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DIRICHLET AND NEUMANN PROBLEMS FOR PLANAR

DOMAINS WITH PARAMETER

FLORIAN BERTRAND AND XIANGHONG GONG

Abstract. Let Γ(·, λ) be smooth, i.e. C∞, embeddings from Ω onto Ωλ,
where Ω and Ωλ are bounded domains with smooth boundary in the complex
plane and λ varies in I = [0, 1]. Suppose that Γ is smooth on Ω× I and f is a
smooth function on ∂Ω× I. Let u(·, λ) be the harmonic functions on Ωλ with

boundary values f(·, λ). We show that u(Γ(z, λ), λ) is smooth on Ω× I. Our
main result is proved for suitable Hölder spaces for the Dirichlet and Neumann
problems with parameter. By observing that the regularity of solutions of the
two problems with parameter is not local, we show the existence of smooth

embeddings Γ(·, λ) from D, the closure of the unit disc, onto Ωλ such that Γ is

smooth on D× I and real analytic at (
√
−1, 0) ∈ D× I, but for every family of

Riemann mappings R(·, λ) from Ωλ onto D, the function R(Γ(z, λ), λ) is not

real analytic at (
√
−1, 0) ∈ D× I.

1. Introduction

Let k ≥ 0 be an integer and 0 < α < 1. Let Ωλ (0 ≤ λ ≤ 1) be a family of
bounded domains in C of Ck+1+α boundary. Let fλ and gλ be Cα functions on
∂Ωλ. We consider the Dirichlet problem with parameter

(1.1) Δuλ = 0 on Ωλ, uλ = fλ on ∂Ωλ.

By analogy, the Neumann problem with parameter is

(1.2) Δvλ = 0 on Ωλ, ∂νλvλ = gλ on ∂Ωλ.

Here Δ is the Laplacian and νλ is the outer unit normal vector of ∂Ωλ. For the
existence and uniqueness of solutions vλ, we impose conditions

(1.3)

∫
∂Ωλ

gλ dσλ = 0,

∫
∂Ωλ

vλ dσλ = 0,

with dσλ being the arc-length element of ∂Ωλ. We are interested in the regularity of
solutions uλ, vλ in the parameter λ. To state our results, we first define two Hölder
spaces. Let integers k, j satisfy k ≥ j ≥ 0. By an element {uλ} in Ck+α,j(∂Ω)
(resp. Ck+α,j(Ω)) we mean a family of functions uλ on ∂Ω (resp. Ω) such that, for
every integer i with 0 ≤ i ≤ j, λ → ∂i

λu
λ is a continuous map from [0, 1] into

Ck−i+α(∂Ω) (resp. Ck−i+α(Ω)). We will prove the following.
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160 F. BERTRAND AND X. GONG

Proposition 1.1. Let non-negative integers l, k and j satisfy k ≥ j and k + 1 ≥
l ≥ j. Let 0 < α < 1. Let Ω be a bounded domain in C with Ck+1+α boundary. Let

Γλ (λ ∈ [0, 1]) embed Ω onto Ωλ(⊂ C) with {Γλ} in Ck+1+α,j(Ω). Assume that fλ

and gλ are functions on ∂Ωλ such that {fλ ◦Γλ} is in Cl+α,j(∂Ω) and {gλ ◦Γλ} is

in Ck+α,j(∂Ω). For each λ, let uλ ∈ Cα(Ωλ) be the unique solution to (1.1) and let

vλ ∈ C1(Ωλ) be the unique solution to (1.2)-(1.3). Then {uλ ◦ Γλ} is in Cl+α,j(Ω)
and {vλ ◦ Γλ} is in Ck+1+α,j(Ω).

We observe that if a function u is harmonic on the unit disc D and is continuous
on D, then the product b(λ)u(z) for a function b on [0, 1] is still harmonic on D.
Thus, even if bu is real analytic near a point (p, 0) ∈ ∂D × [0, 1], bu might not
be C1 near the same point (p, 0) ∈ D × [0, 1]. Such an example is provided when
u|∂D vanishes near p but is not identically zero and b is continuous on [0, 1] but not
differentiable at 0. Therefore, the regularity of solutions for the Dirichlet problem
with parameter is not a local property. By contrast, the harmonic function u must
be Cω near p ∈ D when u|∂D is Cω near p ∈ ∂D. The observation leads us to
demonstrate the failure of the local Schwarz reflection principle with parameter by
the following result.

Theorem 1.2. There are embeddings Γ(·, λ) from D onto Ωλ such that Γ is C∞ on
E = D× [0, 1] and real analytic at (1, 0) ∈ E, but R(Γ(z, λ), λ) is not real analytic

at (1, 0) ∈ E for every family of Riemann mappings R(·, λ) from Ωλ onto D.

The existences of solutions uλ, vλ in Proposition 1.1 are classical results; see Kel-
logg [8] for the Dirichlet problem and Miranda [11] (p. 84) for work of Giraud on
the Neumann problem. For a higher dimensional Dirichlet problem, see Gilbarg-
Trudinger ([4], p. 211, Theorem 8.34). The reader is referred to [11] for extensive
references. We will use the Fredholm theory on compact integral operators. Of
course, the compactness of the integral operators is valid when the parameter is
fixed and it will play important roles in our arguments, although there is no com-
pactness when all variables are considered. With some modifications, we will follow
Kellogg’s approach to the Dirichlet problem ([6]–[9]). For instance, by construct-
ing a second resolvent, Kellogg proved the C1+β-regularity of the solutions to the
Dirichlet problem for C1+α boundary ([7]). Instead, we will obtain the regularity
of solutions to the Dirichlet problem via the integral equations associated to the
Neumann problem. The reduction can be achieved because solving the Dirichlet
problem on a simply connected planar domain can be reduced to finding a har-
monic conjugate of the solution. We do not meet difficulties in the reduction for
multi-connected domains. Using the Cauchy transform, we will also refine Kellogg’s
original arguments to recover a loss of regularity. We mention that Courant proved
a version of Carathéodory’s Riemann mapping theorem for variable Jordan domains
(see [14], p. 383). Courant’s theorem implies the continuous, i.e. C0, dependence
of solutions to the Dirichlet problems for Jordan domains with parameter. One
of the applications of solutions of the planar Dirichlet problem is Kellogg’s theo-
rem on the boundary regularity of Riemann mappings for Jordan domains of C1+α

boundary [7]. Warschawski proved the sharp version of Kellogg’s Riemann mapping
theorem for Jordan domains of Ck+α boundary for all k > 0 ([16], [17]); see also
Pommerenke [13] (p. 49). As an immediate consequence of Proposition 1.1 we get
a parameter version of Kellogg’s Riemann mapping theorem in Corollary 9.4.

The paper is organized as follows.
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In section 2, we define various Hölder spaces for domains and functions with
parameter. We discuss the dependence of function spaces on the parameterizations
of domains and their boundaries. Section 3 contains some standard estimates on
Cauchy transform (see Vekua [15]). We present details, as the arguments are used
in the parameter case. In section 4, we refine Kellogg’s estimates on kernels for
the integral equations; lacking a reference to the sharp regularity on solutions to
the integral equations, we provide some details. These arguments are generalized in
section 5 for the parameter case. In section 6, after collecting results about compact
operators for the Dirichlet and Neumann problems, we deduce the C1 regularity of
solutions of the integral equation for the Dirichlet problem in Lemma 6.3.

Section 7 consists of our main results about the regularity of solutions of integral
equations with parameter. For the proofs, we differentiate integral equations and
orthogonal projections onto the null spaces of I ± Kλ and I ± (Kλ)∗ and we then
derive estimates by using the compactness of integral operators Kλ and (Kλ)∗ for
fixed parameter λ. In section 8, we thoroughly discuss the Hölder spaces defined in
section 2 before we define the spaces for exterior domains with parameter. In sec-
tion 9, we solve the real analytic integral equations for the Dirichlet and Neumann
problems with a real analytic parameter. Our main results, Theorems 9.2 and 1.2,
are proved in section 9. Proposition 1.1 is contained in Theorem 9.2.

Note that when domains Ωλ are fixed and only the boundary values vary with
a parameter, our results essentially follow from the solutions of Dirichlet and Neu-
mann problems without parameter. Furthermore, the results hold for general
Hölder spaces with parameter (see the remark at the end of section 9). With
Hölder spaces to be defined in section 2, we state the following open problem.

Problem A. Let k, l, j be non-negative integers. Let l ≤ k+1 and 0 < α < 1. Let

Γλ embed Ω onto Ωλ, where Ω and Ωλ are bounded domains in C. Let uλ ∈ C0(Ωλ)

be harmonic functions on Ωλ. Suppose that ∂Ω ∈ Ck+1+α, Γ ∈ Ck+1+α,j
∗ (Ω), and

{uλ ◦ Γλ} ∈ Cl+α,j
∗ (∂Ω). Is {uλ ◦ Γλ} in Cl+α,j

∗ (Ω) for j > 0?

We would expect that, with minor modifications, analogous results for the Dirich-
let and Neumann problems with parameter hold for the higher dimensional case.
However, precise regularities remain to be studied. In our estimates for planar
domains, we will take advantage of the Cauchy kernel in the proof of Proposition
5.2. Besides the higher dimensional Dirichlet and Neumann problems, the following
problem remains open.

Problem B. Let n ≥ 2. Let Ωλ
1 and Ωλ

2 be two C∞ families of bounded domains in
Cn with C∞ boundaries. Assume that Ωλ

1 and Ωλ
2 are biholomorphically equivalent

for each λ ∈ [0, 1]. Does there exist a family of biholomorphic maps fλ mapping
Ωλ

1 onto Ωλ
2 for λ ∈ [0, 1] such that λ → fλ depends smoothly on λ?

2. Hölder spaces for interior domains with parameter

To deal with the Dirichlet problem with parameter, we will introduce two types
of Hölder spaces with parameter, Ck+α,j(ΩΓ) and Bk+α,j(ΩΓ). Both are suitable
for the formulation and proofs of our results. In this paper the parameter λ will
vary in [0, 1], unless it is restricted to a subinterval.

We first define spaces when a domain is fixed. Let k, j be non-negative integers
and let 0 ≤ α < 1. Let Ω be a bounded domain in C. Let Ck+α(Ω) be the standard
Hölder spaces with norm | · |k+α on Ω. Let uλ be a family of functions on Ω.
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162 F. BERTRAND AND X. GONG

We say that {uλ} belongs to Bk+α,j
∗ (Ω), abbreviated by u = {uλ} ∈ Bk+α,j

∗ (Ω),
if λ → ∂i

λu
λ maps [0, 1] continuously into Ck(Ω) and boundedly into Ck+α(Ω) for

each i with 0 ≤ i ≤ j. We say {uλ} ∈ Ck+α,j
∗ (Ω) if ∂i

λu
λ maps [0, 1] continuously

into Ck+α(Ω) for 0 ≤ i ≤ j. We define Bk+α,j
∗ (∂Ω) and its subspace Ck+α,j

∗ (∂Ω) by
substituting Ω with ∂Ω ∈ Ck+α ∩ C1 in the above expressions.

Next, we define spaces on domains with parameter. Let Γλ (0 ≤ λ ≤ 1) be a

family of C1 embeddings from Ω onto Ωλ, and let γλ (0 ≤ λ ≤ 1) be a family of C1

embeddings from ∂Ω onto ∂Ωλ. Suppose that uλ is a family of functions on Ωλ or
on ∂Ωλ. Define the following:

• {uλ} ∈ Bk+α,j
∗ (ΩΓ) if {uλ ◦ Γλ} ∈ Bk+α,j

∗ (Ω);

• {uλ} ∈ Ck+α,j
∗ (ΩΓ) if {uλ ◦ Γλ} ∈ Ck+α,j

∗ (Ω);

• {uλ} ∈ Bk+α,j
∗ (∂Ωγ) if {uλ ◦ γλ} ∈ Bk+α,j

∗ (∂Ω);

• {uλ} ∈ Ck+α,j
∗ (∂Ωγ) if {uλ ◦ γλ} ∈ Ck+α,j

∗ (∂Ω).

For integers k ≥ j ≥ 0, define

Bk+α,j(ΩΓ) =

j⋂
i=0

Bk−i+α,i
∗ (ΩΓ), Ck+α,j(ΩΓ) =

j⋂
i=0

Ck−i+α,i
∗ (ΩΓ).

Substituting ΩΓ with ∂Ωγ in the above identities, we define Bk+α,j(∂Ωγ) and
Ck+α,j(∂Ωγ); dropping the subscripts Γ and γ from the above identities, we de-

fine Bk+α,j(Ω), Ck+α,j(Ω), Bk+α,j(∂Ω) and Ck+α,j(∂Ω), respectively. The norms
on these spaces are defined and abbreviated as follows:

|u|k+α,j = sup
0≤i≤j,λ∈[0,1]

{|∂i
λu

λ|k+α} if u ∈ Bk+α,j
∗ (∂Ω) or Bk+α,j

∗ (Ω),(2.1)

|u|k+α,j = |{uλ ◦ Γλ}|k+α,j , |u|k+α,j = |{uλ ◦ γλ}|k+α,j ,(2.2)

‖u‖k+α,j = max{|u|k−i+α,i : 0 ≤ i ≤ j}, j ≤ k.(2.3)

The definition of spaces Bk+α,j
∗ (∂Ω) requires ∂Ω ∈ Ck+α∩C1 implicitly. Throughout

the paper, we assume that Ω is bounded, ∂Ω ∈ C1, Γ ∈ C1,0(Ω) and γ ∈ C1,0(∂Ω).

For X = ∂Ω or Ω and 0 ≤ j, k ≤ ∞, define Bk+α,j
∗ (X) =

⋂∞
l<k+1,i<j+1 B

l+α,i
∗ (X).

For j ≤ k ≤ ∞, define Bk+α,j(X) =
⋂∞

i≤l<k+1,i<j+1 Bl+α,i(X). Define analogous
spaces by replacing B and B∗ with C and C∗, respectively.

Having defined the spaces, we now briefly discuss how they depend on the em-
beddings. We first need a fact to change the order of differentiation. Let ∂i = ∂xi

be derivatives on Rn.

Lemma 2.1. Let f be a continuous function defined on an open subset Ω of Rn.
Assume that on Ω, ∂i1 · · · ∂ikf = g is continuous and ∂ij1 · · · ∂ijl f are continuous
for all 1 ≤ j1 < · · · < jl ≤ k. Then ∂i′1 · · · ∂i′kf exists and equals g, where ∂i′1 · · · ∂i′k
is a change of order of ∂i1 · · · ∂ik .

Proof. Let χ be any smooth function with compact support in Ω. Replace f by χf .
Then f satisfies the same hypotheses and it suffices to verify the assertion for the
new f . Assume that supp f ⊂ (a,∞)n for a finite a. Let X be the set of continuous
functions on Rn with support in (a,∞)n. Define Ii : X → X by

Iiφ(x) =
∫ xi

a

φ(x1, . . . , xi−1, t, xi+1, . . . , xn) dt.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 163

Then IiIj = IjIi on X. Also, ∂iIif = f = Ii∂if if f and ∂if are in X. Now
f = Iik · · · Ii1g = Ii′k · · · Ii′1g, which yields ∂i′1 · · · ∂i′kf = g. �

The above lemma shows that ∂L
x,y,λ = ∂I

x,y∂
j
λ holds on Ck,j

∗ (Ω) if |I| = k and ∂L
x,y,λ

is obtained from ∂I
x,y∂

j
λ by changing the order of differentiation. Also, ∂L

τ,λ = ∂k
τ ∂

j
λ

on Ck,j
∗ (∂Ω) if ∂L

τ,λ is a change of order of ∂k
τ ∂

j
λ. Here τ is a continuous unit tangent

vector field on ∂Ω.

Lemma 2.2. Let Ω be a bounded domain with ∂Ω ∈ Ck+α ∩ C1. Let Γλ
1 and Γλ

2

embed Ω onto Ωλ. Let γλ
1 and γλ

2 embed ∂Ω onto ∂Ωλ.

(i) A C1 mapping from Ω into Ω1 pulls back Cα,0(Ω1) and Bα,0(Ω1) into Cα,0(Ω)
and Bα,0(Ω), respectively.

(ii) Let ϕλ map Ω into an open subset D of Rn. If F is a function in C1(D)
and ϕ ∈ Bα,0(Ω), then {F ◦ϕλ} ∈ Bα,0(Ω). If F ∈ C2(D) and ϕ ∈ Cα,0(Ω),
then {F ◦ ϕλ} ∈ Cα,0(Ω).

(iii) If Γi ∈ Bk+α,j(Ω) ∩ C1,0(Ω), then Bk+α,j(ΩΓ1
) = Bk+α,j(ΩΓ2

).
(iv) Let α > 0. If (Γλ

1 )
−1Γλ

2 are independent of λ and Γi are in Ck+α,j(Ω) ∩
C1,0(Ω), then Ck+α,j(ΩΓ1

) = Ck+α,j(ΩΓ2
).

The assertions in (i)– (iv) remain true if ∂Ω, ∂Ω1, ∂Ω
λ, and γi substitute for Ω,

Ω1, Ωλ, and Γi, respectively. The identical spaces in (iii) and (iv) have equivalent
norms.

Proof. (i) Since ∂Ω ∈ C1, then |ϕ(z2)−ϕ(z1)| ≤ C|z2 − z1| if ϕ ∈ C1(Ω) or C1(∂Ω).
The assertions follow immediately from the definition of the spaces.

(ii) We take a bounded open subset D′ of D such that D′ has piecewise smooth
boundary and contains ranges of all ϕλ. Since F is C1, then F is Lipschitz on D′.
It is easy to check that {F ◦ ϕλ} is in Bα,0. Assume now that F ∈ C2. We already
know that {F ◦ ϕλ} is in Bα,0. Without loss of generality, we may assume that
|λ2 − λ1| is so small that the range of tϕλ2 + (1− t)ϕλ1 for 0 ≤ t ≤ 1 is contained
in D′. Then ∇F is Lipschitz on D′. Write

(F (ϕλ2)− F (ϕλ1))(x) = (ϕλ2 − ϕλ1)(x) ·
∫ 1

0

(∇F )((tϕλ2 + (1− t)ϕλ1)(x)) dt.

We obtain |F (ϕλ2) − F (ϕλ1)|α ≤ C|ϕλ2 − ϕλ1 |α(1 + |ϕλ2 |α + |ϕλ1 |α). Hence,
{F ◦ ϕλ} ∈ Cα,0.

(iii) Let Γλ
1 ◦ Γλ

12 = Γλ
2 . Since Γλ

i are embeddings with Γi ∈ C1,0(Ω), we have

|ζ − z|/C ≤ |Γλ
12(ζ)− Γλ

12(z)| ≤ C|ζ − z|.

Note that on Ck,j(Ω) all mixed derivatives of order k − j in x, y and of order j

in λ can be written as ∂k−j−a
x ∂a

y∂
j
λ. Abbreviate the latter derivatives as a set by

∂k−j∂j
λ. For a latter purpose of expressing a commutator, it will be convenient to

write first-order derivatives of a function in a column vector. So let us form the
Jacobean matrix (Γλ

i )
′ of the (real) map Γλ

i in such a way. Then the chain rule
takes the form

(Γλ
2 )

′ = (Γλ
12)

′(Γλ
1 )

′ ◦ Γλ
12, ∂λΓ

λ
2 = (∂λΓ

λ
1 ) ◦ Γλ

12 + ∂λΓ
λ
12(Γ

λ
1 )

′ ◦ Γλ
12.
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We solve for ∂Γλ
12 and ∂λΓ

λ
12; in general, for k ≥ j, we express ∂k−j∂j

λΓ
λ
12 as a

polynomial in

[det(Γλ
1 )

′ ◦ Γλ
12]

−1, ∂a∂b
λΓ

λ
2 , (∂a∂b

λΓ
λ
1 ) ◦ Γλ

12, a+ b ≤ k, b ≤ j.(2.4)

To repeat the above computation for γλ
i , let (γ

λ
1 ) ◦ γλ

12 = γλ
2 . Then

∂τγ
λ
2 (z) = ∂τγ

λ
12(∂τγ

λ
1 ) ◦ γλ

12,

∂λγ
λ
2 (z) = (∂λγ

λ
1 ) ◦ γλ

12 + ∂λγ
λ
12(∂τγ1) ◦ γλ

12(z).

Hence ∂k−j
τ ∂j

λγ
λ
12 is a polynomial in

(2.5) [(∂τγ
λ
1 ) ◦ γλ

12]
−1, ∂b

τ∂
b
λγ

λ
2 , (∂a

τ ∂
b
λγ

λ
1 ) ◦ γλ

12, a+ b ≤ k, b ≤ j.

Assume that Γ1,Γ2 are in Bk+α,j . Then functions in (2.4) are in Bα,0, so Γ12 ∈
Bk+α,j(Ω). For u ∈ Bk+α,j(ΩΓ1

), we express ∂k−j∂j
λ(u

λ◦Γλ
2 ) as a linear combination

of (∂a1∂b1
λ (uλ ◦ Γλ

1 )) ◦ Γλ
12 ∈ Bα,0 whose coefficients are polynomials in entries

of (2.4). Here we replace the (a, b) in (2.4) by (a2, b2); also ai + bi ≤ k and
b1 + b2 ≤ j. Therefore, u ∈ Bk+α,j(ΩΓ2

). Assume now that u ∈ Bk+α,j(∂Ωγ1
).

Then ∂k−j
τ ∂j

λ(u
λ ◦ γλ

2 ) is a linear combination in ∂a1
τ ∂b1

λ (uλ ◦ γλ
2 ) whose coefficients

are polynomials in (2.5) with (a, b) being replaced by (a2, b2). Here ai+ bi ≤ k and
b1 + b2 ≤ j. Thus, we get u ∈ Bk+α,j(∂Ωγ2

).

(iv) Assume that Γ1,Γ2 are in Ck+α,j(Ω). By the independence of Γλ
12 ≡ Γ12 in

λ and (i), we know that all functions in (2.4) are in Cα,0(Ω). Furthermore,

|(∂a1∂b1
μ (uμ ◦ Γμ

1 )) ◦ Γ12 − (∂a1∂b1
λ (uλ ◦ Γλ

1 )) ◦ Γ12|α
≤ C|∂a1∂b1

μ (uμ ◦ Γμ
1 )− ∂a1∂b1

λ (uλ ◦ Γλ
1 )|α.

Let u ∈ Ck+α,j(ΩΓ1
). The above inequality shows that (∂a1∂b1

λ (uλ ◦ Γλ
1 )) ◦ Γλ

12 are

in Cα,0(Ω). By (ii), the latter is closed under addition, multiplication, and division
(for the non-vanishing denominator); hence, u is in Ck+α,j(ΩΓ2

). By analogy, we
can verify that Ck+α,j(∂Ωγ1

) = Ck+α,j(∂Ωγ2
). For (iii) and (iv), the equivalence of

norms is easy to verify too. �

We now set up some notation to be used throughout the paper.
We assume that Ω and Ωλ are bounded domains of at least C1 boundary. We

denote by γ̂0 the outer boundary of Ω and by γ̂1, . . . , γ̂m the connected components
of its inner boundary. Without loss of generality, we choose the standard orientation
for ∂Ω and ∂Ωλ and assume that C1 embeddings γλ : ∂Ω → ∂Ωλ preserve the
orientation and send outer boundary to outer boundary. Denote by τ and τλ the
unit tangential vectors of ∂Ω and ∂Ωλ that agree with the orientation, and by ν and
νλ the outer unit normal vectors of ∂Ω and ∂Ωλ. The arc-length elements on ∂Ω
and ∂Ωλ are denoted by dσ and dσλ, respectively. Sometimes we parameterize ∂Ω
by γ̂(t) in arc-length such that dt agrees with the orientation of ∂Ω, and we regard
τz and γ̂′(t) as complex numbers instead of vectors. With the above notation, on
∂Ω we have

df = ∂τf dσ, dσ(ζ) = τ ζ dζ, dσλ = |∂τγλ| dσ.(2.6)

To simplify the use of the chain rule, we need to compute derivatives in ∂Ωλ or

Ωλ. At zλ = γλ(z), we define (∂λu
λ)(zλ) = ∂λ(u

λ(γλ)) and

(2.7) τλz = |∂τγλ|−1∂τγ
λ(z), (∂τλuλ)(zλ) = |∂τγλ(z)|−1∂τ (u

λ(γλ))(z).
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Note that [∂λ, ∂τ ] = 0 on C1,1
∗ (∂Ω). On C1,1

∗ (∂Ωγ) with γ ∈ C1,1
∗ (∂Ω) we define and

compute the following commutator:

[∂λ, ∂τλ
z
](fλ(zλ)) = ∂λ[∂τλ

z
(fλ(zλ))]− ∂τλ

z
[∂λ((f

λ(zλ)))],(2.8)

[∂λ, ∂τλ
z
] = |∂τzγλ|∂λ|∂τzγλ|−1∂τλ

z
= −(∂λ log |∂τzγλ|)∂τλ

z
.(2.9)

Therefore, for γ ∈ Ci,j
∗ (∂Ω) ∩ C1,0

∗ (∂Ω), we have

∂τλ : Ci,j
∗ (∂Ωγ) → Ci−1,j

∗ (∂Ωγ), ∂λ : Ci,j
∗ (∂Ωγ) → Ci,j−1

∗ (∂Ωγ),

[∂λ, ∂τλ ] : Ci,j
∗ (∂Ωγ) → Ci−1,j−1

∗ (∂Ωγ)

whenever the exponents are non-negative. For γ ∈ Ck,j(∂Ω), we have

∂τλ : Ck,j(∂Ωγ) → Ck−1,j(∂Ωγ), k − 1 ≥ j;

∂λ : Ck,j(∂Ωγ) → Ck−1,j−1(∂Ωγ);

[∂λ, ∂τλ ] : Ck,j(∂Ωγ) → Ck−2,j−1(∂Ωγ), k ≥ j + 1 ≥ 2;

[∂λ, ∂τλ ] : Ck,j(∂Ωγ) → Ck−1,j−1(∂Ωγ), for γ ∈ Ck+1,j(∂Ω) and k ≥ 1.

Throughout the paper, we denote by Ck+α,j or C a constant which depends on

(2.10) sup
λ

| det(Γλ)′|−1
0 , |(Γλ)′|0, ‖Γ‖k+α,j , ||γ̂′|−1|0, |γ̂′|0, |γ̂|k+α,

where γ̂ is a parameterization for ∂Ω of class Ck+α ∩ C1. We also denote by Ck+α

or C a constant which depends on the last three quantities. The constants C∗
l+β,j

will depend only on quantities in (2.10), where ‖Γ‖k+α,j is replaced by |Γ|l+α,j .
A consequence of (2.7)-(2.9) is the following.

Lemma 2.3. Let ∂Ω ∈ Ck+α∩C1. Let γλ embed ∂Ω onto ∂Ωλ with γ ∈ Bk+α,j(∂Ω)
∩ C1,0(∂Ω). Then {uλ} ∈ Bk+α,j(∂Ωγ) if and only if {∂a

τλ∂
b
λu

λ} or {∂b
λ∂

a
τλu

λ} is

in Bα,0(∂Ωγ) for every (a, b) with a+ b ≤ k and b ≤ j. Moreover,

C−1
k+α,j‖u‖k+α,j ≤

∑
a+b≤k,b≤j

sup
λ

‖∂a
τλ∂

b
λu

λ‖α,0 ≤ Ck+α,j‖u‖k+α,j .

These conclusions remain true if Ck+α,j and Cα,0 substitute for Bk+α,j and Bα,0,
respectively.

We distinguish the first-order derivatives on Ωλ by ∂xλ in real variables xλ and
denote the first-order derivatives on Ω by ∂x. Then for xλ = Γλ(x),

(2.11) ∂xλuλ = (∂xΓ
λ)−1∂x(u

λ ◦ Γλ).

Combining with [∂λ, ∂x] = 0, we define and compute on C1,1
∗ (ΩΓ) with Γ ∈ C1,1

∗ (Ω)
the following commutator:

[∂λ, ∂xλ ](fλ(xλ)) = ∂λ[∂xλ(fλ(xλ))]− ∂xλ [∂λ((f
λ(xλ)))],(2.12)

[∂λ, ∂xλ ] = ∂λ((∂xΓ
λ)−1)∂xΓ

λ∂xλ .(2.13)
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We denote by ∂a
xλ the derivatives of order a in xλ. The following can be easily

verified.

Lemma 2.4. Let Γλ embed Ω onto Ωλ with Γ ∈ Bk+α,j(Ω)∩C1,0(Ω). Then {uλ} ∈
Bk+α,j(ΩΓ) if and only if {∂a

xλ∂
b
λu

λ} or {∂b
λ∂

a
xλu

λ} is in Bα,0(ΩΓ) for every (a, b)
with a+ b ≤ k and b ≤ j. Moreover,

C−1
k+α,j‖u‖k+α,j ≤

∑
a+b≤k,b≤j

‖∂a
xλ∂

b
λu

λ‖α,0 ≤ Ck+α,j‖u‖k+α,j .

The conclusions remain true if Ck+α,j and Cα,0 substitute for Bk+α,j and Bα,0,
respectively.

We have seen the dependence of spaces Ck+α,j in parameterizations through
Lemma 2.2. Throughout the paper, we assume that γλ is the restriction of Γλ on
∂Ω. In section 8 we will return to further discuss the spaces Ck+1+α,j and Bk+1+α,j

and define Hölder spaces for exterior domains.
We conclude the section with further notation. Recall that Ω ∈ C1 is bounded

and has the standard orientation. On ∂Ω×∂Ω and off its diagonal, define K(z, ζ) =
1
π∂τζ arg(z − ζ). By (2.6), we have K(z, ζ) dσ(ζ) = 1

πdζ arg(z − ζ), and hence∫
∂Ω

K(z, ζ) dσ(ζ) = 1, z ∈ ∂Ω.

A basic property of kernel K is that |K(z, ζ)| ≤ C|ζ − z|α−1 for ζ, z ∈ ∂Ω when
∂Ω ∈ C1+α with 0 < α < 1. By Fubini’s theorem and Hölder inequalities (or
Young’s inequality), we have two bounded operators on Lp(∂Ω) (p ≥ 1):

Kf(z) =

∫
∂Ω

f(ζ)K(z, ζ) dσ(ζ), K∗f(z) =

∫
∂Ω

f(ζ)K(ζ, z) dσ(ζ).

These two operators play important roles in solving the Dirichlet and Neumann
problems. We will regard K and K∗ as operators on L1(∂Ω), unless otherwise
specified.

3. Integral equations for Dirichlet and Neumann problems

In this section and the next, we will present some standard estimates about
integral operators. For the sake of exposition clarity, we include some details for
the estimates. We will then adapt these estimates in section 5 for the parameter
case.

Let Ω be a bounded domain in C with C1 boundary and let f ∈ L1(∂Ω). On Ω
and Ω′ = C \ Ω, the double and single potentials with moment f are respectively

Uf(z) =
1

π

∫
∂Ω

f(ζ)∂τζ arg (z − ζ) dσ(ζ),(3.1)

Wf(z) =
1

π

∫
∂Ω

f(ζ) log |z − ζ| dσ(ζ).(3.2)

The following formulae lead the classical solutions of the Dirichlet and Neumann
problems via the Fredholm theory; for instance, see [10] (pp. 381-390).
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Proposition 3.1. Let ∂Ω ∈ C1+α with 0 < α < 1. Suppose that f is a continuous
function on ∂Ω. Then Wf is continuous on C and Uf extends to functions U+f ∈
C0(Ω) and U−f ∈ C0(Ω′). On ∂Ω,

U+f = f +Kf, U−f = −f +Kf ;(3.3)

∂νWf = f +K∗f, −∂−νWf = −f +K∗f.(3.4)

Proof. Recall that we parameterize ∂Ω by γ(t) such that dt is the arc-length element
agreeing with the standard orientation of ∂Ω. Let l be the arc-length of ∂Ω. We
abbreviate f(γ(t)), τ (γ(t)), and ν(γ(t)) by f(t), τ (t), and ν(t), respectively.

Write γ(t) = γ(s)+τ (s)(t−s)+R(t, s) with |R(t, s)| ≤ |t−s|/4 for |t−s| < 1/C.
Then

(3.5)
√
h2 + |t− s|2/2 ≤ |γ(s) + hν(s)− γ(t)| ≤ 2

√
h2 + |t− s|2.

For a latter purpose we remark that the above merely needs γ ∈ C1. Note that

ν(t) · (γ(t)−γ(s)) = ν(t) ·
∫ t

s
(γ′(r)−γ′(t)) dr. Returning to the condition γ ∈ C1+α,

we have, for |t− s| < 1/C,

(3.6)
|ν(t) · (γ(t)− γ(s))|
|γ(s) + hν(s)− γ(t)|2 ≤ C|s− t|1+α

|t− s|2 + h2
≤ C|s− t|α−1.

In particular,

k(s, t)
def
== ∂t arg(γ(s)− γ(t)) =

ν(t) · (γ(t)− γ(s))

|γ(s)− γ(t)|2

satisfies |k(s, t)| ≤ C|s− t|α−1, and k(s, ·) is integrable.
Recall that

Uf(z) =
1

π

∫ l

0

f(t)∂t arg (z − γ(t)) dt.

Fix a small ε > 0 and γ(s) ∈ ∂Ω. Let δ = dist(z, ∂Ω). Choose s∗ such that
|γ(s∗) − z| = δ. Note that as γ ∈ C1+α with α < 1, s∗ may not be unique even if
δ is sufficiently small. Nevertheless, z = γ(s∗) + δν(s∗). Let |z − γ(s)| be so small
that |s∗ − s| < ε/2. We have

∂t arg(z − γ(t)) =
ν(t) · (γ(t)− γ(s∗))

|γ(t)− z|2 +
ν(t) · (γ(s∗)− z)

|γ(t)− z|2 .

By (3.5)-(3.6), we get

|∂t arg(z − γ(t))| = |ν(t) · (γ(t)− z)|
|γ(t)− z|2 ≤ C

|t− s∗|1+α + δ

δ2 + |t− s∗|2
.

Since s∗ depends only on z, this shows that

(3.7)

∫ l

0

∣∣∣∂t arg(z − γ(t))
∣∣∣ dt < C0, z ∈ C.

Here C0 is independent of s∗, z and δ. We have

∣∣∫ l

0

(f(t)− f(s))(∂t arg (z − γ(t))− ∂t arg (γ(s)− γ(t))) dt
∣∣

≤ 2‖f‖0 sup
|ζ−γ(s)|>ε

|∂t arg(z − γ(t))− ∂t arg(γ(s)− γ(t))|

+ 2C0 sup
|t−s|<ε

|f(t)− f(s)|.
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By (3.7) and the continuity of f at s, we conclude

lim
∂Ω ��z→γ(s)

∫ l

0

(f(t)− f(s))∂t arg (z − γ(t)) dt(3.8)

=

∫ l

0

(f(t)− f(s))∂t arg (γ(s)− γ(t)) dt.

Expand both sides. By the values of
∫ l

0
∂t arg(z − γ(t)) dt on C, we get (3.3).

For (3.4), recall that

Wf(z) =
1

π

∫ l

0

f(t) log |z − γ(t)| dt.

We want to show that the interior and exterior normal derivatives of Wf exist at
γ(s). Let |h| > 0 be small. By the fundamental theorem of calculus, we have

Wf(γ(s) + hν(s))−Wf(γ(s))

h/π
=

∫ l

0

∫ 1

0

f(t)
ν(s) · (γ(s)− γ(t)) drdt

|γ(s) + rhν(s)− γ(t)|2

+

∫ l

0

∫ 1

0

f(t)rh drdt

|γ(s) + rhν(s)− γ(t)|2
def
== R1(s, h) +R2(s, h).

We see that R1(s, h) tends to
∫ l

0
f(t) ν(s)·(γ(s)−γ(t))

|γ(s)−γ(t)|2 dt as h → 0, by (3.6) and the

dominated convergence theorem.
Decompose R2 into integrals R′

ε, R
′′
ε in (t, r) with |t − s| < ε and |t − s| > ε,

respectively. It is immediate that, for fixed ε > 0, R′′
ε (s, h) tends to 0 as h → 0.

Note that the integrand in R2 does not change the sign when f ≥ 0. By the
continuity of f , it remains to show that when f ≡ 1,

(3.9) lim
ε→0

lim
h→0+

R′
ε(s, h) = π, lim

ε→0
lim

h→0−
R′

ε(s, h) = −π.

Let E(s, t) = γ(s)−γ(t)+γ′(s)(t−s). Then |E(s, t)| ≤ C|s−t|1+α, and for |h| < 1,

|γ(s) + hν(s)− γ(t)|2 = | − τ (s)(t− s) + hν(s) + E(s, t)|2

= (s− t)2 + h2 + Ẽ(s, t, h),

|Ẽ(s, t, h)| ≤ C(|h||t− s|1+α + |t− s|2+α) ≤ 2Cεα(h2 + |s− t|2).
Let h tend to 0+ and then let ε tend to 0+. We get

R′
ε(s, h) = (1 + Cεα)

∫
|t−s|<ε

∫ 1

0

rh drdt

(s− t)2 + (rh)2
→ π.

This yields the first identity in (3.9). The second is obtained by analogy. �

Let Ω be a bounded domain inC with C1 boundary. Recall the Cauchy transform

(3.10) Cf(z) = 1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ

on C \ ∂Ω for f ∈ L1(∂Ω). Away from ∂Ω,

Uf = 2Re Cf, for f = f ; ∂zWf = −iC[τf ].
We will derive estimates of Uf,Wf via Cf when f is in Hölder spaces.

Lemma 3.2. Let 0 < α < 1 and let k, l ≥ 0 be integers. Let Ω be a bounded domain
in C with ∂Ω ∈ C1 and let Ω′ = C \ Ω.
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(i) Let f be a function in Cα(∂Ω). Then Cf extends to functions C+f ∈ Cα(Ω)
and C−f ∈ Cα(Ω′). Moreover, on ∂Ω,

C−f(z) =
1

2πi

∫
∂Ω

f(z)− f(ζ)

z − ζ
dζ, C+f(z)− C−f(z) = f(z).(3.11)

(ii) Let f ∈ Cl+α(∂Ω) and ∂Ω ∈ Ck+1+α with k + 1 ≥ l. Then C+f ∈ Cl+α(Ω)
and C−f ∈ Cl+α(Ω′). If f and ∂Ω are real analytic, then C+f ∈ Cω(Ω).

(iii) If f ∈ L∞(∂Ω), then Wf extends to a continuous function on C.

Proof. (i) Let z ∈ ∂Ω and let z∗ = γ(s) satisfy |z − z∗| = dist(z, ∂Ω) = δ. Assume
that δ is small. We have

(Cf)′(z) = 1

2πi

∫
∂Ω

f(ζ)− f(z∗)

(ζ − z)2
dζ.

By (3.5), |(Cf)′(z)| ≤ C
∫∞
0

(r + δ)α−2 dr ≤ C ′δ−1+α = C ′ dist(z, ∂Ω)−1+α. By the

Hardy-Littlewood lemma, Cf is of class Cα on Ω and Ω′.
To find the boundary values of C+f and C−f , it suffices to compute limits of Cf

in the normal directions. Let z = γ(s) + δν(s) ∈ Ω′ and z∗ = γ(s). Write

C−f(z) =
1

2πi

∫
∂Ω

f(ζ)− f(z∗)

ζ − z
dζ.

By (3.5), we obtain
|f(γ(t))− f(γ(s))|

|γ(t)− z| ≤ C|t− s|α−1.

By the dominated convergence theorem, we find on ∂Ω

C−f(z∗) =
1

2πi

∫
∂Ω

f(ζ)− f(z∗)

ζ − z∗
dζ.

Analogously, we can verify the formula for C+f.
(ii) For higher-order derivatives, for l ≤ k + 1 we get from (2.6)

∂zCf(z) =
1

2πi

∫
∂Ω

f(ζ) dζ

(ζ − z)2
=

1

2πi

∫
∂Ω

τ∂τf(ζ)
dζ

ζ − z
,

∂l
zCf(z) =

1

2πi

∫
∂Ω

(τ∂τ )
lf(ζ)

ζ − z
dζ,(3.12)

∂l+1
z Cf(z) = 1

2πi

∫
∂Ω

(τ∂τ )
lf(ζ)− (τ∂τ )

lf(z∗)

(ζ − z)2
dζ.

By (3.5) again, we obtain

|∂l
zCf(z)| ≤ |(τ∂τ )lf |0 + C1|(τ∂τ )lf |α,(3.13)

|∂l+1
z Cf(z)| ≤ C1|(τ∂τ )lf |α dist(z, ∂Ω)−1+α.

Therefore, Cf is of class Cl+α on Ω and Ω′.
For the real analytic case, we note that the constant C1 in (3.13) is independent

of l. By Taylor’s theorem, a function f on Ω with ∂Ω ∈ Cω is real analytic if and
only if

|∂i
z∂

j
zf(z)| ≤ i!j!Ci+j+1

for some C > 1 independent of z. Note that |(τ∂τ )lf |α ≤ C|(τ∂τ )l+1f(z)|0. By
(3.13) it suffices to show that near each point z0 ∈ ∂Ω, we have

(3.14) |(τ∂τ )lf(z)| ≤ Cl+1l!.
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Let x → ϕ(x) be a local real analytic parameterization of ∂Ω with ϕ(0) = z0. Then
(dϕ−1)(τ∂τ ) is given by A(x)∂x with A = 0. Extend ϕ(x), A(x) and f(ϕ(x))
as holomorphic functions and denote them by the same symbols. We find lo-
cal holomorphic coordinates z = ψ(w) such that (dwψ)

−1(A∂z) = ∂w. Then
(τ∂τ )

lf(ζ) = ∂l
w(f ◦ ϕ ◦ ψ)(w) with ζ = ϕ ◦ ψ(w). Since f ◦ ϕ ◦ ψ is holomor-

phic, we easily get (3.14).
(iii) One can verify the continuity of Wf via (3.5). �

4. Derivatives of Kf and K∗f

In this section, we recall some calculations on kernels by Kellogg [7], [8] and
express K and K∗ via the Cauchy transform. We write νγ(t) = ν(t), τγ(t) = τ (t)
and f(γ(t)) = f(t). Let lj be the length of the j-th component γj of ∂Ω. Recall
that γ0 is the outer boundary of ∂Ω. Set l−1 = 0.

Lemma 4.1. Let ∂Ω ∈ Ck+1+α with k ≥ 0 and 0 < α < 1. On ∂Ω× ∂Ω, we have

|∂k
τzK(ζ, z)| ≤ Ck+1+α|z − ζ|α−1,(4.1)

|K(z2, ζ)−K(z1, ζ)| ≤ C1+α
|z2 − z1|

|ζ − z1|2−α
,(4.2)

|∂k
τz2

K(ζ, z2)− ∂k
τz1

K(ζ, z1)| ≤ Ck+1+α
|z2 − z1|α
|ζ − z1|

,(4.3)

where the last two inequalities require |ζ − z1| > 2|z2 − z1|.

Proof. We first verify (4.2). We have

∂t arg(γ(s)− γ(t)) =
N(s, t)

|γ(s)− γ(t)|2 , N(s, t) = ν(t) ·
∫ t

s

(γ′(r)− γ′(t)) dr.

First, we obtain |N(s1, t)| ≤ C|t− s1|1+α and∣∣|γ(s2)− γ(t)|2 − |γ(s1)− γ(t)|2
∣∣ ≤ C|s2 − s1|(|t− s1|+ |t− s2|).

Note that

N(s2, t)−N(s1, t) = −ν(t) ·
∫ s2

s1

(γ′(r)− γ′(t)) dr.

Using |γ′(r)− γ′(t)| ≤ |γ′(r)− γ′(s1)|+ |γ′(t)− γ′(s1)|, we obtain

|N(s2, t)−N(s1, t)| ≤ C(|s2 − s1|1+α + |s2 − s1||t− s1|α).
Combining the above, we get for |t− s1| ≥ 2|s2 − s1|,

|K(s2, t)−K(s1, t)| ≤ C
|s2 − s1|

|t− s1|2−α
.

To verify (4.3), we may assume that x′(t) = 0 for t near s. For later use, we
remark that the rest of the computation does not need dt to be the arc-length
element. The condition x′(t) = 0 is only to ensure that C−1|t− s| ≤ |x(t)−x(s)| ≤
C|t− s|. Following [8], let

(x(t)− x(s))q(s, t) = y(t)− y(s).

By (2.7), we have ∂τu(γ(t)) = |∂tγ|−1∂t(u(γ(t))). By arg(x + iy) = arctan(y/x)
mod π, we get

∂k
τK(γ(s), γ(t)) =

∑
j≤k

Qλ
j (t)∂

j
t q(s, t),
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where Qj are C∞ functions in |∂tγ|−1, ∂tγ, . . . , ∂
k+1
t γ, and q(s, t). Hence (4.3)

follows from

(4.4) |∂k
t2q(s, t2)− ∂k

t1q(s, t1)| ≤ Ck+1+α
|t2 − t1|α
|s− t1|

.

Differentiate the equation and solve for ∂j
t q. Then (x(t)−x(s))k+2∂k+1

t q equals the
determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t)− x(s) 0 0 · · · 0 y(t)− y(s)
x′(t) x(t)− x(s) 0 · · · 0 y′(t)

x′′(t)
(
2
1

)
x′(t) x(t)− x(s) · · · 0 y′′(t)

· · · · · ·
· · · · · ·
· · · · · ·

x(k)(t)
(
k
1

)
x(k−1)(t)

(
k
2

)
x(k−2)(t) · · · x(t)− x(s) y(k)(t)

x(k+1)(t)
(
k+1
1

)
x(k)(t)

(
k+1
2

)
x(k−1)(t) · · ·

(
k+1
k

)
x′(t) y(k+1)(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Multiply the i-th row by 1
i! (s − t)i and add it to the first row. The entries in the

first row become

1

j!
(s− t)j(Pk+1−jx(s, t)− x(s)), 0 ≤ j ≤ k, Pk+1y(s, t)− y(s),

where Pkf(s, t) denotes the Taylor polynomial of degree k of f about s = t. Then
the remainder Rkf(s, t) = f(s)− Pkf(s, t) can be written as

Rkf(s, t) =
(s− t)k

k!
R̂kf(s, t), R̂kf(s, t) =

∫ 1

0

{
f (k)(t+ r(s− t))− f (k)(t)

}
dr.

Therefore,

(4.5) (x(s)− x(t))k+2∂k+1
t q(s, t) = (s− t)k+1

{
P0R̂k+1y(s, t) +

k+1∑
i=1

PiR̂ix(s, t)
}
,

where Pi(s, t) are polynomials in ∂tγ, . . . , ∂
k+1
t γ, x(s) − x(t). Then (4.1) follows

from |R̂k+1γ(s, t)| ≤ C|γ|k+1+α|s− t|α. Assume that |s− t2| ≥ 2|t2 − t1|. We have

|R̂iγ(s, t2)| ≤ C|s− t1|α and

|(Pi, R̂k+1γ)(s, t2)− (Pi, R̂k+1γ)(s, t1)| ≤ C|γ|k+1+α|t2 − t1|α.

Using |t2 − t1| ≤ |s− t1|1−α|t2 − t1|α, we get

|(s− t2)
k+1 − (s− t1)

k+1| ≤ C|s− t1|k+1−α|t2 − t1|α,
|(x(s)− x(t2))

−k−2 − (x(s)− x(t1))
−k−2| ≤ C|s− t1|−k−2−α|t2 − t1|α.

By the above inequalities, we get (4.4) and hence (4.3). �

We need a function Θ which plays an important role in Kellogg’s first-order
derivative estimate. Define a single-valued continuous function πΘ(t, t) on [0, l],
which measures the angle from the x-axis to the tangent line of ∂Ω at γ(t). Set

Θ(s, t) = Θ(s, s) +
1

π

∫ t

s

∂r arg(γ(s)− γ(r)) dr, s, t ∈ [0, l].

Then ∂tΘ(s, t) = K(s, t),Θ(s, t) = Θ(t, s), and Θ(s, l)−Θ(s, 0) = 1.
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Lemma 4.2. Let ∂Ω ∈ Ck+1+α with k ≥ 0 and 0 < α < 1. Let Ii = (l0 + · · · +
li−1, l0 + · · ·+ li).

(i) Let ϕ ∈ L1(∂Ω). In the sense of distributions,

∂s

∫ l

0

ϕ(γ(t))Θ(s, t) dt =

∫ l

0

ϕ(γ(t))K(γ(t), γ(s)) dt, s ∈ Ii,(4.6)

∂k
τ

∫
∂Ω

ϕ(ζ)K(ζ, z) dσ(ζ) =

∫
∂Ω

ϕ(ζ)∂k
τzK(ζ, z) dσ(ζ), z ∈ ∂Ω.(4.7)

(ii) If ϕ and ∂τϕ are in L1(∂Ω), then on ∂Ω and in the sense of distributions,

∂τ

∫
∂Ω

ϕ(ζ)K(z, ζ) dσ(ζ) = −
∫
∂Ω

∂τϕ(ζ)K(ζ, z) dσ(ζ).(4.8)

Proof. (i) Note that Θ(s, t) is a continuous branch of 1
π arctan y(s)−y(t)

x(s)−x(t) on [0, l] ×
[0, l]. Then

∂s

∫
Ij

ϕ(t)Θ(s, t) dt =

∫
Ij

ϕ(t)∂s arg(γ(s)− γ(t)) dt

holds on Ii when j = i. It suffices to verify that on Ii,

∂s

∫
Ii

ϕ(t)Θ(s, t) dt =

∫
Ii

ϕ(t)∂s arg(γ(s)− γ(t)) dt.

Thus we may assume that ∂Ω = γi. We have∫ l

0

∫ l

0

|ϕ(t)|
|t− s|1−α

dtds ≤ C|ϕ|L1 .

Hence, ∫ l

0

∫ l

0

|ϕ(t)∂sΘ(s, t)| dtds ≤ C

∫ l

0

∫ l

0

|ϕ(t)|
|t− s|1−α

dtds ≤ C ′|ϕ|L1 .

Therefore,
∫ l

0
|ϕ(s)∂sΘ(s, t)| ds is in L1(∂Ω). For a test function φ on (0, l),∫ l

0

φ′(s)

∫ l

0

ϕ(t)Θ(s, t) dtds =

∫ l

0

ϕ(t)

∫ l

0

φ′(s)Θ(s, t) dsdt

= −
∫ l

0

φ(s)

∫ l

0

ϕ(t)∂sΘ(s, t) dtds,

which gives us (4.6).
To verify (4.7), we let k ≥ 1 and use

∂k−1
τ

∫
ϕ(ζ)K(ζ, z) dσ(ζ) =

∫
ϕ(ζ)∂k−1

τz K(ζ, z) dσ(ζ).

Let φ be a C1 function on ∂Ω. Let χε(ζ, z)− 1 be a C1 function on ∂Ω× ∂Ω which
has support in |ζ − z| < ε such that |χε| ≤ 1 and |∂τzχε(ζ, z)| < Cε−1. Now

I =

∫
∂τzφ(z)

∫
ϕ(ζ)∂k−1

τz K(ζ, z) dσ(ζ) dσ(z)

= lim
ε→0

∫
ϕ(ζ)

∫
χε(ζ, z)∂τz [φ(z)− φ(ζ)]∂k−1

τz K(ζ, z) dσ(z) dσ(ζ).
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Write the last double integral as −I ′ε − I ′′ε with

I ′ε =

∫
ϕ(ζ)

∫
(∂τzχε(ζ, z))[φ(z)− φ(ζ)]∂k−1

τz K(ζ, z) dσ(z) dσ(ζ),

I ′′e =

∫
ϕ(ζ)

∫
χε(ζ, z)[φ(z)− φ(ζ)]∂k

τzK(ζ, z) dσ(z) dσ(ζ).

Then I ′ε tends to 0 uniformly in ζ as ε → 0 because as ε tends to 0,∣∣∣∫ (∂τzχε(ζ, z))[φ(z)− φ(ζ)]∂k−1
τz K(ζ, z) dσ(z)

∣∣∣
≤ Cε−1 sup

|z−ζ|<ε

|φ(z)− φ(ζ)|
∫
z∈∂Ω,|z−ζ|<ε

|∂k−1
τz K(ζ, z)| dσ(z) → 0.

Since |χε| ≤ 1 and |(φ(z)− φ(ζ))∂k
τzK(ζ, z)| ≤ C by (4.1), then limε→0 I

′′
ε equals

I ′′ =

∫
ϕ(ζ)

∫
[φ(z)− φ(ζ)]∂k

τzK(ζ, z) dσ(z) dσ(ζ).

Since k ≥ 1, then∫
∂k
τzK(ζ, z) dσ(z) = lim

ε→0

∫
|z−ζ|>ε

∂k
τzK(ζ, z) dσ(z)

= lim
ε→0

{∂k−1
τz K(ζ, ζ ′′ε )− ∂k−1

τz K(ζ, ζ ′ε)} = 0.

Here we have used the continuity of ∂k−1
τz K(ζ, z) and the identities {ζ ′ε, ζ ′′ε } =

∂Ω ∩ {z : |z − ζ| = ε} for small ε and limε→0 ζ
′
ε = z = limε→0 ζ

′′
ε . Now (4.7) follows

from

I = −
∫

ϕ(ζ)

∫
φ(z)∂k

τzK(ζ, z) dσ(z) dσ(ζ).

(ii) When ∂Ω is parameterized by γ(t), at z = γ(t), we have ∂τf(z) dσ(z) =
df(z) = ∂t(f(γ(t))) dt. Then (4.8) is obtained by integration by parts and (4.6). �

We have seen from (4.8) that differentiating integral operator K inevitably leads
to the kernel K∗. To recover a loss of regularity in Kellogg’s arguments, we will need
to combine (4.1) and (4.3) with estimates on K,K∗ from the Cauchy transform.

Lemma 4.3. Let ∂Ω ∈ Ck+1+α with 0 < α < 1. Then for a real function ψ ∈
Cα(∂Ω),

Kψ = 2Re{C+ψ} − ψ, K∗ψ = ψ − 2Re{τC+(τψ)}.
In particular, K∗(Ck+α(∂Ω)) ⊂ Ck+α(∂Ω), and for l ≤ k + 1, K(Cl+α(∂Ω)) ⊂
Cl+α(∂Ω).

Proof. The first formula follows from (3.11) immediately. Parameterize ∂Ω by γ in
arc-length. By a simple computation we obtain

∂s arg(γ(s)− γ(t)) = −Re(γ′(s)γ′(t))∂t arg(γ(s)− γ(t))(4.9)

− Im(γ′(s)γ′(t))∂t log |γ(s)− γ(t)|.

To verify the second one, we use (4.9) to decompose

K∗ψ(z) =
1

π

∫
∂Ω

ψ(ζ)∂τz arg(z − ζ) dσ(ζ) = J1(z) + J2(z)
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with

J1(z) = −ψ(z) +
1

π
Re

{
τz

∫
∂Ω

(ψ(z)τz − ψ(ζ)τζ)∂τζ arg(z − ζ) dσ(ζ)
}
,

J2(z) =
1

π
Im

{
τz

∫
∂Ω

(ψ(z)τz − ψ(ζ)τζ)∂τζ log |z − ζ| dσ(ζ)
}
.

By a simple computation,

K∗ψ(z) = −ψ(z) +
1

π
Im

{
τz

∫
∂Ω

(ψ(z)τz − ψ(ζ)τζ)
dζ

ζ − z

}
.

Therefore, K∗ψ = −ψ−2Re{τC−(τψ)}. The assertions follow from Lemma 3.2. �

5. Kernels with parameter

We have derived estimates for K,K∗ and Cf . In this section we modify the
arguments for the parameter case. The requirement that k ≥ j in the Hölder spaces
Ck+α,j(∂Ω) will be evident in identity (5.17) below and in the proof of Lemma 5.4
for the Cauchy transform with parameter.

Lemma 5.1. Let Ω be a bounded domain in C with ∂Ω ∈ C1. Let Γλ embed Ω onto
Ωλ with Γ ∈ C1,j

∗ (Ω). Let zλ = Γλ(z) and k > 0. For z, ζ ∈ Ω with ζ = z,∣∣∣ 1

(ζμ − zμ)k
− 1

(ζλ − zλ)k

∣∣∣ ≤ C1,0
|Γμ − Γλ|1
|ζ − z|k ,(5.1)

∣∣∣ 1

(xμ(ζ)− xμ(z))k
− 1

(xλ(ζ)− xλ(z))k

∣∣∣ ≤ C∗C1,0
|xμ − xλ|1
|ζ − z|k ,(5.2) ∣∣∂j

λ log |ζλ − zλ|
∣∣ ≤ C∗

1,j , j ≥ 1,(5.3) ∣∣∂j
μ log |ζμ − zμ| − ∂j

λ log |ζλ − zλ|
∣∣ ≤ C∗

1,j |Γμ − Γλ|1,j , j ≥ 0,(5.4)

where (5.2) is for ζ, z ∈ ∂Ω and under the assumptions that |∂τzxλ| ≥ 1/C∗ and

|xμ−xλ|1, |ζ−z| are sufficiently small. Assume further that Γ ∈ B1+α,j
∗ (∂Ω). Then

for ζ ∈ ∂Ω,

∣∣∂j
λ∂τλ

ζ
arg(ζλ − zλ)

∣∣ ≤ C∗
1+α,j

|ζ − z|1+α + dist(z, ∂Ω)

|ζ − z|2 .(5.5)

Proof. Since Γλ are embeddings with Γ ∈ C1,0(Ω), we have

(5.6) |ζ − z|/C ≤ |ζλ − zλ| ≤ C|ζ − z|.

Take a path ρ in Ω such that ρ(0) = z, ρ(1) = ζ and |ρ′| ≤ C|ζ − z|. When j = 0,
(5.4) follows from | log(1 + x)| ≤ 2|x| for |x| < 1/2 and

|∂j
μ(ζ

μ − zμ)− ∂j
λ(ζ

λ − zλ)| =
∣∣∣∫ 1

0

∇(∂j
μΓ

μ − ∂j
λΓ

λ)(ρ(t)) · ρ′(t) dt
∣∣∣(5.7)

≤ C|Γμ − Γλ|1,j |ζ − z|,

and (5.1) follows from (5.6)-(5.7) too. By analogy, one can verify (5.2). For j > 0,

∂j
λ log |ζλ − zλ| is a linear combination of

Qλ(ζ, z) =
∂i1
λ (ζλ − zλ) · · · ∂ia

λ (ζλ − zλ)

(ζλ − zλ)a
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and their conjugates, where a > 1 and il ≤ j. Using |∂j
λ(ζ

λ − zλ)| ≤ C1,j |ζ − z|,
we obtain (5.4) by (5.7), and (5.3). Note that Qλ may not extend continuously to
z = ζ.

To verify (5.5), we choose local Ck+1+α coordinates such that Ω contains [−1, 1]×
(0, 1] and ∂Ω contains [−1, 1]×{0}. Assume that ζ = ξ+i0, z ∈ Ω and |ζ|+|z| < 1/2.
Then γλ

1 (x, y) = ∂xγ
λ(x, y) is tangent to ∂Ωλ and

∂τλ
ζ
arg(ζλ − zλ) = |γλ

1 (ξ, 0)|−1 Im

{
γλ
1 (ξ, 0)(γ

λ(ξ, 0)− γλ(x, y))

|γλ(ξ, 0)− γλ(x, y)|2

}
.

Set γλ
2 (x, y) = ∂yγ

λ(x, y). We have

γλ(x, y)− γλ(ξ, 0) =

∫ 1

0

{
(x− ξ)γλ

1 (ξ + r(x− ξ), 0) + yγλ
2 (x, ry)

}
dr,

Im
{
γλ
1 (ξ, 0)(γ

λ(ξ, 0)− γλ(x, y))
}

= Im
{
γλ
1 (ξ, 0)[(x− ξ)R̂1γ

λ
1 (x, y, ξ) + yR∗

1γ
λ
2 (x, y, ξ)]

}
,

R̂1γ
λ
1 (x, y, ξ) =

∫ 1

0

[γλ
1 (ξ + r(x− ξ), 0)− γλ

1 (ξ, 0)] dr,(5.8)

R∗
1γ

λ
2 (x, y, ξ) =

∫ 1

0

γλ
2 (x, ry) dr.(5.9)

Therefore, ∂j
λ∂τλ

ζ
arg(ζλ − zλ) is a linear combination of

∂i0
λ |γλ

1 (ξ, 0)|−1 Im
{
∂i1
λ γλ

1 (ξ, 0)[(x− ξ)R̂1∂
i2
λ γλ

1 (x, y, ξ)(5.10)

+ yR∗
1∂

i2
λ γλ

2 (x, y, ξ)]
}
qλi3(ξ, x, y).

Here i0 + i1 + i2 + i3 = j and qλi3(ξ, x, y) = ∂i3
λ |γλ(ξ, 0)− γλ(x, y)|−2. We can verify

that

|∂i0
λ |γλ

1 (ξ, 0)|−1| ≤ C1,j , |∂i1
λ γλ

1 (ξ, 0)| ≤ C1,j .

By the arguments for (5.3)-(5.4), we obtain

|qλi3(ξ, x, y)| ≤ C|z − ζ|−2.

By (5.8)-(5.9), we get |R̂1∂
i2
λ γλ

1 (x, y, ξ)| ≤ C1+α,j |x − ξ|α and |R∗
1∂

i2
λ γλ

2 (x, y, ξ)| ≤
C1,j . In (5.10), we have y = dist(z, ∂Ω) and |x− ξ| ≤ |z− ζ|. Combining the above
estimates, we get (5.5). �

Given a family of continuous functions fλ on ∂Ωλ, let Cλf be the Cauchy trans-
form defined off ∂Ωλ by (3.10). Let Cλ

+f be restrictions on Ωλ. Denote by Wλf

and Uλf the single and double layer potentials with moment fλ on ∂Ωλ. De-

note by Wλ
+f and Uλ

+f their restrictions on Ωλ and extensions to Ωλ if continuous
extensions exist.
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It will be convenient to use the notation

|uλ|i+α,j = max
l≤j

|∂l
λ(u

λ ◦ Γλ)|i+α, ‖uλ‖k+α,j = max
i≤j

|uλ|k+α−i,i,(5.11)

|uμ − uλ|i+α,j = max
l≤j

|∂l
μ(u

μ ◦ Γμ)− ∂l
λ(u

λ ◦ Γλ)|i+α,(5.12)

‖uμ − uλ‖k+α,j = max
i≤j

|uμ − uλ|k−i+α,i, j ≤ k.(5.13)

Define analogous norms by replacing Γλ with γλ.

Proposition 5.2. Let Γλ embed Ω onto Ωλ with Γ ∈ Bk+1+α,j(Ω). Let j ≤ k and
j ≤ l ≤ k + 1. With the norms defined by (2.1)-(2.3) and (5.11)-(5.13), we have

‖C+f‖0,0 ≤ C1,0|f |α,0, ‖C+f‖l+α,j ≤ Ck+1+α,j‖f‖l+α,j ,(5.14)

‖Cμ
+f − Cλ

+f‖0,0 ≤ C1,0(|Γμ − Γλ|1|fλ|α + ‖fμ − fλ‖α,0),(5.15)

‖Cμ
+f − Cλ

+f‖l+α,j ≤ Ck+1+α,j(‖Γμ − Γλ‖k+1+α,j |fλ|l+α(5.16)

+‖fμ − fλ‖l+α,j).

If ∂Ω is real analytic, and Γλ(z) and fλ ◦Γλ(z) are real analytic on Ω× [0, 1], then
Cλ
+f ◦ Γλ(z) and Wλ

+f ◦ Γλ(z) are real analytic on Ω× [0, 1] too.

Proof. Let z ∈ Ω. Take z∗ ∈ ∂Ω such that |z∗ − z| = dist(z, ∂Ω). We have

Cλf(zλ) = fλ(zλ∗ ) +
1

2πi

∫
∂Ω

fλ(ζλ)− fλ(zλ∗ )

ζλ − zλ
dζλ.

Denote the last integral by Aλ(z). By (5.1) it is easy to see that

|Aμ −Aλ|0 ≤ C1,0(‖fμ − fλ‖α,0 + |fλ|α|Γμ − Γλ|1)
∫
∂Ω

|ζ − z∗|α
|ζ − z| |dζ|.

The last integral is bounded by a constant; indeed, when δ = dist(z, ∂Ω) is suf-
ficiently small, for z∗ = γ(s) and ζ = γ(t) we have |ζ − z∗| ≤ C|s − t| and
|z − ζ| ≥ (δ + |t − s|)/C. This verifies (5.15). By Lemma 3.2, Cλ

+f is continu-

ous when λ is fixed. Then (5.15) also implies that C+f is in C0,0(ΩΓ). One can also
verify the first inequality in (5.14). Notice that the proof merely needs Γ ∈ C1,0(Ω).
Next, we will verify (5.16) and the second inequality in (5.14).

Denote by ∂zλ the derivative in z on Ωλ. By analogue of Lemma 2.4, it suffices
to estimate norms for ∂zλCλ

+f . We first consider the case where j = 0. Differentiate

Cλf and then apply Stokes to transport the derivatives to fλ(γλ(ζ)). By (3.12) we
have

gλ(zλ)
def
== ∂l

zλCλf(zλ) =
1

2πi

∫
ζ∈∂Ω

∂̃l
τλf

λ(ζλ)

ζλ − zλ
dζλ

def
==

∫
ζ∈∂Ω

hλ(ζλ) dζλ

ζλ − zλ
,

where ∂̃τλ = τλ∂τλ . We have

∂zg
λ(zλ) = ∂zΓ

λ(z)Iλ(z), Iλ(z) =

∫
∂Ω

hλ(ζλ)− hλ(zλ∗ )

(ζλ − zλ)2
dζλ.
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Note that by the product rule, ∂̃l
τλf

λ(ζλ) involves derivatives of order at most l in

ζλ and fλ(ζλ). Thus |hλ|α ≤ Ck+1+α|fλ|l+α. We can verify that

|Iλ(z)| ≤ C|hλ|α
∫
∂Ω

|ζλ − zλ|α−2 dσ ≤ C ′|hλ|α
∫
∂Ω

|ζ − z|α−2 dσ

≤ Ck+1+α|fλ|l+α dist(z, ∂Ω)α−1.

Combining with the first inequality in (5.14), we get its second inequality for j = 0.
Also, by (5.1)

|Iμ(z)− Iλ(z)| ≤ C(‖hμ − hλ‖α,0 + |hλ|α|Γμ − Γλ|1)
∫
∂Ω

|ζ − z|α−2 dσ(ζ).

Thus, |Iμ(z)− Iλ(z)| ≤ C dist(z, ∂Ω)α−1. For l ≤ k + 1 we obtain

‖gμ − gλ‖α,0 ≤ C(‖hμ − hλ‖α,0 + |hλ|α|Γμ − Γλ|k+1+α).

Note that ‖hμ − hλ‖α,0 ≤ Ck+1+α(‖fμ − fλ‖k+1+α,j + |fλ|k+1+α|γμ − γλ|l+α) for
l ≤ k + 1. This gives us (5.16) for j = 0.

Assume that j > 0 and (5.16) is valid when j is replaced by j− 1. Here we need
a crucial cancellation. By (2.6), we have dγλ = ∂τγ

λ dσ, i.e., dζλ = ∂τζζ
λ dσ(ζ).

Thus

∂λ(Cλf(zλ)) =
1

2πi

∫
ζ∈∂Ω

∂λ[∂τζζ
λfλ(ζλ)]

ζλ − zλ
dσ(ζ)

− 1

2πi

∫
ζ∈∂Ω

(∂λζ
λ − ∂λz

λ)fλ(ζλ)

(ζλ − zλ)2
dζλ.

We apply integration by parts to the second term and write the above as

1

2πi

∫
∂Ω

∂λ[∂τζζ
λfλ(ζλ)]

ζλ − zλ
dσ(ζ)− 1

2πi

∫
∂Ω

∂τζ [(∂λζ
λ − ∂λz

λ)fλ(ζλ)]

ζλ − zλ
dσ(ζ).

Cancelling two second-order derivatives, we arrive at

∂λ(Cλf(zλ)) =
1

2πi

∫
ζ∈∂Ω

∂λ(f
λ(ζλ))− ∂λζ

λ(∂τζζ
λ)−1∂τζ (f

λ(ζλ))

ζλ − zλ
dζλ(5.17)

+
∂λz

λ

2πi

∫
ζ∈∂Ω

(∂τζζ
λ)−1∂τζ (f

λ(ζλ))

ζλ − zλ
dζλ.

Now (5.16) follows from the induction hypothesis where (j, l) is replaced with (j −
1, l − 1). By a simpler computation, estimates (5.14) for j > 0 follow from (5.17)
too.

The proof for real analyticity in Lemma 3.2 cannot be applied to the parameter
case, as generally we cannot normalize two differential operators simultaneously.
Instead, we will prove it by estimating Taylor coefficients. We start with

∂z(Cλf(zλ)) =
∂zz

λ

2πi

∫
ζ∈∂Ω

τζ∂τ (f
λ(ζλ))

ζλ − zλ
dζλ.(5.18)

An analogous formula holds for ∂z(Cλf(zλ)). By (5.17)-(5.18), we express

(5.19) ∂i
z∂

j
z∂

k−i−j
λ Cλ

+f
λ(zλ) =

Ni,j;k∑
l=1

Pλ
i,j,k,l(z

λ)Cλ
+{Qλ

i,j,k,l(ζ
λ)}(zλ).
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Here Pλ
i,j,k,l(z

λ)Qλ
i,j,k,l(ζ

λ) is the product of elements of the form

∂a1
z ∂b1

z ∂c1+1
λ zλ, ∂a2+1

z ∂b2
z ∂c2

λ zλ, ∂a3
z ∂b3+1

z ∂c3
λ zλ;

∂a4
τ ∂b4+1

λ ζλ, ∂a5
τ ∂b5

λ (∂τζ
λ)−1, ∂a6

τ τζ ;

∂a7
τ ∂b7

λ (fλ(ζλ)); L(ζ, z, λ) = (∂λz
λ, ∂zz

λ, ∂zz
λ, ∂λζ

λ, (∂τ ζ
λ)−1, τζ).

Let us explain how the above terms are used. Let L denote all first-order derivatives
appearing in the right-hand sides of (5.17)-(5.18) and ∂zz

λ in the formulae analo-
gous to (5.18), except those of f . To count the total of the orders of derivatives
efficiently, we will count the first-order derivatives appearing in L separately, when
(5.17) or (5.18) is used each time. Set b6 = c4 = · · · = c7 = 0. For the purpose
of counting, we duplicate the above terms associated to (an, bn, cn) for n < 7 and
denote by mn the number of the copies associated to (an, bn, cn) that appear in

Pλ
i,j,k,lQ

λ
i,j,k,l. Since ∂a7

τ ∂b7
λ (fλ(ζλ)) appears once in Pλ

i,j,k,lQ
λ
i,j,k,l, we set m7 = 1.

By an abuse of notation, we have not expressed the dependence of mn on i, j, k, l,
an′ , bn′ and cn′ . Nevertheless, we have

dk = max
i,j,l

7∑
n=1

mn(an + bn + cn) ≤ k,

7∏
n=1

(an!bn!cn!)
mn ≤ k!.

Since zλ and fλ(ζλ) are real analytic, we have

|L| ≤ C0, |∂a
z ∂

b
z∂

c
λz

λ| ≤ (a+ b+ c− 1)!Ca+b+c
0 , a+ b+ c > 0,

|∂a
τ ∂

b
λ(∂λζ

λ, (∂τ ζ
λ)−1, τζ , f

λ(ζλ))| ≤ (a+ b)!Ca+b+1
0 .

Here the last inequality is obtained by using real analytic parameterization in arc-
length. Thus, the product of the terms in Pλ

i,j,k,lQ
λ
i,j,k,l, excluding those in L, is

bounded in sup norm by

(5.20)

7∏
n=1

(an!bn!cn!)
mnC

mn(an+bn+cn)
0 ≤ Ck

0 k!.

Next, we count lk, the maximum number of first-order derivatives in L which appear
in each Pλ

i,j,k,lQ
λ
i,j,k,l as i, j and l vary. From (5.17), taking one derivative in ∂λ

produces at most two terms in L; from (5.18), taking one derivative in z or z
produces two terms in L. Therefore, lk ≤ 2k+1. Thus, the product of the terms in
L that appear in Pλ

i,j,k,lQ
λ
i,j,k,l is bounded in sup norm by Clk

0 ≤ C2k+1
0 . Combining

with (5.20), we get

(5.21) |Pλ
i,j,k,lQ

λ
i,j,k,l|0 ≤ Clk

0

7∏
n=1

(an!bn!cn!)
mnC

mn(an+bn+cn)
0 ≤ C3k+1

0 k!.

Finally, we count the maximum number of terms in (5.19). When we take one
derivative in λ on Cλ

+f , we get three terms by using (5.17); when we take one

derivative in z or z on Cλ
+f , we have just one term in (5.18). Therefore,

(5.22) Nk
def
== max

i,j
Ni,j;k ≤ 3k.

We have |Qi,j,k−1,l(·, ·)|α≤C1|Qi,j,k−1,l(·, ·)|1. Taking a ζ-derivative on Pλ
i,j,k−1,l ·

Qλ
i,j,k−1,l introduces at most Nk terms of the form Pλ

i′,j′,k,l′ ×Qλ
i′,j′,k,l′ . This shows
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that

|Pi,j,k−1,l(·)|0|Qi,j,k−1,l(·)|α ≤ NkC1 max
i′,j′,l′

|Pi′,j′,k,l′(·)|0|Qi′,j′,k,l′(·)|0

≤ C13
kk!C3k+1

0 (by (5.21), (5.22)).

By (5.19), (5.14) and the above inequality, we obtain

|∂i
z∂

j
z∂

k−1−i−j
λ {Cλ

+f
λ(zλ)}| ≤ Nk−1C1,0|Pi,k−1−i,l(·, ·)|0|Qi,k−1−i,l(·, ·)|α

≤ C1C1,03
2k−1k!C3k+1

0 .

Using k! ≤ i!j!(k − 1 − i − j)!3k−1k, we obtain the desired estimate on Taylor
coefficients to show that Cλ

+f
λ(zλ) is real analytic on Ω× [0, 1].

It is clear that Wλf(z) is real analytic on Ω × [0, 1]. We need to show that it
is real analytic near (z1, λ1) ∈ Ω × [0, 1] for z1 ∈ ∂Ω. We use local real analytic
coordinates to find a real analytic function ϕ(z0, z, t) defined on U ×U × [0, 1] such
that ϕ(z0, z, 0) = z0 and ϕ(z0, z, 1) = z, where U is an open set containing z1.
Moreover, ϕ(z0, z, t) is in Ω when t ∈ (0, 1) and z0, z are in U ∩ Ω. Fix z0 ∈ U ∩ Ω
and vary z ∈ U ∩ Ω. We have

Wλf(Γλ(z))=Wλf(Γλ(z0)) + 2Re

∫ 1

0

{∂z((Wλf) ◦ Γλ)}(ϕ(z0, z, t))∂tϕ(z0, z, t) dt.

Since ∂zλWλf = −2iCλ
+(τ

λfλ) and ∂zλWλfλ are real analytic in (z, λ) ∈ Ω× [0, 1],

then ∂zW
λf is real analytic in z and λ by the chain rule. Thus, the integrand in

the above integral is real analytic in (z0, z, λ, t) ∈ (U ∩ Ω)2 × [0, 1]2. This shows
that Wλfλ(zλ) is real analytic in (z, λ) ∈ Ω× [0, 1]. �

We have seen that the kernels of Uf and Wf behave better than that of Cf
for spaces of continuous functions. In the parameter case, we have the following
analogue of (3.3) and Lemma 3.2 (iii).

Proposition 5.3. Let Γλ embed Ω onto Ωλ with Γ ∈ C1,j
∗ (Ω). Suppose that Γλ

preserves the orientation. Assume that f ∈ C0,j
∗ (∂Ωγ). Then Wf ∈ C0,j

∗ (ΩΓ) and

∂j
λW

λf(z) =
1

π

j∑
i=0

(
j

i

)∫
∂Ω

∂i
λ(|∂τγλ(ζ)|fλ(ζλ))∂j−i

λ {log |ζλ − zλ|} dσ(ζ), z ∈ Ω.

Assume further that ∂Ω ∈ C1+α and Γ ∈ B1+α,j
∗ (Ω). Then Uf ∈ C0,j

∗ (ΩΓ) and

∂j
λU

λ
+f(z) =

1

π

j∑
i=0

(
j

i

)∫
∂Ω

∂i
λ{fλ(ζλ)}∂j−i

λ {|∂τγλ(ζ)|∂τλ arg(ζλ − zλ)} dσ(ζ)

+ ∂j
λ(f

λ(zλ))

holds on ∂Ω. Under the norms defined by (2.1)-(2.3) and (5.11)-(5.13),

|W+f |0,j ≤ C∗
1,j |f |0,j , |Wμ

+f −Wλ
+f |0,j ≤ C∗

1,j(|Γμ − Γλ|1,j |fλ|0,j + |fμ − fλ|0,j).

In particular, if ∂Ω ∈ Ck+1+α, Γ ∈ Bk+1+α,j(Ω) and f ∈ Bk+α,j(∂Ωγ) with k ≥ j,

then W+f ∈ Bk+1+α,j(ΩΓ); the same assertion holds if C substitutes for B.
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Proof. We write dσλ = aλ dσ on ∂Ω. Recall from (2.6) that aλ(z) = |∂τγλ(z)|. Fix
z0 ∈ ∂Ω. For z ∈ Ω we have ∂j

λU
λf(z) =

∑(
j
k

)
Ik(z) with

Iλk (z) =
1

π

∫
∂Ω

∂k
λ{fλ(ζλ)}∂j−k

λ {aλ(ζ)∂τλ
ζ
arg(zλ − ζλ)} dσ.

Using (5.5) for γ ∈ B1+α,j
∗ , we get for l ≤ j∫

ζ∈∂Ω,|ζ−z0|<ε

|∂l
λ∂τλ

ζ
arg(zλ − ζλ)| dσλ ≤ Cεα, z0 ∈ ∂Ω,(5.23) ∫

ζ∈∂Ω

|∂l
λ∂τλ

ζ
arg(zλ − ζλ)| dσλ < C, z ∈ C.(5.24)

Then, by analogue of (3.8), from f ∈ C0,j
∗ , γ ∈ B1,j

∗ and (5.24) we get∫
∂Ω

{∂k
λ{fλ(ζλ)} − ∂k

λ{fλ(zλ0 )}}∂
j−k
λ {aλ(ζ)∂τλ

ζ
arg(zλ − ζλ)} dσ(ζ)(5.25)

→
∫
∂Ω

{∂k
λ{fλ(ζλ)} − ∂k

λ{fλ(zλ0 )}}∂
j−k
λ {aλ(ζ)∂τλ

ζ
arg(zλ0 − ζλ)} dσ(ζ)

as ∂Ω � z → z0, where the convergence is uniform in λ. Let 0 < l ≤ j. Note that∫
∂Ω

∂l
λ{aλ(ζ)∂τλ

ζ
arg(zλ − ζλ)} dσ(ζ) = 0, z ∈ ∂Ω.

For z = z0 ∈ ∂Ω and γ ∈ C1,j
∗ , the last integral equals

lim
ε→0

∫
ζ∈∂Ω,|ζ−z0|>ε

∂l
λ{aλ(ζ)∂τλ

ζ
arg(zλ0 − ζλ)} dσ

= lim
ε→0

∂l
λ{π − arg(γλ ◦ γ̂(ε2)− γλ ◦ γ̂(0))− arg(γλ ◦ γ̂(0)− γλ ◦ γ̂(ε1))}

= lim
ε→0

∂l
λ

{
π − arctan

∫ 1

0
(yλ ◦ γ̂)′(rε2) dr∫ 1

0
(xλ)′(rε2) dr

+ arctan

∫ 1

0
(yλ)′(rε1) dr∫ 1

0
(xλ)′(rε1) dr

}
= 0.

Here we have used arg(x+ iy) = arctan(y/x) mod π and a local C1 parameteriza-
tion γ̂ of ∂Ω near z0 with γ̂(0) = z0. Also, ∂Ω intersects {|ζ − z0| = ε} at γ̂(ε1),
γ̂(ε2) for ε sufficiently small. We have also assumed without loss of generality that

∂τx
λ(z0) = 0. Expanding both sides of (5.25) we get the formula for ∂j

λU
λ
+f . Com-

bining the formula with (5.23), we see that Uλ
+f(z

λ
0 ) is continuous in λ. Then, the

uniform convergence of Uλf(zλ) as z → z0 yields U+f ∈ C0,j
∗ (ΩΓ).

Write ∂j
λW

λf as a linear combination of

hλ
j1j2(z) =

∫
∂Ω

∂j1
λ {aλ(ζ)fλ(ζλ)}∂j2

λ log |zλ − ζλ| dσ, j1 + j2 = j.

Using (5.3) and (3.5), we obtain

|∂j2
λ log |ζλ − zλ|| ≤ C, j2 > 0; | log |ζλ − zλ|| ≤ C(| log |t− s||+ 1),

where z = γ̂(s) + hν(s), ζ = γ̂(t), and γ̂ is a parameterization of ∂Ω. We conclude

easily that hλ
j1j2

(z) are continuous on Ω×[0, 1]. This verifies the formula for ∂j
λW

λ
+f .

By the formulae of ∂j
λW

λf , we obtain W+f ∈ C0,j
∗ (ΩΓ) and the desired esti-

mate for W+f by (5.3)-(5.4),
∫
∂Ωλ | log |ζλ − zλ|| dσλ < C and dist(z, ∂Ω)

∫
∂Ω

|ζ −
z|−2 dσ < C for z ∈ Ω. The assertion on higher-order derivatives follows from
∂zWf = −iC[τf ] and Proposition 5.2. �
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To prepare our estimates in section 7 for integral equations with parameter, we
use the rest of the section to extend Lemma 4.1 to the parameter case.

For convenience, we will use the following difference operators:

δλμf = fμ − fλ, δt1t2g = g(t2)− g(t1).

For clarity we will also write the above as δλμf• and δt1t2g(·), where · and • indicate
the variables used in the operators. Both satisfy the product rule to the extent that

δλμ(fg) = δλμfgν + fνδλμg, δt1t2(fg) = δt1t2fg(t3) + f(t3)δt1t2g,

where ν = λ or μ (and two ν’s are different), and t3 = t1 or t2. For γ ∈
Bk+1+α,j(∂Ω), with the above notation we have

Kλ
k−j,j(ζ

λ, zλ) := ∂k−j
τλ
z

∂j
λ∂τλ

z
{arg(ζλ − zλ)}, ζλ, zλ ∈ ∂Ωλ,

δλμKk−j,j(ζ, z) = Kμ
k−j,j(ζ

μ, zμ)−Kλ
k−j,j(ζ

λ, zλ), ζ, z ∈ ∂Ω.

Lemma 5.4. Let γλ embed ∂Ω onto ∂Ωλ with γ ∈ Ck+1+α,j(∂Ω) and k ≥ j. Then
on ∂Ωλ × ∂Ωλ and off its diagonal,∣∣Kλ

k−j,j(ζ
λ, zλ)

∣∣ ≤ Ck+1+α,j |ζ − z|α−1,(5.26) ∣∣Kλ
k−j,j(ζ

λ, zλ2 )−Kλ
k−j,j(ζ

λ, zλ1 )
∣∣ ≤ Ck+1+α,j

|z2 − z1|α
|ζ − z1|

,(5.27) ∣∣δλμKk−j,j(ζ, z)
∣∣ ≤ Ck+1+α,j‖γμ − γλ‖k+1+α,j |ζ − z|α−1,(5.28) ∣∣δz1z2δλμKk−j,j(ζ, ·)

∣∣ ≤ Ck+1+α,j‖γμ − γλ‖k+1+α,j
|z2 − z1|α
|ζ − z1|

,(5.29)

∣∣δλμK0,j(z2, ζ)− δλμK0,j(z1, ζ)
∣∣ ≤ C∗

1+α,j‖γμ − γλ‖1+α,j
|z2 − z1|

|ζ − z1|2−α
,(5.30)

where (5.27), (5.29) and (5.30) are for |ζ − z1| > 2|z2 − z1|.

Proof. It suffices to verify (5.26)-(5.29) for ζ, z1, z2, z near a point w ∈ ∂Ω at
which |∂τwxλ| = 0. We may assume that w = 0 and ∂Ω contains (−1, 1) + i0.
We may assume that ‖γμ − γλ‖1,0 is sufficiently small; otherwise, (5.28)-(5.29)
follow from (5.26)-(5.27). We may further assume that ∂Ωλ is embedded through
γλ(t) such that, for |t| ≤ 1, (xλ)′ > 1/C and |(xλ(s) − xλ(t))−1| ≤ C|s − t|−1.
In the following, we assume that s, t, t1 and t2 are in (−1, 1). Define qλ(s, t) =
(yλ(s)− yλ(t))/(xλ(s)− xλ(t)) and

K̂λ
k−j,j(s, t) = ∂j

λ∂
k+1−j
t qλ(s, t), δλμK̂k−j,j(s, t) = K̂μ

k−j,j(s, t)− K̂λ
k−j,j(s, t).

By (2.7), we have (∂τλuλ)(γλ(t)) = |∂tγλ|−1∂t(u
λ(γλ)). Hence

Kλ
k−j,j(γ

λ(s), γλ(t)) =
∑

j′≤j,k′≤k

Qλ
j′k′(t)K̂λ

k′−j′,j′(s, t).

Here Qλ
j′k′ are C∞ functions in |∂tγλ|−1, ∂tγ

λ, . . . , ∂k+1
t γλ, and

qλ(s, t) =

∫ 1

0
(yλ)′(s+ r(t− s)) dr∫ 1

0
(xλ)′(s+ r(t− s)) dr

.
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We have for Qλ = Qλ
j′k′ ,

|Qλ(t)| ≤ Ck+1,j , |Qλ(t2)−Qλ(t1)| ≤ Ck+1+α,j |t2 − t1|λ,
|(Qμ −Qλ)(t2)− (Qμ −Qλ)(t1)| ≤ Ck+1+α,j‖γμ − γλ‖k+1+α,j |t2 − t1|λ.

Therefore, to show (5.26)-(5.30), it suffices to verify them when Kλ(ζλ, zλ), ζ, and

z are replaced by K̂λ(s, t), s, and t, respectively.

Recall that R̂kf(s, t) =
∫ 1

0
{f (k)(t+r(s−t))−f (k)(t)} dr. We apply formula (4.5)

and obtain for (xλ(s)− xλ(t))qλ(s, t) = yλ(s)− yλ(t),

(xλ(s)− xλ(t))k+2−j∂k+2−j
t qλ(s, t)

= (s− t)k+1−j
{
Pλ
0 R̂k+1−jy

λ(s, t) +

k+1−j∑
i=1

Pλ
i R̂ix

λ(s, t)
}
,

where Pλ
i (s, t) are polynomials in s− t, ∂t(x

λ, yλ), . . ., ∂k+1−j
t (xλ, yλ), ∂k+1−j

s γλ,

and xλ(s)−xλ(t). Hence ∂j
λ∂

k+1−j
t qλ(s, t) is a linear combination of Lλ(s, t) of the

form

(s− t)k+1−j ∂
j1
λ (xλ(s)− xλ(t)) · · ·∂ja

λ (xλ(s)− xλ(t))

(xλ(s)− xλ(t))k+2−j+a
∂jb
λ Pλ

i ∂
jc
λ R̂i(x

λ, yλ)(s, t).

Here j1 + · · · + ja + jb + jc = j and i + j ≤ k + 1. Assume that j′ ≤ j. We first
bound each term in Lλ(s, t) as follows:

|(∂j
λγ

λ(s)− ∂j
λγ

λ(t))| ≤ C|s− t|, |(xλ(s)− xλ(t))−1| ≤ C|s− t|−1,(5.31)

|∂j
λR̂iγ

λ(s, t)| ≤ C|s− t|α, |∂j
λP

λ
i (s, t)| ≤ C, i+ j ≤ k + 1.(5.32)

By (5.31)-(5.32) we get |Lλ(s, t)| ≤ C|s − t|α−1, which gives us (5.26). We now
assume that |s− t2| ≥ 2|t2 − t1|. Then

|(s− t2)− (x− t1)| ≤ |s− t1|1−α|t2 − t1|α,(5.33)

|∂j
λx

λ(t2)− ∂j
λx

λ(t1)| ≤ C|s− t1|1−α|t2 − t1|α,(5.34)

|(xλ(s, t2))
−1 − (xλ(s, t1))

−1| ≤ C|s− t1|−1−α|t2 − t1|α,(5.35)

|∂j
λ(P

λ
i , R̂iγ

λ)(s, t2)− ∂j
λ(P

λ
i , R̂iγ

λ)(s, t1)| ≤ C‖γ‖k+1+α,j |t2 − t1|α.(5.36)

Here i+j ≤ k+1. Comparing the exponents in (5.31)-(5.32) with the ones in (5.33)-
(5.36), and using the exponent in (5.26), we obtain (5.27) by a simple computation.

Applying δλμ to each term in Lλ(s, t), we get

|δλμ(∂j
•x

•(s)− ∂j
•x

•(t))| ≤ C‖γμ − γλ‖k+1,j |s− t|,(5.37)

|δλμ((x(s)− x(t))−1)| ≤ C‖γμ − γλ‖k+1,j |s− t|,(5.38)

|δλμ(∂j
•P

•
i (s, t))| ≤ C‖γμ − γλ‖k+1,j ,(5.39)

|δλμ((∂j
•R̂

•
i γ)(s, t))| ≤ C‖γμ − γλ‖k+1+α,j |s− t|α, i+ j ≤ k + 1.(5.40)

We see that (5.37)-(5.40) and (5.31)-(5.32) differ by a factor ‖γμ − γλ‖k+1+α,j , as
(5.26) and (5.28) do. A simple computation gives us (5.28). We have

δλμ(x(s)− x(t))−1 = (xμ(t)− xμ(s))−1(xλ(s)− xλ(t))−1δλμ(x(s)− x(t)).
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Note that δt1t2 and δλμ commute. Assume that |s− t1| > 2|t2 − t1|. Then

|δt1t2δλμ(x(s)− x(·))−1| ≤ 2C|t2 − t1||s− t1|−2|γμ − γλ|0|s− t1|
+ C|s− t1|−2|γμ − γλ|1|t2 − t1| ≤ 3C|γμ − γλ|1|s− t1|−1−α|t2 − t1|α.

Therefore,

|δλμδt1t2(∂j
•γ

•(s)− ∂j
•γ

•(·))| ≤ C|γμ − γλ|1,j |s− t1|1−α|t2 − t1|α,(5.41)

|δλμδt1t2(x(s, ·))−1| ≤ C|γμ − γλ|1,0|s− t1|−1−α|t2 − t1|α,(5.42)

|δλμδt1t2∂j
•(P

•
i , R̂iγ

•)(s, ·)| ≤ C‖γμ − γλ‖k+1+α,j |t2 − t1|α.(5.43)

Here i + j ≤ k + 1. Comparing (5.34)-(5.36) with (5.31)-(5.32) and (5.41)-(5.43)
with (5.33)-(5.36), we see that applying δλμ introduces a factor |γμ − γλ|k+1+α,j ,
as shown in (5.27) and (5.29). A simple computation gives us (5.29).

To verify (5.30), we start with

K̂λ(t, s) = Im
∂sγλ

∫ s

t
(∂rγ

λ − ∂sγ
λ) dr

|∂sγλ||γλ(s)− γλ(t)|2 .

Then ∂j
λK̂

λ(t, s) is a linear combination of Jλ(s, t) = Aλ
1 (s)A

λ
2(s, t)A

λ
3 (s, t) with

Aλ
1 (s) = ∂j1

λ (|∂sγλ|−1∂sγλ), Aλ
2 (s, t) = ∂j2

λ (|γλ(s)− γλ(t)|−2),

A3(s, t) = ∂j3
λ

∫ s

t

(∂rγ
λ − ∂sγ

λ) dr

and j1 + j2 + j3 = j. Then |Aλ
1 | ≤ C and

|Aλ
2 (s, t)| ≤ C|s− t|−2, |Aλ

3 (s, t)| ≤ C|s− t|1+α, |Jλ(s, t)| ≤ C|s− t|α−1.

Assume that |s− t1| ≥ 2|t2 − t1|. As in the proof of (4.2), we write∫ s

t2

(∂rγ
λ − ∂sγ

λ) dr −
∫ s

t1

(∂rγ
λ − ∂sγ

λ) dr

=

∫ t1

t2

(∂rγ − ∂t1γ) dr −
∫ t1

t2

(∂t1γ
λ − ∂sγ

λ) dr.

Applying ∂j
λ and then δλμ to the above, we get

|A3(s, t2)− A3(s, t1)| ≤ C|γλ|1+α,j |t2 − t1||s− t1|α,
|δλμδt1t2A3(s, ·)| ≤ C|γμ − γλ|1+α,j |t2 − t1||s− t1|α.

We can also verify that

|Aλ
2 (s, t)| ≤ C|s− t|−2, |δλμA2(s, t)| ≤ C|γμ − γλ|1,j |s− t|−2,

|δt1t2Aλ
2 (s, ·)| ≤ C

|t2 − t1|α
|s− t|1+α

, |δt1t2δλμA2(s, ·)| ≤ C|γμ − γλ|1,j
|t2 − t1|α
|s− t|1+α

.

By a simple computation, we get (5.30). �

Define Kλ
k−j,jϕ(z

λ) =
∫
∂Ωλ ϕ

λ(ζλ)Kλ
k−j,j(z

λ, ζλ) dσλ and

(Kλ
k−j,j)

∗ϕ(zλ) =

∫
∂Ωλ

ϕλ(ζλ)Kλ
k−j,j(ζ

λ, zλ) dσλ.
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We will also denote K∗ϕ = {(Kλ)∗ϕ}, K∗
k−j,jϕ = {(Kλ

k−j,j)
∗ϕ} and

δλμK∗
k−j,jϕ(ζ, z) = (Kμ

k−j,j)
∗(ζμ, zμ)− (Kλ

k−j,j)
∗(ζλ, zλ), ζ, z ∈ ∂Ω.

The reader is referred to (2.1)-(2.3) and (5.11)-(5.13) for the definition of norms.

Proposition 5.5. Let k ≥ j and 0 ≤ β ≤ α. Let α′ = α for β > 0 and α′ < α for
β = 0. Let Ω be a bounded domain in C with ∂Ω ∈ Ck+1+α. Let γλ embed ∂Ω onto
∂Ωλ with γ ∈ Bk+1+α,j(∂Ω). Suppose that k ≥ j and k + 1 ≥ l ≥ j. Then

|K0j′ϕ|α,j−j′ ≤ C∗
1+α,j |ϕ|0,j−j′ , |K∗

0j′ϕ|α′,j−j′ ≤ C∗
1+α,j |ϕ|0,j−j′ ,(5.44)

|δλμK0j′ϕ|α,j−j′ ≤ Cj+1+α,j(|δλμϕ|0,j−j′ + |δλμγ|j+1+α,j),(5.45)

|K∗
ij′ϕ|k−i+α′,j−j′ ≤ Ck+1+α,j |ϕ|j−j′+β,j−j′ ,(5.46)

|δλμK∗
ij′ϕ|k−i+α′,j−j′ ≤ Ck+1+α,j(|δλμϕ|j−j′+β,j−j′ + ‖δλμγ‖k+1+α′,j),(5.47)

|Kij′ϕ|l−i+α,j−j′ ≤ Ck+1+α,j |ϕ|j−j′+1+β,j−j′ ,(5.48)

|δλμKij′ϕ|l−i+α′,j−j′ ≤ Ck+1+α,j(|δλμϕ|j−j′+1+β,j−j′ + ‖δλμγ‖k+1+α,j).(5.49)

Proof. Recall from (2.6) that aλ(ζ) = |∂τζγλ| and dσλ(ζλ) = aλ(ζ) dσ(ζ) on ∂Ω.

Since |∂j
λK

λ(ζλ, zλ)| ≤ C|ζ − z|α−1, by the mean value theorem we can change the

order of differentiation and integration in ∂j−j′

λ Kλ
0j′ϕ. The latter is then a linear

combination of∫
∂Ω

(aλ(ζ))−1∂j1
λ (aλ(ζ)ϕλ(ζλ))∂j2

λ Kλ
0j′(z

λ, ζλ) dσλ, j1 + j2 = j − j′.

By replacing (aλ(ζ))−1∂j1
λ (aλ(ζ)ϕλ(ζλ)) with ϕλ(ζλ), it suffices to verify (5.44)

when j′ = j. Analogously, we only need to verify (5.44)-(5.49) for j′ = j.
We have |Kλ

0,jϕ(z
λ)| ≤ C|ϕλ|0

∫
∂Ω

|ζ − z|α−1 dσ ≤ C ′|ϕλ|0, and by (4.1)-(4.2),

∣∣∣∫
∂Ω

ϕλ(ζλ)(Kλ
0,j(z

λ
2 , ζ

λ)−Kλ
0,j(z

λ
1 , ζ

λ)) dσλ
∣∣∣(5.50)

≤ C|aλϕλ|0
{∫

|ζ−z1|<3|z2−z1|
2|ζ − z1|α−1 dσ(ζ)

+

∫
|ζ−z1|>|z2−z1|

|z2 − z1||ζ − z1|2−α dσ(ζ)
}
≤ C ′|ϕλ|0|z2 − z1|α,

which gives us (5.44). We have

δλμK0,jϕ(z) =

∫
∂Ω

δλμ(a(ζ)ϕ(ζ))Kμ
0,j(z

μ, ζμ) dσ

+

∫
∂Ω

aλ(ζλ)ϕλ(ζλ)δλμK0,j(z, ζ) dσ
def
== I1(z) + I2(z).

Also, |I1(z)| ≤ C(|ϕμ − ϕλ|0 + |γμ − γλ|1) by (5.26). By analogue of (5.50), we
get |I1|α ≤ C(|ϕμ − ϕλ|0 + |γμ − γλ|1). Using (5.28) and (5.30) we get |I2|α,0 ≤
C|ϕλ|0|δλμγ|1+α,0. This shows (5.45).

By (2.7), (Kλ
i,j)

∗ϕ satisfies (5.46)-(5.47) if and only if ∂k−i−j
τλ (Kλ

i,j)
∗ϕ satisfies es-

timates (5.46)-(5.47) (with i = k, j′ = j). By (4.7), (Kλ
k−j,j)

∗ϕ = ∂k−i−j
τλ (Kλ

i,j)
∗ϕ.
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(The proof of (4.7) is still valid when (5.26) substitutes for (4.1).) Hence, we have re-
duced (5.46)-(5.47) to the case where i = k−j and j′ = j. Using |Kλ

k−j,j(ζ
λ, zλ)| ≤

C|ζ − z|α−1, we obtain |(Kλ
k−j,j)

∗ϕ|0 ≤ C|ϕ|0. For the Hölder norm, we recover a

loss of regularity in Kellogg’s arguments [7] by decomposing

(Kλ
k−j,j)

∗ϕ(z2)− (Kλ
k−j,j)

∗ϕ(z1)

= ϕλ(zλ1 )

∫
∂Ω

{Kλ
k−j,j(ζ

λ, zλ2 )−Kλ
k−j,j(ζ

λ, zλ1 )} dσλ(ζλ)

+

∫
∂Ω

(ϕλ(ζλ)− ϕλ(zλ1 )){Kλ
k−j,j(ζ

λ, zλ2 )−Kλ
k−j,j(ζ

λ, zλ1 )} dσλ(ζλ).

The first integral equals (Kλ
k−j,j)

∗1(z2) − (Kλ
k−j,j)

∗1(z1). The second integral is

bounded by C|ϕλ|β times∫
|ζ−z1|≤3|z2−z1|

|ζ − z1|α−1 dσ(ζ) +

∫
|ζ−z1|>2|z2−z1|

|z2 − z1|α
|ζ − z1|1−β

dσ(ζ).

Here the sum does not exceed C|z2 − z1|α when β > 0. If β = 0, it does not exceed

Cα′ |z2 − z1|α
′
for any α′ < α. We have

(Kλ
k−j,j)

∗1(z) =

∫
∂Ω

aλ(ζ)∂k−j
τλ
z

∂j
λ

{
Kλ(ζλ, zλ)

}
dσ(ζ)

= ∂k−j
τλ
z

∫
∂Ω

aλ(ζ)∂j
λ

{
Kλ(ζλ, zλ)

}
dσ(ζ)

=
∑
l≤j

Cjl∂
k−j
τλ
z

∂j−l
λ

∫
∂Ω

∂l
λa

λ(ζ)Kλ(ζλ, zλ) dσ(ζ).

By Lemma 4.3 and Proposition 5.2, we get for bλl = (aλ)−1∂l
λa

λ

|(Kλ)∗bl|k−j+α,j−l ≤ C, |(Kμ)∗bl − (Kλ)∗bl|k−j+α,j−l ≤ C‖γμ − γλ‖k+1+α,j .

We have verified (5.46). We have

δλμ(Kk−j,j)
∗ϕ(z) =

∫
∂Ω

δλμ(a(ζ)ϕ(ζ))Kμ
k−j,j(ζ

μ, zμ) dσ

+

∫
∂Ω

aλ(ζ)ϕλ(ζλ)δλμK∗
k−j,j(ζ, z) dσ.

By analogue of estimation for (Kλ
k−j,j)

∗ϕ, we obtain (5.47) by (5.27) and (5.29).

Finally, we obtain (5.48)-(5.49) by (5.44)-(5.47), and ∂τλKλϕ = −(Kλ)∗(∂τλϕλ).
�

6. Null spaces of I ±K and I ±K∗

In this section, we describe results on integral equations for the Dirichlet and
Neumann problems. Lacking a reference to the precise regularity in derivatives
on solutions to the two problems, we derive some details. The estimates will be
used in arguments for the parameter case in section 7. As mentioned in section 1,
we reduce the C1 regularity of solutions, which is an important step in Kellogg’s
proof [7], to the integral equations for the Dirichlet problem to the C0 regularity of
the integral equations for the Neumann problem.
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Proposition 6.1. Let ∂Ω ∈ Ck+1+α with k ≥ 0 and 0 < α < 1. Let 0 ≤ β ≤ α.

(i) Let p > 1/α. Then

|Kϕ|α−1/p ≤ C1+α|ϕ|Lp , |K∗ϕ|α′ ≤ C1+αCα′ |ϕ|Lp

for any α′ ≤ α− 1
p with α′ < α.

(ii) Let L be one of K,−K,K∗, and −K∗. Then

|ϕ|Lp ≤ C1+αCp(|ϕ|L1 + |ϕ+ Lϕ|Lp), p > 1,

|ϕ|β ≤ C1+α(|ϕ|L1 + |ϕ+ Lϕ|β).
(iii) Let L = K∗ or −K∗. Then |ϕ|k+β ≤ Ck+1+α(|ϕ|L1 + |ϕ+ Lϕ|k+β).
(iv) Let L = K or −K and 1 ≤ l ≤ k + 1. Assume that l ≥ 2 or ∂τϕ ∈ L1.

Then |ϕ|l+β ≤ Ck+1+α(|ϕ|L1 + |∂τϕ|L1 + |ϕ+ Lϕ|l+β).

Proof. (i) We adapt Kellogg’s arguments in the proof of Proposition 5.5. Let 1/p+
1/q = 1. Decompose Kϕ(z2)−Kϕ(z1) as{∫

|ζ−z1|<2|z2−z1|
+

∫
|ζ−z1|>2|z2−z1|

}
ϕ(ζ)(K(z2, ζ)−K(z1, ζ)) dσ(ζ).

We estimate the first integral by |K(zj , ζ)| ≤ C|ζ − zj |α−1 and get{∫
|ζ−z1|<2|z2−z1|

|K(z2, ζ)|q + |K(z1, ζ)|q dσ(ζ)
}1/q

≤ C|z2 − z1|α−1+ 1
q .(6.1)

We estimate the second integral by (4.2), i.e.,

|K(z2, ζ)−K(z1, ζ)| ≤ C|z2 − z1||ζ − z1|α−2

for |ζ − z1| > 2|z2 − z1|. Thus

(6.2)

{∫
|ζ−z1|>2|z2−z1|

|K(z2, ζ)−K(z1, ζ)|q dσ(ζ)
}1/q

≤ C|z2 − z1|α−
1
p .

Therefore, ϕ ∈ Lp implies Kϕ ∈ Cα− 1
p .

We now estimate K∗f , for which we use Lemma 4.1. Thus, when K is replaced
by K∗ we still have (6.2) for 1 ≤ p < ∞ and (6.1). However, for p = ∞,∫

|ζ−z1|>2|z2−z1|
|K(ζ, z2)−K(ζ, z1)| dσ(ζ) ≤ C|z2 − z1|α(1 + | log |z2 − z1||),

which results in K∗ϕ ∈ Cα′
.

(ii) We follow some standard estimates for compact integral operators ([3], p. 120;
[10], p. 178). Let L = ±K or ±K∗. Define TLϕ =

∫
ϕ(ζ)L(z, ζ) dσ(ζ). Let

χ(z, ζ) = 1 for |z − ζ| < ε/2 and χ(z, ζ) = 0 for |z − ζ| > ε. Let p > 1 and
1/p+ 1/q = 1. We have∫

∂Ω

∫
∂Ω

|ϕ(ζ)|p dσ(ζ) dσ(z)|z − ζ|1−α
≤ C0α

−1|ϕ|pLp .

Thus, we obtain |TχLϕ|Lp ≤ C0α
−1εα(1−

1
p )|ϕ|Lp from∣∣∣∣

∫
∂Ω

ϕ(ζ)χL(z, ζ) dσ(ζ)

∣∣∣∣ ≤
(∫

∂Ω

|ϕ(ζ)|p dσ(ζ)

|ζ − z|1−α

)1/p
(∫

|z−ζ|<ε

dσ(ζ)

|ζ − z|1−α

)1/q

.
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Therefore, I + TχL : L
p → Lp has an inverse with norm < 2 when C0α

−1εα(1−
1
p ) <

1/2. Since (1− χ)L is continuous, it is easy to obtain

|T(1−χ)Lϕ|L∞ ≤ Cε|ϕ|L1 .

Using ϕ = (I + TχL)
−1(I + TL)ϕ− (I + TχL)

−1T(1−χ)Lϕ, we estimate two inverses
and obtain

|ϕ|Lp ≤ C|ϕ+ Lϕ|Lp + Cε|ϕ|L1 .

When β = 0, we get ϕ ∈ L∞ and hence ϕ ∈ C0 by (i). Assume that β > 0. Using
ϕ = (ϕ+Lϕ)−Lϕ, we obtain |ϕ|β/2 ≤ C|ϕ+Lϕ|β/2+C ′|ϕ|L1 , from which we get
|ϕ|β ≤ C1|ϕ+ Lϕ|β + C2|ϕ|β/2 ≤ C3|ϕ+ Lϕ|β + C4|ϕ|L1 .

(iii) This follows from (5.44) with j = 0 and (ii).
(iv) When k ≥ l ≥ 2, we know that K is of class C1. Hence ϕ ∈ C1 if ϕ+ Kϕ is

additionally of class C1. Since ∂τϕ ∈ L1, by Lemma 4.2 (ii) we get ∂τϕ(z)∓K∗∂τϕ =
∂τ (ϕ±Kϕ). The rest follows from (ii)-(iii). �

For applications to integral equations with parameter (Lemma 7.1), we empha-
size that the constants Ck+1+α in Proposition 6.1 depend only on |(γ̂′)−1|0 and
|γ̂|k+1+α if ∂Ω is parameterized by γ̂.

Proposition 6.2. Let ∂Ω ∈ C1+α. Let e0 = 1 on ∂Ω. For i > 0, let ei = 1 on γi
and ei = 0 on ∂Ω \ γi. Let 0 ≤ β ≤ α.

(i) Let L be one of K,−K,K∗, and −K∗. Then ϕ+ Lϕ = ψ ∈ Cβ(∂Ω) admits
an L1 solution ϕ if and only if ψ ⊥ ker(I + L∗). All L1 solutions ϕ are in
Cβ(∂Ω).

(ii) {e1, . . . , em} spans ker(I +K) and e0 spans ker(I −K).
(iii) ker(I +K∗) ∩ ker(I +K)⊥ = {0} and ker(I −K∗) ∩ ker(I −K)⊥ = {0}.
(iv) ker(I + K∗) is spanned by {φ1, . . . , φm}, where φi satisfy

∫
γi
φj dσ = δij

for i, j > 0 and
∫
∂Ω

φi dσ = 0 for i > 0. Moreover, Wφ1, . . . ,Wφm

are locally constant on ∂Ω and vanish on the outer boundary of ∂Ω, and
(Wφi|γj

)1≤i,j≤m is non-singular when m > 0.
(v) ker(I − K∗) is spanned by φ0 and Wφ0 is constant on ∂Ω. Moreover, φ0

vanishes on ∂Ω \ γ0,
∫
∂Ω

φ0 dσ = 1, and φ0 depends only on γ0.

Proof. (i)-(iii) The first assertion follows from the compactness of L on L2 ([10],
p. 162, p. 167) and ϕ ∈ Cβ follows from Proposition 6.1 (ii). The proof of (ii)
is in [3] (p. 135). For (iii), assume that ψ ∈ ker(I + K∗) ∩ ker(I + K). We have
ψ +K∗ψ = 0, and by (i) ψ = ϕ+K∗ϕ. For ψ ∈ ker(I −K∗) ∩ ker(I −K), we have
ψ −K∗ψ = 0 and ψ = ϕ−K∗ϕ. In both cases, we have ϕ, ψ ∈ Cα. Then Wϕ and
Wψ are in C1+α by Lemma 3.2 (iii). One can show that ψ = 0; see [3] (p. 137),
where the use of Green’s identities merely requires that ∂Ω, Wϕ,Wψ be of class
C1+α.

(iv) By compactness of L, we have dimker(I + L∗) = dimker(I + L) = 1 ([3],
p. 24). Note that if φ1, . . . , φm span ker(I+K∗), the matrix A = (

∫
γi
φj dσ)1≤i,j≤m

must have rank m. Indeed if ϕ = c1φ1+· · ·+cmφm is orthogonal to e1, . . . , em, then
by (i) and (iii), ϕ = 0. With A being non-singular, we can normalize φi such that A
is the identity matrix. This verifies the first assertion. To show that Wφi are locally
constant on ∂Ω, we integrate φi + K∗φi = 0 and get

∫
∂Ω

φi dσ = 0 for i > 0. This
shows that φi ∈ ker(I +K∗). Hence, Wφi is locally constant on Ω′ and vanishes on
the unbounded component of Ω′. By the continuity of Wφi, it is constant on the
inner boundary of ∂Ω and vanishes on the outer boundary. Assume for the sake

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



188 F. BERTRAND AND X. GONG

of contradiction that (Wφi|γj
)1≤i,j≤m is singular. Since Wφi are constants on γi

and vanish on γ0, then Wφ1, . . . ,Wφm are linearly dependent on ∂Ω. Therefore,
for some ci which are not all zero, we have W (c1φ1 + · · ·+ cmφm) = 0 on ∂Ω. This
implies that c1φ1 + · · · + cmφm is in ker(I + K∗) ∩ ker(I − K∗). Since φ1, . . . , φm

form a basis, we get ci = 0 for all i, a contradiction.
(v) By (iii), we know that if φ0 spans ker(I − K∗), then

∫
∂Ω

φ0 dσ = 0. Let φ0

be the unique element in ker(I − K∗) such that
∫
∂Ω

φ0 dσ = 1. We want to show
that φ0 = 0 on γj for j > 0 and that φ0 depends only on γ0.

Let Ω0 be the bounded domain bounded by the outer boundary γ0 of Ω. Let φ,
with

∫
γ0

φ dσ = 1, span ker(I − K∗
0) ⊂ L2(∂Ω0). Here K∗

0(ζ, z) =
1
π∂τζ arg(ζ − z)

for ζ, z ∈ ∂Ω0. Let Ŵφ be the single-layer distribution with density φ on γ0. Since
Ŵφ is constant on Ω0, then ∂νŴφ = 0 for the normal vector ν of any C1 curve γ
in Ω0. This shows that ker(I −K∗) is spanned by φ̃ if φ̃ equals φ on γ0 and is zero

on ∂Ω \ γ0. The condition
∫
∂Ω

φ0 dσ = 1 implies that φ0 = φ̃. �

For convenience, we will use {e1, . . . , em}, {e0}, {φ1, . . . , φm}, and {φ0} for bases
of ker(I +K), ker(I −K), ker(I +K∗), and ker(I −K∗), respectively.

Lemma 6.3. Let ∂Ω ∈ C1+α and 0 ≤ β ≤ α. Let L = K or −K. If ϕ+ Lϕ = g ∈
C1+β(∂Ω) and ϕ ⊥ ker(I + L), then ϕ ∈ C1+β(∂Ω) and it is determined by

ϕ = ϕ̂+ c0e0 + c1e1 + · · ·+ cmem,

ϕ1 − L∗ϕ1 = ∂τg, ϕ1 ∈ ker(I − L∗)⊥ ∩ ker(I + L)⊥,

∂τ ϕ̂ = ϕ1 − d0φ0 − d1φ1 − · · · − dmφm,

∫
γi

ϕ̂ dσ = 0, i ≥ 0.

Moreover, ci and di are determined as follows:

(i) If L = K, then

c0 =
1

2l2

∫
∂Ω

(g − Lϕ̂) dσ, c1 = · · · = cm = −c0,

d0 =

∫
∂Ω

ϕ1e0 dσ, d1 = · · · = dm = 0.

(ii) If L = −K, then

ci =
1

2l2i

∫
γi

(g − Lϕ̂) dσ, i ≥ 1, c0 = − 1

2l2

∫
∂Ω\γ0

(g − Lϕ̂) dσ,

di =

∫
∂Ω

ϕ1ei dσ, i ≥ 1, d0 = 0.

Proof. (i) Assume that ϕ+Kϕ = g ∈ C1+β . Recall that e1, . . . , em span ker(I+K).
Since ∂τg ⊥ ker(I−K), there exists ϕ1 ∈ Cβ ∩ker(I−K∗)⊥ such that ϕ1−K∗ϕ1 =
∂τg. Let j > 0. Since

∫
γj

K∗ϕ1 dσ = −
∫
γj

ϕ1 dσ, then
∫
γj

ϕ1 dσ = 0. Recall that

φ0 = 0 on γj and
∫
γ0

φ0 dσ = 1. Let d0 =
∫
∂Ω

ϕ1 dσ. Then ϕ̃1 = ϕ1 − d0φ0 is

orthogonal to e0, . . . , em, and hence there is a unique ϕ̂ ∈ C1+β such that ϕ̃1 = ∂τ ϕ̂
and

∫
γ
ϕ̂ei dσ = 0 for all i ≥ 0. Thus, we obtain

∂τ (ϕ+Kϕ) = ∂τg = ϕ̃1 −K∗ϕ̃1 = ∂τ ϕ̂+ d0φ0 −K∗(∂τ ϕ̂+ d0φ0)

= ∂τ (ϕ̂+Kϕ̂).
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Hence, ϕ− ϕ̂+K(ϕ− ϕ̂) = 2c0 +
∑

i>0 c̃iei. We rewrite it as

(ϕ− ϕ̂− c0) +K(ϕ− ϕ̂− c0) =
∑
i>0

c̃iei.

Being in the range of I+K, the right-hand side must be orthogonal to ker(I+K∗).
Hence, c̃i = 0 and consequently ϕ− ϕ̂−c0 =

∑
j>0 cjej . This shows that ϕ ∈ C1+β .

Since ϕ and ϕ̂ are orthogonal to ei for i > 0, then ci + c0 = 0. We substitute
ϕ̂+ c0e0 + · · ·+ cmem for ϕ in ϕ+Kϕ = g to get g = ϕ̂+Kϕ̂+ 2c0e0. Therefore,
2c0l

2 =
∫
∂Ω

(g −Kϕ̂) dσ.

(ii) Assume that ϕ − Kϕ = g ∈ C1+β . We find ϕ1 ∈ Cβ ∩ ker(I + K∗)⊥ such
that ϕ1 + K∗ϕ1 = ∂τg. By

∫
∂Ω

K∗ϕ1 dσ =
∫
∂Ω

ϕ1 dσ, we get
∫
∂Ω

ϕ1 dσ = 0. Since

φj ∈ ker(I + K∗) satisfy
∫
γi
φj dσ = δij for i, j > 0, then for dj =

∫
γj

ϕ1 dσ, ϕ̃1 =

ϕ1−d1φ1−· · ·−dmφm is orthogonal to e1, . . . , em. We still have ϕ̃1+K∗ϕ̃1 = ∂τg;
in particular,

∫
γ0

ϕ̃1 dσ =
∫
∂Ω

ϕ̃1 dσ = 0. We write ϕ̃1 = ∂τ ϕ̂ with
∫
γj

ϕ̂ dσ = 0 for

j ≥ 0. As in (ii), we get ∂τ (ϕ− ϕ̂−K(ϕ− ϕ̂)) = 0, and hence

(ϕ− ϕ̂)−K(ϕ− ϕ̂) = c̃0 + 2
m∑
i=1

ciei.

The right-hand side must be orthogonal to ker(I − K∗), the span of φ0. As φ0

vanishes on γ1 ∪ · · · ∪ γm by Proposition 6.2 (v), we obtain c̃0 = c̃0
∫
∂Ω

φ0 dσ = 0.

Then ϕ− ϕ̂−
∑

j>0 cjej ∈ ker(I −K), so it is a constant c0. Therefore, ϕ ∈ C1+β .

Also, g = ϕ−Kϕ = ϕ̂−Kϕ̂+2(c1e1 + · · ·+ cmem). We get 2cil
2
i =

∫
γi
(g−Kϕ̂) dσ

for i > 0. Using 0 = 〈ϕ, e0〉 =
∑

i>0 ci|li|2 + c0l
2, we get the formula for c0. �

The above lemma allows us to study integral equations for the planar Dirichlet
problem via integral equations for the Neumann problem. We now strengthen
Proposition 6.1 (iv) as follows.

Corollary 6.4. Let l ≥ 1, 0 < α < 1 and 0 ≤ β ≤ α. Let Ω be a bounded domain
with ∂Ω ∈ Cl+α. Let L be K or −K. If ϕ+ Lϕ ∈ Cl+β(∂Ω), then ϕ ∈ Cl+β(∂Ω).

7. Regularity of solutions for integral equations with parameter

We first describe the main difficulty if we use the Fredholm resolvent directly to
formulate our solutions for domains depending on a parameter. Such a formulation
via the resolvent for the Dirichlet problem on a fixed domain is in [8]. Assume for
simplicity that ∂Ω is C2, and parameterize ∂Ω by γ(t) in arc-length. The kernel
K(s, t) = 1

π∂t arg(γ(s)−γ(t)) is then continuous, and the resolvent L(s, t, z) satisfies

K(s, t) = L(s, t, z) + z

∫ l

0

L(s, r, z)K(r, t) dr.

It is a basic theorem of Fredholm that there exists δ(z) with δ(0) = 1 such that
δ(z) and δ(z)L(s, t, z) are entire functions in z (see, e.g., [7]). It is known that
L(s, t, z) is analytic at z = 1 when Ω is simply connected (see [7], or [3], p. 133); by
a theorem of Plemelj [12], it has a simple pole at z = 1 otherwise. One can verify
that δ(1) = 0 when Ω is simply connected ([9], p. 294), and in this case the zeros of
δ do not accumulate at 1 as domains vary. However, we do not know if the zeros of
δ accumulate at 1 as δ varies with Ω, when Ω is multi-connected. Without resolving
this issue, we will estimate solutions by taking the limit and differentiating in λ on
the integral equations directly.
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This section consists of three results. Lemma 7.1 shows the uniform boundedness
of solutions of integral equations in Lp and Hölder norms; Lemma 7.3 provides for-
mulae to differentiate the integral equations; Proposition 7.4 contains the estimates
for the solutions of the integral equations.

Recall that for a family of functions fλ on ∂Ω ∈ Ck+α ∩ C1, we define for k ≥ j

‖f‖k+α,j = max
i≤j,λ

|∂i
λf

λ|k−i+α, ‖fμ − fλ‖k+α,j = max
i≤j

|∂i
μf

μ − ∂i
λf

λ|k−i+α.

For a family of embeddings z → γλ(z) from ∂Ω onto ∂Ωλ, we use the notation
zλ = γλ(z) and

g(z, λ) = gλ(γλ(z)).

Let {Lλ} be one of {Kλ}, {−Kλ}, {(Kλ)∗}, {−(Kλ)∗}, and let {�λ1 , . . . , �λn} be the
canonical basis of ker(I + Lλ), described after the proof of Proposition 6.2. Define

(〈ϕ, �i〉)λ = 〈ϕλ, �λi 〉 =
∫
∂Ωλ

ϕλ�λi dσ
λ.

Lemma 7.1. Let γλ embed ∂Ω onto ∂Ωλ with γ ∈ B1+α,0(∂Ω). Let 0 < α < 1 and
0 ≤ β ≤ α. Let ϕλ ∈ L1(∂Ωλ) and define ψλ

i according to the following two cases:

a) Let {Lλ} be {Kλ} or {−Kλ}. Also, let

ϕλ + (Lλ)∗ϕλ = ψλ
0 , 〈ϕλ, �λi 〉 = ψλ

i , 1 ≤ i ≤ n.

b) Let {Lλ} be one of {Kλ}, {−Kλ}, {(Kλ)∗}, and {−(Kλ)∗}. Also, let

ϕλ + Lλϕλ = ψλ
0 , 〈ϕλ, �λi 〉 = ψλ

i , 1 ≤ i ≤ n.

Then the following hold:

(i) Let 1/α < p ≤ ∞. Suppose that λ → ψλ
0 ◦ γλ ∈ Lp(∂Ω) and λ → ψλ

i are
bounded (resp. continuous) maps on [0, 1]. Then λ → ϕλ ◦ γλ ∈ Lp(∂Ω) is
bounded (resp. continuous) on [0, 1].

(ii) If ψμ
0 ∈ Lp(∂Ωμ) and ψλ

0 ∈ Lp(∂Ωλ) with 1 < p ≤ ∞, then

|ϕ(·, μ)− ϕ(·, λ)|Lp ≤ C1+α,0Cp(|ϕ(·, μ)− ϕ(·, λ)|L1 + |ψ0(·, μ)− ψ0(·, λ)|Lp(7.1)

+ (|(ψ0(·, μ), ψ0(·, λ))|Lp + |(ϕ(·, μ), ϕ(·, λ))|L1)|γμ − γλ|1+α).

(iii) If ψμ
0 ∈ Cβ(∂Ωμ) and ψλ

0 ∈ Cβ(∂Ωλ), then

|ϕ(·, μ)− ϕ(·, λ)|β ≤ C1+α,0(|ϕ(·, μ)− ϕ(·, λ)|L1 + |ψ0(·, μ)− ψ0(·, λ)|β(7.2)

+ (|ψλ
0 |β + |ϕλ|L1)|γμ − γλ|1+α).

Proof. We first verify the assertions for case a). The verification for b) will be
simpler, after we establish φi ∈ Bα,0(∂Ωγ) via (i) of case a). The proof of (i) is
given in Steps 1 and 2 below. The proofs of (ii) and (iii) are in Step 3.

Step 1 (Boundedness in Lp norms). Fix 1/α < p ≤ ∞. We are given

ϕ(ζ, λ) +

∫
η∈∂Ω

ϕ(η, λ)Lλ(ηλ, ζλ) dσλ(ηλ) = ψ0(ζ, λ),(7.3) ∫
η∈∂Ω

ϕ(η, λ)�λi dσ
λ(ηλ) = ψλ

i , 1 ≤ i ≤ n.
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Assume for the sake of contradiction that Aj = |ϕλj |Lp → ∞ for some λj → 0.

Normalize in the Lp norm by letting ϕ̃λj = A−1
j ϕλj and ψ̃

λj

i = A−1
j ψ

λj

i . We get

ϕ̃(ζ, λj) +

∫
∂Ω

ϕ̃(η, λj)L
λj (ηλj , ζλj ) dσλj (ηλj ) = ψ̃0(ζ, λj),(7.4)

|ϕ̃(·, λj)|Lp = 1,

∫
∂Ω

ϕ̃(η, λj)�
λj

i dσλj (ηλj ) = ψ̃
λj

i .(7.5)

Since the Lp norms of ϕ̃λj are bounded, by Proposition 6.1 (i) the Cα/2-norms of
(Lλj )∗ϕλj on ∂Ωγj are bounded too. Thus, ((Lλj )∗ϕλj ) ◦ γλj have bounded Cα/2-
norms on ∂Ω. Passing to a subsequence if necessary, ((Lλj )∗ϕλj ) ◦ γλj converges

uniformly on ∂Ω. Since ψ̃0(·, λj) converges to 0 in the Lp norm, (7.4) implies that
ϕ̃(·, λj) converges to some ϕ∗ = ϕ∗ ◦ γ0 in the Lp norm. Recall that dσλ(zλ) =
aλ(z) dσ(z) with aλ(z) = |∂τγλ(z)|. Since aλj converges to a0 in sup norm, then
ϕ̃(·, λj)a

λj (·) approaches to ϕ∗a
0(·) in the Lp norm. Decompose∣∣∣∫

∂Ω

ϕ̃(η, λj)L
λj (ηλj , ζλj ) dσλj (ηλj )−

∫
∂Ω

ϕ∗(η)L
0(η0, ζ0) dσ0(η0)

∣∣∣
≤

∣∣∣∫
∂Ω

(ϕ̃(η, λj)a
λj (η)− ϕ∗(η)a

0(η))Lλj (ηλj , ζλj ) dσ(η)
∣∣∣

+
∣∣∣∫

∂Ω

ϕ∗(η)a
0(η)(Lλj (ηλj , ζλj )− L0(η0, ζ0)) dσ(η)

∣∣∣ = I ′j(z) + I ′′j (z).

From p > 1/α, |Kλ(ζλ, zλ)| ≤ C|ζ − z|α−1, and Hölder inequalities, we see that
Ij → 0 in Lp as λj → 0. From Hölder inequalities and the dominated convergence
theorem, we see that I ′′j → 0 in Lp for λj → 0 also. Thus, letting j tend to ∞ in
(7.4)-(7.5), we get

ϕ∗(ζ0) +

∫
∂Ω

ϕ∗(η0)L0(η0, ζ0) dσ0(η0) = 0,

|ϕ∗|Lp = 1,

∫
∂Ω

ϕ∗(η0)�0i dσ
0(η0) = 0, i = 1, . . . , n.

By Proposition 6.2 (iii), the first and last n identities imply that ϕ∗ = 0. The latter
contradicts to the second identity. Therefore {|ϕλ|Lp} is bounded. By Proposition
6.1 (i) and (ii), we obtain

|(Lλ)∗ϕλ|α/2 ≤ C1+α|ϕλ|0,(7.6)

|ϕλ|β ≤ C1+α(|ϕλ|L1 + |ψλ
0 |β).(7.7)

Step 2 (Continuity in Lp norms). Fix 1/α < p ≤ ∞. Assume for the sake of
contradiction that |ϕ(·, λj) − ϕ(·, 0)|Lp ≥ δ > 0 for a sequence λj tending to zero.
By (7.6), passing to a subsequence if necessary, we may assume that the sequence
of continuous functions ((Lλj )∗ϕλj ) ◦γλj converges uniformly as λj → 0. Hence by
(7.3), ϕ(·, λj) converges to ϕ∗ = ϕ∗ ◦ γ0 in Lp. We have |ϕ(·, 0)− ϕ∗(·)|Lp ≥ δ. By
the same arguments in Step 1 we know that ϕ∗, ϕ0 satisfy the same equations,

ϕ0(ζ0) +

∫
∂Ω

ϕ0(η0)L0(η0, ζ0) dσ0(η0) = ψ0
0(ζ

0),∫
∂Ω

ϕ0(η0)�0i dσ
0(η0) = ψ0

i , 0 ≤ i ≤ n.
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By Proposition 6.2 (iii), ϕ0 = ϕ∗, a contradiction. This proves the continuity of
ϕ(z, λ) in the Lp norm.

We proceed to repeat Steps 1 and 2 for case b). From case a), we know that
φ0, . . . , φm are of class Bα,0. Thus the basis {�1, . . . , �n} of ker(I + L) is of class
Bα,0 in all cases.

We are given

ϕλ + Lλϕλ = ψλ
0 ,

∫
η∈∂Ω

ϕλ�λi dσ
λ(ηλ) = ψλ

i , 1 ≤ i ≤ n.(7.8)

We first repeat Step 1, which is simpler now. Assume for the sake of contradiction

that there exists a sequence λj , approaching to 0, such that |ϕλj

j |Lp = Bj tends

to ∞. Then ϕ̃j = B−1
j ϕ

λj

j has bounded Lp norms and Lλj ϕ̃j has bounded Cα/2

norms. Passing to a subsequence if necessary, we may assume that (Lλj ϕ̃j) ◦ γλj

converges uniformly on ∂Ω. Hence ϕ̃j ◦ γλj = (B−1
j ψj − Lλj ϕ̃j) ◦ γλj converges to

ϕ∗ = ϕ∗ ◦ γ0 in Lp(∂Ω). Reasoning as in Step 1 shows that ϕ∗ satisfies

ϕ∗ + L0ϕ∗ = 0, ϕ∗ ⊥ ker(I + L0), |ϕ∗|Lp = 1.

The first two expressions imply that ϕ∗ = 0, a contradiction. This shows that ϕλ

have bounded Lp norms. Thus the Cα/2 norms of Lλϕλ on ∂Ωλ are bounded, and
every sequence ϕλj ◦γλj (z) with λj → 0 has a subsequence converging uniformly to
some ϕ̃(z, 0) = ϕ̃0 ◦ γ0(z) on ∂Ω. It is clear that ϕ̃0, ϕ0 satisfy the same equations
(7.8) with λ = 0. Therefore, ϕ̃0 = ϕ0 and consequently ϕλ ◦ γλ are continuous in
the Lp norm.

Step 3 (Estimates in Lp and Hölder norms). This step works for a), b). We first
consider case a) and derive (7.2) for β > 0. We have L = K or −K. It suffices to
verify it for β = α. For z ∈ ∂Ω, write

dσλ(zλ) = aλ(z) dσ(z), D(z) =
aμ(z)

aλ(z)
ϕ(z, μ)− ϕ(z, λ).

We set λ = μ in (7.3) and then multiply it by aμ(z)/aλ(z). We subtract the new
equation by the original (7.3) and get

D(z) +

∫
∂Ω

D(ζ)Lλ(ζλ, zλ) dσλ(ζλ) = E0(z)− E1(z)− E2(z)(7.9)

with

E0(z) =
aμ(z)

aλ(z)
ψ0(z, μ)− ψ0(z, λ),(7.10)

E1(z) =

∫
ζ∈∂Ω

ϕ(ζ, μ)(Lμ(ζμ, zμ)− Lλ(ζλ, zλ)) dσμ(ζμ),(7.11)

E2(z) =
{aμ(z)

aλ(z)
− 1

}∫
ζ∈∂Ω

ϕ(ζ, μ)Lμ(ζμ, zμ) dσμ(ζμ).(7.12)
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Note that |a
μ(·)

aλ(·) − 1|α ≤ C1|γ(·, μ)− γ(·, λ)|1+α. We immediately obtain

|E0|α ≤ C1(|ψμ
0 |α|γ(·, μ)− γ(·, λ)|1+α + |ψ0(·, μ)− ψ0(·, λ)|α).

By (5.46) with i = j′ = 0, we obtain

|E2|α ≤ C|γ(·, μ)− γ(·, λ)|1+α|ϕμ|α.

Define the trivial extension ϕ̃λ
μ(z

λ) = ϕμ(zμ), so it is actually independent of λ. In

particular, since ϕ(·, μ) ∈ Bα, then ϕ̃μ is of class Cα,0(∂Ωγ). Also, define ãλμ(z
λ) =

aμ(z) so ãμ ∈ Ck+α,j(∂Ωγ). By Lemma 4.3, for L = εK∗ with ε = ±1,

εE1(z) = ϕμ
(
1− aμ(z)

aλ(z)

)
− 2Re{τμCμ

+(τ
μϕ̃μ

μ)}+ 2Re
{
τλCλ

+

(
τλ

ãλμ
aλ

ϕ̃λ
μ

)}
.(7.13)

By the Cauchy transform with parameter (Proposition 5.2), we obtain

|E1|α ≤ C|ϕμ|α|γ(·, μ)− γ(·, λ)|1+α.

Applying Proposition 6.1 (ii) to (7.9), we obtain

|D|α ≤ C(|D|L1 + (|ϕμ|α + |ψμ
0 |α)|γ(·, μ)− γ(·, λ)|1+α + |ψ0(·, μ)− ψ0(·, λ)|α)

≤ C(|ϕ(·, μ)− ϕ(·, λ)|L1 + (|ϕμ|L1 + |ψμ
0 |α)|γ(·, μ)− γ(·, λ)|1+α

+ |ψ0(·, μ)− ψ0(·, λ)|α).

Here the last inequality is obtained by the definition of D and (7.7). The proof of
(7.2) is complete when β > 0.

To verify (7.1) for case a), we start with (7.10) and get

|E0|Lp ≤ C(|ψ0(·, λ)|Lp |γμ − γλ|1 + |ψ0(·, μ)− ψ0(·, λ)|Lp).

By (5.28), we obtain

|Lμ(ζμ, zμ)− Lλ(ζλ, zλ)| ≤ C|γμ − γλ|1+α|ζ − z|α−1.

By Hölder inequality and Fubini’s theorem (or Young’s inequality), we have |E1|Lp

≤ C|ϕμ|Lp |γμ − γλ|1+α. Also, |E2|Lp ≤ C(|ϕμ|Lp)|γμ − γλ|1+α. By Proposition 6.1
(ii), we have |ϕμ|Lp ≤ C(|ϕμ|L1 + |ψμ

0 |Lp). Thus,

|(E0, E1, E2)|Lp ≤ C(|ψ0(·, μ)− ψ0(·, λ)|Lp + (|ϕλ|L1 + |ψλ
0 |Lp)|γμ − γλ|1+α).

By (7.9) and Proposition 6.1 (ii) again, we get (7.1). Note that (7.1) for the L∞

case gives us (7.2) for β = 0.
For b), the above arguments are still valid for (7.1)-(7.2) after minor changes.

Formula (7.13) for E1 needs to be changed when L = K or −K (see Lemma 4.3).
The use of Cauchy transform with parameter is still valid, and the same estimate
for E1 holds. The proof for (ii) and (iii) is complete. �

Remark 7.2. The norms of ψ1, . . . , ψn do not appear in (7.1)-(7.2). However, when
we use (7.1)-(7.2), we need ϕλ to have bounded L1 norms at least. The boundedness
is established via Lemma 7.1 (i), so restrictions on ψi for i > 0 enter.
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We want to use (7.9)-(7.12) to compute the derivatives in parameter. Define

∂̃λϕ
λ(zλ)

def
== ∂λ{ϕλ(zλ)}+ ϕλ(zλ)∂λ log |∂τzγλ|,(7.14)

Lλ∗
1 ϕ(z) =

∫
∂Ωλ

ϕλ(ζλ)∂λ
{
Lλ(ζλ, zλ)

}
dσλ(ζλ),

Lλ∗
2 ϕ(z) = (∂λ log |∂τzγλ|)

∫
∂Ωλ

ϕλ(ζ)Lλ(ζλ, zλ) dσλ(ζλ),

Lλ
1ϕ(z) =

∫
∂Ωλ

ϕλ(ζλ)∂λ
{
Lλ(zλ, ζλ)

}
dσλ(ζλ),

Lλ
2ϕ(z) = (∂λ log |∂τzγλ|)

∫
∂Ωλ

ϕλ(ζ)Lλ(zλ, ζλ) dσλ(ζλ).

Set L∗
iϕ = {Lλ∗

i ϕ}. Let �1, . . . , �n be the standard basis of ker(I + L).

Lemma 7.3. Let γλ embed ∂Ω onto ∂Ωλ with γ ∈ B2+α,1(∂Ω).

a) Keep the assumptions in a) of Lemma 7.1. Assume further that ψ0 ∈
C0,1
∗ (∂Ω) and ψi ∈ C1([0, 1]) for i > 0. Then ϕ ∈ C0,1

∗ (∂Ω) and

∂̃λϕ
λ + (Lλ)∗∂̃λϕ

λ = ∂̃λψ
λ
0 − (Lλ∗

1 + Lλ∗
2 )ϕλ,(7.15) ∫

∂Ωλ

(∂̃λϕ
λ)�λi dσ

λ = ∂λψ
λ
i .(7.16)

b) Keep the assumptions in b) of Lemma 7.1. Assume further that ψ0 ∈
C0,1
∗ (∂Ω) and ψi ∈ C1([0, 1]). Then ϕ ∈ C0,1

∗ (∂Ω) and

∂̃λϕ
λ + Lλ∂̃λϕ

λ = ∂̃λψ
λ − (Lλ

1 + Lλ
2 )ϕ

λ,(7.17) ∫
∂Ωλ

(∂̃λϕ
λ)�λi dσ

λ = ∂λψ
λ
i −

∫
∂Ωλ

ϕλ(∂λ�
λ
i ) dσ

λ, 1 ≤ i ≤ n.(7.18)

c) Let 0 ≤ β ≤ α. In a) and b) of Lemma 7.1, we have ϕ ∈ Bβ,j
∗ (∂Ωγ)

provided ψ0 ∈ Bβ,j
∗ (∂Ωγ), ψi ∈ Cj([0, 1]), and γ ∈ Bj+1+β,j(∂Ω); the same

assertion holds if C substitutes for B.

Proof. For simplicity we express ϕ ∈ B•(∂Ωγ) as ϕ ∈ B•, and γ ∈ B•(∂Ω) as
γ ∈ B•, etc.

a) Let us recall some identities in the previous proof. Fix λ. Recall that �i are
locally constant when L = K or −K. We also use the notation fλ(zλ) = f(z, λ).
By (7.9)-(7.12), the difference quotient

D̂(z, μ) =
1

μ− λ

(aμ(z)
aλ(z)

ϕ(z, μ)− ϕ(z, λ)
)

satisfies

D̂(z, μ) +

∫
∂Ω

D̂(ζ, μ)Lλ(ζλ, zλ) dσλ(ζλ) = Ê0(z, μ)− Ê1(z, μ)− Ê2(z, μ),∫
ζ∈∂Ω

D̂(ζ, μ)�λi dσ
λ(ζλ) =

1

μ− λ
(ψμ

i − ψλ
i ), 1 ≤ i ≤ n
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with

Ê0(z, μ) =
1

μ− λ

(aμ(z)
aλ(z)

ψ0(z, μ)− ψ0(z, λ)
)
,

Ê1(z, μ) =

∫
ζ∈∂Ω

ϕ(ζ, μ)
Lμ(ζμ, zμ)− Lλ(ζλ, zλ)

μ− λ
dσμ(ζμ),

Ê2(z, μ) =
aμ(z)− aλ(z)

aλ(z)(μ− λ)

∫
ζ∈∂Ω

ϕ(ζ, μ)Lμ(ζμ, zμ) dσμ(ζμ).

As μ → λ, it is clear that ψ̂0(z, μ) converges uniformly to ∂̃λψ
λ
0 . We want to show

that as μ tends to λ, D̂(z, μ) converges uniformly to a continuous function. Then
the existence of the limit function implies that ∂λϕ

λ exists and the limit function
must be ∂̃λϕ

λ.
By Lemma 7.1, ϕ ∈ C0,0. It is easy to see that Ê1, Ê2 are continuous at μ = λ.

Also, Ê2(z, μ) converges uniformly to (Lλ∗
2 φ)(zλ) as μ → λ; in particular, {Êμ

2 }
extends to an element in C0,0. For ζ = z, by the mean-value theorem and (5.26)
we obtain ∣∣∣Kμ(ζμ, zμ)−Kλ(ζλ, zλ)

μ− λ

∣∣∣ ≤ C|ζ − z|α−1.

Thus Ê1(z, μ) converges uniformly to Lλ∗
1 ϕ(zλ) as μ → λ, and {Êμ

1 ;μ = λ} extends
to an element in C0,0. By Lemma 7.1 (ii) with β = 0, we conclude that as μ → λ,

D̂(·, μ) has a limit ∂̃λϕ
λ satisfying (7.15)-(7.16).

b) By a), φ0, . . . , φm are of class C1,1 when γ ∈ B2+α,1. Thus, in all cases, we
have �i ∈ C1,1. Fix λ. We need some minor changes in the above arguments. The
difference quotient D̂(z, μ) satisfies

D̂(z, μ) +

∫
∂Ω

D̂(ζ, μ)Lλ(zλ, ζλ) dσλ(ζλ) = Ê0(z, μ)− Ê∗
1(z, μ)− Ê∗

2(z, μ),∫
ζ∈∂Ω

D̂(ζ, μ)�λi dσ
λ(ζλ) =

ψμ
i − ψλ

i

μ− λ
−
∫
ζ∈∂Ω

ϕ(ζ, μ)
�μi (ζ

μ)− �λi (ζ
λ)

μ− λ
dσμ(ζμ)

with

Ê∗
1(z, μ) =

∫
ζ∈∂Ω

ϕ(ζ, μ)
Lμ(zμ, ζμ)− Lλ(zλ, ζλ)

μ− λ
dσμ(ζμ),

Ê∗
2(z, μ) =

aμ(z)− aλ(z)

aλ(z)(μ− λ)

∫
ζ∈∂Ω

ϕ(ζ, μ)Lμ(zμ, ζμ) dσμ(ζμ).

By Lemma 7.1, ϕ is continuous. It is easy to see that Ê∗
1 , Ê

∗
2 are continuous at

μ = λ. Also, (Ê∗
2)

μ(zμ)
def
== Ê∗

2 (z, μ) converges uniformly to Lλ
2ϕ(z

λ) as μ → λ, and

{(E∗
2)

μ;μ = λ} extends to an element in C0,0. In addition, Ê∗
1(z, μ) converges to

Lλ
1ϕ(z

λ) as μ → λ, and {(E∗
1)

μ;μ = λ} extends to an element in C0,0. By Lemma

7.1 (ii) with β = 0, we conclude that as μ → λ, D̂(z, μ) converges uniformly to a

limit function, which is denoted by (∂̃λϕ
λ)(zλ) and satisfies (7.17)-(7.18).

c) When j = 0 we get ϕ ∈ Bβ,0 from Lemma 7.1 (i) and (ii) and Proposition 6.1
(ii) and (iii). We further have ϕ ∈ Cβ,0 for ψ0 ∈ Cβ,0 and γ ∈ C1+α,0. Assume that

the assertions hold when j is replaced by j− 1. Thus ϕ ∈ Bβ,j−1
∗ . We first consider

case a). Then, we have (7.15)-(7.16). By (5.46) with j′ = j, we know that L∗
1ϕ

and L∗
2ϕ are in Bβ,j−1

∗ . Also {∂̃λψλ
0 } is in Bβ,j−1

∗ and {∂λψλ
i } are in Cj−1([(0, 1])
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for i > 0. By the induction hypothesis, we conclude that {∂̃λϕλ} ∈ Bβ,j−1
∗ . Hence

{∂λϕλ} ∈ Bβ,j−1
∗ . Combining with ϕ ∈ Bβ,0, we get ϕ ∈ Bβ,j

∗ . We can also verify

that ϕ ∈ Cβ,j
∗ by Lemma 7.1 (iii) and (5.47), when ψ ∈ Cβ,j

∗ and γ ∈ Cj+1+α,j .
For case b), we first apply results from a) and conclude that φ0, . . . , φm are in

Bα,j
∗ . This shows that {

∫
∂Ωλ ϕ

λφλ
i dσ

λ} are in Cj−1([0, 1]) if ϕ ∈ C0,j−1
∗ . We sub-

stitute (7.17)-(7.18) for (7.15)-(7.16) and substitute (5.44)-(5.45) for (5.46)-(5.47)
with j′ = j. With minor changes in the arguments, we verify the assertions for b)
too. �

By Proposition 6.1 (iv) and Corollary 6.4, we have proved the required regu-
larity in higher-order derivatives of solutions to the integral equations for a fixed
parameter. We are ready to study the regularity of higher-order derivatives for the
parameter case.

Proposition 7.4. Let γλ embed ∂Ω onto ∂Ωλ. Let k ≥ j ≥ 0 and 0 ≤ β ≤ α < 1.
Let β > 0 when k > 0. Suppose that γ ∈ Bk+1+α,j(∂Ω), ψ0 ∈ Bk+β,j(∂Ωγ),
ψi ∈ Cj([0, 1]) for 1 ≤ i ≤ n, and ϕλ ∈ L1(∂Ωλ).

a) Let {Lλ} be {Kλ} or {−Kλ}. Suppose that

ϕλ + (Lλ)∗ϕλ = ψλ
0 , 〈ϕλ, �λj 〉 = ψλ

i , 1 ≤ i ≤ n.

Then ϕ ∈ Bk+β,j(∂Ωγ).
b) Let {Lλ} be {(Kλ)∗} or {−(Kλ)∗}. Suppose that

(7.19) ϕλ + Lλϕλ = ψλ
0 , 〈ϕλ, �λj 〉 = ψλ

i , 1 ≤ i ≤ n.

Then ϕ ∈ Bk+β,j(∂Ωγ).
c) Let l ≤ k+1 and β > 0 when l > 0. Let {Lλ} be {Kλ} or {−Kλ}. Suppose

that ψ0 ∈ Bl+β,j(∂Ωγ). Then the solution ϕ to (7.19) is in Bl+β,j(∂Ωγ).

a), b) and c) remain true if the symbol C• substitutes for B• in all conditions and
assertions.

Proof. To simplify notation, we express ϕ ∈ B•(∂Ωγ) as ϕ ∈ B•, and γ ∈ B•(∂Ω)
as γ ∈ B•, etc. The proposition is proved when k = 0 and β = 0, by Proposition
6.1 (ii) and Lemma 7.1 (i) and (ii). We may assume that β = α.

a) We first verify the assertions when j = 0. When k = 0 we get ϕ ∈ Bβ,0 by
Proposition 6.1 (ii) and ϕ ∈ Cβ,0 by Lemma 7.1 (i) and (iii). We apply Proposition
5.5. Then (5.46) implies ϕ ∈ Bk+β,0 for γ ∈ Bk+1+α,0; (5.47) implies ϕ ∈ Ck+β,0

for γ ∈ Ck+1+α,0 and ψ0 ∈ Ck+α,0.
For j > 0, assume that a) is valid when j is replaced by j−1. Thus, ϕ ∈ Bk+β,j−1.

Also, ϕ ∈ Ck+β,j−1 for γ ∈ Ck+1+α,j−1 and ψ0 ∈ Ck+α,j−1. Since ψ0 ∈ C1,1 and
ψi ∈ C1([0, 1]) for i > 0, Lemma 7.3 implies that

∂̃λϕ
λ + (Lλ)∗∂̃λϕ

λ = ∂̃λψ
λ
0 − (Lλ∗

1 + Lλ∗
2 )ϕλ, 〈∂̃λϕλ, �λi 〉 = ∂λψ

λ
i , i > 0.

Here {∂λψi} ∈ Cj−1. Also, ∂̃λψ0 ∈ Bk−1+α,j−1 by

∂̃λψ
λ
0 (z

λ) = ∂λψ
λ
0 (z

λ) + ψλ
0 (z

λ)∂λ log |∂τγλ|, {∂λ log |∂τγλ|} ∈ Bk−1+α,j−1.
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Combining ϕ ∈ Bk+β,j−1 ⊂ Bk−1+β,j−1 with

Lλ∗
1 ϕ(z) =

∫
∂Ωλ

ϕλ(ζ)∂λ
{
Lλ(ζλ, zλ)

}
dσλ(ζλ),

Lλ∗
2 ϕ(z) = (∂λ log |∂τγλ(z)|)

∫
∂Ωλ

ϕλ(ζ)Lλ(ζλ, zλ) dσλ(ζλ),

we see from (5.46) that L∗
iϕ ∈ Bk−1+α,j−1. Thus {∂̃λϕλ} and {∂λϕλ} are in

Bk−1+α,j−1. Combining with {∂λϕλ} ∈ Bk+α,0, we see that {ϕλ} is in Bk+α,j . To
verify ϕ ∈ Ck+α,j for γ ∈ Ck+1+α,j , we use (5.47) instead of (5.46).

b) Note that the case where k = l = 0 is established by Lemma 7.1. So we
assume that k ≥ 1. Although we are dealing with the same integral equations as
in a), i.e. ϕλ ± (Kλ)∗ϕλ = ψλ

0 , the functions �i which appeared in 〈ϕλ, �λi 〉 = ψλ
i

are no longer constants in general. Nevertheless, a) implies that φ0, φ1, . . . , φm are
of class Bk+α,j or are of class Ck+α,j when γ ∈ Ck+1+α,j . In any case, we have
�i ∈ Bk+α,j . Then∫

∂Ωλ

(∂̃λϕ
λ)�λi dσ

λ = ∂λψ
λ
i −

∫
∂Ωλ

ϕλ(∂λ�
λ
i ) dσ

λ

are in Cj−1([0, 1]), if we know ψi ∈ Cj and ϕ ∈ C0,j−1
∗ . The latter is ensured if

ϕ ∈ Bk−1+α,j−1 with k ≥ j and j ≥ 1. Then, Li(Bk−1+α,j−1) is contained in
Bk−1+α,j−1 by (5.46) and

Lλ
1ϕ(z) =

∫
∂Ωλ

ϕλ(ζλ)∂λ
{
Lλ(zλ, ζλ)

}
dσλ(ζλ),

Lλ
2ϕ(z) = (∂λ log |∂τγλ(z)|)

∫
∂Ωλ

ϕλ(ζ)Lλ(zλ, ζλ) dσλ(ζλ).

Finally, {∂λ log |∂τγλ|} is in Bk−1+α,j−1, which implies that if {∂̃λϕλ} ∈ Bl−1+α,j−1,
then {∂λϕλ} remains in Bl−1+α,j−1. With these observations, the induction proof
in a) is valid without essential changes. To verify ϕ ∈ Ck+α,j when γ ∈ Ck+1+α,j

and ψ0 ∈ Ck+α,j , we use (5.47) instead of (5.46).

c) To show ϕ ∈ Bk+1+α,j , we cannot use the induction proof in b) when ψi ∈
Bk+1+α,j . For that {∂̃λϕλ} ∈ Bk+α,j−1, defined by (7.14), does not imply that
{∂λϕλ} is in Bk+α,j−1.

Instead, we apply induction on l. If l = 0, by Lemma 7.3 c) we get ϕ ∈ Bα,j
∗ and

ϕ ∈ Cα,j
∗ when ψ0 ∈ Cα,j

∗ and γ ∈ Cj+1+α,j . In particular, c) is valid when l = 0.
Assume that c) is valid when l with > 0 is replaced by l − 1. We have

∂τλϕλ − (Lλ)∗∂τλϕλ = ∂τλψλ
0 ,

∫
γi

∂τλϕλ dσλ = 0, i ≥ 0.

Note that {∂τλψλ
0 } is in Bl−1+α,j when l−1 ≥ j and it is in Bj−1+α,j−1 when l = j.

By b), we conclude that ∂τϕ ∈ Bl−1+α,j for k ≥ l − 1 ≥ j or in Bj−1+α,j−1 when

l = j. Combining with ϕ ∈ Bα,j
∗ , we conclude that ϕ ∈ Bl+α,j . We can also verify

that ϕ ∈ Cl+α,j when ψ0 ∈ Cl+α,j and γ ∈ Ck+1+α,j .
One can give another proof for c) by using Lemma 6.3 and a), which avoids the

induction argument. We leave the details to the reader. �
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8. Hölder spaces for exterior domains with parameter

In this section, we return to the definition of Hölder spaces with parameter.
However, the reader can turn to the proof of Theorem 9.2 for interior domains
by skipping this section. Lemma 8.2 shows that elements in Bk+β,j(∂Ωγ) extend

to elements in Bk+β,j(ΩΓ). Lemma 8.6 shows that possibly by restricting λ to a
subinterval, we can extend a family of embeddings γλ of ∂Ω with γ ∈ Bk+β,j(∂Ω)∩
C1,0(∂Ω) to a family of embeddings Γλ of Ω with Γ ∈ Bk+β,j(Ω) ∩ C1,0(Ω). The
two lemmas and Lemma 2.2 form basic properties of Hölder spaces for interior
domains with parameter. We also define Hölder spaces for exterior domains with
parameter. Finally, we extend estimates on Cauchy transforms and single and
double layer potentials to exterior domains for our Hölder spaces. To extend families
of finitely smooth embeddings from ∂Ω into Ω, we apply a type of Whitney extension
with parameter. However, the real analytic extension is more subtle, for which we
need the real analyticity of solutions to the Dirichlet problem with real analytic
parameter. The connection between extensions of functions and solutions of the
Dirichlet problem was observed by Whitney [18]. When an exterior domain Ω′ =
C\Ω is considered, we assume without loss of generality that Ω is simply connected.

Lemma 8.1. Let J,K be non-negative integers or ∞, and let 0 ≤ β < 1. For
0 ≤ k < K, let εk+1 be decreasing positive numbers and 0 ≤ jk < J + 1 be non-
decreasing integers. Suppose that jk = J for some k if J < ∞ and jk tends to J if
J and K are infinite. Let Ω be a bounded domain with ∂Ω ∈ CK+β ∩ C1. Suppose

that fi ∈ BK−i+β,J
∗ (∂Ω) (resp. CK−i+β,J

∗ (∂Ω)) for 0 ≤ i < K + 1. There exists

Ef ∈ BK+β,J
∗ (Ω) (resp. CK+β,J

∗ (Ω)) satisfying ∂i
νEf = fi for 0 ≤ i < K + 1.

Furthermore, Ef has the following properties:

(i) The extension operator f → Ef depends only on i, ∂Ω and the upper bound
Mi of ε

−1
i and |fl|i−l+β,ji−1

for 0 ≤ l ≤ i and 0 < i < K + 1. Moreover,

|Ef |k+β,jk ≤ εk+1 + Ck(ε, f)
∑
i≤k

|fi|k−i+β,jk , k < K ≤ ∞,(8.1)

|Ef |K+β,j ≤ CK(ε, f)
∑
i≤K

|fi|K−i+β,j , K < ∞, 0 ≤ j < J + 1.(8.2)

Here Ck(ε, f) depends only on k, ∂Ω and Ml for 0 < l ≤ k.
(ii) Assume further that f0 is constant and fi vanish in a neighborhood U of

p in ∂Ω× [0, 1] for all i > 0 with i+ J ≤ K. Then Ef is constant on some
neighborhood V of p in Ω× [0, 1]. Moreover, V depends only on U .

Proof. We cover ∂Ω by open subsets Up of Ω and find C∞ functions χp with compact
support in Up such that

∑p0

p=1 χp = 1 on ∂Ω. Here p0 is finite. We may assume

that there exist an open subset Vp of Ω, which contains Up, and a CK+β ∩ C1

diffeomorphism ψp on Vp which maps Vp onto V ∗ = (−2, 2) × [0, 2) and Up onto
U∗ = (−1, 1)× [0, 1). We also assume that ψp sends ∂ν into Ap∂y +Bp∂x such that

1/C < |Ap| < C. Here Ap and Bp are of class CK−1+β ∩ C0 on V ∗. It suffices to

find hp ∈ BK+β,J
∗ (Ω) such that supp hp ⊂ Vp × [0, 1] and ∂i

νhp = χpfi = hpi on
(Vp ∩ ∂Ω)× [0, 1]. Then Ef =

∑
hp is a desired extension.

We now drop the subscript p in all expressions. In the new coordinates, we still
denote f, hi, χ, and ν by the same symbols. For instance, hi denotes hpi ◦ψ−1

p . We
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have

∂i
ν=Ai∂i

y +
∑

0<m≤i

∑
l≤m,l<i

Bilm∂m−l
x ∂l

y, ∂i
y=A−i∂i

ν +
∑

0<m≤i

∑
l≤m,l<i

B̃ilm∂m−l
x ∂l

ν .

Note that Bilm and B̃ilm are in CK−i+(m−1)+β ∩C0 on V ∗. To achieve ∂i
νh = hi on

V ∗, we need

(8.3) ∂i
yh = A−ihi +

∑
0<m≤i

∑
l≤m,l<i

B̃ilm∂m−l
x hl.

Changing notation, we write (8.3) as ∂i
yf = fi. The support of fi is contained in

[−1, 1] × [0, 1], and fi is in BK−i+β,J
∗ ([−2, 2]). If necessary, we will replace εk by

εk/C with C depending on the numbers of sets Up and diffeomorphisms ψp.
Fix 0 < δ < 1/2. Let φ be a smooth function on R with support in (−δ, δ) such

that
∫
R
φ(y) dy = 1. We first need to replace yifi(x, λ) by yigi(x, y, λ) to achieve

the BK+β,J
∗ smoothness; when K = ∞, we still need the replacement to estimate

the | · |k+β,j norm of yigi(x, y, λ) via |fi|k−i+β,j . This requires us to correct the
i-th y-derivative of yigi(x, y, λ) due to the presence of yi1gi1(x, y, λ) for i1 < i.
Take a cutoff χ(y) which has support in (−1, 1) and equals 1 on (−1/2, 1/2). Let

ai ∈ BK−i+β,J
∗ ([−2, 2]) have support in [−1, 1]× [0, 1]. With constants δi > 0 to be

determined, consider

(8.4) gi(x, y, λ) =

∫
R

ai(x− yz, λ)φ(z) dz, bi(x, y, λ) =
1

i!
yigi(x, y, λ)χ(δ

−1
i y).

It is clear that ∂j
λgi(·, λ) are C∞ away from y = 0 and gi ∈ C0,J

∗ (V ∗). Also gi have
support in V ∗ × [0, 1].

To show that bi ∈ BK+β,j
∗ (V ∗), it suffices to show that ∂j

λ∂
Ibi extend to functions

in Bβ,0
∗ (V ∗) for all I with |I| = k < K+1. We first derive a formula for derivatives.

Write I = I1 + I2 with |I2| = min{k,K − i}. We have

∂I2

∫
ai(x− yz, λ)φ(z) dz =

∫
∂I2(ai(x− yz, λ))φ(z) dz

=

∫
(∂|I2|ai)(x− yz, λ)φ

(0)
I2

(z) dz.

Here and for the rest of the proof, φ
(m)
∗ (z) denotes a linear combination of zlφ(n)(z)

with l ≤ k and n ≤ m. Assume now that y = 0. Changing variables and inter-
changing the differentiation and integration, we get

∂I1

∫
(∂|I2|ai)(x− yz, λ)φI2(z) dz =

∫
1

y|I1|+1
(∂|I2|ai)(z, λ)φ

(|I1|)
I2I1

(x− z

y

)
dz.

Changing variables again for the last integral, we get the formula

(8.5) ∂I1+I2

∫
ai(x−yz, λ)φ(z) dz = y−|I1|

∫
(∂|I2|ai)(x−yz)φ

(|I1|)
I1I2

(z) dz, y = 0.

First consider the case where i ≤ k < K + 1. For |I| = k and y = 0, we have

∂I(yigi(x, y, λ)) =
∑

i1+|I2|=k

Ci1I2∂
i1
y yi∂I2

∫
ai(x− yz, λ)φ(z) dz
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with i1 ≤ i. Write I2 = I3 + I4 with |I3| = k − i and |I4| = i− i1. By (8.5) we get

∂I(yigi(x, y, λ)) =
∑
i1≤i

∫
(∂k−iai)(x− yz, λ)φ

(i−i1)
Iii1

(z) dz, |I| = k.(8.6)

It is obvious that the right-hand side extends to a function of class Bβ,j
∗ (V ∗). Also,

the Cβ(V ∗) norm of ∂j
λD

I(yigi(x, y, λ)) in variables x, y is bounded by Ck,i|ai|k−i+β,j .

By dilation, it is easy to see that χδi(z) = χ(δ−1
i z) with 0 < δi < 1 satisfy

|χδi |k+β < Ckδ
−k−β
i . Therefore,

(8.7) |bi|k+β,j ≤ Ck,iδ
−k−β
i |ai|k−i+β,j , 0 ≤ i ≤ k.

Next, we want to verify that ∂i
y(y

igi(x, y, λ)) = i!ai(x, λ) at y = 0. Fix x.

By ai ∈ C0,j
∗ ([−2, 2]), supp ai ⊂ [−1, 1] × [0, 1] and (8.6) with k = i, the value

of ∂i
y(y

igi(x, y, λ)) at y = 0 depends only on ai(x). However, the identity holds
trivially for any δi ∈ (0, 1), when ai is constant. We now determine ai by taking
a0 = f0, and

(8.8) ai = fi − ∂i
y|y=0(b0(x, y, λ) + · · ·+ bi−1(x, y, λ)).

By (8.7), for j < J + 1 and i+ k < K + 1 we get

|ai|k+β,j ≤ |fi|k+β,j +
∑
l<i

Ci+kδ
−i−k−β
i−1 |al|k+i−l+β,j(8.9)

≤ |fi|k+β,j + δ
−(i+k+β)l
i−1

∑
l<i

C ′
i+k|fl|k+i−l+β,j .

Here we have assumed that δl decreases. In particular, ai is in BK−i+β,J
∗ ([−2, 2]).

We have achieved

(8.10) ∂i
y(b0(x, y, λ) + · · ·+ bi(x, y, λ)) = fi(x, λ), y = 0.

Now consider the case where i > k = |I|. By the product rule and (8.5),

∂I(yigi(x, y, λ)χ(δ
−1
i y)) =

∑
Ci1i2I3∂

i1
y yi · ∂i2

y χ(δ−1
i y) · ∂I3gi(x, y, λ)(8.11)

=
∑

C̃i1i2I3∂
i2
y χ(δ−1

i y) · yi−i1−|I3|
∫

ai(x− yz, λ)φ(|I3|)(z) dz.

Here the summation runs over i1 + i2 + |I3| = k. The Cβ norm of (δ−1
i y)i−i1−|I3| ·

χ(i2)(δ−1
i y) is bounded by Cδ−β

i . Thus for any δi ∈ (0, 1),

∂k
y (bi(x, y, λ)) = 0, y = 0, k < i,(8.12)

|bi|k+β,j ≤ Ck,iδ
i−k−β
i |ai|β,j , k < i.(8.13)

By (8.13) we inductively choose decreasing δi such that

(8.14) |bi|i−1+β,ji−1
≤ δ1−β

i |ai|β,ji−1
max
k<i

Ck,i <
εi
2i
, i ≥ 1.

Take Ef(x, y, λ) =
∑

i+J≤K bi(x, y, λ). By (8.14), we get
∑

i>k |bi|k+β,jk < εk+1

for 0 ≤ k < K. Combining it with (8.10), (8.12) and (8.7), we obtain ∂i
yEf = fi at

y = 0 and (8.1), respectively. Combining (8.7) for k = K and (8.9) gives us (8.2).

From (8.4) and (8.6), we see that bk ∈ CK+β,J
∗ (V ∗) when fk ∈ CK−k+β,J

∗ (V ∗).

Using the convergence of
∑

|bi|k+β,jk again, we obtain Ef ∈ CK+β,J
∗ (V ∗). The

dependence of Ef and Ck(ε, f) on norms of fi, as stated in the lemma, is determined
by (8.3), (8.9) with k = 0 and (8.14).
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Note that (ii) immediately follows from the extension formulae. Indeed, the
partition of unity for ∂Ω preserves conditions ∂i

νf = 0 for i > 0 and f0 being
constant in a neighborhood of z0 in ∂Ω, by starting with one of the χp’s to be 1
near z0 and all other χp’s to be 0 near z0. From (8.3), we have ∂i

yf = 0 for i > 0
near z0. By (8.4) and shrinking the support of φ if necessary, Ef is constant near
z0. �

Lemma 8.2. Let J,K, β, εk+1, jk be as in Lemma 8.1. Assume further that J ≤ K,
and K > k + jk for 0 < k < K. Let Ω be a bounded domain with ∂Ω ∈ CK+β ∩ C1.

Suppose that fi ∈ BK−i+β,J
∗ (∂Ω) (resp. CK−i+β,J

∗ (∂Ω)) for all i ≥ 0 satisfying
i+ J ≤ K. There exists Ef ∈ BK+β,J (Ω) (resp. CK+β,J (Ω)) satisfying ∂i

νEf = fi
for i+ J ≤ K. Furthermore,

‖Ef‖k+β,jk ≤ εk+1 + Ck(ε, f)
∑

i≤k,i+J≤K

‖fi‖k−i+β,jk , k < K ≤ ∞,(8.15)

‖Ef‖K+β,j ≤ CK(ε, f)
∑

i≤K−J

‖fi‖K−i+β,j , K < ∞, 0 ≤ j < J + 1,(8.16)

where the extension operator f → Ef depends only on i, ∂Ω, and the upper bound
Mi of ε−1

i and ‖fl‖i−l+ji−1+β,ji−1
for l ≤ i, i > 0 and i + J ≤ K. Furthermore,

Ck(ε, f) depends on k, ∂Ω and Ml for l ≤ k; Ef is constant near (z0, 0) ∈ Ω× [0, 1]
if near z0 ∈ ∂Ω, f0 − f0(z0) and fi vanish for i > 0 and i+ J ≤ K.

Proof. We use Ef =
∑

i+J≤K bi, with bi being of the form (8.4). We still have

∂k
y bi = 0 for k < i and ∂i

ybi = ai at λ = 0 as they hold for δi ∈ (0, 1), provided

ai ∈ BK−i+β,J (∂Ω)(⊂ BK−J−i,J
∗ (∂Ω)). We rewrite previous estimates in norms ‖·‖

instead of | · |. Assume that i+ J ≤ K, j < J + 1, and (j ≤) k < K + 1. By (8.7)
and (8.13), we have

‖bi‖k+β,j = max
l≤j

|bi|k−l+β,l ≤ max
l≤j

{Ck,iδ
−k−β
i |ai|k1+β,l}(8.17)

≤ Ck,iδ
−k−β
i ‖ai‖k2+β,j , i ≤ k.

Here k1 = max{k − l − i, 0} and k2 = max{k − i, j} ≤ K − i. By (8.13) again, we
have

‖bi‖k+β,j = max
l≤j

|bi|k−l+β,l ≤ Ckδ
1−β
i ‖ai‖j+β,j , i > k.(8.18)

Assume further that l ≤ i. By (8.17) we get

‖al‖k+β,j ≤ ‖fl‖k+β,j +
∑
m<l

‖bm‖k+l+β,j

≤ ‖fl‖k+β,j + δ
−(i+k+β)
i−1

∑
m<l

Ci‖am‖k+l−m+β,j ,

‖al‖k+β,j ≤ ‖fl‖k+β,j + δ
−(i+k+β)i
i−1

∑
m<l

C ′
i‖fm‖k+l−m+β,j .(8.19)

Thus, by (8.19) with l = i, ai is in BK−i+β,J ; by (8.17)-(8.18), bi ∈ BK+β,J .
Therefore, by (8.18)-(8.19), we can inductively choose decreasing δi such that

‖bi‖i−1+β,ji−1
≤ Ciδ

1−β
i ‖ai‖ji−1+β,ji−1

<
εi
2i
,
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where δi depends on the upper bound of Ci > 1, ε−1
i and ‖fl‖i−l+ji−1+β,ji−1

for
l ≤ i. The rest of the arguments in the previous proof are valid. �

The above proof for the non-parameter case without estimate on norms is in [5]
(pp. 16 and 18). See also [2] for different spaces with parameter. For the proof of
Theorem 1.2, we need the following extension lemma to prescribe λ-derivatives.

Lemma 8.3. Let J,K be integers or ∞ and let 0 ≤ β < 1. Let Ω be a bounded
domain with ∂Ω ∈ CK+β ∩ C1.

(i) Suppose that fj ∈ CK+β(∂Ω) for 0 ≤ j < J + 1. There exists Ef ∈
CK+β,J
∗ (∂Ω) satisfying ∂j

λEf = fj for 0 ≤ j < J + 1 at λ = 0.
(ii) Let J ≤ K. Suppose that fj ∈ CK−j+β(∂Ω) for 0 ≤ j < J + 1. There

exists Ef ∈ CK+β(∂Ω × [0, 1]) satisfying ∂j
λEf = fj for 0 ≤ j < J + 1 at

λ = 0; in particular, Ef ∈ BK+β,K(∂Ω).
(iii) In (i) and (ii), if near p ∈ ∂Ω, f0 is constant and fi vanish for i > 0,

then Ef is constant on V × [0, 1] for some neighborhood V of p.
(iv) (i), (ii) and (iii) hold if Ω substitutes for ∂Ω.

Proof. (i) When J is finite, we simply take Ef(x, λ) =
∑J

j=0 λ
jfj(x). Assume that

J = ∞. Let χ(λ) be a C∞ function which has support in [0, 1/2] and equals 1 near
λ = 0. We choose 0 < δj < 1/2 satisfying δj |fj |2j |χ|j < 2−j . Then Ef(x, λ) =∑

λjfj(x)χ(δ
−1
j λ) is a desired extension.

(ii)-(iii) The extension Ef is a special case of Lemma 8.1 where the parameter λ
is absent and the variable y in its proof is replaced by λ. We first find an extension
Ef ∈ BK+β,J (∂Ω). Using a partition of unity and local change of coordinates
of class CK+β ∩ C1, we may assume that ∂Ω contains [−2, 2] × {0}, Ω contains
[−2, 2]×[0, 1], and fi have support in [−1/4, 1/4]×{0}. Locally we find an extension
Ef ∈ CK+β([−2, 2]× [0, 1]) such that ∂j

yEf(x, 0) = fj(x) and suppEf ⊂ [−1, 1]×
[0, 1/2]. Then Ef(x, λ) is a desired extension. It is clear that (iii) follows from the
extension formulae.

(iv) For the extension Ef ∈ CK+β(Ω× [0, 1]), again by partition of unity for Ω,
we may assume that all fi have support in (−1/4, 1/4) × [0, 1/4). Next, we apply
Lemma 8.1 for the non-parameter version and extend fi across the boundary of
∂Ω to (−1/2, 1/2) × (−1/2, 1/2). We still have fi ∈ CK−i+β and fi has compact
support. We substitute (8.4) with

(8.20) gi(x, λ) =

∫
R2

ai(x− λz)φ(z) dz, bi(x, λ) =
1

i!
λigi(x, λ)χ(δ

−1
i λ),

where ai ∈ CK+β−i([−3/4, 3/4]2) and supp ai ⊂ (−1/2, 1/2)2. The arguments
in the proof of Lemma 8.1 are written for one variable x. However, when x ∈
R2 or in higher dimensional Euclidean spaces, the identities require only minor
changes. We will leave the details to the reader. In conclusion, one can find
Ef(x, λ) =

∑
bi(x, λ) such that Ef ∈ CK+β([−2, 2]2 × [0, 1]) ⊂ BK+β,K([−2, 2]2),

suppEf ⊂ [−1, 1]2 × [0, 1] and ∂j
λEf = fj . �

Remark 8.4. As shown in Lemma 2.2, the composition of functions is restrictive
for spaces Ck+α,j . We do not know if the gi in (8.20) are of class CK+α,j(Ω) when
K + α is finite but not an integer; therefore, we do not know if there exists an
extension Ef in (ii) of Lemma 8.3 that is of class CK+α,J (Ω).
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Lemma 8.5. Let 1 ≤ k ≤ ∞ and 0 ≤ β < 1. Let Ωi be bounded domains of the
Ck+β boundary. Let γ be an orientation preserving Ck+β diffeomorphism from ∂Ω1

onto ∂Ω2, which sends outer boundary to outer boundary. Then γ extends to a Ck+β

diffeomorphism from Ω1 onto Ω2 and it also extends to a Ck+β diffeomorphism from
Ω′

1 onto Ω′
2 which is the identity on |z| > R when R is sufficiently large.

Proof. We first prove the assertions when Ωi are simply connected. Let γ1 : ∂D →
∂Ω1 be a Ck+β parameterization. Approximate γ1 in C1 norm by a C∞ parameteri-
zation γ̃1 : ∂D → ∂Ω̃1. Then γ̃1γ

−1
1 − I has a small C1 norm on ∂Ω1. By Whitney’s

extension theorem, it extends to a Ck+β mapping ϕ which maps from Ω1 into C
with a small C1 norm. Then I + ϕ is a Ck+β diffeomorphism mapping Ω1 onto
Ω∗

1 with C∞ boundary. Therefore, we may assume that ∂Ωi have C∞ boundary.
Thus, we may further assume that Ωi are the unit disc, say, by Kellogg’s Rie-
mann mapping theorem. Since γ preserves the orientation of the unit circle, then
γ(eiθ) = ei(θ+a(θ)). Here a is 2π-periodic and 1 + a′ > 0. Let ρ : [0,∞) → [0, 1]
be a smooth function which has support in (1/2, 2) and equals 1 near 1. Then
Γ0(re

iθ) = rei(θ+ρ(r)a(θ)) is a desired extension.
To extend γ to the unbounded component, using time-one mappings of vec-

tor fields of compact support, we may assume that 0 ∈ Ωi. Using the inversion
ι0(z) = 1/z it suffices to show that in the above arguments we can extend γ to
a Ck+β diffeomorphism from Ω1 onto Ω2, which is the identity map near the ori-
gin. Composing Γ0 with the time-one map of a vector field which vanishes near
∂Ω1, we may assume that Γ0(0) = 0. Using a dilation, we may assume that

Γ0(z) = Γ̂0(z) + E(z), where |E|+ |∂E| < ε on |z| < 1/2 and Γ̂0 is the linear part
of Γ0 at z = 0. Let χ = 0 on |z| < 1/4 and χ = 1 on |z| > 1/2. When ε is small,
Γ1(z) = Γ0(z)+χ(|z|)E(z) is still a Ck+β diffeomorphism. Now Γ1 is linear near 0.
Since Γ′

1(0) preserves orientation, by the Jordan normal form of 2× 2 matrices we
find two flows Xt and Y t of vector fields vanishing at 0 such that Γ′

1(0) = X1 ◦Y 1.
Let ρ be a cutoff function which equals 1 near the origin and has support in a small
neighborhood of the origin. Then (ρY )−1 ◦ (ρX)−1 ◦ Γ1 is a desired extension.

The general case for bounded domains is obtained by induction on m + 1, the
number of components of ∂Ωi. We have proved the lemma when m = 0. Let C1 be
a component of the inner boundary of Ω1 and let C2 = γ(C1). Let ωi be bounded
components of C \ Ci. Applying results proved in the previous paragraph, we find

an extension Γ1 of γ|∂ω1
to ω′

1. Replacing γ by Γ1 ◦ γ, we may assume that γ is the

identity on C1. Using a diffeomorphism of class Ck+β from ω′
1 onto C \D, we may

assume that C1 = C2 is the unit circle. Let Ω̃i = ∂Ωi ∪D. We know that γ extends

to a Ck+β diffeomorphism Γ0 from Ω̃1 onto Ω̃2. By the argument in the previous
paragraph, we may achieve Γ0 to be the identity on |z| < ε for some 0 < ε < 1.
Let Γ2 be a C∞ diffeomorphism on C which is the identity on the complement of
the disc Dρ and sends D into Dε. Here ρ > 1 and Dρ is contained in Ω̃1. Then

Γ−1
2 ◦ Γ0 ◦ Γ2 is a desired extension of γ to Ω1. �
The proof of the next lemma needs Theorem 9.2 for the Dirichlet problem for

interior domains. Our arguments are valid because Theorem 9.2 is for embeddings
γλ which are restrictions of Γλ.

Lemma 8.6. Let j, k be non-negative integers or ∞. Let 0 ≤ β < 1 and let Ω be
a bounded domain in C with ∂Ω ∈ Ck+β ∩ C1. Let γλ be a family of orientation-
preserving embeddings from ∂Ω onto ∂Ωλ with γ ∈ C1,0(∂Ω). Assume that γλ sends
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outer boundary to outer boundary. For each λ0 ∈ [0, 1], there exists δ > 0 such that
if I = [0, 1]∩[λ0−δ, λ0+δ] substitutes for [0, 1] in all function spaces, then γλ extend

to C1 embeddings Γλ from Ω onto Ωλ with Γ ∈ C1,0(Ω). Furthermore, if γ is in

Bk+β,j
∗ (∂Ω), Ck+β,j

∗ (∂Ω), Bk+β,j(∂Ω) (k ≥ j) and Ck+β,j(∂Ω) (k ≥ j), there exists

an extension Γ in Bk+β,j
∗ (Ω), Ck+β,j

∗ (Ω), Bk+β,j(Ω) and Ck+β,j(Ω), respectively, and
if ∂Ω and γ are real analytic, then Γ ∈ Cω(Ω× I).

Proof. With δ to be determined, set I = [λ0 − δ, λ0 + δ] ∩ [0, 1]. As stated in the
lemma, the space C1,0(Ω) and others depend on δ.

(i) We apply Lemma 8.5 and extend γλ0 to a C1 diffeomorphism Γλ0
0 from Ω

onto Ωλ0 . Approximate Γλ0
0 by a smooth map Γλ0

1 and set Γλ
1 = Γλ0

1 for all λ.
We have |γλ − Γλ

1 |1 < ε < ε0 for λ ∈ I when δ is sufficiently small. We apply

Lemma 8.1 and extend γ − Γ1 to an element Γ2 ∈ Bk+β,j
∗ (Ω) ∩ C1,0(Ω) such that

|Γ2|1,0 < ε0 + C(ε0)ε < 2ε0. Then Γλ = Γλ
2 + Γλ

1 are extensions of γλ. Also,

|Γλ0 − Γλ0
0 |1 ≤ 2ε0. Since Γλ0

0 is an embedding, then Γλ0 is also an embedding
when ε0 is sufficiently small. By continuity in the C1 norm, we know that Γλ are
embeddings for λ ∈ I when δ is sufficiently small. Analogously, we can find the
extensions for the other three cases.

(ii) For the real analytic case, the proof in (i) via extension does not apply.
Instead, we solve a Dirichlet problem with parameter. We extend γλ0 to a smooth
embedding Γ0 and approximate Γ0 by real analytic embeddings Γ1/j such that
|Γ1/j −Γ0|3/2 < 1/j. For f ∈ C3/2(∂Ω1/j), let Tjf be the unique harmonic function
Ωj which is continuous up to the boundary and has boundary value f . Thus Tj

maps C3/2(∂Ω1/j) into C3/2(Ω1/j). We know that Tj is injective and the range of Tj

is the Banach space of harmonic functions on Ωj of class C3/2(Ω1/j). The inverse
mapping of Tj is the restriction mapping, which is obviously bounded. By the open
mapping theorem, Tj is bounded with norm ‖Tj‖. Next, we want to show that the
norms ‖Tj‖ are bounded too. Define

Γθ/(j+1)+(1−θ)/j = θΓ1/(j+1) + (1− θ)Γ1/j , 0 ≤ θ ≤ 1.

Then {Γλ} ∈ C3/2,0(Ω). When λ is sufficiently small, Γλ embeds Ω onto Ωλ. Assume
for the sake of contradiction that ‖Tj‖ are not bounded. We find f1/j ∈ C3/2(∂Ω1/j)

such that |Tjf
1/j |3/2 = 1 and |f1/j |3/2 → 0 as j → ∞. Define

fθ/(j+1)+(1−θ)/j ◦ Γθ/(j+1)+(1−θ)/j = θf1/(j+1) ◦ Γ1/(j+1) + (1− θ)f1/j ◦ Γ1/j .

Then f ∈ C3/2,0(∂ΩΓ) for f
0 = 0. Let uλ be the harmonic function on Ωλ which is

continuous up to boundary and has boundary value fλ. Thus u ∈ C3/2,0(ΩΓ) and
u0 = 0 because f0 = 0. However, |u1/j |3/2 = 1, a contradiction.

Let u
1/j
λ be harmonic on Ω1/j such that vλj = u

1/j
λ ◦ Γ1/j(z) = γλ(z) − Γ1/j(z).

We have |u1/j
λ |3/2 ≤ ‖Tj‖ · |γλ − Γ1/j |3/2 → 0 as j → ∞ and λ → 0. Hence

vλj +Γ1/j approach to Γ0 in C3/2 norms as λ and 1/j tend to zero. Fix a j such that

vλj + Γ1/j are embeddings for all |λ − λ0| sufficiently small. Then Γλ
0 = vλj + Γ1/j

are extensions of γλ. Finally, Γλ
0 (z) is a real analytic function on Ω × I by the

analyticity of solutions of the Dirichlet problem with parameter. �

We now introduce spaces for exterior domains. Let Ω′ = C \ Ω. Without loss
of generality, we assume that Ω is bounded and simply connected. Motivated by
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the definition that a function h(z) is harmonic at ∞ if h(1/z) is harmonic at the
origin, we define inversions

(8.21) ιa(z) =
1

z − a
+ a, Ωa = {a} ∪ ιaΩ

′, Ωλ
b = {bλ} ∪ ιbλ(Ω

λ)′

for a ∈ Ω and bλ ∈ Ωλ. For a family of embeddings Γλ from Ω′ onto (Ωλ)′, define

(8.22) Γλ
b = ιbλ ◦ Γλ, Γλ

a,b = ιbλ ◦ Γλ ◦ ιa, γλ
b = ιbλ ◦ γλ, γλ

a,b = ιbλ ◦ γλ ◦ ιa.

Set Γλ
a,b(a) = bλ. Then Γλ

a,b is a fractional linear map from Ωa onto Ωλ
b .

We denote f ∈ Ck+α(Ω′) if f ◦ιa, which is not defined at a, extends to an element
in Ck+α(Ωa). Denote f = {fλ} ∈ Ck+α,j(Ω′) (resp. Bk+β,j(Ω′)) if f ◦ ιa extends to
an element in Ck+α,j(Ωa) (resp. Bk+β,j(Ωa)). We emphasize that as in (8.21)-(8.22)
we require a ∈ Ω. The extended functions are still denoted by f ◦ ιa. It is easy to
verify that the definitions are independent of the choices of a. Let Γλ be a family of

C1 embeddings from Ω′ onto (Ωλ)′. Denote f ∈ Ck+α,j(Ω′
Γ) (resp. Bk+α,j(Ω′

Γ)) if

{fλ ◦ Γλ} ∈ Ck+α,j(Ω′) (resp. Bk+β,j(Ω′)). The spaces for functions on boundaries
of exterior domains will be the same as those for boundaries of interior domains.

To use the spaces Ck+α,j(Ω′
Γ) and Bk+α,j(Ω′

Γ), we will need good control of
embeddings Γλ at infinity. Suppose that bλ and dλ are in Ωλ and a, c are in Ω. It

is obvious that Γλ
a,b = ιbλ ◦ Γλ ◦ ιa extends to a C1 embedding from Ωa onto Ωλ

b

if and only if Γλ
c,d extends to a C1 embedding from Ω′ onto Ωλ

d for any c ∈ Ω and

dλ ∈ Ωλ. By {bλ} ∈ Cj([0, 1]), we mean that λ → bλ is of class Cj([0, 1]). Then,
Γa,b ∈ Ck+α,j(Ωa) if and only if Γc,d ∈ Ck+α,j(Ωd), provided b and d are in Cj([0, 1]).

To put the above definitions into context, we restate Lemma 2.2 (iii) as follows:

The space Bk+β,j(Ω′
Γ), which is obviously dependent of {(Ωλ)′} and Ω′, is indepen-

dent of embeddings Γλ from Ω′ onto (Ωλ)′, provided there exists {bλ} ∈ Cj([0, 1])

such that Γλ
a,b extend to C1 embeddings from Ωa onto Ωλ

b for some a ∈ Ω and

Γa,b ∈ Bk+α,j(Ωa) ∩ C1,0(Ωa). Finally, we always assume that γλ are the restric-
tions of Γλ on ∂Ω, which preserve orientation.

Proposition 8.7. Let k ≥ j and k + 1 ≥ l ≥ 0. Let Ω be a bounded and simply

connected domain with ∂Ω ∈ Ck+1+α and let Γλ map Ω′ onto (Ωλ)′ for 0 ≤ λ ≤ 1.
Let bλ ∈ Ωλ satisfy {bλ} ∈ Cj([0, 1]) and let a ∈ Ω. Suppose that Γλ

a,b extend to C1

embeddings from Ωa onto Ωλ
b with Γa,b ∈ C1,0(Ωa).

(i) If Γb ∈ Bl+α,j(Ω′) and f ∈ Bl+α,j(∂Ωγ), then {Cλ
−f} ∈ Bl+α,j(Ω′

Γ). The

analogous assertion holds if Cl+α,j substitutes for Bl+α,j .
(ii) If ∂Ω ∈ Cω, Γa,b ∈ Cω(Ωa × [0, 1]) and {f ◦ Γλ ◦ ιa} ∈ Cω(∂Ωa × [0, 1]),

then {Cλ
−f ◦ Γλ ◦ ιa} ∈ Cω(Ωa × [0, 1]).

Proof. By our definition of orientations of boundaries, ιa reverses the orientations

of ∂Ω and ∂Ωa for a ∈ Ω. Let bλ ∈ Ωλ, zλ ∈ C \ Ωλ, and zλ ∈ Ωλ
b . Applying the

inversion ιbλ to replace ζλ − bλ by (ζλ − bλ)
−1, we get

Cλ
−f(z

λ) = −zλ − bλ
2πi

∫
∂Ωλ

b

(ζλ − bλ)
−1fλ(ιbλ(ζλ))

ζλ − zλ
dζλ,

(Cλ
−f) ◦ Γλ ◦ ιa(z) = −

Γλ
a,b(z)− bλ

2πi

∫
∂Ωa

(Γλ
a,b(ζ)− bλ)

−1fλ ◦ Γλ ◦ ιa(ζ)
Γλ
a,b(ζ)− Γλ

a,b(z)
dΓλ

a,b(ζ).
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We know that {fλ ◦ ιb ◦ Γλ
a,b} = {fλ ◦ γλ ◦ ιa} is in Bk+α,j(∂Ωa) and Ck+α,j(∂Ωa),

when f is in Bk+α,j(∂Ωγ) and Ck+α,j(∂Ωγ), respectively. The lemma follows from
Proposition 5.2. �

Proposition 8.8. Keep the assumptions in Proposition 8.7. Let f ∈ C0,j
∗ (∂Ωγ).

(i) Assume that
∫
∂Ωλ f

λ dσλ = 0. If Γb ∈ C1,j
∗ (Ω′

Γ), then W−f ∈ C0,j
∗ (Ω′

Γ).

Assume that ∂Ω ∈ Ck+1+α, Γb ∈ Bk+1+α,j(Ω′
Γ) and f ∈ Bk+α,j(∂Ωγ).

Then W−f ∈ Bk+1+α,j(Ω′
Γ). The analogous assertion holds if C substitutes

for B. Assume further that ∂Ω ∈ Cω, {bλ} ∈ Cω, Γa,b ∈ Cω(Ωa × [0, 1]) and

{fλ ◦ γλ} ∈ Cω(∂Ω× [0, 1]). Then {(Wλ
−f) ◦ Γλ ◦ ιa} ∈ Cω(Ωa × [0, 1]).

(ii) If Γb ∈ B1+α,j
∗ (Ω′

Γ), then U−f ∈ C0,j
∗ (Ω′

Γ).

Proof. Let A be an orientation preserving map from ∂Ω̂ onto ∂Ω. Let γ̂(t) be a

parameterization of ∂Ω̂. Then γ(t) = A(γ̂(t)) is a parameterization of ∂Ω. Assume
that dt agrees with the orientation of ∂Ω and A extends to a C1 map defined near
∂Ω. We have

dσ = |∂tA(γ̂(t))| dt = |∂zA+ γ̂′(t)−1γ̂′(t)∂zA| dσ̂.

Let dσλ
b be the arc-length element on ∂Ωλ

b . Since ιbλ : z
λ → zλ reverses the orien-

tations of ∂Ωλ and ∂Ωλ
b , we obtain

(8.23) dσλ = − dσλ
b

|ζλ − bλ|2

on ∂Ωλ
b or ∂Ωλ (via pull-back or push-forward). By (3.2), a simple computation

yields

Wλ
−f(z

λ) =
1

π

∫
∂Ωλ

fλ(ζλ) log |ζλ − zλ| dσλ

− 1

π

∫
∂Ωλ

fλ(ζλ) log |(ζλ − bλ)(zλ − bλ)| dσλ, zλ = bλ.

Since
∫
∂Ωλ f

λ dσλ = 0, we can remove (zλ − bλ) and the restriction zλ = bλ from
the last integral. By (8.23), we get

Wλ
−f(z

λ) = − 1

π

∫
∂Ωλ

b

fλ(ιbλ(ζλ))
1

|ζλ − bλ|2
log |ζλ − zλ| dσλ

b

+
1

π

∫
∂Ωλ

b

fλ(ιbλ(ζλ))
1

|ζλ − bλ|2
log |ζλ − bλ| dσλ

b , zλ ∈ Ωλ
b .

Let τλb,ζ be the unit tangent vector of ∂Ωλ
b at ζλ. Fixing z ∈ Ω, we have d arg(zλ −

ζλ) = (∂τλ
b,ζ

arg(ζλ − zλ)− ∂τλ
b,ζ

arg(ζλ − bλ)) dσ
λ
b (ζλ) and by (3.1)

Uλ
−f(z

λ) = − 1

π

∫
∂Ωλ

b

fλ(ιbλ(ζλ))∂τλ
b,ζ

arg(ζλ − zλ) dσ
λ
b (ζλ)

+
1

π

∫
∂Ωλ

b

fλ(ιbλ(ζλ))∂τλ
b,ζ

arg(ζλ − bλ) dσ
λ
b (ζλ), zλ ∈ Ωλ

b .

The assertions follow from Proposition 5.3 and the last two formulae. �
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9. Main results and proofs

In this section, we first prove the real analyticity of solutions to real analytic
integral equations arising from the Dirichlet and Neumann problems. We then
collect results from previous sections to formulate the solutions of Dirichlet and
Neumann problems with parameter. Finally, we prove Theorem 1.2.

Proposition 9.1. Let Ω be a bounded domain with ∂Ω ∈ Cω. Let γλ embed ∂Ω
onto ∂Ωλ with γ ∈ Cω(∂Ω × [0, 1]). Let L be one of K,−K,K∗, and −K∗. Let
ψ ∈ Cω(∂Ω× [0, 1]). Suppose that ϕλ ∈ L1(∂Ωλ) satisfy

(9.1) ϕλ + Lλϕλ = ψλ, {〈ϕλ, �λj 〉} ∈ Cω, 1 ≤ j ≤ n.

Then ϕ ∈ Cω(∂Ω × [0, 1]). Furthermore, the functions φ0, . . . , φm in Proposition
6.2 are in Cω(∂Ω× [0, 1]).

Proof. We already know that ϕ, φi are of class C∞. We apply Cauchy majorant
methods to estimate the growth of their Taylor coefficients. By Taylor’s theorem,
a function f on ∂Ω× [0, 1] is real analytic if and only if

max
t,λ

∣∣∂i
t∂

j
λf(γ̂(t), λ)

∣∣ ≤ Ci!j!ρi+j ,

where γ̂ is a real analytic parameterization of ∂Ω and C, ρ are constants. We first
need uniform bounds for solution operators in sup-norms. Let {�λ1 , �λ2 , . . . , �λn} be
the basis of ker(I + Lλ) described after the proof of Proposition 6.2. By Lemma
7.1 (i), we know that �1, . . . , �n are in C0,0(∂Ωγ). Then L0 sends C0,0(∂Ωγ) into
(C0([0, 1]))n, where

Lλ
0ϕ = (〈ϕλ, �λ1 〉, 〈ϕλ, �λ2 〉, . . . , 〈ϕλ, �λn〉).

Consider bounded linear maps

(I + L,L0) : C0,0(∂Ωγ) → (C0,0(∂Ωγ) ∩ ker(I + L∗)⊥)× (C0([0, 1]))n = XL,

(I + L∗,L0) : C0,0(∂Ωγ) → XL∗ , L = K or −K.

It is clear that (I + L,L0) is injective. By Proposition 6.2 (iii), the second map is
also injective for both cases. By Proposition 6.2 (i) and Lemma 7.1 (i), I +L maps
C0,0(∂Ωγ) onto C0,0 ∩ (ker(I + L∗))⊥. Since �λ1 , . . . , �

λ
n are linearly independent

for each λ, then (〈�λi , �λj 〉)1≤i,j≤n are invertible. Since �i are in C0,0(∂Ωγ), given

c ∈ (C0([0, 1]))n we can find c̃ ∈ (C0([0, 1]))n such that 〈
∑

j c̃j(λ)�
λ
j , �

λ
i 〉 = ci(λ).

This shows that (I +L,L0) is surjective. That (I +L∗,L0) is surjective for L = K
or −K follows from

∫
∂Ωλ eiφ

λ
j dσ

λ = δij for 1 ≤ i, j ≤ m, and
∫
∂Ωλ e0φ

λ
0 dσ

λ = 1.
By the open mapping theorem, we have

|ϕ|0,0 ≤ C∗(|(I + L∗)ϕ|0,0 + |L0ϕ|0), L = K or −K,(9.2)

|ϕ|0,0 ≤ C∗(|(I + L)ϕ|0,0 + |L0ϕ|0), L = K,−K,K∗, or −K.(9.3)

Here the ϕ is in C0,0(∂Ωγ) and C∗ is independent of ϕ.
(i) We first consider the case where L = K or −K. We express (9.1) as

ϕ(z, λ) +

∫
∂Ω

ϕ(ζ, λ)L(z, ζ, λ) dσ(ζ) = ψ0(z, λ),(9.4) ∫
∂Ω

ϕ(ζ, λ)�λαa(ζ, λ) dσ(ζ) = ψλ
α, α = 1, . . . , n.(9.5)
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Note that L(z, ζ, λ) is real analytic on ∂Ω × ∂Ω × [0, 1] and a(ζ, λ) = ∂τλγλ(ζ)
is real analytic on ∂Ω × [0, 1]. We know that �i are locally constants. However,
we want to reason in such a way that the proof is valid whenever �λi (ζ) are real
analytic in λ and ζ. Thus, the proof applies to L = K∗ or −K∗ after we prove (ii).
Differentiating (9.4)-(9.5) yields

∂k
λϕ(z, λ) + Lλ∂k

λϕ
λ = ∂k

λψ0(z, λ)(9.6)

−
k−1∑
l=0

(
k

l

)∫
∂Ω

∂l
λϕ(ζ, λ)∂

k−l
λ L(z, ζ, λ) dσ(ζ),

L0∂
k
λϕ

λ = ∂k
λψ(λ)−

k−1∑
l=0

(
k

l

)∫
∂Ω

∂l
λϕ(ζ, λ)∂

k−l
λ (�λ(ζ)a(ζ, λ)) dσ(ζ).(9.7)

Set Ak = 1
k! maxζ,λ |∂k

λϕ(ζ, λ)| and

ak =
1

k!
max
ζ,z,λ,α

{
|∂k

λL(ζ, z, λ)|, |∂k
λψ0(ζ, λ)|, |∂k

λψα(λ)|, |∂k
λ(�

λ
αa(ζ, λ))|

}
.

We have |�α|−2
L2 |�α| ≤ C1. Denote by |∂Ω| the length of ∂Ω. Then we obtain from

(9.7), (9.3) and (9.6)

1

k!
|Lλ

0∂
k
λϕ

λ| ≤ ak + |∂Ω|
k−1∑
l=0

Alak−l, Ak ≤ 2C∗
{
ak + |∂Ω|

k−1∑
l=0

Alak−l

}
.

Denote
∑

AIw
I ≺

∑
bIw

I if AI ≤ bI for |I| ≥ 0. The above implies that∑
Akw

k ≺ 2C∗
∑

akw
k + 2C∗|∂Ω|w

∑
Akw

k
∑

ak+1w
k.

Therefore,
∑

Akw
k converges near the origin. SetBkj =

1
k!j! maxt,λ |∂j

t ∂
k
λϕ(γ̂(t), λ)|

and

bkj =
1

k!j!
max
ζ,t,λ

(
|∂j

t ∂
k
λL(γ̂(t), ζ, λ)|, |∂

j
t ∂

k
λψ0(γ̂(t), λ)|

)
.

Taking ∂j
t directly onto the real analytic kernel ∂k

λL(γ̂(t), ζ, λ) in (9.6), we get

∂j
t ∂

k
λϕ(γ̂(t), λ)=∂λ

t ∂
k
λψ0(γ̂(t), λ)−

k∑
l=0

(
k

l

)∫
∂Ω

∂l
λϕ(ζ, λ)∂

j
t ∂

k−l
λ L(γ̂(t), ζ, λ) dσ(ζ),

Bkj ≤ bkj + |∂Ω|
k∑

l=0

Alb(k−l)j , k, j ≥ 0,

∑
Bkjw

k
1w

j
2 ≺

∑
bkjw

k
1w

j
2 + |∂Ω|

∑
Akw

k
1

∑
bkjw

k
1w

j
2.

Obviously,
∑

Bkjt
jλk converges near (t, λ) = 0.

(ii) We still consider L = K or −K. The elements in the base {φλ
i } of ker(I+L∗)

are not constant, so we need to first establish their analyticity. Recall that

φλ
i + (Lλ)∗φλ

i = 0,

∫
∂Ω

φλ
i �

λ
j a(λ, ζ) dσ = δij , 1 ≤ i, j ≤ n.
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We write both in vectors and matrices and get

(I + (Lλ)∗)∂k
λφ(z, λ) = −

k−1∑
l=0

(
k

l

)∫
∂Ω

∂l
λφ(ζ, λ)∂

k−l
λ L(ζ, z, λ) dσ(ζ),(9.8)

Lλ
0∂

k
λφ

λ = ∂k
λdiag(1, . . . , 1)−

k−1∑
l=0

(
k

l

)∫
∂Ω

∂l
λφ(ζ, λ)∂

k−l
λ (�λa(ζ, λ)) dσ(ζ).

We use (9.2) instead of (9.3) and get, for Ak = 1
k! maxζ,1≤λ≤n |∂k

λφα(ζ, λ)|,

1

k!
|Lλ

0∂
k
λφ

λ| ≤ 1 + |∂Ω|
k−1∑
l=0

Alak−l, Ak ≤ 2C∗

{
1 + |∂Ω|

k−1∑
l=0

Alak−l

}
.

Therefore,
∑

Akw
k ≺ 2C∗ + 2C∗|∂Ω|w

∑
Akw

k
∑

ak+1w
k and

∑
Akw

k converges

near the origin. Next, we apply ∂j
t to (9.8) and get

∂j
t ∂

k
λφ(γ̂(t), λ) = −

k∑
l=0

(
k

l

)∫
∂Ω

∂l
λφ(ζ, λ)∂

j
t ∂

k−l
λ L(ζ, γ̂(t), λ) dσ(ζ).

As before, we obtain real analyticity of φ(γ̂(t), λ).
With the real analyticity of φi, the proof in (i) is valid for L = K∗ or −K∗. �
The Dirichlet problem for exterior domains with parameter is

Δuλ = 0 on (Ωλ)′, uλ = fλ on ∂Ωλ.

To ensure that the solutions are unique, we require that uλ be harmonic at ∞,
i.e., that uλ(1/z) is harmonic in a neighborhood of 0. The Neumann problem for
exterior domains with parameter is

Δvλ = 0 on (Ωλ)′, ∂νλvλ = gλ on ∂Ωλ.

Here νλ is the unit outer normal vector of ∂Ωλ. Again, we require that vλ be har-
monic at ∞. For the existence and uniqueness of solutions vλ, we impose conditions

(9.9)

∫
γλ
i

gλ dσλ = 0,

∫
γλ
i

vλ dσλ = 0, 0 ≤ i ≤ m.

The vλ which satisfy conditions (1.3) or (9.9) are called normalized solutions. By
Hopf’s lemma, if u is harmonic on Ω and continuous up to the boundary with
∂Ω ∈ C1+α, then ∂νu determines u up to a constant. In fact, one can locally reduce
to the case where Ω is a unit disc by Kellogg’s theorem; see also [10], p. 7. Thus,
the normalized solutions are unique.

Recall that function spaces for interior domains are defined in section 2 and
function spaces for exterior domains are defined in section 8. The reader is referred
to Lemma 2.2 for independence of spaces Bk+β,j(∂Ωγ) and Bk+β,j(∂ΩΓ) on γ and Γ
for k ≥ j, respectively. Recall that Lemma 8.6 shows the existence of extensions of
γλ to Γλ. We now summarize the solutions to the Dirichlet and Neumann problems
with parameter as follows.

Theorem 9.2. Let 0 ≤ j ≤ k, 0 < α < 1, and j ≤ l ≤ k + 1. Let Ω be a

connected bounded domain in C with ∂Ω ∈ Ck+1+α. Let Γλ embed Ω onto Ωλ with
Γ ∈ Bk+1+α,j(Ω) for interior Dirichlet and Neumann problems. Let Γλ embed Ω′

onto (Ωλ)′ such that ιbλ ◦ Γλ ◦ ιa extends to C1 embeddings from Ωa onto Ωλ
b with

Γb ∈ Bk+1+α,j(Ω′
Γ) for exterior Dirichlet and Neumann problems. Here a ∈ Ω,
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bλ ∈ Ωλ and {bλ} ∈ Cj([0, 1]). Let γλ be the restriction of Γλ on ∂Ω. Suppose that

{fλ} ∈ C0,j
∗ (∂Ωγ).

(i) (Interior Dirichlet problem.) There exists a unique harmonic function

uλ on Ωλ such that u ∈ C0,j
∗ (ΩΓ) and uλ = fλ on ∂Ωλ. Moreover,

uλ = Uλ
+ϕ+

m∑
i,j=1

cλi μ
λ
ijW

λ
+φj ,(9.10)

ϕλ +Kλϕλ = gλ, ϕλ ⊥ ker(I +Kλ), gλ = fλ −
m∑
j=1

cλi ei,

(Wλφi|γλ
j
)1≤i,j≤m = (μλ

ij)
−1, cλi =

∫
∂Ωλ

fλφλ
i dσ

λ.

(ii) (Exterior Dirichlet problem.) Assume that Ωλ are simply connected.
There exists a unique harmonic function uλ on (Ωλ)′ ∪ {∞} such that u ∈
C0,j
∗ (Ω′

Γ) and uλ = fλ on ∂Ωλ. Moreover,

uλ = Uλ
−ϕ+

∫
∂Ωλ

fλφλ
0 dσ

λ,

ϕλ −Kλϕλ = gλ, ϕλ ⊥ ker(I −Kλ), gλ = fλ −
∫
∂Ωλ

fλφλ
0 dσ

λ.

(iii) (Interior Neumann problem.) Let |∂Ωλ| be the arc length of ∂Ωλ.
Assume that

∫
∂Ωλ f

λ dσλ = 0. There exist uλ which are harmonic on Ωλ

and satisfy {uλ} ∈ C0,j
∗ (ΩΓ) and ∂νλuλ = fλ. The normalized solutions uλ

are given by

ϕλ − (Kλ)∗ϕλ = fλ, ϕλ ⊥ ker(I − (Kλ)∗),

uλ = Wλ
+ϕ− 1

|∂Ωλ|

∫
∂Ωλ

Wλ
+ϕdσλ.

(iv) (Exterior Neumann problem.) Assume that Ωλ are simply connected
and

∫
γλ
j
fλ dσλ = 0 for all j ≥ 0. There exist functions uλ which are

harmonic on (Ωλ)′ ∪ {∞} and satisfy u ∈ C0,j
∗ (Ω′

Γ) and ∂νλuλ = fλ. The
normalized solutions are uλ given by

ϕλ + (Kλ)∗ϕλ = fλ, ϕλ ⊥ ker(I + (Kλ)∗),

uλ = Wλ
−ϕ− 1

|∂Ωλ|

∫
∂Ωλ

Wλ
−ϕdσλ.

(v) (Regularity.) If f ∈ Bl+α,j(∂Ωγ), then u ∈ Bl+α,j(ΩΓ) for (i) and u ∈
Bl+α,j(Ω′

Γ) for (ii); if f ∈ Bk+α,j(∂Ωγ) then u ∈ Bk+1+α,j(ΩΓ) for (iii)

and u ∈ Bk+1+α,j(Ω′
Γ) for (iv). Assume further that Γ ∈ Ck+1+α,j(Ω)

and Γb ∈ Ck+1+α,j(Ω). If f ∈ Cl+α,j(∂Ωγ), then u ∈ Cl+α,j(ΩΓ) for (i)

and u ∈ Cl+α,j(Ω′
Γ) for (ii); if f ∈ Ck+α,j(∂Ωγ), then u ∈ Ck+1+α,j(ΩΓ)

for (iii) and u ∈ Ck+1+α,j(Ω′
Γ) for (iv). Assume further that ∂Ω ∈ Cω,

Γ ∈ Cω(Ω × [0, 1]), Γa,b ∈ Cω(Ωa × [0, 1]), {bλ} ∈ Cω([0, 1]), and f ◦ γ ∈
Cω(∂Ω × [0, 1]). Then uλ ◦ Γλ(z) is in Cω(Ω× [0, 1]) for (i) and (iii), and
uλ ◦ Γλ ◦ ιa(z) is in Cω(Ωa × [0, 1]) for (ii) and (iv).
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Proof. For smoothness in parameter, we need to compute the coefficients in the
solution formulae. We recall results from Proposition 6.2. We have ei = 1 on γi
and ei = 0 on ∂Ωλ \γλ

i for i > 0, and e0 = 1 on ∂Ωλ. Also (
∫
γλ
j
φλ
i dσ

λ)1≤i,j≤m = I,∫
∂Ωλ φ

λ
0e0 dσ

λ = 1 and φ0 = 0 on γλ
i for i > 0. We also know that, on ∂Ωλ, Wλ

+φ0

is constant and Wλ
−φi are locally constant for i > 0. On ∂Ωλ and for i > 0, we have

Wλ
−φi =

∑
j>0

νλijej , νλij = Wλ
−φi|γλ

j
, det(νλij)1≤i,j≤m = 0.

(The latter needs m > 0.) Thus for j > 0 we have ej =
∑m

i=1 μjiW
λ
−φi. By

Proposition 7.4 a), we know that φ0, φ1, . . . , φm are in Bk+α,j(∂Ωγ). Thus, νil and
μil are in Cj([0, 1]). Let cλi =

∫
∂Ωλ f

λφλ
j dσ

λ. Then ci ∈ Cj([0, 1]) and

fλ = gλ+cλ1e1+· · ·+cλmem, gλ ⊥ ker(I+(Kλ)∗); fλ = gλ+cλ0 , g
λ⊥ker(I−(Kλ)∗).

It is clear that gi ∈ C0,j
∗ (∂Ωγ). By Proposition 6.2 (i) and Lemma 7.3 c), we get

ϕ ∈ C0,j
∗ (∂Ωγ) for (i)-(iv).

For (i) and (ii) with f ∈ Bl+α,j(∂Ωγ) and l ≤ k+1, we still have g ∈ Bl+α,j(∂Ωγ)
as f − g ∈ C∞,j(∂Ωγ). Thus, ϕ ∈ Bl+α,j(∂Ωγ) by Proposition 7.4 c). Hence,

U+ϕ = 2Re Cϕ ∈ Bl+α,j(ΩΓ) by Proposition 5.2 and U−ϕ = 2Re Cϕ ∈ Bl+α,j(Ω′
Γ)

by Proposition 8.7. Also, W+φi ∈ Bk+1+α,j(ΩΓ) by Proposition 5.2 and W−φi ∈
Bk+1+α,j(Ω′

Γ) by Proposition 8.8. The coefficients ci, μil in (9.10) are in C∞,j . We
conclude that u ∈ Bl+α,j(ΩΓ) for (i) and u ∈ Bl+α,j(Ω′

Γ) for (ii).
For (iii) and (iv) with f ∈ Bk+α,j , we get ϕ ∈ Bk+α,j(∂Ωγ) by Proposition 7.4

b). Hence, W+ϕ ∈ Bk+1+α,j(ΩΓ) by Proposition 5.2 and W−ϕ ∈ Bk+1+α,j(Ω′
Γ) by

Proposition 8.8.
Finally, the real analytic results follow from Proposition 9.1, Proposition 8.8,

Proposition 5.2, Proposition 8.7, and the solution formulae of the Dirichlet and
Neumann problems. �
Corollary 9.3. Let k ≥ 0 be an integer and let 0 < β < α < 1. Let Ω be a bounded
domain with ∂Ω ∈ Ck+1+α. Let f ∈ Ck+1+β(∂Ω) \ Ck+1+α(∂Ω). Then Wf defines
two harmonic functions on Ω and Ω′, which have the same boundary value. Wf |∂Ω
is in Ck+1+β, but not in Ck+1+α. Moreover, Wf ∈ C1−ε(C) for any ε > 0.

As observed in [2], if the above Wf is in C1(C), then (3.4) implies that f and
Wf are zero. It is trivial that if a continuous function is holomorphic on both sides
of a real curve in the complex plane, the function is holomorphic near the curve.
The reader is referred to [2] where regularities for functions for two-sided almost
complex structures are in contrast to Corollary 9.3.

As a consequence of Theorem 9.2, we have the following version of Kellogg’s
Riemann mapping theorem with parameter.

Corollary 9.4. Let j, k be non-negative integers or ∞ satisfying 0 ≤ j ≤ k. Let 0 <
α < 1. Let Ω be a simply connected bounded domain in C with ∂Ω ∈ Ck+1+α and

let Γλ embed Ω onto Ωλ and satisfy Γ ∈ Ck+1+α,j(Ω) (resp. Bk+1+α,j(Ω)). There
exist Riemann mappings Rλ from Ωλ onto D such that {Rλ ◦ Γλ} ∈ Ck+1+α,j(Ω)
(resp. Bk+1+α,j(Ω)). Assume further that ∂Ω ∈ Cω and Γ ∈ Cω(Ω × [0, 1]). Then
the function Rλ ◦ Γλ(z) is real analytic on Ω× [0, 1].

Proof. The proof is standard for the non-parameter case. Since we need it for
the next proof, we recall the construction. Fix a ∈ Ω and let aλ = Γλ(a). Let
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uλ(zλ) be the harmonic function on Ωλ whose boundary value is − log |zλ − aλ|.
Let vλ be the harmonic conjugate of uλ on Ωλ with vλ(aλ) = 0. Then zλ →
(zλ−aλ)eu

λ(zλ)+ivλ(zλ) is a Riemann mapping Rλ sending Ωλ onto D. By Theorem
9.2, we know that u ∈ Ck+1+α,j(Ω). Also,

vλ(zλ) =

∫ zλ

aλ

(
−∂yλuλ(zλ) dxλ + ∂xλuλ(zλ) dyλ

)
,

where the path of integration is any C1 curve of the form (xλ, yλ) = Γλ(ρ(t)) with

ρ(0) = a and ρ(1) = z. Using the integral formula we can verify that vλ ∈ C0,j
∗ (Ω).

Then ∂xλvλ = −∂yλuλ and ∂yλvλ = ∂xλyλ imply that v is in Ck+1+α,j(Ω). The
same argument is valid for the real analytic case. �

We now turn to the proof of Theorem 1.2, for which we need a third-order
invariant.

Lemma 9.5. Let Ω be a bounded simply connected domain with ∂Ω ∈ C2+α. As-
sume that at 1, ∂Ω and ∂D are tangent and have the same exterior normal vec-
tor. There exists a unique biholomorphism S from Ω onto D such that S(1) = 1,
S′(1) = 1 and S′′(1) ∈ R. Let R be a Riemann mapping from Ω onto ∂D with
R(1) = 1. Then S′′(1) = R′(1)−1ReR′′(1) + 1 − R′(1). Assume further that
∂Ω ∈ C3+α. Then at 1,

S′′′ = (R′)−1{R′′′ + 3(1−R′)R′′ +
3

2
(1−R′)2R′}

+
3

2
(R′)−2(ImR′′)2 − 3i{(R′)−1ReR′′ + (1−R′)}(R′)−1 ImR′′.

Proof. Let R be a Riemann mapping from Ω onto D with R(1) = 1. The fractional
linear transformations that preserve D and 1 are of the form

La(z) =
1− a

1− a
· z − a

1− az
, |a| < 1.

We have

(La ◦R)′ =
1− a

1− a
· 1− |a|2
(1− aR)2

R′,

(La ◦R)′′ =
1− a

1− a
· 1− |a|2
(1− aR)2

(
R′′ +

2a(R′)2

1− aR

)
.(9.11)

Note that R′(1) > 0. We have R′
1(1) = 1 for R1 = La ◦R with

a =
1−R′(1)

1 +R′(1)
.

We further determine Lb under the restriction 1−|b|2 = |1−b|2, i.e. b = cos θ(cos θ+
i sin θ) with θ ∈ (−π/2, 0) ∪ (0, π/2]. Thus we still have (Lb ◦ R1)

′(1) = 1. Then
R1(1) = R′

1(1) = 1 imply that

(Lb ◦R1)
′′(1) = R′′

1 (1)− 2i cot θ.

Hence, there is a unique θ ∈ (−π/2, 0)∪ (0, π/2] such that (Lb ◦R1)
′′(1) ∈ R. At 1,

2aR′

1− aR
= 1−R′,

2b

1− b
= −i ImR′′

1 .
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Therefore, S equals Lb ◦ La ◦R. By (9.11), we get at 1,

S′′ = (Lb ◦R1)
′′ = ReR′′

1 = (R′)−1{ReR′′ + (1−R′)R′}.

Also, ImR′′
1 (1) = R′(1)−1 ImR′′(1). Differentiating (9.11), we obtain at 1,

R′′′
1 = (R′)−1{R′′′ + 3(1−R′)R′′ +

3

2
(1−R′)2R′},

S′′′ = (Lb ◦R1)
′′′ = R′′′

1 − 2iR′′
1 ImR′′

1 − 1

2
(ImR′′

1 )
2 − iReR′′

1 ImR′′
1 .

Expressing R′′
1 (1) and R′′′

1 (1) in R′(1), R′′(1) and R′′′(1) yields the identity. �

Proof of Theorem 1.2. We need to find a family of embeddings Γλ from D onto

Ωλ satisfying the following: (a) Γ is in C∞(D × [0, 1]) and real analytic at (1, 0) ∈
D × [0, 1], (b) for any family of Riemann mappings from Ωλ onto D, R ◦ Γ is not
real analytic at (1, 0) ∈ D× [0, 1].

It is convenient not to use arc-length. Consider a C∞ family of simply connected
bounded domains Ωλ bounded by

γ(t, λ) = ρ(t, λ)eit, ρ(0, λ) = 1 = ρ(t, 0),

where ρ is a positive C∞ function satisfying ρ(t + 2π, λ) = ρ(t, λ). To achieve the
analyticity, we will require that ρ− 1 vanishes near t = 0 and λ = 0. As complex-
valued functions, the outer unit normal vector ν(t, λ) of ∂Ωλ is −iγ′(t, λ)/|γ′(t, λ)|.
We have

k(s, t, λ) =
1

π

N(s, t)

|γ(s, λ)− γ(t, λ)|2 ,

N(s, t, λ) = Re{ν(t, λ)(γ(t, λ)− γ(s, λ))}.

In the above and remaining computations, the derivatives are in s, t variables only.
The derivatives in λ at λ = 0 are indicated in the formal Taylor expansion about
λ = 0. For instance,

γ(t, λ) ∼
∑

γn(t)λ
n, γ0(t) = eit; k(s, t, λ) ∼

∑
kn(s, t)λ

n.

We will derive identities for coefficients of formal power series in λ, and those
identities are therefore valid when they arise from C∞ functions. We will also denote

by ρ
(j)
(n)(s) the collection of ∂i

sρl(s) with i ≤ j, l ≤ n and by ρ(n) the collection of ρl

with l ≤ n. We will denote by Q(ρ
(j)
(n)) a function in s and t which depends on ρ

(j)
(n)

such that

(9.12) |∂i
s∂

l−i
t Q(ρ

(j)
(n))(s, t)| ≤ C(n, j, l, |ρ(n)|j+l)

def
== C(|ρ(n)|j+l).

To simplify notation, the Q might be different when it reappears.
We express

γ′(t, λ) = ieit(ρ(t, λ)− iρ′(t, λ)), γ(t, λ)− γ(s, λ) = B(s, t, λ)(eit − eis),

B(s, t, λ) = ρ(s, λ) + (ρ(t, λ)− ρ(s, λ))(1− ei(s−t))−1.
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Note that B0(s, t) = 1 = |γ′(t, 0)|. We also have

N(s, t, λ) = Re
{
ν(t, λ)(γ(t, λ)− γ(s, λ))

}
= |eis − eit|2A(s, t, λ),

A(s, t, λ) = |eis − eit|−2 Re
{
ν(t, λ)(γ(t, λ)− γ(s, λ)− iγ′(t, λ)(ei(s−t) − 1))

}
+ |eis − eit|−2(1− cos(s− t))|γ′(t, λ)|.

Therefore,

(9.13) |∂j
s∂

k−t
t An(s, t)|+ |∂j

s∂
k−t
t Bn(s, t)| ≤ C(|ρn|k+2).

It is clear that A(s, t, λ), B(s, t, λ) and k(s, t, λ) = A(s, t, λ)/(π|B(s, t, λ)|2) are
C∞ in (s, t, λ). Using B0 = 1, we compute derivatives of k(s, t, λ) in λ at λ = 0.

We find k0(s, t) = 1
2π . By (9.13) we get kn(s, t) = Qn(ρ

(2)
(n))(s, t), which satisfies

(9.12). We also have dσ(t, λ) = a(t, λ) dt with a(t, λ) = |γ′(t, λ)|. Then a0 = 1 and
an = Q(γ′

(n)).

Let uλ(zλ) be the harmonic function on Ωλ with boundary value − log |zλ| on
∂Ωλ. To compute uλ, set f(s, λ) = − log |γ(s, λ)| = − log ρ(s, λ) and consider

ϕ(s, λ) +

∫ 2π

0

ϕ(t, λ)K(s, t, λ)a(t, λ) dt = f(s, λ).

We have f0 = 0 and fn(s) = −ρn(s) +Q(ρ(n−1))(s). We obtain ϕ0 = 0 and

(9.14) ϕn(s) = −1

2
ρn(s) +Q(ρ

(2)
(n−1))(s), n > 0.

Recall that ϕ is real-valued and

(Uϕ)(z, λ) =
1

π

∫
∂Ωλ

ϕ(s, λ)∂τλ arg(ζλ − zλ) dσλ = Re Cλϕ.

Let z = r ∈ (−1, 1). We get

∂j
r∂

n
λCλϕ(rλ) =

1

2πi

n−1∑
i=0

(
n

i

)∫ 2π

0

∂i
λ(ϕ(s, λ))∂

j
r∂

n−i
λ

{ ∂sγ(s, λ)

γ(s, λ)− rλ

}
ds

+
1

2πi
∂j
r

∫
∂Ωλ

(∂n
λϕ(s, λ))

dζλ

ζλ − rλ
= Iλ1 (r

λ) + Iλ2 (r
λ).

We want to emphasize that Γn(z) is not determined by ρ1, . . . , ρn. Nevertheless,
we want to show that, when restricted on the unit circle, (Uϕ)n and all derivatives
(∂i

r(Uϕ)n) depend only on ρ1, . . . , ρn. For I1, we apply Stokes’ theorem to trans-
port all derivatives on the Cauchy kernel onto derivatives in s. After removing all
derivatives on the Cauchy kernel, we set λ = 0 and let r → 1−. By ϕ0 = 0, (9.14)
and a crude estimate on orders of derivatives, we obtain

Iλ1 (r
λ) = C0Q(ρ

(n+j+2)
(n−1) )(1), |Iλ1 (rλ)| ≤ C(|ρ(n−1)|n+j+3), λ = 0, r = 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRICHLET AND NEUMANN PROBLEMS WITH PARAMETER 215

To compute Iλ2 , we express for r ∈ (−1, 1)

∂r

∫
∂Ωλ

fλ(ζλ)
dζλ

ζλ − rλ
= ∂rr

λ

∫
∂Ωλ

{(τλ∂τλ)fλ(ζλ)} dζλ

ζλ − rλ
,

∂j
r

∫
∂Ωλ

fλ(ζλ)
dζλ

ζλ − rλ
= (∂rr

λ)j
∫
∂Ωλ

{(τλ∂τλ)jfλ(ζλ)} dζλ

ζλ − rλ

+
∑

i>1,l<j

∂i
rr

λQjl(∂
(j−i)
r rλ)

∫
∂Ωλ

{(τλ∂τλ)lfλ(ζλ)} dζλ

ζλ − rλ
.

Recall that γ0(s) = eit. Write γλ(eit) = γ(t, λ). We further require that the
extension Γλ(z) of γλ(z) satisfies Γ0(z) = z. Thus at (r, λ) = (1, 0), we have
∂rr

λ = 1 and ∂j
rr

λ = 0 for all j > 1. Set λ = 0, let r → 1− in Iλ2 and apply the
jump formula for Cauchy transform on the unit circle. We get

I02 (1) =
1

2πi

∫ 2π

0

{
(−ie−is∂s)

jϕn(s)− (−ie−it∂s)
jϕn(t)|t=0

} ieisds

eis − 1

+ (∂t · ie−it)rϕn(t)|t=0

= − 1

4πi

∫ 2π

0

{
(−ie−is∂s)

jρn(s)− (−ie−it∂t)
jρn(t)|t=0

} ieisds

eis − 1

− 1

2
(−ie−it∂t)

jρn(t)|t=0 + C0Q(ρ
(2+j)
(n−1))(1) +Q(ρ

(2+j)
(n−1))

= − (−1)jj!

4πi

∫ 2π

0

ρn(s)
ieisds

(eis − 1)j+1
+Q(ρ

(3+j)
(n−1)).

Here C0 stands for the Cauchy transform on the unit circle. Recall in notation

(9.12) that we have |Q(ρ
(3+j)
(n−1))| ≤ C(|ρ(n−1)|j+3). Here the second-to-last identity

is obtained via integration by parts under the additional conditions that n > 0 and
ρn vanish near s = 0. Therefore, we get for n > 0

∂j
r(Uϕ)n(1) = − (−1)jj!

4π
Re

∫ 2π

0

ρn(s)
eisds

(eis − 1)j+1
+Q(ρ

(n+6)
(n−1)).(9.15)

We use the Riemann mapping Rλ satisfying Rλ(0) = 0 and (Rλ)(1) = 1. Near
(z, λ) = (1, 0), we have γλ(z) = z and

R(z, λ) = Rλ(γλ(z)) = zeh
λ(z), hλ(z) = uλ(z) + ivλ(z)− uλ(1)− ivλ(1).

Here vλ is a harmonic conjugate of uλ = Uϕ. Since (Uϕ)0 = 0, then (Uϕ)0 is
identically zero. Hence R0(z) = z. At z = 1, we have

R′ = 1 + ∂ru
λ, R′′ = (hλ)′′ + ((hλ)′)2 + 2(hλ)′,

R′′′ = (hλ)′′′ + 3(hλ)′(hλ)′′ + ((hλ)′)3 + 3(hλ)′′ + 3((hλ)′)2.

We get

(R′)0 = 1, (R′′)0 = 0, (R′′′)0 = 0,(9.16)

ReR′′′
n (1) = ∂3

r (u
λ)n(1) + 3∂2

r (u
λ)n(1) +Q(ρ

(3)
(n−1)).(9.17)

By Lemma 9.5, there exists a unique Riemann mapping Sλ for Ωλ that satisfies

Sλ(1) = (Sλ)′(1) = 1, (Sλ)′′(1) ∈ R.
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Thus, (Sλ)′′′n (1) = R′′′
n (1) by (9.16)-(9.17) and the last identity in Lemma 9.5. For

n > 0 we obtain

ReR′′′
n (1) =

3!

4π
Re

∫ 2π

0

ρn(s)
( eis

(1− eis)4
+

eis

(1− eis)3

)
ds+Q(ρ

(n+6)
n−1 )

=
3!

4π

∫ 2π

0

ρn(s) cos(2s)

16 sin4(s/2)
ds+Q(ρ

(n+6)
n−1 ).

One can inductively choose ρn(s) = ρ̃n(s) sin
4(s/2) cos(2s) with ρ̃n ≥ 0 such that

ρn(s) = 0 on |s| < π/2 and R′′′
n (1) > (n!)2 for n > 0. This shows that (Sλ)′′′(1)

is not real analytic at λ = 0, provided that ρn(s) can be realized via a family of
embeddings Γλ satisfying all the requirements. To achieve the latter, we apply
a non-parameter version of Lemma 8.1 to the unit disc D and find ρ̃n ∈ C∞(D)
such that ρ̃n(e

is) = ρn(s). Moreover, all ρ̃n vanish in a fixed neighborhood of
1 ∈ D. Applying Lemma 8.3, we find ρ̃ ∈ C∞(D× [0, 1]) such that ρ̃(z, λ) vanishes
near (z, λ) = (1, 0) and ∂n−1

λ ρ̃(z, λ) = (n − 1)!ρ̃n(z) at λ = 0. Let Γ(z, λ) =
(1+ λρ̃(z, λ))z. As we already mentioned, we can extend ρ(t, λ) to be identically 1
near (1, 0) ∈ D × I. Thus Γ(z, λ) is real analytic near (1, 0). Replacing Γλ by Γδλ

if necessary, Γλ embeds D into Ωλ when δ > 0 is sufficiently small and 0 ≤ λ ≤ 1.
We now consider any family of Riemann mappings Rλ from Ωλ onto D. Assume

for the sake of contradiction that R is real analytic at (1, 0) ∈ D × [0, 1]. Replace

Rλ by Rλ(1)Rλ. By Lemma 9.5, (Sλ)′′′(1) is real analytic at λ = 0, which is a
contradiction. �

We conclude the paper with a remark on the results and proofs when the domains
are fixed and only the boundary values vary with a parameter. In this case we can
reduce the solutions to the case without parameter. Recall that the solutions for
the Dirichlet and Neumann problems consist of solving the integral equations and
estimating the single and double layer potentials via Cauchy transform. When we
differentiate integral equations or Cauchy transform in parameter λ, the kernels
are unchanged for fixed domains. The difficulties with the chain rule in our proofs
disappear. More specifically, the estimates for the integral equations in Proposition
7.4 (without restriction k ≥ j) extend to spaces of types B∗ and C∗. The estimates
on the layer potentials via Cauchy transform in Proposition 5.2 (without restriction
k ≥ j) extend to spaces of types B∗ and C∗ too. Thus, we have the following.

Proposition 9.6. Let k, j and l be non-negative integers. Assume that l ≤ k + 1
and 0 < α < 1. Let Ω be a bounded domain in the complex plane with ∂Ω ∈
Ck+1+α. Let uλ be harmonic functions on Ω which are continuous up to bound-

ary. If u ∈ Bl+α,j
∗ (∂Ω) (resp. Cl+α,j

∗ (∂Ω)), then u ∈ Bl+α,j
∗ (Ω) (resp. Cl+α,j

∗ (Ω)).

If
∫
∂Ω

uλ dσ = 0 and {∂νuλ} is in Bk+α,j
∗ (∂Ω) (resp. Ck+α,j

∗ (∂Ω)), then u ∈
Bk+1+α,j
∗ (Ω) (resp. Ck+1+α,j

∗ (Ω)).
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