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DIRICHLET FINITE SOLUTIONS OF 4u=Pu
ON OPEN RIEMANN SURFACES*

By Mitsuru NAKAI

Consider a second order differential P(z)dxdy (z=xz+1iy) on an open Riemann
surface R such that P(z) is a nonnegative continuously differentiable function of a
local parameter 2z, and the corresponding second order self-adjoint elliptic partial
differential equation

(1) Adu(z)=P(2)u(z) (P(2)=0)

on R where du(z)dzdy=d+du(z). We are interested in solutions # of (1) with finite
Dirichlet integrals [rduAxdu. The main result of this paper is the following

THEOREM. If there exists a nonconstant Dirichlet finite solution of (1) on R,
then therve exists a nonconstant bounded Dirichlet finite solution of (1) on R.

In no. 1 we will give an account of the background of the theorem. After
establishing several auxiliary results in nos. 2-5, a general theorem will be proved
in no. 6; from this the main result will follow. In no. 7 a sufficient condition is
given for the space of bounded Dirichlet finite solutions to be isomorphic to the
space of bounded Dirichlet finite harmonic functions. This isomorphism, together
with auxiliary results in nos. 8 and 9, is used in no. 10 to deduce a criterion for
a Riemann surface not to carry any Dirichlet finite solution of (1).

1. Background of the theorem. By a solution #(z) of the equation (1) on an
open subset w of R we mean a real-valued C? function satisfying (1) on o. We
denote by P(R) the space of solutions of (1) on R and we also consider its sub-
space PX(R) with a certain property X. For P=0 we use the traditional notation
H(R) and HX(R) instead of O(R) and OX(R). Let ©px be the set of pairs (R, P)
such that PX(R) reduces to constants. Instead of (R, P)e ©px we simply write
Re©@px if P is well understood. As for X we let B stand for boundedness, D for
the finiteness of the Dirichlet integral Dg(u)=[rduA*du, and E for the finiteness
of the energy integral Er(u)=Dg(u)+ fr Pu*dzdy; we also consider combinations
of these properties. It has been known that

(2) Oe¢EOreEOPrpC OprepC Orr= 0O pPaE)
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where Q¢ is class of pairs (R, P) such that there exists no harmonic Green’s
function on R.

This type of classification theory of Riemann surfaces was initiated by Ozawa
[9], who proved that O¢EOQprsC Oprr=0Oppe. The most interesting result of
Ozawa is O pp=QOpr for Px0 with [pP(2)dxdy<co. Unrestricted existence of
the Green's function of (1) for every (R, P) with Px0, established by Myrberg [4],
eliminated the need to consider the nonexistence of positive solutions for Px0.
The relations @ rsC O prpC @ prspC O pr Were obtained partly by Royden [10] and
partly by [7]. The strictness of the inclusion @pzC @pp (P%0) was only recently
obtained by Glasner-Katz-Naikai [2].

The open problems in this context are thus, to prove or disprove the strict-
ness of the inclusions @ppC Oprsp and OpspC Opr. The theorem stated in the
introduction settles one of these:V

(3) O rp= 0 raD.

The relation (3) may also be viewed as a generalization of the Virtanen
identity [12] Qup=Qmsp. A straightforward extension of this identity is of
course O pr= O ppr Since the energy integral E(x) for du=pu plays the same role
as the Dirichlet integral D(x) for the harmonic case 4d#=0. In this sense the
proof for (3) requires a new approach and therefore (3) may be considered as a
nontrivial extension of the Virtanen identity.

The theorem stated in the introduction was announced in [8] in which the
use of the compactification theory for its proof was suggested. It has the ad-
vantage of giving a clearer geometric insight to the result. However, to avoid
rather heavy machinery, we will give a direct analytic proof.

Every result in this paper is obviously valid if R is replaced by a noncompact
Riemannian manifold of arbitrary dimension =2.

2. Weak Dirichlet principle. As already mentioned the Dirichlet principle is
the basic tool for the study of classes HD and PE. It appears that the class PD
suffers from the lack of such a tool. However the following weaker version of
the Dirichlet principle proves to be useful. This and also the result in no. 3 were
already obtained in our earlier paper [7] but for the sake of completeness we in-
clude them here.

Let 2 be a regular subregion of R, and &, the class of nonnegative Dirichlet
finite subsolutions » of (1) on 2 with continuous boundary values ¢ at 92. Here
an upper (resp. lower) semicontinuous function » on 2 is a subsolution (resp.
supersolution) of (1) on £ if there exists a parametric disk |z]<1 for each point
in Q such that #=v (resp. #=v) on |z|=7 (0<r<1) implies #=v (resp. #=v) on
|z]<r for every r and every solution # of (1) on |z|<7 with a continuous exten-

1) After the completion of the present work the author found that ({|z|<1}, (1—[2])"1)
€Opre—Oprap. (The proof is not too simple as the example appears. See Bull. Amer. Math.
Soc. 77 (1971), 527-530.) Thus the classification problem in this context is completely settled.
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sion to |z|=r (for fundamental properties of sub- and supersolutions, we refer the
reader to e.g. Myrberg [5]).

The weak Dirichlet principle reads: There exists a unique function u in the
class F,N PBD(Q) such that

(4) Dg(u)=n;1én Do().

The proof is trivial. In fact, there is one and only one function # in &,
NPBD(2). By the Dirichlet (or energy) principle,

Eo(u)=Eo(v)
for every veF, Therefore

Do) =Dale)+\ P~ dsdy.
2
Since #=v=0, we deduce (4).
3. The Riesz decomposition. Let #ePD(R) (resp. PBD(R)). We shall show
that there exist solutions #* and #~ in PD(R) (resp. PBD(R)) such that
(5) u=utr—u-, u*=0, # =0

on R, i.e. PD(R) (resp. PBD(R)) admits the Riesz decomposition.

For the proof, set »(z)=max (#(z), 0). It is a Dirichlet finite subsolution on R.
Let 2 be a regular subregion of R. Denote by P (resp. H?) the solution of (1)
(resp. 4u=0) on 2 with continuous boundary values v at 02. Clearly

on . It is also obvious that

on 2 for Qc@’. Since limgo. g H7 exists (cf. e.g. Sario-Nakai [11]), we conclude
that P¥=Ilim,., Py exists and is a solution of (1) on R. By the weak Dirichlet
principle, Dy(P7)=Dg(v). The Fatou lemma yields Dr(P¥) =Dg(w)<co. Therefore
the relations #*=PF=0 and #~=PF—u=0 establish the desired decomposition.

4. An integral representation. Let 2 be a regular subregion of R and «
eP(2)NCYQ2). Then the following identity is valid:

(6) u(@)=H @) == | Gole, OPQu) dedy

for zef, where {=£&+iy and Go is the harmonic Green’s function on Q2. If #
€ P(R), then the transition from this to the limit

(7) (e) = HHE) —5 SRGR@, OPQu() dedy
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is permissible provided HF=Ilim,., H; exists, the harmonic Green’s function Gz
on R exists, and Gz(z, Qu(l) is P({)dédy-integrable. This is the case, for example,
when ue PD(R) for R¢(Q pp.

To prove (6), take a parametric disk B about z with radius ¢>0 such that
Bc®Q. By Green’s formula,

SQ_E (@) — Hi (©)4:Ga(z, ) —Ga(z, ) de(w(C)— Hi (C)] dédy

=S 1)~ B2 O)dGalz, O = Gale, Qdlul@)— HEO).
On letting ¢—0, we deduce
S,,G”<z’ O deu(C) dedy= —2n((z)— HE ().

Since 4u()=PQu(£), we obtain (6).

We next prove that (7) is valid for #ePD(R) for RéOpp. In this case, (2)
assures that R¢©@¢. By the Riesz decomposition, we may assume that #=0 on R.
By Dg(u)<co, we have the convergence HF(z)=lim,.p H2(z) (cf. e.g. [11]). Since
the integrand of the integral in (6) is nonnegative for every 2, by the Lebesgue-
Fatou theorem we deduce (7).

5. The Green energy. Again let e P(2)NCY(2) for a regular subregion 2 of
R. Then

(8) Do (u)=Dao(Hy) +2i7r Saxg Ga(z, Qu(2)u(C) P(2) P(C) dxdydidy.
If ue P(R), then

(9) Dr(u)=Dgr(HF)+ 21; SRXRGR(Z, Ou(2)u(C) P(2)P(() dxdydédn=oo

provided the integral is definite. This is the case, for example, when uePD(R).
For brevity we will write

G u2>R=2in SRGR<z, Oen(2)us(C) P(2) P(Q) ddydsdy

whenever the integral is meaningful. This quantity is referred to as the (Green)
mutual energy of #; and #, with respect to the density P. The (Green) energy
ll||z of u is then given by ||u||z=<%, #pr. The fact that <{w, u)r=0 is equivalent
to the Dirichlet principle Dg(#)=Dr(HE).

To prove (8), let

go(2)= 217890@:, OPQu(C) dedy.

By the Stokes formula, Do(H,7, go)=[adH,] N*dgo=0. Therefore
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Dy(uy=D (H?)+Dy(90)-

What remains to be shown is D,(g,)=<%, up,. From (6) it follows that 4g,
=4(H}—u)=—4du=—Pu. By Green’s formula and the Fubini Theorem, we
infer that

Da(ga)=— Sggn(Z)Azqn(z) dzdy

- Sg [~21—ﬂ Sg Gz, OPOU) dfdr;]P(z)u(z) dady

= <uy u) Re

The identity (9) is a consequence of (8) for all admissible #. We prove, in
particular, that (9) is valid for wePD(R). First suppose #=0. Then since the
integrand is nonnegative, the Lebesgue-Fatou theorem vyields (9). If # changes
sign on R, then let #=wu*—u- be the Riesz decomposition of #. Since u*
+u-ePD(R),

Dr(u*+u)=Dr(HE%+y=-)+<ut+u~, ut +u=Hp< co.

Therefore {|u|, |#|)p={u*+u-, u++u). The Lebesgue convergence theorem per-
mits the transition from (8) to (9) as 2 —R.

6. The main theorem. We shall study the relation between the class PD(R)
and its subclass PBD(R). The class PBD(R) is dense in PD(R):

THEOREM 1. For any u in PD(R) there exists a sequence {v,} in PBD(R) such
that supg |v,|=min (n, supg |#|), {v.} converges to w wuniformly on each compact
subset of R, and lim, Dp(u—v,)=0. If, moreover, u is nonnegative, then {v,} can
be chosen mnomdecreasing.

Proof. Suppose there exists a nonconstant # in PD(R). First we assume that
#>0 on R. For an arbitrary fixed positive integer #, the function

un(2)= (N n)(z)=min (u(2), n)
is a supersolution of (1) on R. Clearly

(10) D g(tn) < oo.

By nos. 4 and 5, we have

a u(e)=HE@ = 5= Gales QuOP() dedy
T JR
for every zeR and also

12) Dat)=Da(HE) + Zl—nSRXRGR(z, Du(2)u(©)P()P) dadydédy< co.
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Let 2 be a regular subregion of R and v,,=Pj5,. Since u, is a supersolution
of (1), we see that

on Q for RQcQ’. Therefore
v,(2)=1im v,0(2)
2-R

exists, v,€ P(R), and 0=v,=<u, on R.
From (7) it follows that

1
(13) o) =H 5 (2) =5~ | Gule, DoaalOPQ)ddy
for every zeR. Here H? (2)=limg_q H}, ,(2) is used. Since
0=G(a Oons =Gtz Va0 Gz, Oud)

and by (11) the function Gg(z, Qu() is P(()d&dy-integrable, we can apply the
Lebesgue convergence theorem to (13) to conclude that
1
(14 0@ =n(d) =5\ Gale, QonOPQ)didy
for zeR. Here
(15) hy=HEAnecHBD(R).

This follows from the fact that, because of (10), (11) is nothing but the harmonic
decomposition of # with the harmonic projection rnzu=HE, and that zz(zNn)
=(zzu) An (see [11]). The symbol A stands for the lattice meet in the vector lattice
HD(R). We only have to observe that nz(¢N#n)=nru,=limg., H3. .

By Gzr(z, Du(2)u(Q)=Gr(2, {va(2)v,(L), and relations (12), (9), we see that

1
(16) DR<vn>=DR<HfAn>+§;SR Grlz, Ora(&0u(Q) P@P(Q) dadydedy<co.
X
Thus we have shown that v,€ PBD(R).
Since 0=0,9=vny1p=<w%, we see that 0=v,=v,.,=# on R and consequently
v(z)=1im,, v,(2) exists on R, ve P(R), and 0=<v=# on R. In view of

an Lim [(72.(2) — (H An)(2)) + Dr(HE — HE Am)]=0

(see [11]), (11), and 0=v=wu, we can apply the Lebesgue convergence theorem to
(14) to deduce

18) o) =@~ 5= | Gale, Q0O PO ddy

for ze R. The subtraction of (18) from (11) gives
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19) u@ =) =—5 | Gate, OWO-0) PO dedy

T

for zeR. The left-hand side of (19) is nonnegative while the right-hand side is
nonpositive. Therefore we obtain #=» on R and a fortiori

(20) u(2)=lim 2n(2)
on R increasingly. The convergence is uniform on each compact subset on R.
By no. 5, (11), and (14), we have
Dr(u—v,) =Dy (HE—HEAN) +{t— 0y, —Vn) 5.
Since 0<u—v,<u on R, the Lebesgue convergence theorem yields

1) lim Dg(u—v,)=0.

Next suppose #€ PD(R) changes sign on R. By the Riesz decomposition, there
exists u;€ PD(R) (j=1, 2) such that #,>0 and w=u,—u, on R. Let {v,,}5-1 be the
sequence in PBD(R) obtained as above for #,. Then v,=0v:,—v:€ PBD(R) satisfies
(20). Since Dg(tt—0,)*"*=Dg(th1—010)*"*+ Dr(ths—02,)""%, (21) is also satisfied.

The proof is herewith complete.

The theorem stated in the introduction is an immediate consequence of Theo-
rem 1. It is also clear that

O prp= 0O pap-

7. Isomorphisms. We shall next study the relation between PBD(R) and
HBD(R). A vector space isomorphism T of PBD(R) onto HBD(R) will be referred
to as the canonical isomorphism if Tu—wu is a potential, i.e. a superharmonic func-
tion on R whose greatest harmonic minorant is zero, for every # in PBD(R) with
#=0 on R. This means that “«=7Tu" on the ideal boundary of R in the intuitive
sense. By virtue of the Riesz representation theorem of superharmonic functions
and the Riesz decomposition of PBD(R), the canonical isomorphism 7' must have
the form

1
(22 Tu=ut 5| Gate, Qu PO dedy
T Jr
for every ue PBD(R) (see (7)). We shall prove:
THEOREM 2. If the pair (R, P) satisfies
23) SRXRGR(Z, 0)P(2)P() dadydidy< oo,

then there exists a canonical isomorphism of PBD(R) onto HBD(R).

Proof. Under the assumption (23), the function T% in (22) can be always de-
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fined for every # in PBD(R). By (7) and (9) we infer that Tue HBD(R). Clearly T
defines a vector space homomorphism of PBD(R) into HBD(R). We shall see that T
is injective. Suppose T#=0 for some # in PBD(R). Observe that, since |#| is a
nonnegative subsolution of (1), |#| is subharmonic. From T#=0 it follows that

1
0=lu=5- | Galr, OIuOIPE)deds,
T Jr
Since the subharmonic function |#| is dominated by the potential

1
) SRGR<-, Olu()| PE)dedy

on R, we deduce that |#|=0, i.e. #=0. Therefore T#=0 implies that #=0.

What remains to be shown is the surjectiveness of 7. Let % be in HBD(R).
We wish to find a # in PBD(R) such that Tu=#hA. Since HBD(R) also admits the
Riesz decomposition, it suffices to consider the case 2>0 on R. For any regular
subregion 2 of R, (6) implies that

29 2@ =) -5 | Gale, DBEOPE dedy

Since 0=P?=F?=<h on 2 for 2’22, u(z)=lim .z P?(z) exists and belongs to
PB(R). By (23) we can apply the Lebesgue convergence theorem to (24) to
conclude

25) u@)=he)—5= | Gale, QuOPQ) dsdy

Let c=supgr/k. From (9) it follows that
Dgr(u)=Dg(h)+ {u, upr =< Dg(k)+c*(1, L)5.

Since (23) is nothing but <1, 1>r<oco, we conclude that #e PBD(R). By (25), we
obtain Tu=h.
The proof of Theorem 2 is herewith complete.

We already know (cf. [6], also Maeda [3]) that the weaker condition
(26) \, Gate, P dedy<eo
for one and hence for all ze R assures the existence of the canonical isomorphism
of PB(R) onto HB(R).
It is also known (Royden [10], Glasner-Katz [1]) that the condition
@0 SRP(C) dedn< oo

asssures the existence of the canonical isomorphism of PBE(R) onto HBD(R). In
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this case, PBD(R)=PBE(R).

8. Relative classes. Let S be a subregion of R whose relative boundary oS
consists of regular points for the harmonic Dirichlet problem on S. We denote by
PX(S, 0S) the subclass of PX(S) consisting of functions # vanishing continuously
on dS. As a counterpart of Theorem 2 we obtain the follwing

THEOREM 3. If the pair (S, P) satisfies

(28) S s Gs(z, QP (2)P() dxdydédn< oo,

then the canonical isomorphism

(29) Tou= u+LS Gs(-, QuQ P dedy

of PBD(S) onto HBD(S) maps PBD(S, dS) onto HBD(S, 3S).

Proof. Let Q be a regular subregion of R such that QNS is connected. By
(7) we obtain

o

1

(30) o =ut 5= o, QuOPQ dsdy
Sne

on 2NS for xe PBD(S)NC(S). In view of (28)

hmg Gl QuQ)P(Q) dédy= SGS(',C)M(C)P(C)dfdﬁ-

2-R

Thus (29) and (30) imply

Tsu=Ilim H5"?
2-R

on S. Since dS consists of regular points for S, H§"? has continuous boundary
values # on (0S)N 2 and a fortiori Ts# has continuous boundary values # on 9S.
Therefore we deduce that

Ts(PBD(S, 9S))c HBD(S, 0S).

Conversely let e HBD(S, 0S). There is a unique #€ PBD(S) with Tu=h. We
assert that #e PBD(S, 9S). Since HBD(S, 9S) admits the Riesz decomposition ([11]),
we may assume that 2Z>0 on S. Again by (7)

1
h=PSat S Gsnal-, OPS™ Q) PE) dédn.
T Jsne
Since {P5"9}, is decreasing, it converges to a solution ve PBD(R). We infer that

/z-—v-l———S Gs(+, DO P(Q) dedy,
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because of (28), (31), the Lebesgue convergence theorem, and (9). Therefore Tu
=Tv implies that #=v=0. A fortiori 0=«#=7T#% on S which in turn implies that
ue PBD(S, 3S).

The proof is herewith complete.

As a counterpart of (26) we conclude that the condition
3D) [, 6se. 0P dt <00

for one and hence for all zeS is sufficient for the existence of the canonical iso-
morphism of PB(S, 3S) onto HB(S, 0S) (cf. [6], also Maeda [3]).
As a counterpart of (27) it is known (Royden [10], Glasner-Katz [1]) that the

condition

(32) Ssp@ dedy<oo

assures the existence of the canonical isomorphism of PBE(S, 6S) onto HBD(S, 8S).
Obviously PBD(S, 0S)=PBE(S, 0S) under the condition (32).

9. Canonical extension. Let Q be a regular subregion of R. We extend
uePB(S, 0S) to R by #=0 on R—S, and maintain:

(33) Apu=lim P2

Q<R

exists and 2pue PB(R). This is clear for #>0, and the Riesz decomposition of
PB(S, 0S) implies it for every uePB(S,3S). Clearly ir is a linear mapping of
PB(S, 6S) into PB(R) with
(34) APUZU
for u=z0. We call 2» the canonical extension. For P=0 we denote it by 1 in-
stead of 1.

THEOREM 4. The canonical extension of a Dirichlet finite function is again
Dirichlet finite:
(35) 2p(PBD(S, 6S))c PBD(R).

Proof. Let 2 be a regular subregion. Set »;=max (%, 0) and v,=max (—u, 0)
pointwise on R for #ePBD(S,0S), where # is extended to R by #=0 on R—S.

Observe that »; and v, are nonnegative subsolutions of (1) on R. The sequence
{P2}, is increasing and bounded. Therefore

#,=lim Pg,
2-R

exists on R and belongs to PB(R). By the weak Dirichlet principle,

Do(Pr) = Do(v:) =D g(16) < Dr(u)= Ds(w).
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By the Fatou theorem, we conclude that Dgr(w;)<Dsg(u), i.e. u;e PBD(R) (i=1, 2).
Since

=P4— P,

we deduce that Apw=wu,—u.€ PBD(R).
This completes the proof.

By using the energy principle instead of the weak Dirichlet principle, the
same proof is valid for

(36) 2p(PBE(S, 0S))c PBE(R).
In passing we remark that
37 Tipt=2gTu
for every uePX(S,dS) (X=B, BD, BE). We shall, however, not make use of

this relation.

10. One-domain criterions. We denote by S©@,x the class of bordered Rie-
mann surfaces (S, 3S) for which HX(S, 3S)={0} (cf. [11]). We shall prove the
following one-domain criterion for @ pp= @ rsp:

THEOREM 5. A pair (R, P) does not belong to O pp if and only if there exists
a subregion S of R with regular relative boundary 0S such that (S, 3S)¢SO up and
(S, P) satisfies (28).

Proof. Suppose (R, P)¢O@pp. There exists a nonconstant function » in PD(R).
We may assume that there exists a constant ¢>0 such that Sa.={z€ R|v(2) >2¢} =¥,
Let S be a subregion of R such that ScS,, S contains a component of S,., and §S
consists of a countable number of disjoint C' arcs. Take a regular subregion Q
of R such that SN R is connected. Let v,=min (v, 2). Clearly

VEHFU=HF" (2CQ2),  Dgao(H5"?)=Dgno(v)=Dxr().
Consequently 2=lim,,, H5"? exists on S and belongs to HD(S). Similarly
0=HSn?=2, Dsno(H5"?)=Dsao00) =Dy o(0) = Dg(v).

Therefore hy=lim,_., H$"? exists on S and belongs to HI(S). Since /& and /7, have
continuous boundary values v on 3S, u=~A—h,c HD(S, 3S). Observe that

u(2) =N(2)~ho(2) =0v(2) — 26 > 2 — 2 =0

for zeSN S... Therefore (S, 0S)¢SO up.
By (6) and (7) we obtain

h_ig Gs(» OVQPQ) dedy
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and then deduce by (9) that Ds(v)=<», v)s. Since »>¢ on S,
1, Ds=eXv, vps=c2Ds(v) <oo.

This shows that (S, P) satisfies (28).

Conversely suppose that there exists a subregion S of R with regular relative
boundary aS such that (S, 0S)¢SOxp and (S, P) satisfies (28). By Theorem 3,
PBD(S, 0S) is isomorphic to HBD(S, 8S). Since HBD(S, 3S) is dense in HD(S, 8S)
with respect to Ds(-) (see e.g. [11]), (S, 0S)éSOwxp implies that HBD(S, 8S)={0}.
A fortiori PBD(S, 0S)={0}.

Let #e PBD(S, 0S). Set v,=max (%, 0) and v.=max (—#, 0) pointwise on S.
Take a regular subregion 2 of R such that SN is connected. Since »; is a non-
negative subsolution on S, we see that {PS5"?}, is bounded and increasing. Thus
w;=limg .5 P3"? exists on S and belongs to PB(S,3S). By the weak Dirichlet
principle, ;€ PBD(S, 8S) and #=wu,—u.. In view of this we can assume that
u>0 on S.

By (34) and (35), Ap##>0 and belongs to PBD(R)c PD(R). We conclude that
(R, P)¢0Orpp.

The proof of Theorem 5 is herewith complete.

By using (27), (32), (36), and the energy principle, we can prove by the same
argument as above that (R, P)¢Orr if and only if there exists a subregion S of R
with regular relative boundary 3S such that (S, 3S)&SQup and (S, P) satisfies (32).
This is a theorem of Glasner and Katz [1], the one-domain criterion for ®pz
=Opraz.

The one-domain criterion for ©pp reads as follows: (R, P)e®pp if and only
if there exists a subvegion S of R with rvegular relative boundory 0S such that
(S, 0S)6SO up and (S, P) satisfies (31). The proof is clear, in view of (26) and (31).
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