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DIRICHLET FINITE SOLUTIONS OF Δu^Pu

ON OPEN RIEMANN SURFACES*

BY MITSURU NAKAI

Consider a second order differential P(z)dxdy (z=x+iy) on an open Riemann
surface R such that P(z) is a nonnegative continuously differentiable function of a
local parameter z, and the corresponding second order self-adjoint elliptic partial
differential equation

(1) Ju(z)=P(z)u(z) (P(*)^0)

on R where Δu(z)dxdy=d*du(z). We are interested in solutions u of (1) with finite
Dirichlet integrals jRduΛ*du. The main result of this paper is the following

THEOREM. If there exists a nonconstant Dirichlet finite solution of (1) on R,
then there exists a nonconstant bounded Dirichlet finite solution of (1) on R.

In no. 1 we will give an account of the background of the theorem. After
establishing several auxiliary results in nos. 2-5, a general theorem will be proved
in no. 6; from this the main result will follow. In no. 7 a sufficient condition is
given for the space of bounded Dirichlet finite solutions to be isomorphic to the
space of bounded Dirichlet finite harmonic functions. This isomorphism, together
with auxiliary results in nos. 8 and 9, is used in no. 10 to deduce a criterion for
a Riemann surface not to carry any Dirichlet finite solution of (1).

1. Background of the theorem. By a solution u(z) of the equation (1) on an
open subset ω of R we mean a real-valued C2 function satisfying (1) on ω. We
denote by P(R) the space of solutions of (1) on R and we also consider its sub-
space PX{R) with a certain property X. For P=0 we use the traditional notation
H(R) and HX(R) instead of O(R) and OX(R). Let QPX be the set of pairs (7?, P)
such that PX{R) reduces to constants. Instead of (R, P)GOPX we simply write
RZQPX if P is well understood. As for X we let B stand for boundedness, D for
the finiteness of the Dirichlet integral DR(u) — SRduΛ*du, and E for the finiteness
of the energy integral ER(u)=DR(u) + fRPu2dxdy; we also consider combinations
of these properties. It has been known that

(2) OG

Received November 9, 1970.
* Supported by the U. S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-

G20, UCLA.

385



386 MITSURU NAKAI

where OG is class of pairs (R, P) such that there exists no harmonic Green's
function on R.

This type of classification theory of Riemann surfaces was initiated by Ozawa
[9], who proved that 0G^0PB^0PE=0PBE- The most interesting result of
Ozawa is OPB=OPE for P^ΞO with SRP(z)dxdy<oo. Unrestricted existence of
the Green's function of (1) for every (R, P) with P^O, established by Myrberg [4],
eliminated the need to consider the nonexistence of positive solutions for P=£θ.
The relations OPBCIOPD^OPBD^OPE were obtained partly by Royden [10] and
partly by [7]. The strictness of the inclusion OPB^OPD (P^O) was only recently
obtained by Glasner-Katz-Naikai [2].

The open problems in this context are thus, to prove or disprove the strict-
ness of the inclusions OPΌCOPBD and OPBDCOPE- The theorem stated in the
introduction settles one of these :1}

(3) QPD=OPBD.

The relation (3) may also be viewed as a generalization of the Virtanen
identity [12] 0HD=0HBD- A straightforward extension of this identity is of
course OPE=QPBE since the energy integral E(u) for Δu=pu plays the same role
as the Dirichlet integral D(u) for the harmonic case Ju=0. In this sense the
proof for (3) requires a new approach and therefore (3) may be considered as a
nontrivial extension of the Virtanen identity.

The theorem stated in the introduction was announced in [8] in which the
use of the compactification theory for its proof was suggested. It has the ad-
vantage of giving a clearer geometric insight to the result. However, to avoid
rather heavy machinery, we will give a direct analytic proof.

Every result in this paper is obviously valid if R is replaced by a noncompact
Riemannian manifold of arbitrary dimension ^ 2 .

2. Weak Dirichlet principle. As already mentioned the Dirichlet principle is
the basic tool for the study of classes HD and PE. It appears that the class PD
suffers from the lack of such a tool. However the following weaker version of
the Dirichlet principle proves to be useful. This and also the result in no. 3 were
already obtained in our earlier paper [7] but for the sake of completeness we in-
clude them here.

Let Ω be a regular subregion of R, and 3 ^ the class of nonnegative Dirichlet
finite subsolutions v of (1) on Ω with continuous boundary values φ at dΩ. Here
an upper (resp. lower) semicontinuous function v on Ω is a subsolution (resp.
supersolution) of (1) on Ω if there exists a parametric disk | z | < l for each point
in Ω such that u^v (resp. u^v) on \z\=r (0<r<l) implies u^v (resp. u^v) on
\z\<r for every r and every solution u of (1) on \z\<r with a continuous exten-

1) After the completion of the present work the author found that ({|z(<l}, (1 — (^l)"1)
SOPE—QPBD. (The proof is not too simple as the example appears. See Bull. Amer. Math.
Soc. 77 (1971), 527-530.) Thus the classification problem in thjs context is completely settled.
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sion to \z\^kr (for fundamental properties of sub- and supersolutions, we refer the
reader to e.g. Myrberg [5]).

The weak Dirichlet principle reads: There exists a unique function u in the
class &φnPBD(Ω) such that

( 4 )

The proof is trivial. In fact, there is one and only one function u in SFΨ

Γ)PBD(Ω). By the Dirichlet (or energy) principle,

for every #€2> Therefore

DΩ{u)^DΩ(v)+[ P(v2-u2)dxdy.
JΩ

Since u^v^O, we deduce (4).

3. The Riesz decomposition. Let UGPD(R) (resp. PBD(R)). We shall show
that there exist solutions u+ and vr in PD(R) (resp. PBD(R)) such that

(5) u=u+-u~, u+^0, u-^0

on R, i.e. PD(R) (resp. PBD(R)) admits the Riesz decomposition.
For the proof, set v(z) = max(u(z), 0). It is a Dirichlet finite subsolution on R.

Let Ω be a regular subregion of R. Denote by P ξ (resp. HS) the solution of (1)
(resp. Ju=0) on Ω with continuous boundary values v at dΩ. Clearly

on Ω. It is also obvious that

on Ω for ΩαΩ'. Since \im Q-RHS exists (cf. e.g. Sario-Nakai [11]), we conclude
that Pξ=\imΩ^RPS exists and is a solution of (1) on R. By the weak Dirichlet
principle, DΩ(Pξ)^DR(v). The Fatou lemma yields DR(Pξ)^DR(v)<oo. Therefore
the relations u4~=P?^0 and u~=P$ — u^0 establish the desired decomposition.

4. An integral representation. Let Ω be a regular subregion of R and u
€P(Ω)nC\Ω). Then the following identity is valid:

(6) u(z)=H°(z)-^oGo(z, ζ)P(ζ)u(ζ)dξdv

for ZGΩ, where ζ—ξΛ-iη and GΩ is the harmonic Green's function on Ω. If u
€P(i?), then the transition from this to the limit

(7) u(z)=H*(z)~±- [ GR(z, ζ)P(ζ)u(Qdξdη
ώπ JR
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is permissible provided H£=\imQ+RH£ exists, the harmonic Green's function GA
on R exists, and GR(z> ζ)u(ζ) is P(ζ) Jfrfy-integrable. This is the case, for example,
when UGPD(R) for R$OPD

To prove (6), take a parametric disk B about z with radius ε>0 such that
BaΩ. By Green's formula,

[ „ [(μ(Q-Ή(ζf)άζG0(z, Q-G f l(z, ζ)Jc(«(O-£ff(0)]dξdη
JΩ-B

[(u(ζ)-Hu

ΰ(0)*d,Go(z, ζ)-Ga(z, ζ)*dζ(u(Q-HuΩ(Q)]-

dB

On letting ε—>0, we deduce

GΩ(z, ζ)4«(ζ)dξdη = -2π(u(z)-H£(z)).

Since Jc«(ζ)=P(ζ)«(O, we obtain (6).
We next prove that (7) is valid for UGPD(R) for R$QPD. In this case, (2)

assures that R$QG By the Riesz decomposition, we may assume that u^O on R.
By DR(u) <OO, we have the convergence H^(z)=\imΩ^RHu(z) (cf. e.g. [11]). Since
the integrand of the integral in (6) is nonnegative for every Ω, by the Lebesgue-
Fatou theorem we deduce (7).

5. The Green energy. Again let usP(Ω)V[Cι(Ω) for a regular subregion Ω of
R. Then

(8) DΩ(U)=DΩ(H^)-\-~- f GQ(Z, ζ)u(z)u{ζ)P(z)P(ζ)dxdydξdη.

If ueP(R), then

(9) DR(U)=DR(Ξ*)+ ~ [ GR(z} ζ)u{z)u{ζ)P{z)P{ζ)dxdydζdr)^oo

provided the integral is definite. This is the case, for example, when uεPD(R).
For brevity we will write

^ \ 0ui(z)u2(ζ)P(z)P(ζ)dxdydξdv

whenever the integral is meaningful. This quantity is referred to as the (Green)
mutual energy of ux and u2 with respect to the density P. The (Green) energy
\\U\\R of u is then given by | | « | | Λ = < « , U}R. The fact that (uy U}R^0 is equivalent
to the Dirichlet principle DR{u)^DR(H£).

To prove (8), let

QΩ(Z) = ^

By the Stokes formula, DΩ(H°, gQ)=$QdH£Λ*dgQ=0. Therefore
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DΩ{u)=DΩ{H°)+DΩ(gΩ).

What remains to be shown is D0(g0) = <u, u}Ω. From (6) it follows that ΔgΩ

=Λ(H£—u)=:—du=—Pu. By Green's formula and the Fubini Theorem, we
infer that

= — \ QΩ{z)ΔzgΩ(z)dxdy
JΩ

The identity (9) is a consequence of (8) for all admissible u. We prove, in
particular, that (9) is valid for u^PD(R). First suppose u^O. Then since the
integrand is nonnegative, the Lebesgue-Fatou theorem yields (9). If u changes
sign on R, then let u=u+ — u~ be the Riesz decomposition of u. Since u+

+u-€PD(R),

DE(u++ur)=DR(H*++U-)+<u++u-, u++u~}R < oo.

Therefore <|«|, \u\yR^{u^Λ u~, uh-\-u~). The Lebesgue convergence theorem per-
mits the transition from (8) to (9) as Ω-+R.

6. The main theorem. We shall study the relation between the class PD{R)
and its subclass PBD(R). The class PBD(R) is dense in PD(R):

THEOREM 1. For any u in PD(R) there exists a sequence {vn} in PBD(R) such
that supi2|z;w|=min(w, supΛ |α |), {vn} converges to u uniformly on each compact
subset of R, and limnDR(u—vn)=0. If, moreover, u is nonnegative, then {vn} can
be chosen nondecreasing*

Proof. Suppose there exists a nonconstant u in PD(R). First we assume that
u>0 on R. For an arbitrary fixed positive integer n, the function

un(z) = (uf] ή){z) = min (u(z), n)

is a supersolution of (1) on R. Clearly

(10) DR(μn)<oo.

By nos. 4 and 5, we have

(11) U{Z) = H*(*)~ί- [ GR(Z, CMGΛQ dξdη

for every ZGR and also

(12) DR(u)=DR(H*)+±-[ GR(z, ζ)u(z)u(ζ)P(z)P(ζ)dxdydξdv<co.
6K JRXR
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Let Ω be a regular subregion of R and vn0=Pin. Since un is a supersolution
of (1), we see that

on Ω for β c β ' . Therefore

*;„(*) = li
Ω

exists, vn€P(R), and 0g^vn^un on i?.
From (7) it follows that

(13) vnΩ{z)=HΩ

Un{z)~^GΩ{zy QυnΩ(ζ)P(Qdξdv

for every zcR. Here # ^ z ) = limβ^β#;ζ f l(2:) is used. Since

and by (11) the function GR(z, CMC) is P(ζ) dξdψintegrable, we can apply the
Lebesgue convergence theorem to (13) to conclude that

(14) vn{z)=hn{z)-^\RGdfi, Qvn{ζ)P{Qdζdη

for ZGR. Here

(15) hn=H5ΛncHBD(R).

This follows from the fact that, because of (10), (11) is nothing but the harmonic
decomposition of u with the harmonic projection %RU—H% and that πR(uf]n)
— {πRu)/\n (see [11]). The symbol Λ stands for the lattice meet in the vector lattice
HD(R). We only have to observe that πR{uΓ\n)=πRUn=\imΩ^RHln.

By GR(Z, ζ)u(z)u(Q^GB(z, Qvn(z)vn&), and relations (12), (9), we see that

(16) DR{vn)=DR(HxAn) + 4- [ GR(z, ζ)vn(z)vn(ζ)P(z)P(Qdxdydξdv<oo.
67Γ JRXR

Thus we have shown that vnGPBD(R).
Since 0^vno^vn+lo^u, we see that 0^vn^vn+1^u on R and consequently

) = \imn-toovn(z) exists on R, vsP(R), and O^v^u on R. In view of

(17) lim [(Hu

R(z)-(Hu

RΛnXz))+DR(H«-H*Λn)]=O
n-*oo

(see [11]), (11), and O^v^u, we can apply the Lebesgue convergence theorem to
(14) to deduce

(18) V(Z) = H*(Z)-^RGR(Z, ζ)v(ζ)P(ζ)dξdv

for ZQR. The subtraction of (18) from (11) gives
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(19) u(z)-v(z)=—^^RGB(z, ζ)(u(ζ)-v(ζ))P(ζ)dξdv

for zeR. The left-hand side of (19) is nonnegative while the right-hand side is
nonpositive. Therefore we obtain u=v on R and a fortiori

(20) u(z) = limvn(z)
n-»oo

on R increasingly. The convergence is uniform on each compact subset on R.
By no. 5, (11), and (14), we have

DR(u - vn)=Dn(H% -H%Λn) + (u-vn,u- vn)R.

Since 0<u—vn<u on R, the Lebesgue convergence theorem yields

(21) limDΛ(«-*;„)=().
n—>oo

Next suppose UGPD(R) changes sign on R. By the Riesz decomposition, there
exists Uj€PD(R) ( i= l , 2) such that us>0 and u — Ux — u^ on R. Let {vJn}n=i be the
sequence in PBD(R) obtained as above for u3. Then vn=υln—v2n^PBD(R) satisfies
(20). Since D ^ - ^ ) 1 / 2 ^ D ^ i - y i M ) 1 / 2 + i ) ^ 2 - ^ ) 1 / 2 , (21) is also satisfied.

The proof is herewith complete.

The theorem stated in the introduction is an immediate consequence of Theo-
rem 1. It is also clear that

QPD= O PBD-

7. Isomorphisms. We shall next study the relation between PBD(R) and
HBD(R). A vector space isomorphism T of PBD(R) onto HBD(R) will be referred
to as the canonical isomorphism if Tu — u is a potential, i.e. a superharmonic func-
tion on R whose greatest harmonic minorant is zero, for every u in PBD(R) with
u^O on R. This means that "u=Tu" on the ideal boundary of R in the intuitive
sense. By virtue of the Riesz representation theorem of superharmonic functions
and the Riesz decomposition of PBD(R), the canonical isomorphism T must have
the form

(22) Tu=u+-^~ [ GΛ( , ζ)<QP{Qdξdη

Aπ JR

for every uePBD(R) (see (7)). We shall prove:

THEOREM 2. // the pair (R, P) satisfies

(23) ( GB(z, QP{Z)P(Q dxdydξdη < oo,
JRXR

then there exists a canonical isomorphism of PBD(R) onto HBD(R).

Proof. Under the assumption (23), the function Tu in (22) can be always de-
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ήned for every u in PBD(R). By (7) and (9) we infer that TueHBD(R). Clearly T
defines a vector space homomorphism of PBD(R) into HBD(R). We shall see that T
is injective. Suppose Tu = 0 for some u in PBD(R). Observe that, since \u\ is a
nonnegative subsolution of (1), \u\ is subharmonic. From Tu=Q it follows that

0^|«|^-f-ί GR(-,ζ)\u(ζ)\P(ζ)dξdv.

Since the subharmonic function |^| is dominated by the potential

T M GR(-,ζ)\u(ζ)\P(ζ)dξdvΛπ JR

on R, we deduce that |« |^0, i.e. u=0. Therefore Tu=0 implies that u=0.

What remains to be shown is the surjectiveness of T. Let h be in HBD{R).
We wish to find a u in PBD(R) such that Γ«=A. Since HBD(R) also admits the
Riesz decomposition, it suffices to consider the case h>0 on iv\ For any regular
subregion Ω of R, (6) implies that

(24) PH°W=h(z)-^QG0(z, QPh°(ΩP(ζ)dξdη.

Since O^Pf'^Ff^h on β for β 'Dβ, «(«) = lim β _ Λ PΛ 1 ^) exists and belongs to
PB(R). By (23) we can apply the Lebesgue convergence theorem to (24) to
conclude

(25) u(z)=h(z)-^ \RGR(Z, Qu{QP{Qdξdη.

Let c—svφRh. From (9) it follows that

Since (23) is nothing but <1, l>Λ<oo, we conclude that usPBD(R). By (25), we
obtain Tu=h.

The proof of Theorem 2 is herewith complete.

We already know (cf. [6], also Maeda [3]) that the weaker condition

(26)

for one and hence for all ZGR assures the existence of the canonical isomorphism
of PB(R) onto HB(R).

It is also known (Royden [10], Glasner-Katz [1]) that the condition

(27) C P(ζ)dξdv<oo
JR

asssures the existence of the canonical isomorphism of PBE(R) onto HBD(R). In
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this case, PBD(R)=PBE(R).

8. Relative classes. Let S be a subregion of R whose relative boundary dS
consists of regular points for the harmonic Dirichlet problem on S. We denote by
PX(S, dS) the subclass of PX(S) consisting of functions u vanishing continuously
on dS. As a counterpart of Theorem 2 we obtain the follwing

THEOREM 3. // the pair (S, P) satisfies

(28) [ Gs(z, QP(z)P{Qdxdydξdη<co9

Jsxs

then the canonical isomorphism

(29) Tsu = u+— ^ Gs( , ζ) «(ζ)P(ζ) dξdη

of PBD(S) onto HBD(S) maps PBD(S, dS) onto HBD(S, dS).

Proof. Let Ω be a regular subregion of R such that ΩΠS is connected. By
(7) we obtain

(30) H^Ω=u-h~ [ GsU', Qu(ζ)P{ζ)dξdη

on Ωf)S for UGPBD(S)Γ)C(S). In view of (28)

lim [ G8no(', ζ)u(ζ)P(ζ)dξdv= [ Gs(>, ζ)u(ζ)P(ζ)dξdv.

Thus (29) and (30) imply

on S. Since dS consists of regular points for S, H§,nΩ has continuous boundary
values u on (dS)f]Ω and a fortiori Tsu has continuous boundary values u on dS.
Therefore we deduce that

TS(PBD(S, dS))dHBD(S, dS).

Conversely let hzHBD{S, dS). There is a unique uePBD(S) with Tu=h. We
assert that uePBD(S, dS). Since HBD(S, dS) admits the Riesz decomposition ([11]),
we may assume that h>Q on S. Again by (7)

Since {P^nΩ}Ω is decreasing, it converges to a solution VGPBD(R). We infer that
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because of (28), (31), the Lebesgue convergence theorem, and (9). Therefore Tu
= Tv implies that u — v^Q. A fortiori O^u^Tu on S which in turn implies that
uzPBD(S, dS).

The proof is herewith complete.

As a counterpart of (26) we conclude that the condition

(31)

for one and hence for all ZGS is sufficient for the existence of the canonical iso-
morphism of PB(S, dS) onto HB(S, dS) (cf. [6], also Maeda [3]).

As a counterpart of (27) it is known (Royden [10], Glasner-Katz [1]) that the
condition

(32) [ P(ζ)dξdη<
Js

:oo
s

assures the existence of the canonical isomorphism of PBE(S, dS) onto HBD(S, dS).
Obviously PBD(S, 3S) = PBE(S, dS) under the condition (32).

9. Canonical extension. Let Ω be a regular subregion of R. We extend
uePB(S, dS) to R by u=0 on R-S, and maintain:

(33) λPu=\imP°

exists and XPUQPB(R). This is clear for u>0, and the Riesz decomposition of
PB(S, dS) implies it for every u€PB(S, 3S). Clearly λP is a linear mapping of
PB(S, dS) into PB{R) with

(34) λpu^u

for u^O. We call λP the canonical extension. For PΞΞO we denote it by λπ in-
stead of λ0.

THEOREM 4. The canonical extension of a Dirichlet finite function is again
Dirichlet finite:

(35) λP{PBD{Sy dS)) c PBD(R).

Proof. Let Ω be a regular subregion. Set vλ = m3X{u, 0) and #2 = max(—u, 0)
point wise on R for UQPBD(S, dS), where u is extended to R by u = 0 on R—S.
Observe that vλ and v2 are nonnegative subsolutions of (1) on R. The sequence
{PυiiΩ i s increasing and bounded. Therefore

Ω-*R

exists on R and belongs to PB{R). By the weak Dirichlet principle,

D0(P$^D0(vt) ^ DΩ(u) < Ddμ)=D8(μ).
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By the Fatou theorem, we conclude that DRiUi)^Ds(u), i.e. u^PBDiR) (i=l, 2).
Since

P Ω Γ)Ω UΩ
u — -Lvi jrυ2i

we deduce that λPu=u1—u2£PBD(R).
This completes the proof.

By using the energy principle instead of the weak Dirichlet principle, the
same proof is valid for

(36) λP(PBE(S, dS)) cPBE(R).

In passing we remark that

(37) TλPu=λHTu

for every u<=PX(S,dS) (X=B, BD, BE). We shall, however, not make use of
this relation.

10. One-domain criterions. We denote by SθΠχ the class of bordered Rie-
mann surfaces (S, dS) for which HX(S, ΘS) = {0] (c£. [11]). We shaίi prove the
following one-domain criterion for OPD=OPBD-

THEOREM 5. A pαir\R, P) does not belong to OPD if and only if there exists
a subregion S of R with regular relative boundary dS such that (S, dS)$SQHD and
(S, P) satisfies (28).

Proof. Suppose (R, P)$OPD> There exists a nonconstant function v in PD{R).
We may assume that there exists a constant ε>0 such that S2^{zsR\v(z)>2e}^\
Let S be a subregion of R such that ScS £ , S contains a component of S2ε, and dS
consists of a countable number of disjoint C1 arcs. Take a regular subregion Ω
of R such that Sf]R is connected. Let z;0 = min(z;, 2ε). Clearly

Consequently h=\imΩ+RHυ

Sί)Ω exists on S and belongs to HD(S). Similarly

Therefore ho=\ϊmΩ^RHv

s^Ω exists on S and belongs to HD(S). Since h and h have
continuous boundary values v on dS, u=h—hoςHD(S, dS). Observe that

u(z)=h(z)-ho(z)^v(z)-2e>2ε-2ε = O

for z€SnS2ε. Therefore (S,dS)$SQHD
By (6) and (7) we obtain
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and then deduce by (9) that Ds(v)^(v, v)s. Since v>ε on S,

This shows that (S, P) satisfies (28).

Conversely suppose that there exists a subregion S of R with regular relative
boundary dS such that (S, 3S)^S0HD and (S, P) satisfies (28). By Theorem 3,
P££>(S, dS) is isomorphic to #££>(S, dS). Since 22&D(S, dS) is dense in HD(St dS)
with respect to Ds( ) (see e.g. [11]), (S,dS)$SOiiD implies that HBD(S,dS)*{0}.
A fortiori P££>(S, dS)^{0}.

Let u€PBD(S,dS). Set #i = max(&, 0) and #2 = max(—u, 0) pointwise on S.
Take a regular subregion Ω of R such that SΓ)£? is connected. Since v% is a non-
negative subsolution on S, we see that {P^Ω\Ω is bounded and increasing. Thus
«i=lim f l-.ΛP4n f l exists on S and belongs to PB(S,dS). By the weak Dirichlet
principle, ui^PBD{Si dS) and u—Uι — u2> In view of this we can assume that
u>0 on S.

By (34) and (35), λPu>0 and belongs to PBD(R)aPD(R). We conclude that

(R,P)$OPD

The proof of Theorem 5 is herewith complete.

By using (27), (32), (36), and the energy principle, we can prove by the same
argument as above that (R, P)$QPE if and only if there exists a subregion S of R
with regular relative boundary dS such that (S, dS)$SQHD and (S, P) satisfies (32).
This is a theorem of Glasner and Katz [1], the one-domain criterion for OPE

= QPBE

The one-domain criterion for OPB reads as follows: (R, P)€OPB if and only
if there exists a subregion S of R with regular relative boundory dS such that
(S, dS)$SQHB and (S, P) satisfies (31). The proof is clear, in view of (26) and (31).
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