1Td (Qr) for (iii)
and u € BFFIFI (V) for (iv). Assume further that T' € CkT1ti(Q)
and Ty, € CHHITi(Q). If f € CIT*I(9Q,), then u € CHI(Qr) for (i)
and u € CTI(Q'r) for (id); if f € CkT*I(8Q,), then u € CFF1TI (Qr)
for (iii) and u € CFH1TI (V1) for (iv). Assume further that 9Q € C¥,
I eC¥(Qx[0,1]), Tup € C¥(Q x [0,1]), {b*} € C¥([0,1]), and fov €
C¥(0Q x [0,1]). Then u* o T'*(z) is in C¥(Q x [0,1]) for (i) and (i), and
ur o T? 01,4(2) is in C¥(Qq x [0,1]) for (i) and (iv).
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Proof. For smoothness in parameter, we need to compute the coefficients in the

solution formulae. We recall results from Proposition We have e; = 1 on ;

and e; = 0 on 9Q*\ ) for i > 0, and ep = 1 on IN*. Also (f,y_x ) doM1<ij<m = 1,
J

fam #peqdo* =1 and ¢g = 0 on 77 for i > 0. We also know that, on 9N*, Wfr‘qﬁo
is constant and W2 ¢; are locally constant for i > 0. On 9Q* and for i > 0, we have

Wi\(bz = Z ui)‘jej, I/iAj = Wi\¢l|,ij, det(ViAj)lgi)jgm 79 0.
§>0

(The latter needs m > 0.) Thus for j > 0 we have e; = > i u;;W2¢;. By
Proposition [74 a), we know that ¢g, ¢1,.. ., dm are in BFT*I(9€2,). Thus, v; and
p are in C7([0,1]). Let ¢ = [yon f2 ¢} do*. Then ¢; € C7([0,1]) and

A =g Mcter+ 4t em, ¢ Lker(I+(KN); 2 = ™M), ¢ Lker(I—(K*)").
It is clear that g; € C7 (05),). By Proposition (i) and Lemma [[3] ¢), we get
@ € C0(891,) for (i)-(iv).

For (i) and (ii) with f € B¥*9(98,) and | < k+1, we still have g € B!T%J(9Q.,)
as f —g € C®J(99,). Thus, ¢ € B+ (0N,) by Proposition [[4 c¢). Hence,
Uip =2ReCyp € B+*I(Qr) by Proposition 5.2 and U_¢p = 2ReCy € B+*I(Q'r)
by Proposition Bl Also, Wy¢; € B¥+1T%J(Qr) by Proposition and W_¢; €
BE+1+a (/1) by Proposition B8 The coefficients ¢;, j1;; in ([@I0) are in C>7. We
conclude that u € B+ (Qr) for (i) and u € B! (1) for (ii).

For (iii) and (iv) with f € B¥®J, we get ¢ € B¥+®J(0(,,) by Proposition [T.4]
b). Hence, Wy € B*+1¥%J(Qr) by Proposition 5.2and W_¢p € BE+1+23(Q/1) by
Proposition [B.8]

Finally, the real analytic results follow from Proposition [@.I] Proposition B8]
Proposition (2] Proposition B, and the solution formulae of the Dirichlet and
Neumann problems. (Il

Corollary 9.3. Let k > 0 be an integer and let 0 < f < a < 1. Let €2 be a bounded
domain with 9 € CFH1+e. Let f € CFH1+8(00) \ CFH1+(0Q). Then W f defines
two harmonic functions on £ and ), which have the same boundary value. W f|aq
is in CKT148 but not in C*T1+. Moreover, W f € C*=¢(C) for any € > 0.

As observed in [2], if the above W f is in C'(C), then (34) implies that f and
W f are zero. It is trivial that if a continuous function is holomorphic on both sides
of a real curve in the complex plane, the function is holomorphic near the curve.
The reader is referred to [2] where regularities for functions for two-sided almost
complex structures are in contrast to Corollary

As a consequence of Theorem [0.2] we have the following version of Kellogg’s
Riemann mapping theorem with parameter.

Corollary 9.4. Let j, k be non-negative integers or co satisfying0 < j < k. Let0 <
a < 1. Let Q be a simply connected bounded domain in C with 02 € CF1+ and
let T embed Q onto QX and satisfy T € CF13(Q) (resp. BFT1+*3(Q)). There
exist Riemann mappings R from Q> onto D such that {R* o T*} € CFH1+ei(Q)
(resp. BEF1+23(Q)). Assume further that 9Q € C* and T € C¥(Q x [0,1]). Then
the function R o T'*(z) is real analytic on Q x [0,1].

Proof. The proof is standard for the non-parameter case. Since we need it for
the next proof, we recall the construction. Fix a € Q and let a* = T'*(a). Let
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u*(2?) be the harmonic function on Q* whose boundary value is —log [2* — a*|.
Let v be the harmonic conjugate of u* on Q* with v*(a*) = 0. Then 2* —
(> —aA)e“k(ZA)H”A(ZA) is a Riemann mapping R* sending Q* onto D. By Theorem
02 we know that u € Ck+1+23(Q). Also,

Z/\
() = / (—ay)\UA(ZA) da? + Oput (27) dyA)7
aX

where the path of integration is any C! curve of the form (2*,y*) = I'*(p(t)) with
p(0) = a and p(1) = z. Using the integral formula we can verify that v* € Cv7 ().
Then 9,20 = —d,pu* and J,pv* = O,ay> imply that v is in CFT1HJ9(Q). The
same argument is valid for the real analytic case. ]

We now turn to the proof of Theorem [[.2] for which we need a third-order
invariant.

Lemma 9.5. Let Q be a bounded simply connected domain with 0 € C*t*. As-
sume that at 1, 02 and D are tangent and have the same exterior normal vec-
tor. There exists a unique biholomorphism S from Q onto D such that S(1) = 1,
S'(1) = 1 and S"(1) € R. Let R be a Riemann mapping from Q onto D with
R(1) = 1. Then S”"(1) = R'(1)"'ReR"(1) + 1 — R'(1). Assume further that
0N e C3t*. Then at 1,

S/// — (R/)fl{R/// + 3(1 _ R/)R// 4 g(l _ R/)QR/}
+ g(R’)’Q(ImR")Q —3i{(R)"*ReR"+ (1 - RH}R) 'ImR".

Proof. Let R be a Riemann mapping from Q onto D with R(1) = 1. The fractional
linear transformations that preserve D and 1 are of the form
l-a z-—a

Lu.(z) = o 12 la| < 1.

We have
l—a 1-—|a|?
L,oR) = : R
(Lo B) == T —ame
1—a 1-la|? 2a(R')?
9.11 L,oR)" = . R+ ——%).
(9-11) (Lao B)" =1 (1—aR)2( 1 ar
Note that R'(1) > 0. We have R{(1) =1 for Ry = L, o R with
_1-R(1)
1+ R(1)

We further determine L; under the restriction 1—[b[? = [1—b|?, i.e. b = cosf(cos O+
isinf) with 6 € (—m/2,0) U (0,7/2]. Thus we still have (L, o R1)’(1) = 1. Then
R1(1) = R{(1) = 1 imply that
(Lyo Ry)"(1) = RY(1) — 2icot 6.
Hence, there is a unique 6 € (—7/2,0) U (0, 7/2] such that (Lyo Ry)"(1) € R. At 1,
2aR’ 2b

=1-R, ——=—ilmR/.
1-aR T 1-b ¢
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Therefore, S equals Ly o L, o R. By (@.I1]), we get at 1,
S" = (Lyo R))" =ReR/ = (R)""{ReR" + (1 - RR'}.
Also, Im R/ (1) = R'(1)~*Im R"(1). Differentiating ([@.I1]), we obtain at 1,
" =(R)""Y{R"+3(1-R)R"+ 2(1 — R)*R'},
S" = (Lyo Ry)" = R}’ — 2iR! Im R} — %(Im R/)> —iRe R/ Im RY.
Expressing RY(1) and R{’(1) in R'(1), R”(1) and R"'(1) yields the identity. O

Proof of Theorem [[2. We need to find a family of embeddings I'* from D onto
QX satisfying the following: (a) I' is in C°°(D x [0, 1]) and real analytic at (1,0) €
D x [0,1], (b) for any family of Riemann mappings from Q> onto D, RoT is not
real analytic at (1,0) € D x [0, 1].

It is convenient not to use arc-length. Consider a C*° family of simply connected
bounded domains Q* bounded by

vt A) = p(t, )‘)eita p(0,A) =1=p(t,0),

where p is a positive C* function satisfying p(t + 27, A\) = p(t,\). To achieve the
analyticity, we will require that p — 1 vanishes near ¢t = 0 and A = 0. As complex-
valued functions, the outer unit normal vector v(t, \) of 9Q* is —ir/ (¢, \)/ |7/ (¢, N)]-
We have

1 N(s,t)
k(s,t = — ’
58N = LGN AL

N(s,t,A) = Re{v(t, \)(v(t, A) — (s, M)}

In the above and remaining computations, the derivatives are in s, ¢ variables only.
The derivatives in A at A = 0 are indicated in the formal Taylor expansion about
A = 0. For instance,

Yt A) ~ an(t))\", Yo(t) = €' k(s,t,\) ~ Z kn(s, t)A™.

We will derive identities for coefficients of formal power series in A, and those
identities are therefore valid when they arise from C* functions. We will also denote
by p&) (s) the collection of 9% p;(s) With i < j,1 <nand by pg, the collection of 2
with I < n. We will denote by Q(p&))) a function in s and ¢ which depends on pEiL))
such that

i al—i j . def
912)  1820°Q(I) (5, 0] < Cl i o) & Cllog 1)

To simplify notation, the Q might be different when it reappears.
We express

Vl(ta /\) = ieit(p(ta /\) - ip,(t, /\))7 ’Y(t’ /\) - V(S’ /\) = B(Sv 2 )‘)(eit - eis)a
B(s,t,A) = p(s,A) + (p(t,; ) = p(s,\))(1 — =) 71,
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Note that By(s,t) =1 = |y/(¢,0)|. We also have

N(s,t,\) = Re{u(t, N (v(t, ) — (s, )\))} = |e¥* — et[2A(s,t, \),
Afs, 1) = lei* = e 2 Re{wlE N (1(tN) 75, 3) — i/ (£, ) (€70 = 1)) }
+ |e™* — e 72(1 — cos(s — 1)) |7/ (t, ).

Therefore,
(9.13) 020y " Ay (s, 8)] + 820" Bu(s,1)] < C(|pnlia2)-

It is clear that A(s,t,)\), B(s,t,\) and k(s,t,\) = A(s,t,\)/(7|B(s,t,\)|?) are
C> in (s,t,\). Using By = 1, we compute derivatives of k(s,t,\) in A at A = 0.
We find ko(s,t) = 5. By (@I3) we get ky(s,t) = Q,L(pgi)))(s,t), which satisfies
@I2). We also have do(t,\) = a(t, \) dt with a(¢, \) = |7'(t, A)|. Then ag =1 and
an = Q(’V(n))

Let u*(z") be the harmonic function on Q* with boundary value — log |2*| on
0Q*. To compute u*, set f(s,\) = —log |y(s, \)| = —log p(s, \) and consider

o(s, \) +/0 7Tgp(ﬁ,/\)K(s,t,)\)a(t,)\) dt = f(s,A).

We have fo = 0 and f,(s) = —pn(s) + Q(pn—1))(s). We obtain ¢y = 0 and

(9.14) ouls) = ~5pu(s) + Q2 )(s), n>0.

Recall that ¢ is real-valued and

™

VRN =+ [ 5,000 ane(* = ) do* = ReC.
Q)\

Let z =r € (—1,1). We get

n—1 2
. 1 n T i —1q 887(5 )‘)
J An oA AY E : @ Jyon—v) SN T
0r0RC (") 2mi i=0 (Z) 0 OA(p(s: )05 {7(57)\) - TA}ds

1 d¢?
ot [ @els N s = RO+ 1)

2mi

We want to emphasize that I',,(z) is not determined by p1,...,p,. Nevertheless,
we want to show that, when restricted on the unit circle, (Uyp),, and all derivatives
(0L(Up),) depend only on py, ..., p,. For I, we apply Stokes’ theorem to trans-
port all derivatives on the Cauchy kernel onto derivatives in s. After removing all
derivatives on the Cauchy kernel, we set A = 0 and let »r — 17. By ¢ = 0, (@.14)
and a crude estimate on orders of derivatives, we obtain

Il)\(’r)\) = COQ(pEthl;_m)(].), |Il)\(’r)\)| < C(‘p(n—l)‘n+j+3)a A= Oa r=1.
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To compute I3, we express for r € (—1,1)

N C _ 7')‘ /oA dg)\
Oy amf(g)c ar/ {( 8)f(<)}<A_A
. A/ AN C/\ . AN ﬁ j PN (A dC)‘
e e N A A e
A
LY 0rQu@ ) [ (o) )
2>lzl:<J l / C T)\

Recall that vo(s) = e. Write v*(e**) = 7(t,\). We further require that the
extension I'*(z) of v*(z) satisfies T°(2) = 2. Thus at (r,\) = (1,0), we have
0,m* =1 and §ir* =0 for all j > 1. Set A = 0, let r — 1~ in I3 and apply the
jump formula for Cauchy transform on the unit circle. We get

1 2 s i o ie®ds

B) = 5 [ {0, (o) = (mie 10 Bli-o )2y
+ (0 -ie™ ") pn(t)]1=0

I  isa i  itai ie'sds

=gt |, {0 0n(s) — (i B pa Ol }

L e 0 puDlio + QW) + Q)

(=1)74! [27 iet*ds
=- . /0 pn(S)mﬁ-Q( Eiﬂn)

47

Here CY stands for the Cauchy transform on the unit circle. Recall in notation
@I2) that we have |Q(péi+31)))| < C(|lp(n=1)lj+3). Here the second-to-last identity

is obtained via integration by parts under the additional conditions that n > 0 and
pn vanish near s = 0. Therefore, we get for n > 0

, —1)74! 2 e*ds n
©015) iU (1) =~ ke [ (o) S i+ Q)
We use the Riemann mapping R* satisfying R*(0) = 0 and (R*)(1) = 1. Near
(z,A) = (1,0), we have 4*(z) = z and
R(z, ) = R}M2)) = 2e" @), hA(2) = u(2) + iv*(2) — uP (1) — iv (1),
A

Here v* is a harmonic conjugate of u* = Ugp. Since (Ugp)o = 0, then (Uyp)g is
identically zero. Hence Ry(z) = z. At z = 1, we have

R/ =14 aru/\ R// _ (h)\)// + ((hA)/)Q + Q(h)\)/,
R/// _ (h)\)/// 4 3(h)\)/(h)\)// + ((h)\)/)?) 4 3(]7/\)” + 3((]7})/)2.

We get
(9.16) (R)o=1, (R")o=0, (R")o=0,
(9.17) Re Ry (1) = 0 (1) (1) + 302 (1) (1) + Qo).

By Lemma [3.5] there exists a unique Riemann mapping S* for Q* that satisfies

S = (D) =1 (1) €R.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



216 F. BERTRAND AND X. GONG

Thus, (5*)”(1) = RY(1) by ([@.I6)-(@.I7) and the last identity in Lemma [@.5 For
n > 0 we obtain
ReR)(1) = 3 Re /27r pn(s)( o + < ) ds + Q")
" 4 0 (1—e)t  (1—es)3 "
31 (7 pa(s) cos(2s)
T i o 16sin%(s/2)

ds + QY.

One can inductively choose p,(s) = p,(s)sin*(s/2) cos(2s) with 5, > 0 such that
pn(s) = 0 on |s| < /2 and R (1) > (n!)? for n > 0. This shows that (S*)”'(1)
is not real analytic at A = 0, provided that p,(s) can be realized via a family of
embeddings T'* satisfying all the requirements. To achieve the latter, we apply
a non-parameter version of Lemma B to the unit disc D and find 5, € C*°(D)
such that p,(e®) = p,(s). Moreover, all p, vanish in a fixed neighborhood of
1 € D. Applying Lemma B3] we find p € C°(D x [0, 1]) such that p(z, \) vanishes
near (z,A) = (1,0) and 9y '5(2,\) = (n — D)lpn(z) at A = 0. Let I'(z,\) =
(1+Ap(z,A))z. As we already mentioned, we can extend p(t, A) to be identically 1
near (1,0) € D x I. Thus I'(z, \) is real analytic near (1,0). Replacing I'* by I'*
if necessary, I'* embeds D into Q* when § > 0 is sufficiently small and 0 < A < 1.
We now consider any family of Riemann mappings R* from Q* onto . Assume
for the sake of contradiction that R is real analytic at (1,0) € D x [0,1]. Replace
R» by RM1)R*. By Lemma [0.5] (S*)”(1) is real analytic at A = 0, which is a
contradiction. ]

We conclude the paper with a remark on the results and proofs when the domains
are fixed and only the boundary values vary with a parameter. In this case we can
reduce the solutions to the case without parameter. Recall that the solutions for
the Dirichlet and Neumann problems consist of solving the integral equations and
estimating the single and double layer potentials via Cauchy transform. When we
differentiate integral equations or Cauchy transform in parameter A, the kernels
are unchanged for fixed domains. The difficulties with the chain rule in our proofs
disappear. More specifically, the estimates for the integral equations in Proposition
[T (without restriction k > j) extend to spaces of types B, and C.. The estimates
on the layer potentials via Cauchy transform in Proposition (52l (without restriction
k > j) extend to spaces of types B, and C, too. Thus, we have the following.

Proposition 9.6. Let k,j and | be non-negative integers. Assume that | < k +1
and 0 < a < 1. Let Q be a bounded domain in the complex plane with 02 €
Crkt1ta  Let u be harmonic functions on € which are continuous up to bound-
ary. If u € BLF9(0Q) (resp. CLF*9(8Q)), then u € B (Q) (resp. LT (Q)).
If [yqutdo = 0 and {9,ur} is in BET*I(0Q) (resp. CETI(8Q)), then u €
BEFITI(Q) (resp. CETIT ().

REFERENCES

[1] L. Bers, Riemann Surfaces (mimeographed lecture notes), New York University (1957-1958).

[2] F. Bertrand, X. Gong and J.-P. Rosay, Common boundary values of holomorphic functions
for two-sided complex structures, submitted.

[3] G.B. Folland, Introduction to partial differential equations, second edition. Princeton Uni-
versity Press, Princeton, NJ, 1995. MR1357411)(96h:35001)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=1357411
http://www.ams.org/mathscinet-getitem?mr=1357411

DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 217

[4] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Reprint
of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. MR1814364
(2001k:35004)

[5] L. Hérmander, The analysis of linear partial differential operators. I. Distribution theory and
Fourier analysis. Springer-Verlag, Berlin, 1990.

[6] O.D. Kellogg, Potential functions on the boundary of their regions of definition, Trans. Amer.
Math. Soc. 9(1908), no. 1, 39-50. MR 1500801

7] , Double distributions and the Dirichlet problem, Trans. Amer. Math. Soc. 9(1908),
no. 1, 51-66. MR1500802

8] , Harmonic functions and Green’s integral, Trans. Amer. Math. Soc. 13(1912), no. 1,
109-132. MR 1500909

9] , Foundations of potential theory, Reprint from the first edition of 1929. Die

Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York
1967. MR0222317 (36:5369)

[10] S.G. Mikhlin, Mathematical Physics: an advanced course, North Holland, Amsterdam, 1970.

[11] C. Miranda, Partial differential equations of elliptic type, Second revised edition. Translated
from the Italian by Zane C. Motteler. Ergebnisse der Mathematik und ihrer Grenzgebiete,
Band 2. Springer-Verlag, New York-Berlin 1970. MR0284700 (44:1924)

[12] J. Plemelj, Uber lineare Randwertaufgaben der Potentialtheorie, I. Teil. Monatsh. Math. Phys.
15(1904), no. 1, 337-411. MR1547285

[13] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen
Wissenschaften, 299. Springer-Verlag, Berlin, 1992. MR1217706 (95b:30008)

[14] M. Tsuji, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959.
MR0114894 (22:5712)

[15] IN. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt;
Addison-Wesley Publishing Co., Inc., Reading, Mass. 1962. MR0150320 (27:321)

[16] S.E. Warschawski, Uber einen Satz von O.D. Kellogg, Géttinger Nachrichten, Math.-Phys.
Klasse, 1932, 73-86.

, Uber das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbil-
dung, Math. Z. 35(1932), 321-456. MR1545302

(18] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans.
Amer. Math. Soc. 36(1934), no. 1, 63-89. MR1501735

[17]

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

Current address: Department of Mathematics, University of Vienna, Nordbergstrasse 15, 1090
Vienna, Austria

E-mail address: bertrand@math.wisc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706
E-mail address: gong@math.wisc.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=1500801
http://www.ams.org/mathscinet-getitem?mr=1500802
http://www.ams.org/mathscinet-getitem?mr=1500909
http://www.ams.org/mathscinet-getitem?mr=0222317
http://www.ams.org/mathscinet-getitem?mr=0222317
http://www.ams.org/mathscinet-getitem?mr=0284700
http://www.ams.org/mathscinet-getitem?mr=0284700
http://www.ams.org/mathscinet-getitem?mr=1547285
http://www.ams.org/mathscinet-getitem?mr=1217706
http://www.ams.org/mathscinet-getitem?mr=1217706
http://www.ams.org/mathscinet-getitem?mr=0114894
http://www.ams.org/mathscinet-getitem?mr=0114894
http://www.ams.org/mathscinet-getitem?mr=0150320
http://www.ams.org/mathscinet-getitem?mr=0150320
http://www.ams.org/mathscinet-getitem?mr=1545302
http://www.ams.org/mathscinet-getitem?mr=1501735

	1. Introduction
	2. Hölder spaces for interior domains with parameter
	3. Integral equations for Dirichlet and Neumann problems
	4. Derivatives of 𝒦𝒻 and 𝒦*𝒻
	5. Kernels with parameter
	6. Null spaces of 𝐼±𝒦 and ℐ±𝒦*
	7. Regularity of solutions for integral equations with parameter
	8. Hölder spaces for exterior domains with parameter
	9. Main results and proofs
	References

