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Abstract—Trust has played a crucial role in enhancing the
security of IoT systems over their lifecycles from creation to
retirement. Particularly, in a personal space IoT system where
devices join and leave the system dynamically, it is important to
evaluate the device’s behavior in the form of trust on its admission
to the system to reduce the risk and uncertainty of the overall
system. Currently, proposed trust evaluation models primarily
rely on the historical knowledge or trusted recommendations.
However, in many situations, such information is not available
at the first encounter between the system and the device. The
challenge tackled by this paper is how to establish whether a
device can be trusted to a level that merits further evaluation
for admission into an IoT system when it encounters the system
for the first time. We propose a Dirichlet-based trust assessment
model to establish the initial trust that the system places on
a device in a mobile and dynamic environment called personal
space IoT. The proposed scheme can also be used to affirm the
trust of a device during its operation or when it is being re-
admitted to the system after an interruption. We describe and
evaluate our proposed model theoretically and by simulation.

I. INTRODUCTION

The personal space IoT system introduced in our previous

work [1], [2] refers to a group of user’s device, and other

devices that are within the wireless communication radius of

the user’s devices and likely to provide services to the user.

A smartphone or a capability-comparable device acts as the

centralized controller, managing of the space including admit-

ting entities and monitoring their activities. In the personal

space IoT system, its membership varies dynamically over it

lifecycle due to the joining or leaving of devices and their

services while interacting with others.

Authentication is mainly used in information systems for

granting access to a new device and establishing secure com-

munication among devices. However, authenticated devices

may behave maliciously over time by not cooperating with

others or providing poor services for its benefits [3]. Therefore,

it is necessary to protect the system from insider security

attacks deployed by its admitted entities. Trust is recognized

as an essential factor for monitoring entities activities and

detecting malicious behavior. It has increasingly played a

crucial role in establishing a secure IoT system over its entire

lifecycle. It is important that the new device or the rejoining

device is established with a certain degree of trust before

it is granted access or admitted to the personal space IoT

system. Existing proposed trust models primarily solve the

issues of monitoring the malicious behavior and managing the

trust level of authenticated devices. However, none of them

attempts to provide a solution for assessing the trustworthiness

of unknown devices at their first encounter with the system as

well as devices that rejoin the system after an interruption.

Instead, most of them rely on the belief that all devices are

trusted at their admission phase. In addition, the existing trust

assessment scheme does not suit for the initial trust assessment

as they require experience from past interactions or trusted

recommendations. In many situations, such information is not

available. The challenging problem is that how to capture the

trust knowledge about a device within a narrow window of

time at its first encounter with the system.

Our earlier work [2] proposed a challenge-response mech-

anism and a trust evaluation scheme to solve this problem.

Specifically, we proposed a Bayesian approach for initial trust

assessment scheme where the challenge-response operation

is utilized for collecting the evidence about the device’s

behavior, and the Beta distribution is used to derive the trust

knowledge during the challenge-response process. We devel-

oped a binary trust evaluation scheme where the challenger

assesses the devices response to evaluate whether it is an

expected or an unexpected response. However, the outcomes

from a challenge-response operation at the first encounter are

often not binary but multiple levels indicating various degrees

of satisfaction. This is the motivation for proposing a trust

evaluation algorithm for multi-valued satisfaction level.

In this paper, we present a Dirichlet-based trust assessment

model considering the multi-valued satisfaction level of the

response to a challenge. With this setting, the evaluation of

a device’s response leads to multiple outcomes, i.e., mul-

tiple levels associated with various degrees of satisfaction

of the challenger from a device’s response. We propose a

Bayesian approach that adopts the Dirichlet distribution as

the theoretical foundation for measuring the uncertainty level

in the device’s behavior considering multi-valued satisfaction

level. A trust evaluation method is proposed to interpret the

uncertainty level to the degree of trust.

Specifically, we model the posterior distribution of the

probabilities associated with multi-valued satisfaction level

by a Dirichlet distribution. In other words, we can esti-

mate the Dirichlet probability density function (pdf) of these

probabilities and their posterior expected values. Finally, the

uncertainty level in the device behavior measured through

posterior expected values is then interpreted to the degree of

trust given on a device after conducting the challenge-response

process. Our challenge-response process continuously updates

and aggregates the initial trust from evidence within a short

period at the first encounter of the device with the system.



The experimental evaluation shows that our challenge-

response-based trust assessment scheme can capture the

device’s behavior effectively by conducting the challenge-

response process and estimating the distribution of the proba-

bility that the device’s response satisfies one of the satisfaction

levels. The initial trust value computed during the challenge-

response process is consistent and matches the device’s re-

sponse patterns.

The rest of the paper is organized as follows. Section II

provides related work. Section III describes our challenge-

response mechanism and Dirichlet-based initial trust assess-

ment model. Section IV presents the evaluation of our pro-

posed model via simulation. Finally, section V concludes the

paper and suggests directions for future research.

II. RELATED WORK

In the literature, a number of trust management systems

investigating computational trust models have been introduced

in wireless networks as well as IoT [3], [4]. In computational

trust models, Bayesian approaches have been widely used to

evaluate trust where Beta distribution is adopted for binary

trust assessment [5], [6] and Dirichlet distribution is utilized

for multi-level trust assessment [6]–[10]. In addition, informa-

tion theory is also used as the basis for trust evaluation [11].

Josang et al., use the Dirichlet distribution as the basis for

a multi-level reputation system in e-commerce where parties

can rate each other with graded levels from a set of predefined

values [10]. The posterior Dirichlet model combines the prior

reputation score with a new rating to find the updated repu-

tation score of an agent. This work provides the process for

aggregating the reputation of agents that mainly relies on the

rating recommended by other agents in the community. The

drawback is that it requires massive transactions and long-term

rating process to build the reputation.

The work in [7] adapted Dirichlet-based trust management

to collaborate host-based intrusion detection networks (HIDS)

to detect intrusions and malicious nodes. This model deter-

mines the trustworthiness of a HIDS node by collecting both

intrusion consultations and its feedbacks to test messages

during the operational stage. The trust level of a HIDS node

is derived from the posterior distribution model updating

the prior information with the collected consultations and

feedbacks. This approach mainly focuses on detecting the

malicious and intrusions once the HIDS is in operational stage

and requires long-term collaboration.

In [9], the authors proposed a Dirichlet-based trust man-

agement for an inter-provider cooperation network where the

entities in different domains cooperate with each other using

client-server interactions. The Dirichlet distribution combines

the prior beliefs about a client with the collected data from

its request sequence to predict the quality of interaction level

of those requests for evaluating its trust ranking. This work

relies on the sequence of requests of clients from different

domains to the server. The server implicitly evaluates the

trustworthiness of the requested client and decides the degree

of quality of service should provide to the client.

Sun et al., introduced the utilization of uncertainty as a

measure of trust [11]. The trust can be measured by deter-

mining uncertainty level in the future actions of an agent.

When the direct observation is not available, the uncertainty

is measured through concatenation and multi-path propagation

of recommendations. This approach fails to measure the initial

trust of unknown entities due to the lack of third parties’

recommendations at their first encounter with the system.

In this paper, we adopt Dirichlet distribution as the theo-

retical foundation for evaluating the initial trust value of a

device. The system defines the multi-valued satisfaction level

including multiple degrees of satisfaction of the challenger

from a response. Each satisfaction level acts as the base for

measuring the trust value. Our work differs from previous

Dirichlet-based trust models as we conduct the challenge-

response mechanism for capturing the initial trust knowledge

without requiring long-term interaction, recommendations, or

prior knowledge. Also, we model our trust assessment by

the posterior Dirichlet distribution for evaluating uncertainty

level of the device’s behavior and introduce a new trust

interpretation method.

III. DIRICHLET-BASED INITIAL TRUST ASSESSMENT

MODEL

This section describes our proposed initial trust assessment

model which utilizes a challenge-response mechanism for

judging a device that encounters the system for the first time,

and the posterior Dirichlet-based probability distribution to

evaluate the uncertainty level in the device’s behavior and

estimate its trustworthiness based on the evidence collected

from the challenge-response process.

A. Challenge-response mechanism

We first provide an overview of our proposed challenge-

response mechanism. This is a process of collecting evidence

for the trust assessment scheme where a device’s trustwor-

thiness is investigated via its responses towards challenges.

It is performed intentionally by the controller during a short

time window at the first encounter between the system and

an unknown device to investigate the uncertainty level about

the device’s behavior and then use this knowledge for the

trust evaluation. The process contains several challenges that

the controller requests responses from the IoT device before

deciding on whether to admit it into the system. The challenge-

response mechanism is accomplished by exploiting typical

interactions between the system and the devices at their first

encounter such as in the pairing process in Bluetooth protocol

as indicated in our previous work [2].

A challenge can be a request for the knowledge about

the surrounding environment or a task that the device must

perform successfully and honestly. It can be generated ar-

tificially by using a knowledge database built from surveys

or the learning process, etc. The semantics of the challenge

varies depending on the type of the device, the population

in the environment, and the knowledge of the population,

etc. A response is distinguished from others via predefined

satisfaction levels to the challenger.



B. Dirichlet-based initial trust model

Our initial trust assessment model relies on the evidence

captured from the evaluation of the device’s response during

the challenge-response (C-R) process. In the evaluation, the

device’s response is evaluated carefully and assigned with

one of the levels from a predefined multi-valued satisfaction.

The more likely that the device’s response is assigned a high

satisfaction level, the more likely the device is trusted by the

system and vice versa. In addition, the more satisfaction levels

are considered in the evaluation process, the more precise of

the response evaluation is. Thus, the evaluation of the device’s

response based on the multi-valued satisfaction level allows the

system to capture the device’s behavior providing meaningful

knowledge for the trust evaluation.

According to Bayesian statistic, the posterior distribution

presents the updating in the prior distribution of an unknown

event once the prior belief is updated with more evidence. In

fact, the posterior Dirichlet distribution of a multi-component

random variable is based on its prior distribution and the

observations on the distribution of its components. In our trust

assessment model, the evidence is evaluated and collected

based on a multi-valued satisfaction level of the device’s

response to the challenger. Therefore, the posterior Dirichlet

distribution allows us to refine and provide a better estimate of

the distribution of the satisfaction level of observed responses.

Let X be the discrete random variable representing the

discrete satisfaction level of a response to a challenge. The

system defines k values for the satisfaction level to evaluate

the response. Therefore, X can take on one of k values

x1, x2, .., xk, where xi denotes one of the satisfaction levels.

Each satisfaction level xi is assigned a weight value wi in a

way that for xi+1 > xi, wi+1 > wi and
∑k

i=1 wi = 1.

Let Θ denote the random variable representing the prob-

ability that a device will return a response with a certain

satisfaction level. Note that, Θ is a k-component random

variable, Θ = θ1, θ2, · · · , θk. Let θi denote the probability

that a device will return a response with a satisfaction level

xi. In other words, the probability that X takes value xi is θi.

θi = P (X = xi) s.t
k

∑

i=1

θi = 1 (1)

Before any C-R round, the pre-knowledge on the probability

distribution Θ is not available. It is reasonable to consider that

the prior distribution of Θ is uniform, i.e., the probability that

the device will provide a response with one of the satisfaction

levels is equally likely. In fact, the uniform distribution cap-

tures initial ignorance and is a special case of the Dirichlet

distribution. Therefore, it is reasonable to choose Dirichlet as

the prior distribution Θ as in (2).

p(θ1, .., θk;α1, .., αk) =
Γ(

∑k

i=1 αi)
∏k

i=1 Γ(αi)

k
∏

i=1

θαi−1
i (2)

To represent the non-informative prior distribution of Θ we

choose parameters αi = 1, ∀i = 1..k.

The outcome from the evaluation of the device’s response

conducted after a single C-R round is one of satisfaction levels

assigned by the system to the received response. Let Y j denote

the outcome vector from round jth. Let yi represent the ith

element in vector Y j = y1, ..., yk. Note that each yi can take

a value in {1, 0} which indicates that the device’s response

satisfies level xi or not, i.e., yi = 1 means the device’s

response satisfies level xi whereas yi = 0 refers to the fact

that it satisfies other levels.

After each challenge-response round, we accumulate the

number of rounds in which the device returns a response with

a given satisfaction level. Let si denote the number of rounds

that the response satisfies level xi after n challenge-response

rounds and
∑k

i=1 si = n. We accumulate si as below

si =

n
∑

j=1

Y j{yi} (3)

where Y j{yi} is the ith element in vector Y j which indicates

whether the device’s response satisfies level xi at round jth.

For vector Θ = θ1, .., θk, we can treat θ1, .., θk each as an

independent variable. The challenge-response observation con-

forms to multinomial distribution as each round is independent

and its outcome is one of k possible satisfaction levels. Each

θi is converged on an unknown value (0 < θi < 1). Therefore,

the probability that a device’s response satisfies a satisfaction

level xi in si rounds given the unknown probabilities θi is

given as below.

p(s1, .., sk | θ1, .., θk) =
n!

∏k

i=1 si!

k
∏

i=1

θsii (4)

Then, the posterior distribution of θi can be updated from

the prior Dirichlet distribution in (2) and the likelihood in (4)

according to Bayes’ formula as below.

p(θi | si) =

n!
k∏

i=1

si!

k
∏

i=1

θsii

Γ(
k∑

i=1

αi)

k∏

i=1

Γ(αi)

k
∏

i=1

θαi−1
i

k
∏

i=1

1
∫

0

n!
k∏

i=1

si!

k
∏

i=1

θsii

Γ(
k∑

i=1

αi)

k∏

i=1

Γ(αi)

k
∏

i=1

θαi−1
i dθi

=
1

k
∏

i=1

1
∫

0

θsi+αi−1
i dθi

k
∏

i=1

θsi+αi−1
i

=
1

B(si + αi)

k
∑

i=1

θsi+αi−1
i (5)

The expression in (5) shows that the posterior distribution of

θi has Dirichlet distribution with parameters si+αi. It can be

seen that, when the outcome from the first C-R round occurs,

the posterior distribution of θi has Dirichlet distribution with

parameter yi + 1 as its prior distribution is non-informative

αi = 1, where yi takes a value in {1, 0}. The estimation of

θi in subsequent C-R rounds will take the previous posterior

distribution of θi as the prior distribution. Updating from the

prior distribution and the accumulated likelihood, the posterior

distribution of θi after n rounds also has Dirichlet distribution

with parameter si + 1 where si is given in (3).



As each θi is a probability variable, the posterior probability

distribution density p(θi | si) represents the probability that θi
has a specific value. Since the variable θi is continuous, the

second order probability p(θi | si) for any given value of θi
in [0, 1] is very small and hence meaningless [12]. It is only

meaningful to compute the posterior expected value of θi from

its Dirichlet posterior distributionas below.

E(θi | s1, .., sk) =
1 + si

k +
∑k

i=1 si
(6)

In our model, we derive the uncertainty level in the device’s

behavior from posterior distribution of the probability vector

Θ for capturing the trust degree of the device. We measure

the uncertainty level based on the posterior expected value of

θi and the weight value of each satisfaction level by using

Shannon entropy [13]. Note that the purpose of using weight

value is to prioritize the responses with high satisfaction levels

in measuring trust value.

H =

k
∑

i=1

−wiE[θi | s1, .., sk] log2 (wiE[θi | s1, .., sk]) (7)

We also determine the average value of the posterior expected

values of elements in vector Θ, called θ, as given in (8). This

will be used as a factor to determine whether the trust level

should be interpreted, from uncertainty level, to a trust or a

distrust value.

θ =

k
∑

i=1

wiE[θi | s1, .., sk] (8)

C. Initial trust evaluation

Figure 1 shows the uncertainty level in the device’s behavior

in 3-dimensional space where the system defines three satisfac-

tion levels with weight values of 0.3, 0.3 and 0.4, respectively.

In fact, trust is an increasing function of the probability. Thus,

it should be increased when the average value of posterior

expected values of elements in vector Θ, θ, increases from 0

to 1. It is clear that the minimum uncertainty level is at 0 when

one of the elements E[θi] is 1, i.e., there is certain that the

device will provide a response with a given satisfaction level.

For all other combinations of posterior expected values E[θi],
the uncertainty level is spanned across the 3-dimensional space

with values from 0 to a maximum value computed depending

on the contribution of each E[θi].
We analyze the requirements for our initial trust evaluation

from the uncertainty level. Firstly, at the maximum value of

the uncertainty level, the trust value should be a neutral value

indicating there is no trust or distrust can be decided. At the

minimum uncertainty level, the trust value should be translated

to a lowest or highest value in the trust scale. At any other

values of the uncertainty level, depending on the average value

θ, the trustworthiness of the device should be interpreted to

some degree of trust or distrust considering the fact that trust

is an increasing function of probability. If θ is less than 1/k,

at which the distribution of θi is uniform leading to a neutral

belief on the trustworthiness, the uncertainty level is translated

to a distrust value. Otherwise, it is interpreted to a trust value.
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Fig. 1: Uncertainty level and Trust value with expected values E[θi] for 3
satisfaction levels

As θ can be identical for many permutations of E[θi], we

embed (1 − θ) and θ to the trust interpretation in order to

distinguish different response patterns. The using of factors

(1− θ ) and θ is to ensure the consistent interpretation of the

uncertainty level to the trust scale of (−1, 1).
We use (9) to interpret trust value from the uncertainty level,

where Hmax is the maximum uncertainty value considering

the number of satisfaction levels and their weight values. For

instance, in a trust assessment model with three satisfaction

levels, the maximum value Hmax places at the peak area of

the uncertainty level visualized in Fig. 1.

T =

{

(1− θ)(H −Hmax)
1

Hmax

, if 0 ≤ θ ≤1/k

θ(Hmax −H) 1
Hmax

, otherwise
(9)

The mapping in (9) meets the discussed requirements.

Figure 1 also illustrates the trust value in 3-dimensional space

with a trust plane and a distrust plane. The trust level depicts

a value representing a distrust value, a neutral value, or a trust

value when the probability elements (E[θi]) increase from 0

to 1. It should be noted that the trust values can be scaled up

within the range (−1, 1). It is important to set thresholds for

the initial trust to ensure that the trust assessment process ends

upon the established initial trust value reach a given threshold.

IV. EXPERIMENTAL EVALUATION

In this section, we present the evaluation of our proposed

trust assessment model via simulation.

Experiment 1 In order to visualize the the posterior Dirich-

let pdf, we first conduct an experiment that simulates the initial

trust assessment with three satisfaction levels (k = 3) in eight

rounds (n = 8). Three satisfaction levels can be mapped to

unsatisfied, neutral, and satisfied opinion of the system about

the devices response. We show how the Dirichlet pdf refines

the investigated probability distribution when more observed

responses are available. We also investigate how the average

value of posterior expected values E[θi], the uncertainty level

and the initial trust value change during the challenge-response

process. The weight values for satisfaction levels are set at

0.05, 0.2 and 0.75, respectively. This experiment simulates a

case that the device satisfies the challenger with level 1 in two

first rounds, level 2 in two subsequent rounds and level 3 in

the last four rounds.
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Fig. 2: The posterior Dirichlet pdf over 8 C-R rounds with pattern of satisfaction level in experiment 1

Figure 2 illustrates the changing in the shape of the posterior

pdf with the probability vector {θ1, .., θk} and the parameter

vector {s1, .., sk} updated over the challenge-response pro-

cess. It also shows how the maximum value of the pdf moves

within the 3-dimensional space over eight rounds. After two

first rounds, the shape of the pdf in 3-dimensional space is

flat. It achieves the maximum value when θ1 grows to 1 as

the device provides a response with satisfaction level 1 in both

rounds. The flat shape is narrower and gets higher maximum

value after round 2 due to the more contribution of θ1 to the

density. Then, after rounds 3 and 4, the curve representing

the posterior pdf has bell shape and moves towards the center

of the space since θ2 also contributes to the pdf and changes

the parameters of the posterior Dirichlet distribution. When

the device continuously provides response with the highest

satisfaction level from round 5 to round 8, the curve is

narrower due to the contribution of θ3.

Figure 3 shows the changing of investigated metrics over

eight rounds. As shown in Fig. 2, the posterior pdf curve

is narrower when more responses are observed. It can be

seen that the expected values of θi will be updated to new

value according to the moving of the maximum area of the

pdf curve. According to the setting of the weight values,

the expected value associated with satisfaction level 3 (i.e.,

E[θ3]) contributes the most to the average value θ. During

eight rounds, the average value is lower than 1/3, at which

the distribution of θi is uniform indicating neutral belief, in

the four first rounds and then getting higher than 1/3 in the

four last rounds. The reason is during four last rounds there

is contribution of the responses with satisfaction level 3 and

its highest weight value to the computation of θ.

According to interpretation approach considering the aver-

age value of E[θi], the trust value in the four first rounds is

interpreted to distrust value due to the unsatisfied responses.

This trend is kept over round 5 and round 6 even though the

device satisfies the system to highest level in these rounds

due to the increasing in uncertainty level. Only after round

7, the trust value is recovered and slowly gets to the trust

plane with a small value after four rounds of being satisfied

the highest level and the reduction in uncertainty level. In

particular, the trust value that the system places on the device

first grows down to a distrust value at -0.09 and continuously

decreases to -0.13 after two first rounds as the responses satisfy

the lowest satisfaction level. The device gradually recovers

its trustworthiness by providing more responses with highest

satisfaction level and gets a small trust value of 0.04.
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Fig. 3: Investigated values over 8 C-R rounds in experiment 1

Experiment 2 We then simulate a 5-round challenge-

response-based trust assessment with five satisfaction levels. In

practice, those levels can be mapped to extremely unsatisfied,

unsatisfied, neutral, satisfied and extremely unsatisfied [10].

We present how investigated metrics change with various

devices’ response patterns. The weight values for satisfaction

levels are 0.03, 0.07, 0.15, 0.25 and 0.5. It is worth noting

that the optimal weight values vary with various applications.
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Fig. 4: Investigated values over 5 C-R rounds with (a) pattern of all satisfaction
levels 1 (b) pattern of all satisfaction levels 5

Figure 4a the simulation results when the device’s response

is assigned satisfaction level 1 in all rounds. The average value

of E[θi] continuously decreases and being below the value of

0.2 which indicates a neutral belief. The uncertainty level is

continuously decreased over the simulation. The trust value is

on the distrust plane and grows down from -0.14 to -0.32. This

shows the consistency of our trust interpretation approach as

it agrees with the trends of the changing of uncertainty level

and the average probability value over the assessment.

Similarly, Fig. 4b presents the simulation results when the

device responds with satisfaction level 5 in all rounds. The

uncertainty level is reduced over five rounds. Since the average

probability value is beyond 0.2 indicating the trust value

should stay on the trust plane (as shown in Fig. 1). However,

the trust is slowly gaining as we interpret trust in a way that

the speed of gaining trust is less than the speed of losing trust.

The trust value is increased from the neutral value to 0.05.

Figure 5a shows the simulation results of a case where two

very unsatisfied responses in two first rounds are followed by

a neutral response and two very satisfied responses in the two

last rounds. Firstly, the trust level is on the distrust plane as

the device’s response does not satisfy the system over three

first rounds. Then, the device recovers its trustworthiness to

a small degree of trust (around 0.035) since its responses are

assigned satisfaction level 5 in the two last rounds. Figure

5b shows the changing of investigated metrics for the case

where the device’s response only satisfies the system with

level 4 at the first round and then be assigned low satisfaction

levels for the rest of the assessment. The uncertainty level is

consistently decreased indicating the more knowledge on the
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Fig. 5: Investigated values over 5 C-R rounds with (a) pattern of satisfaction
levels 1-1-3-5-5 (b) pattern of satisfaction levels 4-2-2-1-1

trustworthiness of the device. As shown in Fig. 5b, the device

is given a distrust value at -0.2 after five rounds of assessment

due to its unsatisfactory behavior.

In summary, the trust value is aggregated over the challenge-

response process, and it is considered as the initial trust value

one the system stops the assessment, or the initial trust value

reaches one of the predefined thresholds. Our estimation of

the device’s behavior through its uncertainty level and inter-

pretation approach predicts the trust values consistently with

respect to the response patterns with multi-level satisfaction.

V. CONCLUSION

This paper proposed a Dirichlet-based initial trust assess-

ment model for personal space IoT systems. The system relies

on the predefined multi-valued satisfaction level to judge the

device’s responses via a challenge-response process to collect

the evidence for the trust evaluation. The posterior Dirichlet

distribution is exploited as the mathematical foundation for

measuring the uncertainty level in the device’s behavior. Then,

a trust interpretation approach is proposed to evaluate the

initial trust value. The experimental results show that our

proposed trust assessment model can consistently measure the

trust degree of the device with various responses’ patterns.

For future work, we plan to investigate the challenge-response

mechanism design considering multi-level of the system’s sat-

isfaction for a comprehensive initial trust assessment model.
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