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Abstract

We provide sharp two-sided estimates on the Dirichlet heat kernel k1(t, x, y) for the Lapla-

cian in a ball. The result accurately describes the exponential behaviour of the kernel

for small times and significantly improves the qualitatively sharp results known so far.

As a consequence we obtain the full description of the kernel k1(t, x, y) in terms of its

global two-sided sharp estimates. Such precise estimates were possible to obtain due to the

enrichment of analytical methods with probabilistic tools.
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1 Introduction

Let n ≥ 1 and k(t, x, y) = (4πt)−n/2e−|x−y|2/4t be the global heat kernel for Laplacian

in Rn. We denote by k1(t, x, y) the heat kernel of the Dirichlet Laplacian in the unit ball

B(0, 1) = {x ∈ Rn : |x| < 1}. The main result of the paper is the following theorem pro-

viding sharp two-sided estimates of k1(t, x, y) for the whole range of the space parameters

x, y ∈ B(0, 1) and small time t .

Theorem 1 For every n ≥ 1 and T > 0 there exists constant C = C(n, T ) > 1 such that

1

C
h(t, x, y)k(t, x, y) ≤ k1(t, x, y) ≤ C h(t, x, y)k(t, x, y) (1.1)
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for every |x|, |y| < 1 and t < T , where

h(t, x, y) =
(

1 ∧
(1 − |x|)(1 − |y|)

t

)

+
(

1 ∧
(1 − |x|)|x − y|2

t

)(

1 ∧
(1 − |y|)|x − y|2

t

)

. (1.2)

The main novelty of this result is that it describes the exponential behaviour of the con-

sidered kernel for small time t . Any results reached so far (see e.g. Theorem 2.5 in [16], the

Davies-Zhang estimates described in details below or the heat kernel estimates on the gen-

eral metric spaces in Theorem 5.11 in [7]) were quantitatively sharp. It means that the time

variable was multiplied by different (usually unknown) constants in the upper and lower

bounds. The weakness of such estimates reveals when the quantity |x − y|2/t , appearing in

the exponent, gets large. The lower and upper bounds become then arbitrarily far away from

each other. In the presented result we removed this obstacle and the function k(t, x, y) (or

equivalently exp(−|x −y|2/4t)) appears in the unchanged form in upper and lower bounds.

Optimization of the constant in exponent required more precise study of boundary behaviour

of k1(t, x, y). It is characterized by the factor h(t, x, y), which, up to the authors’ knowl-

edge, has not appeared in the literature so far. Finally, such precise result was possible to

obtain due to application of mixture of probabilistic and analytical tools. Purely analytical

approaches resulted always in quantitatively sharp estimates.

The long-time behaviour (i.e. for t ≥ T , where T > 0 is fixed) of k1(t, x, y) can be

easily deduced from the general theory (see [3, 4]), i.e. there is a comparability between

k1(t, x, y) and

(1 − |x|)(1 − |y|)e−λ1t ,

for every |x|, |y| < 1 and t ≥ T , where λ1 stands for the first eigenvalue of −� on B(0, 1).

Note that this kind of result can be derived from the spectral series representation of the

kernel k1(t, x, y) in terms of the eigenfunctions and eigenvalues of the Laplacian in the

ball (see for example [8]), i.e. it can be shown that for large times t the first component

of the series dominates the others. However, this representation is ineffective for small t ,

when we have to deal with the cancellations of highly oscillating series. Combining the

long time behaviour result stated above together with Theorem 1 we easily obtain the global

sharp two-sided estimates. Due to the translation invariance and the scaling property of the

Laplacian in Rn, one can extend the result for any ball B(x0, r) with a radius r > 0 and

a center at x0 ∈ Rd . Denoting by kx0,r (t, x, y) the corresponding heat kernel, we get the

following result, which covers all discussed cases including also the large-time estimates.

Corollary 1 For every n ≥ 1, there exists constant C1 = C1(n) > 1 such that

1

C1

hr (t, x, y)

(1 ∧ (r2/t))(n+2)/2
k(t, x, y)e

− λ1 t

r2 ≤ kx0,r (t, x, y)

≤ C1
hr (t, x, y)

(1 ∧ (r2/t))(n+2)/2
k(t, x, y)e

− λ1 t

r2 ,

where hr (t, x, y) = h
(

t/r2, x/r, y/r
)

, i.e.

hr (t, x, y) =
(

1 ∧
δB(x)δB(y)

t

)

+
(

1 ∧
δB(x)|x − y|2

r t

) (

1 ∧
δB(y)|x − y|2

r t

)

.
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for every x, y ∈ B(x0, r) and t > 0. Here δB(z) denotes the distance from z to the boundary

of B(x0, r).

Studies on the behaviour of heat kernels related to various kinds of operators and domains

or manifolds have very long history and there is an enormous number of research papers on

this topic including many beautiful and general results (see, among others, [1, 2, 6, 11, 15,

18] and the references therein). On the other hand, it is difficult to imagine more classical

example than the Laplace operator in smooth bounded domain and a unit ball is definitely

the most basic example of such set. Nevertheless, such accurate result as in Theorem 1 has

not been known until now except the one dimensional case. More precisely, for n = 1 we

have B(0, 1) = (−1, 1) and the following estimates hold (see [13], Theorem 5.4)

k1(t, x, y) ≈
(

1∧
(x+1)(y+1)

t

) (

1∧
(1− x)(1 − y)

t

)

1
√

t
exp

(

−
(x−y)2

4t

)

, (1.3)

for every x, y ∈ (−1, 1) and t small enough. Note that the product of the two minimums

above is comparable to h(t, x, y). To see this we assume without loss of generality that

x ≤ y. Then for |x − y| ≥ 1/2 we have |x − y| ≈ 1, 1 − |x| ≈ 1 + x ≈ (1 + x)(1 + y) and

1−|y| ≈ 1−y ≈ (1−x)(1−y). Thus the right-hand side component in Eq. 1.2 dominates

the other one and consequently

h(t, x, y)≈
(

1∧
1−|x|

t

)(

1∧
1−|y|

t

)

≈
(

1∧
(1 + x)(1 + y)

t

)(

1∧
(1 − x)(1 − y)

t

)

.

In the remaining case |x − y| < 1/2 observe that the situation when x is close to −1 and

y is close to 1 is excluded. If both x and y are away from the boundary, h(t, x, y) and the

expression in Eq. 1.3 are comparable with 1. If x is close to −1 we have (1 + x)(1 + y) ≈
(1−|x|)(1−|y|) and (1−x)(1−y) ≈ 1. Since |x−y|2 ≤ |x−y| ≤ 1−|y| we conclude that

h(t, x, y) ≈ 1 ∧
(1 − |x|)(1 − |y|)

t
≈

(

1 ∧
(x + 1)(y + 1)

t

)(

1 ∧
(1 − x)(1 − y)

t

)

.

The case when y is close to 1 follows by symmetry. We emphasize that the one-dimensional

case is significantly less complicated than the multidimensional case n ≥ 2. First of all,

apart from the usual spectral representation, the representation in terms of the series of

differences of exponents is available (see formula (5.7) in Chapter X of [5]). Furthermore,

for n = 1 “being close to the boundary” just means “being close to −1 or 1”, which makes

the consideration much simpler.

To outline the context of Theorem 1 we recall the upper-bounds for k1(t, x, y) provided

by E. B. Davis in [3]. The result relates to much more general setting of bounded C1,1

domains, but limited only to the case of a unit centered ball it ensures existence of constants

c1, c2 > 0 and T > 0 such that

k1(t, x, y) ≤
[

(1 − |x|)(1 − |y|)
t

∧ 1

]

c1

td/2
exp

(

−c2
|x − y|2

t

)

for every x, y ∈ B(0, 1) and t < T . These bounds were complemented by Q. S. Zhang in

[17], who proved that for some c3, c4 > 0

k1(t, x, y) ≥
[

(1 − |x|)(1 − |y|)
t

∧ 1

]

c3

td/2
exp

(

−c4
|x − y|2

t

)

for every x, y ∈ B(0, 1) and t small enough. As a consequence, we obtain quantitatively

sharp estimates of k1(t, x, y). The obvious difference between the Davies-Zhang’s result

and the estimates given in Theorem 1 is that the latter accurately describes the exponential
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behaviour of k1(t, x, y), i.e. there are no different constants in the exponential factors in

the lower and upper bounds. According to [15] we expect that the exponential behaviour of

k1(t, x, y) for small t should be the same as in the case of the Gaussian kernel

k(t, x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

, t > 0, x, y ∈ Rn. (1.4)

However, as Theorem 1 shows, it is not possible to get c2 = c4 = 1/4 in the Davies-Zhang

estimates, since the sharp estimates require modification of the non-exponential terms and

appearance of the factor h(t, x, y) described above.

The heat kernel k1(t, x, y) has the very well-known probabilistic interpretation as the

transition probability density of the n-dimensional Brownian motion W = (Wt )t≥0 killed

when reaching the boundary of the ball. Thus, it can be expressed in terms of the Gauss

kernel k(t, x, y) and the distribution of the first hitting time τ1 = inf{t ≥ 0 : |Wt | = 1} and

the hitting place Wτ1
, i.e. the Hunt formula holds (see Eq. 2.4 below). On the other hand, the

density qx(t, z) = Ex[τ1 ∈ dt, Wτ1
∈ dz]/dtdz of the joint distribution of the first hitting

time and hitting place is a normal derivative of k1(t, x, y) (see Eq. 2.7) and consequently

Theorem 1 immediately leads to its sharp two-sided estimates. This extends estimates of the

exit time density (without its dependence on exit place) derived in [14] .

Corollary 2 For every T > 0 we have

qx(t, z) ≈
(

1 − |x|
t

+
|x − z|2

t

(

1 ∧
(1 − |x|)|x − z|2

t

))

k(t, x, z) (1.5)

whenever |x| < 1, |z| = 1 and t < T .

The main advantage of the Hunt formula compared to the series representation is the

simple fact that we represent the heat kernel as a difference of two non-negative expressions,

which is much simpler to deal with than with the series of oscillating components. This

approach has been successfully used in [12] to study the short time behaviour of the Fourier-

Bessel heat kernel. Since the Hunt formula is the starting point, we use several probabilistic

tools and ideas in the proof of the main result. However, some parts of the proof are purely

analytical. In both approaches we try to use as much geometric arguments as possible to

make the proof simpler and applicable in other contexts and potential extensions.

Finally, the result stated in Theorem 1 should be discussed in the context of the famous

Mark Kac’s principle of not feeling the boundary stated in [9]. Restricting the result to the

case of the ball, Kac showed that k1(t, x, y) ∼ 1/(4πt) exp(−|x − y|2/(4t)) (in R2) as

t → 0, where x, y are fixed, i.e. the behaviour of k1(t, x, y) and k(t, x, y) are the same in

this sense, when t goes to zero. He described this phenomenon in his famous paper [10] by

saying

As the Brownian particles begin to diffuse they are not aware, so to speak, of the

disaster that awaits them when they reach the boundary

Following this poetic language, we can now say that the Brownian particles do not have

death premonitions when they begin to diffuse (the exponential behaviours of k1 and k are

the same), but they are afraid of death by rational judgement of the distances to the threat of

the starting and the final points, the length of the road between them and the time in which

they should overcome this path (described in details by h(t, x, y)).
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2 Preliminaries

2.1 Notation

We write f ≈ g whenever there exists constant c > 1 depending only on a dimension n

such that c−1 ≤ f/g ≤ c holds for the indicated range of the arguments of functions f and

g. Similarly, we write f � g (or f � g) if we have f ≤ cg (f ≥ cg) for some constant

c > 0 depending only on n. If the constants appearing in the estimates depend on some other

parameters, it will be indicated by placing those parameters above the sings ≈, � and �.

By |x| we denote the Euclidean norm of a point x ∈ Rn and write αxy for the (smaller)

angle between non-zero vectors x and y. Moreover, we put αxy = 0 if x or y is zero. We

write B(x0, r) = {x ∈ Rn : |x − x0| < r} for a ball of a radius r > 0 centered at x0 ∈ Rn

and S(x0, r) = {x ∈ Rn : |x − x0| = r} stands for the corresponding sphere. In the

basic case x0 = 0 and r = 1 we write dσ(z), z ∈ S(0, 1), for the spherical measure. For

x ∈ B(0, 1), x 
= 0, we indicate by Hx the half-space containing the unit ball B(0, 1) and

such that its boundary hyperplane is tangent to the sphere S(0, 1) at the point x/|x|. In the

special case x/|x| = (1, 0 . . . , 0) we omit the subscript in the notation and we simply write

H = {x ∈ Rn : x1 < 1}. For a general hyperplane L, we denote by PL(x) the reflection of

x with respect to L. In particular, we have

P∂H (x) = (2 − x1, x2, . . . , xn), x = (x1, . . . , xn) ∈ Rn. (2.1)

Moreover, we put

x̄ =
2 − |x|

|x|
x,

whenever x 
= 0. If x ∈ B(0, 1), then x̄ is a reflection of the point x with respect to the

hyperplane tangent to S(0, 1) at a point x/|x|, i.e. x̄ = P∂Hx (x).

For a general set D ⊂ Rn and x ∈ D we write δD(x) for a distance of x to the boundary

∂D. As previously, we shorten the notation in the case of D = B(0, 1) and just write

δ1 (x) = δB(0,1)(x) = 1 − |x|. For every x, y ∈ B(0, 1), by the parallelogram law, we have

1 −
∣

∣

∣

∣

x + y

2

∣

∣

∣

∣

2

=
|x − y|2

4
+

1 − |x|2

2
+

1 − |y|2

2

and consequently, since 2
(

1 −
∣

∣

x+y
2

∣

∣

)

≥ 1 −
∣

∣

x+y
2

∣

∣

2
, we obtain

δ1

(

x + y

2

)

≥
|x − y|2

8
+

1 − |x|
4

+
1 − |y|

4
. (2.2)

Furthermore, since clearly 1 −
∣

∣

x+y
2

∣

∣ ≤ 1 −
∣

∣

x+y
2

∣

∣

2
, we finally get

δ1

(

x + y

2

)

≈ |x − y|2 + (1 − |x|) + (1 − |y|). (2.3)

2.2 BrownianMotion

We consider n-dimensional Brownian motion W = (Wt )t≥0 starting from x ∈ Rn and

we denote by Px and Ex the corresponding probability law and the expected value. Obvi-

ously Px is absolutely continuous with respect to the Lebesgue measure and k(t, x, y) is the

corresponding transition probability density.

Dirichlet Heat Kernel for the Laplacian in a Ball 549



The next lemma will be frequently used in the sequel. One can interpret the result, in the

probabilistic context, by saying that Brownian motion going from x to y in time 2t is mostly

at time t passing through a neighbourhood of the midpoint (x + y)/2 of a size comparable

to
√

t . In fact, we can move away from (x + y)/2 at a distance not greater then multiplicity

of
√

t .

Lemma 1 For every c, l > 0 we have
∫

B(a,c
√

t)

k(t, x, z)k(t, z, y) dz
c,l
≈ k(2t, x, y)

for every x, y ∈ Rn, t > 0 and a ∈ Rn such that |a − x+y
2

| ≤ l
√

t .

Proof The upper estimates are obvious and come directly from the Chapman-Kolmogorov

identity. Thus, we focus only on the lower bounds. Without loss of generality we can and

we do assume that x = (−|x − y|/2, 0, ..., 0), y = (|x − y|/2, 0, ..., 0), which follows from

translational and rotational invariance of the heat kernel k(t, x, y). Then (x +y)/2 = 0. Let

c and l be fixed positive constants. For every x, y ∈ Rn of the form indicated above, t > 0

and a = (a1, . . . , an) ∈ Rn we can write
∫

B(a,c
√

t)

k(t, x, z)k(t, z, y)dz ≥
∫ a1+c

√
t/n

a1−c
√

t/n

...

∫ an+c
√

t/n

an−c
√

t/n

k(t, x, z)k(t, z, y)dz1...dzn

and the inequality follows since the ball B(a, c
√

t) contains the cuboid

(a1 − c
√

t/n, a1 + c
√

t/n) × . . . × (an − c
√

t/n, an + c
√

t/n).

Due to the special form of x and y, we can easily show that

|x − z|2 + |y − z|2 =
|x − y|2

2
+ 2|z|2

and consequently

k(t, x, z)k(t, z, y) =
1

(4πt)n
exp

(

−
|x − y|2

8t

)

exp

(

−
|z|2

2t

)

.

Combining all together we obtain the lower bound of the form

1

(4πt)n
exp

(

−
|x − y|2

8t

) ∫ a1+c
√

t/n

a1−c
√

t/n

...

∫ an+c
√

t/n

an−c
√

t/n

e− |z|2
2t dz1 . . . dzn.

Finally, assuming that |a − (x + y)/2| = |a| ≤ l
√

t , which implies |ai | ≤ l
√

t , we get

n
∏

i=1

(

∫ ai+c
√

t/n

ai−c
√

t/n

e−
z2
i

2t dzi

)

= tn/2
n

∏

i=1

(

∫ ai/
√

t+c/
√

n

ai/
√

t−c/
√

n

e− u2

2 du

)

> tn/2

(

2c
√

n
e− (l+c/

√
n)2

2

)n

and we arrive at
∫

B(a,c
√

t)

k(t, x, z)k(t, z, y) dz
n,c,l

� k(2t, x, y).

For a general smooth domain D ⊂ Rd we define the first exit time from D by

τD = inf{t > 0 : Wt /∈ D}.
We write kD(t, x, y) for the transition probability density for WD = (WD

t )t≥0 Brownian

motion killed upon leaving a set D. To shorten the notation we write τ1 (and obviously
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k1(t, x, y)) in the case D = B(0, 1). The relation between kD(t, x, y) and k(t, x, y)

together with the joint distribution of (τD,WτD
) is described by the Hunt formula

kD(t, x, y) = k(t, x, y) − Ex[t > τD, k(t − τD, WτD
, y)], x, y ∈ D, t > 0. (2.4)

Due to the reflection principle, the case of a half-space is quite special. More precisely, for

H = {x ∈ Rn : x1 < 1} we can write kH (t, x, y) explicitly as follows

kH (t, x, y) = k(t, x, y) − k(t, x, P∂H (y)),

where P∂H (y) = (2 − y1, y2, . . . , yn) as defined in Eq. 2.1. Since

k(t, x, P∂H (y)) = exp

(

−
(1 − y1)(1 − x1)

t

)

k(t, x, y), x, y ∈ Rn

and δH (x) = 1 − x1, δH (y) = 1 − y1 we immediately get

kH (t, x, y) = k(t, x, y) − k(t, x, P∂H (y)) ≈
(

1∧
δH (x)δH (y)

t

)

k(t, x, y), x, y ∈H . (2.5)

The last estimates hold for every half-space, since both sides are rotationally and trans-

lationally invariant. Such transparent formula and estimates are no longer available in the

considered case of a unit ball and we have to start from the general formula

k1(t, x, y) = k(t, x, y) −
∫ t

0

∫

|z|=1

k(t − s, z, y)qz(s, z)dsdσ(z), (2.6)

where qx(t, z) denotes the density function of the joint distribution (τ1, Wτ1
) for the process

starting from x ∈ B(0, 1). Note also that we can recover qx(t, z) from k1(t, x, y) by (see

[8], Theorem 1)

qx(t, z) =
1

2

∂

∂nz

k1(t, x, z), |x| < 1, |z| = 1, t > 0, (2.7)

where nz is the inward normal direction at z ∈ ∂B(0, 1). Thus, as we have mentioned in

Introduction, dividing the estimates in Eq. 1.1 by (1 − |y|) and taking a limit as y → z ∈
S(0, 1) we obtain Corollary 2.

Remark 1 Although the statement of Theorem 1 covers the case of t < T for fixed T > 0,

we emphasize that it is enough to show the estimates for t small enough. Indeed, knowing

k1(t, x, y) ≈ h(t, x, y)k(t, x, y) for t < t0 for some t0 > 0 we can easily replace t0
by 2t0 and consequently by any other constant T > 0. To see that notice the estimates

h(t, x, y)k(t, x, y) ≈ (1 − |x|)(1 − |y|) holding whenever t is bounded away from 0 and

infinity. Thus, by the Chapmann-Kolmogorov equation, we simply get

k1(t, x, y) =
∫

B(0,1)

k1(t/2, x, z)k1(t/2, z, y)dz
t0≈ (1 − |x|)(1 − |y|)

∫

B(0,1)

(1 − |z|)2dz

t0≈ h(t, x, y)k(t, x, y),

whenever t0 ≤ t ≤ 2t0. Therefore, from now on we will focus only on estimates for t

sufficiently small.

Remark 2 A natural next step would be to obtain estimates of the heat kernel for C1,1

bounded domains with the precision as in Theorem 1. Apparently, that task is much more

demanding. For instance, in case of concave domains D the distance |x − y| in the expo-

nential factor has to be changed into infimum of all the arcs in D connecting x and y (cf.
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[16], Section 4). But even for convex domains the formula (1.1) does not work in general,

which shows that estimates are strongly related to geometry of the set. To see this, let us

consider an open set D such that (0, 3)× (0, 1) ⊂ D and (0, 3)×{0} ⊂ ∂D and take t → 0,

x → (1, 0), y → (2, 0) with x2
t
,

y2

t
→ 0. The heat kernel kD(t, x, y) of D behaves then as

the half-space heat kernel, which is kD(t, x, y) ∼ x2y2

t
k(t, x, y), while the estimates (1.1)

would give kD(t, x, y) ≈ x2y2

t2 k(t, x, y).

3 Upper Bounds

We begin with a very simple result providing upper bounds of the following form.

Lemma 2 We have

k1(t, x, y) �

(

1 ∧
1 − |x|

t

)(

1 ∧
1 − |y|

t

)

k(t, x, y) (3.1)

for every x, y ∈ B(0, 1) and t > 0.

Proof Since B(0, 1) ⊂ Hy , we have τB(0,1) ≤ τHy and consequently, for any borel A ⊂
B(0, 1),
∫

A

k1(t, x, y)dy =Px
[

Wt ∈ A, τB(0,1) >t
]

≤ Px
[

Wt ∈ A, τHy > t
]

=
∫

A

kHy (t, x, y)dy,

which gives us k1(t, x, y) ≤ kHy (t, x, y) for x, y ∈ B(0, 1). This implies

k1(t, x, y) �

(

1 ∧
δHy (x)δHy (y)

t

)

k(t, x, y) �

(

1 ∧
1 − |y|

t

)

k(t, x, y),

by using (2.5) together with δHy (y) = δ1 (y) = 1 − |y| and a simple estimate δHy (x) ≤ 2.

Thus, using the Chapmann-Kolmogorov equation and the symmetry of k1(t, x, y) we arrive

at

k1(2t, x, y) =
∫

B(0,1)

k1(t, x, z)k1(t, z, y)dz

�

∫

B(0,1)

(

1 ∧
1 − |x|

t

)

k(t, x, z)

(

1 ∧
1 − |y|

t

)

k(t, z, y)dz

�

(

1 ∧
1 − |x|

t

) (

1 ∧
1 − |y|

t

)∫

Rn

k(t, x, z)k(t, z, y)dz

=
(

1 ∧
1 − |x|

t

) (

1 ∧
1 − |y|

t

)

k(2t, x, y).

This ends the proof.

Note that these bounds are optimal for small t if additionally one of the space variables

are bounded away from the boundary or x and y are bounded away from each other, i.e. we

have

Corollary 3 For a fixed ε > 0 we have

k1(t, x, y) � h(t, x, y)k(t, x, y)
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whenever 1 − |x| ≥ ε or |x − y| ≥ ε.

Proof Indeed, if |x − y| ≥ ε we just simply have

(

1 ∧
1 − |x|

t

)(

1 ∧
1 − |y|

t

)

�

(

1 ∧
(1 − |x|)|x − y|2

t

)(

1 ∧
(1 − |y|)|x − y|2

t

)

and the last expression is apparently dominated by h(t, x, y). Similarly, for 1 − |x| ≥ ε we

have
(

1 ∧
1 − |x|

t

)(

1 ∧
1 − |y|

t

)

≤
(

1 ∧
1 − |y|

t

)

�

(

1 ∧
(1 − |x|)(1 − |y|)

t

)

,

which is smaller than h(t, x, y).

Note that if the angle αxy is greater than or equal to π/4, then we are in the case covered

by Corollary 3, i.e. if x and y are close to each other and both close to the boundary, then

αxy must be small. Thus, it is enough to prove the upper-bounds with additional assumption

that the angle αxy is smaller than π/4.

Proposition 1 There exists a constant T > 0 such that

k1(t, x, y) � h(t, x, y)k(t, x, y),

for every x, y ∈ B(0, 1) such that αxy < π/4 and t < T .

Proof Without loss of generality we can assume that

x = (x1, x2, 0 . . . , 0),

y = (y1, 0 . . . , 0), y1 ∈ [0, 1),

and δ1 (x) ≥ δ1 (y). Since simply B(0, 1) ⊂ Hx ∩ Hy , we have k1(t, x, y) ≤
kHx∩Hy (t, x, y). Moreover, it is clear that

kHx∩Hy (t, x, y)=kH(x1,x2)∩H(y1,0)
(t, (x1, x2), (y1, 0))

1

(4πt)n/2−1
exp

(

−
1

4t

n
∑

k=3

(xk − yk)
2

)

.

It means that it is enough to consider 2-dimensional case. Thus, from now on, we will

assume that n = 2, x = (x1, x2) and y = (y1, 0).

The proof is divided into two parts. The first one relates to the case when x ∈
B(y/(2|y|), 1/2), i.e. (x1 − 1/2)2 + x2

2 < 1/4. Then δ1 (x) ≈ δHy (x). Indeed, since

y = (y1, 0), we have Hy = H = {x : R2 : x1 < 1} and consequently δHy (x) = 1 − x1. The

inequality δ1 (x) ≤ δH (x) is clear but it is also easy to see that

δH (x) = 1 − x1 = 1 − x2
1 −

(

1

4
−

(

x1 −
1

2

)2
)

< 1 − x2
1 − x2

2 ≤ 2(1 − |x|) = 2δ1 (x) .

Thus, using (2.5), we obtain

kHx∩H (t, x, y) ≤ kH (t, x, y) ≈
(

1 ∧
δH (x)δH (y)

t

)

k(t, x, y)

≈
(

1 ∧
(1 − |x|)(1 − |y|)

t

)

k(t, x, y) ≤ h(t, x, y)k(t, x, y).
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Now we consider the remaining case, i.e. x ∈ B(0, 1) ∩ [B(y/(2|y|), 1/2)]c. Since

x is outside the ball B(y/(2|y|), 1/2), the inversion x → x/|x|2 transforms the set

B(y/(2|y|), 1/2)
c

into H and

|x̄| = 2 − |x| <
1

|x|
=

∣

∣

∣

∣

x

|x|2

∣

∣

∣

∣

,

we get that x̄ remains inside H . Moreover, we have

kHx∩H (t, x, y) ≤ kH (t, x, y) − kH (t, x̄, y). (3.2)

To see this, let A be any Borel subset of B(y/(2|y|), 1/2) and since τHx∩H = τHx ∧ τH we

can write
∫

A

kHx∩H (t, x, z)dz = Ex[t < τH , W(t) ∈ A] − Ex[τHx < t < τH ,W(t) ∈ A].

Denoting by τH
Hx

the first exit time from Hx by the killed process WH we can rewrite the

last expression using the strong Markov property in the following way

Ex[τHx < t < τH , W(t) ∈ A] = Ex[τH
Hx

< t, WH (t) ∈ A]

= Ex
[

τH
Hx

< t, E
WH (τH

Hx
)
[

WH (t−τH
Hx

)∈A
]]

. (3.3)

To make the following computation more transparent we write P(x) = P∂Hx (x) = x̄, i.e.

P is the reflection with respect to the hyperplane ∂Hx . P(W) is again a Brownian motion,

clearly P(x) = x̄, P(Hx) = int(H c
x ) and P(z) = z for z ∈ ∂Hx . Moreover, due to the

continuity of the paths the first exit times from H c
x and int(H c

x ) are equal a.s. and we will

omit “int” in the notation. Consequently, for a Borel set B ∈ ∂H c
x we have P(B) = B.

Thus, for every Borel set I ∈ (0, t) we have

Ex̄[τH
H c

x
∈ I ;WH (τH c

x
) ∈ B] = Ex̄[τH

H c
x

∈ I, τH c
x

< τH ; W(τH c
x
) ∈ B]

= EP(x)[τH
P(Hx ) ∈ I, τP(Hx )

< τP(P (H)); P(W)(τP(Hx )) ∈ P(B)]
= Ex[τH

Hx
∈ I, τHx < τP(H); W(τHx ) ∈ B].

Moreover, since αxy < π/4, (by simple geometry) τP(H) < τH on {τHx < t} and

Ex̄[τH
H c

x
∈ I ; WH (τH c

x
) ∈ B] ≤ Ex[τH

Hx
∈ I ; WH (τHx ) ∈ B].

Thus, the last expression in Eq. 3.3 is bounded from below by

Ex̄

[

τH
H c

x
< t, E

WH (τH
Hc

x
)
[

WH (t − τH
H c

x
) ∈ A

]

]

,

which by the strong Markov property is equal to

Ex̄
[

τH c
x

< t < τH ,W(t) ∈ A
]

= Ex̄ [t < τH , W(t) ∈ A] .

Note that since x̄ ∈ H c
x and A ⊂ Hx , we could remove the condition τH c

x
< t . Combining

all together we arrive at Eq. 3.2 and thus we have

k1(t, x, y) ≤ k(t, x, y) − k(t, x̄, y) − k(t, x, ȳ) + k(t, x̄, ȳ).

Since ∠x̄0ȳ = αxy we can find that

|x − ȳ|2 = |x − y|2 + 4(1 − |y|)(1 − |x| cos αxy),

|x̄ − ȳ|2 = |x − y|2 + 4(1 − cos αxy)((1 − |x|) + (1 − |y|)),
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which directly lead to

k(t, x, ȳ) = exp

[

−
(1 − |y|)(1 − |x| cos αxy))

t

]

k(t, x, y),

k(t, x̄, ȳ) = exp

[

−
(1 − cos αxy)((1 − |x|) + (1 − |y|))

t

]

k(t, x, y).

We can also rewrite k(t, x, y) − k(t, x̄, y) − k(t, x, ȳ) as

(

1 − exp

[

−
(1 − |x|)(1 − |y| cos αxy)

t

]

− exp

[

−
(1 − |y|)(1 − |x| cos αxy)

t

])

k(t, x, y)

and consequently we get the upper bounds for
k1(t,x,y)
k(t,x,y)

as a sum of two components

(

1−exp

[

−
(1− |x|)(1− |y| cos αxy)

t

]) (

1− exp

[

−
(1− |y|)(1− |x| cos αxy)

t

])

(3.4)

and

exp

[

−
(1 − cos αxy)((1 − |x|) + (1 − |y|))

t

](

1 − exp

[

−
2 cos αxy(1 − |x|)(1 − |y|)

t

])

.

It is clear that the last expression can be bounded by

1 ∧
(1 − |x|)(1 − |y|)

t
.

To deal with the first one note that, by simple geometry, |x| sin αxy ≤ |x − y| ≤ |y| tan αxy .

By our assumptions on αxy and |x| we get sin αxy ≈ |x − y| in the considered region.

Moreover, since x is outside the ball B(y/(2|y|), 1/2) we have |x|2 ≥ x1, which simply

gives us that cos αxy = x1y1

|x||y| = x1
|x| ≤ |x| ≤ |y|. Consequently

1 − cos αxy =
sin2 αxy

1 + cos αxy

≈ |x − y|2

and

1 − |x| cos αxy = 1 − |x| + |x|(1 − cos αxy) ≈ 1 − cos αxy ≈ |x − y|2.

In the similar way we obtain 1 − |y| cos αxy ≈ |x − y|2. Combining all together we get the

desired bounds for Eq. 3.4 and the proof is complete.

Now we can use the upper bounds from Theorem 1 together with the relation (2.7) to

prove the upper bounds in Corollary 2. However, since this result will be used in the next

section to get the lower bounds of the considered heat kernel k1(t, x, y), we formulate it in

a separate corollary.

Corollary 4 For every T > 0 we have

qx(t, z) �

(

1 − |x|
t

+
|x − z|2

t

(

1 ∧
(1 − |x|)|x − z|2

t

))

k(t, x, z) (3.5)

whenever |x| < 1, |z| = 1 and t < T .
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4 Lower Bounds

It is well-known that whenever the space variables x and y are bounded away from the

boundary, the heat kernel is comparable with the Gaussian kernel. We start the proof of the

lower bounds with more general result which also ensures comparability between k1(t, x, y)

and k(t, x, y), but here we only assume that x and y are not too close to the boundary in

comparison to the time variable t .

Proposition 2 For every C1 > 0 there exists C2 = C2(C1, n) such that

k1(t, x, y) ≥ C2k(t, x, y)

for every x, y such that δ1 (x) ≥ C1

√
t , δ1 (y) ≥ C1

√
t .

Proof We begin with considering the cuboid of the form

K = (a1, b1) × (a2, b2) × . . . × (an, bn).

It is obvious that kK (t, x, y) is a product of the kernels k(ai ,bi )(t, xi, yi) and in particular, if

δK (x) and δK (y) are bounded from below by c1

√
t , we get (see Eq. 1.3)

kK (t, x, y) ≥ c2k(t, x, y).

Moreover, due to the rotational invariance the same statement is true for every cuboid. To

finish the proof it is enough to notice that since δ1 (x) and δ1 (y) are greater then C1

√
t ,

there exists a cuboid K included in the ball such that x, y ∈ K and δK (x), δK (y) ≥ c3

√
t

for some positive c3 depending on C1 and n. Then, we just can write

k1(t, x, y) ≥ kK (t, x, y) ≥ c2k(t, x, y).

and the proof is complete.

The crucial step in the proof of the lower bounds are the estimates when x and y are in

a small ball tangent to the sphere S(0, 1). In fact we narrow our considerations to δ1 (y) <

1/16 and x ∈ B( 15
16

y
|y| ,

1
16

). Note that in this case, we have

|x|2 < 1 − |x − y

|y|
|2 < 1 − |x − y|2,

where the last inequality holds if δ1 (x) ≥ δ1 (y). Consequently

δ1 (x) = 1 − |x| >
|x − y|2

1 + |x|
>

1

2
|x − y|2.

and obviously the first component on the right-hand side of Eq. 1.2 dominates the other.

Thus, our next aim is to prove the following

Proposition 3 There exist constants C3 = C3(n) > 0, t0 = t0(n) > 0 and m = m(n) > 0

such that

k1(t, x, y) ≥ C3

(

1 ∧
(1 − |x|)(1 − |y|)

t

)

k(t, x, y),
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for every x, y ∈ B(0, 1) such that δ1 (y) < 1/16, x ∈ B( 15
16

y
|y| ,

1
16

), δ1 (x) ≥ m
√

t and

t < t0.

Proof The best way to present the technical details of the proof and to make it more

transparent and simpler to read is to consider the ball B = B((1, 0, . . . , 0), 1) and set

y = (y1, 0, . . . , 0), where in general y1 ∈ (0, 1/16). Note that such a choice implies that

Hy = {x ∈ Rn : x1 > 0} and for simplicity we denote it by H0. Moreover, we set

x = (x1, x2, 0, . . . , 0) and assume as previously that δB(x) ≥ δB(y). Our assumptions now

reads as x ∈ B((1/16, 0, . . . , 0), 1/16) and it implies that x2
1 + x2

2 ≤ x1/8. Thus

δB(x) ≈ 1 − [(x1 − 1)2 + x2
2 ] = 2x1 − (x2

1 + x2
2 ) ≈ x1. (4.1)

Consequently, since δH0
(x) = x1 and δH0

(y) = y1 we have

kH0
(t, x, y) ≈

(

1 ∧ x1y1

t

)

k(t, x, y) ≈
(

1 ∧ δB(x)δB(y)

t

)

k(t, x, y). (4.2)

Moreover, we have

Ex(t < τB; W(t) ∈ dy) = Ex(t < τH0
; W(t) ∈ dy) − Ex(τB < t < τH0

;W(t) ∈ dy),

thus it is enough to show that

R(t, x, y) := Ex(τB < t < τH0
; W(t) ∈ dy)/dy

is dominated by c kH0
(t, x, y) for some c < 1. By Strong Markov property we can write

R(t, x, y)dy = Ex[τB < t; EW(τB )(t < τH0
; W(t − τB) ∈ dy)]

and consequently

R(t, x, y) =
∫ t

0

∫

∂B

qx(s, z)kH0
(t − s, z, y) dσ (z)ds

=
∫ t

0

(∫

A1(s)

+
∫

A2(s)

)

qx(s, z)kH0
(t − s, z, y) dσ (z)ds

=: R1(t, x, y) + R2(t, x, y),

where A1(s) = {z ∈ ∂B : |x − z|4 ≥ 25(δ2
B(x) ∨ s)} and A2(s) = ∂B \ A1(s). Note that

the second term of the right-hand side of Eq. 3.5 dominates on the set A1(s), i.e.

qx(s, z) �
|x − z|2

s

(

1 ∧
δB(x)|x − z|2

s

)

k(s, x, z), z ∈ A1(s).

Moreover, since |x − z|2 ≥ 5δB(x) ≥ 5
2
|x − y|2 on A1(s), we have |x − z|2 ≥ 5

4
|x − y|2 +

1
2
|x − z|2 and |x − z|2 ≤ 2|x − y|2 + 2|y − z|2 ≤ 4

5
|x − z|2 + 2|y − z|2, which implies

|x − z|2 ≤ 10|y − z|2. Thus, using the above-given estimates together with Eq. 4.2, then

replacing the set A1(s) simply by ∂B and interchanging the integrals, we arrive at

R1(t, x, y) � δB(x)δB (y)e− 5
4

|x−y|2
4t

∫

∂B

|x − z|4z1

∫ t

0

1

sn/2+2(t − s)n/2+1
e− |x−z|2

8s e
− |x−z|2

40(t−s) dsdσ(z).
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We have used here the fact that δH0
(z) = z1 and δH0

(y) = δB(y). Moreover, we have
∫ t/2

0

|x − z|4

sn/2+2(t − s)n/2+1
e− |x−z|2

8s e
− |x−z|2

40(t−s) ds �
|x − z|4

tn/2+1

∫ t/2

0

1

sn/2+2
e− |x−z|2

8s ds

≤
|x−z|4−n

tn/2+1
sup
r>0

rn/2e−r/16

∫ t/2

0

1

s2
e− |x−z|2

16s ds

�
|x − z|2−n

tn/2+1
.

Similarly
∫ t

t/2

|x − z|4

sn/2+2(t − s)n/2+1
e− |x−z|2

8s e
− |x−z|2

40(t−s) ds �
|x − z|4

tn/2+2

∫ t/2

0

1

un/2+1
e− |x−z|2

40u du

�
|x − z|6−n

tn/2+2

∫ t/2

0

1

u2
e− |x−z|2

40u du

≈
|x − z|4−n

tn/2+2
e− |x−z|2

20t �
|x − z|2−n

tn/2+1
.

Furthermore, since supx∈B

∫

∂B
|x − z|2−ndz < ∞, we obtain

R1(t, x, y) �
δB(x)δB(y)

t
k(t, x, y)e− |x−y|2

16t .

In the same way, using

qx(s, z) �
|x − z|2

s
k(s, x, z)

and kH0
(t − s, z, y) ≤ k(t − s, z, y) we arrive at

R1(t, x, y) � e− 5
4

|x−y|2
4t

∫

A1

|x − z|2z1

∫ t

0

1

sn/2+1(t − s)n/2
e− |x−z|2

8s e
− |x−z|2

40(t−s) dsdσ(z)

and we can similarly show that

R1(t, x, y) � k(t, x, y)e− |x−y|2
16t .

It finally gives

R1(t, x, y) �

(

1 ∧
δB(x)δB(y)

t

)

k(t, x, y)e− |x−y|2
16t <

1

3
kH0

(t, x, y)

for |x − y|2/t large enough. Note that if |x − y|2/t is bounded, then there is no exponential

decay of the kernel k1(t, x, y) and consequently the lower bounds we want to show are just

given in Zhang’s result (1.4).

The estimates of R2(t, x, y) are much more delicate. We simply begin with

kH0
(t, z, y) �

z1δB(y)

t
k(t, z, y).

Note that for z ∈ A2(s) we have by Eq. 3.5 that qx(s, y) � δB (x)
s

k(s, x, z) and consequently

R2(t, x, y) =
∫ t

0

∫

A2(s)

qx(s, z)kH0
(t − s, z, y) dsdσ(z)

� δB(x)δB(y)

∫ t

0

∫

A2(s)

z1

sn/2+1(t − s)n/2+1
exp

(

−
|x − z|2

4s
−

|z − y|2

4(t − s)

)

dσ(z).
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Since we have
√

5δB(x) ≤
√

5/8 < 0.8 and
4
√

25s ≤ 4
√

25t < 4
√

25/62 < 0.8 for t < 1/62,

we get that |x−z| < 0.8 whenever z ∈ A2(s). Thus |z| ≤ |x−z|+|x| < 0.8+1/8 = 0.925.

In particular, it implies that z2
2 + . . . + z2

n < c < 1, where c = (0.925)2. It means that if we

parametrize this part of the sphere writing z1 = f (z2, . . . , zn) = 1 −
√

1 − (z2
2 + . . . + z2

n)

we get that
√

1 +
(

∂f

∂z2

)2

+ . . . +
(

∂f

∂zn

)2

is comparable with a constant and consequently we can write

R2(t, x, y) � δB(x)δB(y)

∫ t

0

∫

|z̃|≤c

z1

sn/2+1(t − s)n/2+1
exp

(

−
|x − z|2

4s
−

|z − y|2

4(t − s)

)

dz̃,

where z̃ = (z2, . . . , zn) is the projection from Rn to Rn−1. First we simply estimate z1 =
1 −

√

1 − |z̃|2 ≤ |z̃|2. Next we can write

|x − z|2

4s
+

|z − y|2

4(t − s)
=

(x1 − z1)
2 + (x2 − z2)

2 + z2
3 + . . . + z2

n

4s
+

(y1 − z1)
2 + |z̃|2

4(t − s)

≥
x2

2 − 2z2x2 + |z̃|2 + x2
1 − 2x1z1

4s
+

|z̃|2

4(t − s)

by omitting two non-negative terms. Since z1 ≤ |z̃|2 we get

|z̃|2 − 2x1z1

4s
+

|z̃|2

4(t − s)
≥

|z̃|2

4s

(

t

t − s
− 2x1

)

.

Now we put w := t
t−s

−2x1. Notice that since t > s and x1 < 1/8 we have w ≥ t
2(t−s)

≥ 1
2

and in particular w is strictly positive. Thus we can write

|x − z|2

4s
+

|z − y|2

4(t − s)
≥

1

4s

(

w|z̃|2 − 2z2x2 + x2
2 + x2

1

)

=
1

4s

(

w

∣

∣

∣

∣

z̃ −
1

w
x̃

∣

∣

∣

∣

2

+ x2
2

(

1 −
1

w

)

+ x2
1

)

,

where we have used the special form of x to notice that z2x2 is just the inner product of z̃

and x̃. Moreover, using w ≥ 1/2, we get

1 −
1

w
=

s

t
−

t − s

t

2x1

w
≥

s

t
−

4x1(t − s)

t
.

Since x ∈ B((1/16, 0), 1/16), we have x2
2 ≤ x2

1 + x2
2 ≤ x1/8, which implies

1

4s

(

x2
2

(

1−
1

w

)

+x2
1

)

≥
x2

1 + x2
2

4t
+

x2
1 (t − s)

4st
−

4x1x
2
2 (t − s)

4st
≥

x2
1 + x2

2

4t
+

x2
1 (t − s)

8st
.

Finally, using w ≥ t
2(t−s)

, we obtain

∫

|z̃|≤c

|z̃|2 exp

(

−
w

4s

∣

∣

∣

∣

z̃ −
1

w
x̃

∣

∣

∣

∣

2
)

dz̃ �
( s

w

)(n−1)/2
(

s

w
+

∣

∣

∣

∣

x̃

w

∣

∣

∣

∣

2
)

�

(

s(t − s)

t

)(n−1)/2
(

s(t − s)

t
+

x2
2 (t − s)2

t2

)

,
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where we just enlarge the region of the integration to the whole Rn−1. Combining all

together we arrive at

R2(t, x, y) �
δB(x)δB(y)

t (n+3)/2
exp

(

−
|x|2

4t

)∫ t

0

st + x2
2 (t − s)

s3/2(t − s)1/2
exp

(

−
x2

1 (t − s)

8st

)

ds.

Then, substituting u = x2
1 (1/s − 1/t) we reduce the the right-hand side of the above-given

inequality to

δB(x)δB(y)

t (n+2)/2
exp

(

−
|x|2

4t

)

x1

∫ ∞

0

1 + (x2/x1)
2u

u1/2(u + x2
1/t)

exp
(

−
u

8

)

du

and the last integral can be easily bounded from above by

t

x2
1

(

1 +
(

x2

x1

)2
)

∫ ∞

0

1 + u
√

u
exp

(

−
u

8

)

du.

Since δB(x) ≈ x1 (see Eq. 4.1), δB(y) = y1, x2
1 +x2

2 ≤ x1/8 and |x|2 = |x−y|2 +y1(2x1 −
y1) ≥ |x − y|2 + x1y1 we obtain

R2(t, x, y) �
x1y1

t

t

x2
1

exp
(

−
x1y1

4t

)

k(t, x, y)

and it is clear that for every c > 0 we can chose m > 0 such that

R2(t, x, y) ≤
c

2

(

1 ∧
x1y1

t

)

k(t, x, y)

for every x such that δB(x) ≥ m
√

t . This ends the proof.

The next step is to show that we can enlarge the ball B( 15
16

y
|y| ,

1
16

) considered in

Proposition 3 to the ball B(y/(3|y|), 2/3) i.e. we prove the following

Proposition 4 There exist C4 = C4(n) > 0, m = m(n) > 0 and t0 = t0(n) > 0 such that

k1(t, x, y) ≥ C4

(

1 ∧ (1 − |x|)(1 − |y|)
t

)

k(t, x, y), (4.3)

whenever x ∈ B(y/(3|y|), 2/3), δ1 (x) ≥ m
√

t and t < t0.

Proof The idea of the proof is to show that if we know the lower bounds of the form (4.3)

for every x, y ∈ B((1 − r)y/|y|, r) for some r > 0, such that δ1 (x) ≥ M
√

t for some

M > 0 and δ1 (x) ≥ δ1 (y), then we can deduce the estimates of the same form for the same

range of parameters but with r replaced by 3r/2 and possibly with different constants M

and t0. Applying this procedure 6 times ((3/2)6/16 > 2/3) we will then get Proposition 4

from Proposition 3.

Consequently, our starting point are the estimates (4.3) holding for x and y as stated

above for some r ∈ (0, 2/3) with some M > 0 and t0 > 0. Let x, y ∈ B((1 − R)y/|y|, R),

where R = 3r/2, such that δ1 (x) ≥ δ1 (y) and δ1 (x) ≥ m
√

t , where m = 8M . We can

additionally assume that y is close to boundary by requiring δ1 (y) <
√

t < R/3, since

the case δ1 (x) ≥ δ1 (y) ≥
√

t follows directly from Proposition 2. Note that under our

assumption, the midpoint between x and y belongs to the ball B((1 − r)y/|y|, r). Indeed,

since |y| > 1 − R/3 = 1 − r/2, we have

1

2
−

1 − R

2|y|
−

R − r

|y|
=

|y| − 1 + r/2

2|y|
> 0
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and consequently

∣

∣

∣

∣

x + y

2
−

(1 − r)y

|y|

∣

∣

∣

∣

=
∣

∣

∣

∣

x

2
−

(1 − R)y

2|y|
+ y

(

1

2
−

(1 − R)

2|y|
−

R − r

|y|

)∣

∣

∣

∣

≤
1

2

∣

∣

∣

∣

x −
(1 − R)y

|y|

∣

∣

∣

∣

+ |y|
(

1

2
−

1 − R

2|y|
−

R − r

|y|

)

=
1

2

∣

∣

∣

∣

x −
(1 − R)y

|y|

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

y −
(1 − R)y

|y|

∣

∣

∣

∣

− (R − r)

<
R

2
+

R

2
− (R − r) = r .

We fix t1 = t0 ∧ (8r/m)2 and for t < t1 we consider A as a point on the line between

(x + y)/2 and (1 − r)y/|y| such that (x + y)/2 belongs to the sphere S(A,m
√

t/16).

Such a choice ensures that the ball B(A,m
√

t/16) is contained in B((1 − r)y/|y|, r) as

well. Moreover, since we have δ1 ((x + y)/2) ≥ δ1 (x) /4 (see Eq. 2.2), for every z ∈
B(A, m

√
t/16) we have

δ1 (z) ≥ δ1

(

x + y

2

)

− m
√

t

8
≥ δ1 (x)

8
≥ m

√
t

8
= M

√
t .

We use the Chapmann-Kolmogorov equation to get

k1(t, x, y) ≥
∫

B(A,m
√

t/16)

k1(t/2, x, z)k1(t/2, z, y)dz.

We have k1(t, x, z) � k(t, x, z) since δ1 (z) ≥ M
√

t and δ1 (x) ≥ m
√

t . Moreover, since

y, z ∈ B((1 − r)y/|y|, r), we have also

k1(t, z, y)

k(t, z, y)
�

(

1 ∧
δ1 (z) δ1 (y)

t

)

�

(

1 ∧
δ1 (x) δ1 (y)

t

)

.

Using these estimates and Lemma 1 (note that |A − (x + y)/2| = m
√

t/16) we obtain the

desired lower bounds for x and y in the larger ball.

To make the last step of the proof we consider two points x, y ∈ B(0, 1) and two balls

B(x/(3|x|), 2/3) and B(y/(3|y|), 2/3). It is geometrically clear that the midpoint (x+y)/2

as well as 0 belong to both of them. In view of Proposition 2, we can additionally assume

that one of the variables is close to the boundary, i.e. δ1 (y) ≤
√

t . Now we consider two

cases. The first one relates to the situation when the midpoint is close to the origin, i.e.

(x + y)/2 ∈ B(0, 1/6). Then

B((x + y)/2, 1/6) ⊂ B(0, 1/3) ⊂ B(x/(3|x|), 2/3) ∩ B(y/(3|y|), 2/3)

The Chapman-Kolmogorov once again implies that

k1(2t, x, y) ≥
∫

B((x+y)/2,1/6)

k1(t, x, z)k1(t, z, y)dz
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We can use Proposition 4 to write k1(t, x, z) � (1 ∧ δ1 (x) /t)k(t, x, z) and

k1(t, z, y) � (1 ∧ δ1 (y) /t)k(t, z, y), since δ1 (z) > 2/3 > m
√

t , where m is the constant

from Proposition 4 and t is small enough. Thus we obtain

k1(2t, x, y) �

(

1 ∧
δ1 (x)

t

)(

1 ∧
δ1 (y)

t

) ∫

B((x+y)/2,1/6)

k(t, x, z)k(t, z, y)dz

�

(

1 ∧
δ1 (x)

t

)(

1 ∧
δ1 (y)

t

)

k(2t, x, y)

where we used Lemma 1. Note that if y is close to the boundary and (x+y)/2 is close to the

origin, then |x − y| is bounded away from 0, which implies h(t, x, y) ≈ (1 ∧ δ1 (x) /t)(1 ∧
δ1 (y) /t). It ends the proof in this case.

In the remaining case, i.e. when |(x + y)/2| ≥ 1/6 we set t1 = 1/(18m)2 ∧ t0 and

consider t < t1. Here m and t0 are the constant from Proposition 4. We also define A to be

a point on the line between (x + y)/2 and 0 such that |A − (x + y)/2| = 2m
√

t . Then we

have B(A,m
√

t) ⊂ B(x/(3|x|), 2/3) ∩ B(y/(3|y|), 2/3) and for every z ∈ B(A, m
√

t) we

get δ1 (z) ≥ δ1 ((x + y)/2) + m
√

t . Thus we write for the last time that

k1(2t, x, y) ≥
∫

B(A,m
√

t)

k1(t, x, z)k1(t, z, y)dz

≥
∫

B(A,m
√

t)

(

1 ∧
δ1 (x) δ1 (z)

t

) (

1 ∧
δ1 (y) δ1 (z)

t

)

k(t, x, z)k(t, z, y)dz

If we use the estimates δ1 (z) � δ1 ((x + y)/2) � |x − y|2 (by Eq. 2.2) and Lemma 1, we

arrive at

k1(2t, x, y) �

(

1 ∧
δ1 (x) |x − y|2

t

)(

1 ∧
δ1 (x) |x − y|2

t

)

k(2t, x, y).

On the other hand, if δ1 (x) ≤
√

t we can write
(

1 ∧
δ1 (x) δ1 (z)

t

)(

1 ∧
δ1 (y) δ1 (z)

t

)

�
δ1 (x)√

t

δ1 (y)√
t

≈
(

1 ∧
δ1 (x) δ1 (y)

t

)

,

which gives k(2t, x, y) � h(2t, x, y)k(2t, x, y). Finally, for δ1 (x) ≥
√

t ≥ δ1 (y) we have

δ1 (x) δ1 (z) ≥ mt and consequently
(

1 ∧
δ1 (x) δ1 (z)

t

)(

1 ∧
δ1 (y) δ1 (z)

t

)

�

(

1 ∧
δ1 (y) δ1 (z)

t

)

�

(

1 ∧
δ1 (x) δ1 (y)

t

)

,

since δ1 (z) � δ1 ((x + y)/2) � δ1 (x) by Eq. 2.2. This ends the proof.
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