
Journal of Machine Learning Research 12 (2011) 1923-1953 Submitted 9/09; Revised 1/11; Published 6/11

Dirichlet Process Mixtures of Generalized Linear Models

Lauren A. Hannah LH140@DUKE.EDU

Department of Statistical Science

Duke University

Durham, NC 27708, USA

David M. Blei BLEI@CS.PRINCETON.EDU

Department of Computer Science

Princeton University

Princeton, NJ 08544, USA

Warren B. Powell POWELL@PRINCETON.EDU

Department of Operations Research and Financial Engineering

Princeton University

Princeton, NJ 08544, USA

Editor: Carl Edward Rasmussen

Abstract
We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of

methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM

produces a global model of the joint distribution through a mixture of local generalized linear

models. DP-GLMs allow both continuous and categorical inputs, and can model the same class

of responses that can be modeled with a generalized linear model. We study the properties of

the DP-GLM, and show why it provides better predictions and density estimates than existing

Dirichlet process mixture regression models. We give conditions for weak consistency of the joint

distribution and pointwise consistency of the regression estimate.

Keywords: Bayesian nonparametrics, generalized linear models, posterior consistency

1. Introduction

In this paper, we examine the general regression problem. The general regression problem models

a response variable Y as dependent on a set of covariates x,

Y |x ∼ f (m(x)).

The function m(x) is the mean function, which maps the covariates to the conditional mean of the

response; the distribution f characterizes the deviation of the response from its conditional mean.

The simplest example is linear regression, where m(x) is a linear function of x, and f is a Gaussian

distribution with mean m(x) and fixed variance.

Generalized linear models (GLMs) extend linear regression to many types of response variables

(McCullagh and Nelder, 1989). In their canonical form, a GLM assumes that the conditional mean

of the response is a linear function of the covariates, and that the response distribution is in an expo-

nential family. Many classical regression and classification methods are GLMs, including logistic

regression, multinomial regression, and Poisson regression.
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The GLM framework makes two assumptions about the relationship between the covariates and

the response. First, the covariates enter the distribution of the response through a linear function;

a non-linear function may be applied to the output of the linear function, but only one that does

not depend on the covariates. Second, the variance of the response cannot depend on the covari-

ates. Both these assumptions can be limiting—there are many applications where we would like

the response to be a non-linear function of the covariates or where our uncertainty around the re-

sponse might depend on the covariates. In this paper, we develop a general regression algorithm

that relaxes both of these assumptions. Our method captures arbitrarily shaped response functions

and heteroscedasticity, that is, the property of the response distribution where both its mean and

variance change with the covariates, while still retaining the flexibility of GLMs.

Our idea is to model the mean function m(x) by a mixture of simpler “local” response distri-

butions fi(mi(x)), each one applicable in a region of the covariates that exhibits similar response

patterns. To handle multiple types of responses, each local regression is a GLM. This means that

each mi(x) is a linear function, but a non-linear mean function arises when we marginalize out the

uncertainty about which local response distribution is in play. (See Figure 1 for an example with

one covariate and a continuous response function.) Furthermore, our method captures heteroscedas-

ticity: the variance of the response function can vary across mixture components and, consequently,

varies as a function of the covariates.

Finally, we use a Bayesian nonparametric mixture model to let the data determine both the

number and form of the local mean functions. This is critical for modeling arbitrary response dis-

tributions: complex response functions can be constructed with many local functions, while simple

response functions need only a small number. Unlike frequentist nonparametric regression methods,

for example, those that create a mean function for each data point, the Bayesian nonparametric ap-

proach uses only as complex a model as the data require. Moreover, it produces a generative model.

It can be used to infer properties other than the mean function, such as the conditional variance or

response quantiles.

Thus, we develop Dirichlet process mixtures of generalized linear models (DP-GLMs), a re-

gression tool that can model many response types and many response shapes. DP-GLMs generalize

several existing Bayesian nonparametric regression models (Müller et al., 1996; Shahbaba and Neal,

2009) to a variety of response distributions. We derive Gibbs sampling algorithms for fitting and

predicting with DP-GLMs. We investigate some asymptotic properties, including weak consistency

of the joint density estimate and consistency of the regression estimate. We study DP-GLMs with

several types of data.

The paper is organized as follows. In Section 2, we review the current research on Bayesian

nonparametric regression and discuss how the DP-GLM extends this field. In Section 3, we review

Dirichlet process mixture models and generalized linear models. In Section 4, we construct the

DP-GLM and derive algorithms for posterior computation. In Section 5 we give general conditions

for weak consistency of the joint density model and consistency of the regression estimate; we give

several models where the conditions hold. In Section 6 we study the DP-GLM and other methods on

three data sets; our study illustrates that the DP-GLM provides a powerful nonparametric regression

model that can be used in many types of data analysis.
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2. Related Work

Existing methods for Bayesian nonparametric regression include Gaussian processes (GP), Bayesian

regression trees, and Dirichlet process mixtures.

GP priors assume that the observations arise from a Gaussian process model with known co-

variance function form (Rasmussen and Williams, 2006). GPs are can model many response types,

including continuous, categorical, and count data (Rasmussen and Williams, 2006; Adams et al.,

2009). With the proper choice of covariance function, GPs can handle continuous and discrete co-

variates (Rasmussen and Williams, 2006; Qian et al., 2008). GPs assume that the response exhibits a

constant covariance; this assumption is relaxed with Dirichlet process mixtures of GPs (Rasmussen

and Ghahramani) or treed GPs (Gramacy and Lee, 2008).

Regression tree models, such as classification and regression trees (CART) (Brieman et al.,

1984), are a natural way to handle regression with continuous, categorical or mixed data. They split

the data into a fixed, tree-based partitioning and fit a regression model within each leaf of the tree.

Bayesian regression trees place a prior over the size of the tree and can be viewed as an automatic

bandwidth selection method for CART (Chipman et al., 1998). Bayesian trees have been expanded

to include linear models (Chipman et al., 2002) and GPs (Gramacy and Lee, 2008) in the leaf nodes.

The Dirichlet process has been applied to regression problems. West et al. (1994), Escobar and

West (1995) and Müller et al. (1996) used joint Gaussian mixtures for continuous covariates and

response. Rodriguez et al. (2009) generalized this method using dependent DPs, that is, Dirichlet

processes with a Dirichlet process prior on their base measures, in a setting with a response defined

as a set of functionals. However, regression by a joint density estimate poses certain challenges.

The balance between fitting the response and the covariates, which often outnumber the response,

can be slanted toward fitting the covariates at the cost of fitting the response.

To avoid these issues—which amount to over-fitting the covariate distribution and under-fitting

the response—some researchers have developed methods that use local weights on the covariates

to produce local response DPs. This has been achieved with kernels and basis functions (Griffin

and Steel, 2010; Dunson et al., 2007), GPs (Gelfand et al., 2005) and general spatial-based weights

(Griffin and Steel, 2006, 2010; Duan et al., 2007). Still other methods, again based on dependent

DPs, capture similarities between clusters, covariates or groups of outcomes, including in non-

continuous settings (De Iorio et al., 2004; Rodriguez et al., 2009). The method presented here is

equally applicable to the continuous response setting and tries to balance its fit of the covariate and

response distributions by introducing local GLMs—the clustering structure is based on both the

covariates and how the response varies with them.

There is less research about Bayesian nonparametric models for other response types. Mukhopad-

hyay and Gelfand (1997) and Ibrahim and Kleinman (1998) used a DP prior for the random effects

portion of a GLM. Likewise, Amewou-Atisso et al. (2003) used a DP prior to model arbitrary

symmetric error distributions in a semi-parametric linear regression model. These methods still

maintain the assumption that the covariates enter the model linearly and in the same way. Our work

is closest to Shahbaba and Neal (2009). They proposed a model that mixes over both the covariates

and response, where the response is drawn from a multinomial logistic model. The DP-GLM is a

generalization of their idea.

Asymptotic properties of Dirichlet process mixture models have been studied mostly in the con-

text of density estimation, specifically consistency of the posterior density for DP Gaussian mixture

models (Barron et al., 1999; Ghosal et al., 1999; Ghosh and Ramamoorthi, 2003; Walker, 2004;
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Tokdar, 2006) and semi-parametric linear regression models (Amewou-Atisso et al., 2003; Tokdar,

2006). Recently, the posterior properties of DP regression estimators have been studied. Rodriguez

et al. (2009) showed point-wise consistency (asymptotic unbiasedness) for the regression estimate

produced by their model assuming continuous covariates under different treatments with a con-

tinuous responses and a conjugate base measure (normal-inverse Wishart). In Section 5 we show

weak consistency of the joint density estimate produced by the DP-GLM. This is used to show

pointwise consistency of the regression estimate in both the continuous and categorical response

settings. In the continuous response setting, our results generalize those of Rodriguez et al. (2009)

and Rodrıguez (2009). In the categorical response setting, our theory provides results for the clas-

sification model of Shahbaba and Neal (2009).

3. Mathematical Background

In this section we provide mathematical background. We review Dirichlet process mixture models

and generalized linear models.

3.1 Dirichlet Process Mixture Models

The Dirichlet process (DP) is a distribution over distributions (Ferguson, 1973). It is denoted,

G ∼ DP(αG0),

where G is a random distribution. There are two parameters. The base distribution G0 is a dis-

tribution over the same space as G. For example, if G is a distribution on reals then G0 must be

a distribution on reals too. The concentration parameter α is a positive scalar. One property of

the DP is that random distributions G are discrete, and each places its mass on a countably infinite

collection of atoms drawn from G0.

Consider the model

G ∼ DP(αG0),

θi ∼ G.

Marginalizing out the random distribution, the joint distribution of n replicates of θi is

p(θ1:n |αG0) =
∫ ( n

∏
i=1

G(θi)

)

P(G)dG.

This joint distribution has a simpler form. The conditional distribution of θn given θ1:(n−1) follows

a Polya urn distribution (Blackwell and MacQueen, 1973),

θn|θ1:(n−1) ∼
1

α+n−1

n−1

∑
i=1

δθi
+

α
α+n−1

G0. (1)

With this conditional distribution, we use the chain rule to specify the joint distribution.

Equation (1) reveals the clustering property of the joint distribution of θ1:n: there is a positive

probability that each θi will take on the value of another θ j, leading some of the variables to share

values. This equation also reveals the roles of scaling parameter α and base distribution G0. The
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unique values contained in θ1:n are drawn independently from G0, and the parameter α determines

how likely θn+1 is to be a newly drawn value from G0 rather than take on one of the values from

θ1:n.

In a DP mixture, θi is a latent variable that parameterizes the distribution of an observed data

point, point (Antoniak, 1974),

P ∼ DP(αG0),

Θi ∼ P,

xi|θi ∼ f (· |θi).

Consider the posterior distribution of θ1:n given x1:n. Because of the clustering property, obser-

vations group according to their shared parameters. Unlike finite clustering models, however, the

number of groups is not assumed known in advance of seeing the data. For this reason, DP mixtures

are sometimes called “infinite clustering” models.

3.2 Generalized Linear Models

Generalized linear models (GLMs) build on linear regression to provide a flexible suite of predictive

models. GLMs relate a linear model to a response via a link function; examples include familiar

models like logistic regression, Poisson regression, and multinomial regression. See McCullagh and

Nelder (1989).

GLMs have three components: the conditional probability model of response Y given covariates

x, the linear predictor, and the link function. GLMs assume that the response distribution is in the

exponential family,

f (y|η) = exp

(

yη−b(η)
a(φ)

+ c(y,φ)
)

.

Here we give the canonical form of the exponential family, where a, b, and c are known functions

specific to the exponential family, φ is a scale parameter (sometimes called a dispersion parameter),

and η is the canonical parameter. A linear predictor, Xβ, is used to determine the canonical param-

eter through a set of transformations. The mean response is b′(η) = µ = E[Y |X ] (Brown, 1986).

However, we can choose a link function g such that µ = g−1(Xβ), which defines η equal to Xβ.

4. Dirichlet Process Mixtures of Generalized Linear Models

We now turn to Dirichlet process mixtures of generalized linear models (DP-GLMs), a Bayesian

predictive model that places prior mass on a large class of response densities. Given a data set of

covariate-response pairs, we describe Gibbs sampling algorithms for approximate posterior infer-

ence and prediction. We derive theoretical properties of the DP-GLM in Section 5.

4.1 Model Formulation

In a DP-GLM, we assume that the covariates X are modeled by a mixture of exponential-family

distributions, the response Y is modeled by a GLM conditioned on the covariates, and that these

models are connected by associating a set of GLM coefficients with each exponential family mixture

component. Let θ = (θx,θy) be the bundle of parameters over X and Y |X , and let G0 be a base

measure on the space of both. For example, θx might be a set of d-dimensional multivariate Gaussian
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Figure 1: The top figure shows the training data (gray) fitted into clusters, with the prediction given

a single sample from the posterior, θ(i) (red). The bottom figure shows the smoothed

regression estimate (black) for the Gaussian model of Equation (2) with the testing data

(blue). Data plot multipole moments (X) against power spectrum Cℓ (Y ) for cosmic

microwave background radiation (Bennett et al., 2003).

location and scale parameters for a vector of continuous covariates; θy might be a d + 2-vector of

reals for their corresponding GLM linear prediction coefficients, along with a GLM dispersion

parameter. The full model is

P ∼ DP(αG0),

θ= (θi,x,θi,y)|P ∼ P,

Xi|θi,x ∼ fx(·|θi,x),

Yi|xi,θi,y ∼ GLM(·|Xi,θi,y).

The density fx describes the covariate distribution; the GLM for y depends on the form of the

response (continuous, count, category, or others) and how the response relates to the covariates (i.e.,

the link function).

The Dirichlet process clusters the covariate-response pairs (x,y). When both are observed, that

is, in “training,” the posterior distribution of this model will cluster data points according to near-

by covariates that exhibit the same kind of relationship to their response. When the response is

not observed, its predictive expectation can be understood by clustering the covariates based on the

training data, and then predicting the response according to the GLM associated with the covariates’

cluster. The DP prior acts as a kernel for the covariates; instead of being a Euclidean metric, the DP

measures the distance between two points by the probability that the hidden parameter is shared.

See Figure 1 for a demonstration of the DP-GLM.

We now give a few examples of the DP-GLM that will be used throughout this paper.
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4.1.1 EXAMPLE: GAUSSIAN MODEL

We now give an example of the DP-GLM for continuous covariates/response that will be used

throughout the rest of the paper. For continuous covariates/response in R, we model locally with

a Gaussian distribution for the covariates and a linear regression model for the response. The co-

variates have mean µi, j and variance σ2
i, j for the jth dimension of the ith observation; the covariance

matrix is diagonal in this example. The GLM parameters are the linear predictor βi,0, . . . ,βi,d and

the response variance σ2
i,y. Here, θx,i = (µi,1:d,σi,1:d) and θy,i = (βi,0:d,σi,y). This produces a mixture

of multivariate Gaussians. The full model is,

P ∼ DP(αG0), (2)

θi|P ∼ P,

Xi, j|θi,x ∼ N
(

µi j,σ2
i j

)

, j = 1, . . . ,d,

Yi|Xi,θi,y ∼ N

(

βi0 +
d

∑
j=1

βi jXi j,σ2
iy

)

.

This model has been proposed by West et al. (1994), Escobar and West (1995) and Müller et al.

(1996). However, they use a fully populated covariance matrix that gives de facto β parameters.

This is computationally expensive for larger problems and adds posterior likelihood associated with

the covariates, rather than the response. A discussion of the problems associated with the latter issue

is given in Section 4.4.

4.1.2 EXAMPLE: MULTINOMIAL MODEL (SHAHBABA AND NEAL, 2009)

This model was proposed by Shahbaba and Neal (2009) for nonlinear classification, using a Gaus-

sian mixture to model continuous covariates and a multinomial logistic model for a categorical

response with K categories. The covariates have mean µi, j and variance σ2
i, j for the jth dimension of

the ith observation; the covariance matrix is diagonal for simplicity. The GLM parameters are the K

linear predictor βi,0,k, . . . ,βi,d,k, k = 1, . . . ,K. The full model is,

P ∼ DP(αG0), (3)

θi|P ∼ P,

Xi, j|θi,x ∼ N
(

µi j,σ2
i j

)

, j = 1, . . . ,d,

P(Yi = k|Xi,θi,y) =
exp
(

βi,0,k +∑d
j=1 βi, j,kXi, j

)

∑K
ℓ=1 exp

(

βi,0,ℓ+∑d
j=1 βi, j,ℓXi, j

) , k = 1, . . . ,K.

4.1.3 EXAMPLE: POISSON MODEL WITH CATEGORICAL COVARIATES

We model the categorical covariates by a mixture of multinomial distributions and the count re-

sponse by a Poisson distribution. If covariate j has K categories, let (pi, j,1, . . . , pi, j,K) be the proba-

bilities for categories 1, . . . ,K. The covariates are then coded by indicator variables, 1{Xi, j=k}, which
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are used with the linear predictor, βi,0,βi,1,1:K, . . . ,βi,d,1:K . The full model is,

P ∼ DP(αG0), (4)

θi|P ∼ P,

P(Xi, j = k|θi,x) = pi, j,k, j = 1, . . . ,d, k = 1, . . . ,K,

λi|Xi,θi,y = exp

(

βi,0 +
d

∑
j=1

K

∑
k=1

βi, j,k1{Xi, j=k}

)

,

P(Yi = k|Xi,θi,y) =
e−λiλk

i

ℓ!
, k = 0,1,2, . . . .

We apply Model (4) to data in Section 6.

4.2 Heteroscedasticity and Overdispersion

One advantage of the DP-GLM is that it provides a strategy for handling common problems in

predictive modeling. Many models, such as GLMs and Gaussian processes, make assumptions

about data dispersion and homoscedasticity. Overdispersion occurs in single parameter GLMs when

the data variance is larger than the variance predicted by the model mean. Mukhopadhyay and

Gelfand (1997) have successfully used DP mixtures over GLM intercept parameters to create classes

of models that include overdispersion. The DP-GLM retains this property, but is not limited to

linearity in the covariates.

A model is homoscedastic when the response variance is across constant all covariates; a model

is heteroscedastic when the response variance changes with the covariates. Models like GLMs are

homoscedastic and give poor fits when that assumption is violated in the data. In contrast, the

DP-GLM captures heteroscedasticity when mixtures of GLMs are used. The mixture model setting

allows variance to be modeled by a separate parameter in each cluster or by a collection of clusters in

a single covariate location. This leads to smoothly transitioning heteroscedastic posterior response

distributions.

This property is shown in Figure 2, where we compare a DP-GLM to a homoscedastic model

(Gaussian processes) and heteroscedastic modifications of homoscedastic models (treed Gaussian

processes and treed linear models). The DP-GLM is robust to heteroscedastic data—it provides a

smooth mean function estimate, while the other models are not as robust or provide non-smooth

estimates.

4.3 Posterior Prediction With a DP-GLM

The DP-GLM is used in prediction problems. Given a collection of covariate-response pairs D =
(Xi,Yi)

n
i=1, we estimate the joint distribution of (X ,Y ) |D . For a new set of covariates x, we use the

joint to compute the conditional distribution, Y |x,D and the conditional expectation, E[Y |x,D]. We

give the step-by-step process for formulating specific DP-GLM models and computing the condi-

tional distribution of the response.

4.3.1 CHOOSING THE MIXTURE COMPONENT AND GLM

We begin by choosing fx and the GLM. The Dirichlet process mixture model and GLM provide

flexibility in both the covariates and the response. Dirichlet process mixture models allow many

1930



DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

Figure 2: Modeling heteroscedasticity with the DP-GLM and other Bayesian nonparametric meth-

ods. The estimated mean function is given along with a 90% predicted confidence interval

for the estimated underlying distribution. DP-GLM produces a smooth mean function and

confidence interval.

types of variables to be modeled by the covariate mixture and subsequently transformed for use as a

covariate in the GLM. Note that certain mixture distributions support certain types of covariates but

may not necessarily be a good fit. The same care that goes into choosing distributions and GLMs in

a parametric setting is required here.

4.3.2 CHOOSING THE BASE MEASURE AND OTHER HYPERPARAMETERS

The choice of the base measure G0 affects how expressive the DP-GLM is, the computational effi-

ciency of the prediction and whether some theoretical properties, such as asymptotic unbiasedness,

hold. For example, G0 for the Gaussian model is a distribution over (µi,σi,βi,0:d,σi,y). A conju-

gate base measure is normal-inverse-gamma for each covariate dimension and multivariate normal

inverse-gamma for the response parameters. This G0 allows all continuous, integrable distributions

to be supported, retains theoretical properties, such as asymptotic unbiasedness, and yields efficient

posterior approximation by collapsed Gibbs sampling (Neal, 2000). In summary, the base measure

is chosen in line with data size, distribution type, distribution features (such as heterogeneity, and

others) and computational constraints.

Hyperparameters for the DP-GLM include the DP scaling parameter α and hyperparameters

parameters for the base measure G0. We can place a gamma prior on α (Escobar and West, 1995);

the parameters of G0 may also have a prior. Each level of prior reduces the influence of the hyper-

parameters, but adds computational complexity to posterior inference (Escobar and West, 1995).
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4.3.3 APPROXIMATING THE POSTERIOR AND FORMING PREDICTIONS

We derive all quantities of interest—that is, conditional distributions and expectations—from the

posterior of the joint distribution of (x,y). Define f (x,y |D) as the joint posterior distribution given

data D and f (x,y |θ1:n) as the joint distribution given parameters θ1:n that are associated with data

D = (Xi,Yi)
n
i=1. The posterior can be expressed through a conditional expectation,

f (x,y |D) = E [ f (x,y |θ1:n) |D] . (5)

While the true posterior distribution, f (x,y |D), may be impossible to compute, the joint distribution

conditioned on θ1:n has the form

f (x,y |θ1:n) =
α

α+n

∫
T

fy(y|x,θ) fx(x|θ)G0(dθ)+
1

α+n

n

∑
i=1

fy(y|x,θi) fx(x|θi).

We approximate the expectation in Equation (5) by Monte Carlo integration using M posterior

samples of θ1:n,

f (x,y |D)≈
1

M

M

∑
m=1

f (x,y |θ(m)
1:n ).

We use Markov chain Monte Carlo (MCMC), specifically Gibbs sampling, to obtain M i.i.d.

samples from this distribution. (See Escobar, 1994, MacEachern, 1994, Escobar and West, 1995

and MacEachern and Müller, 1998 for foundational work; Neal, 2000 provides a review and state of

the art algorithms.) We construct a Markov chain on the hidden variables θ1:n such that its limiting

distribution is the posterior. We give implementation details in Appendix A.

We use a similar strategy to construct the conditional distribution of Y |X = x,D. The conditional

distribution is

f (Y |X = x,D) =
f (Y,x |D)∫
f (y,x |D)dy

.

Again using M i.i.d. samples from the posterior of θ1:n |D,

f (Y |X = x,D)≈
1

M

M

∑
m=1

f (Y |X = x,θ(m)
1:n ),

=
1

M

M

∑
m=1

α
∫
T fy(Y |X = x,θ) fx(x|θ)G0(dθ)+∑n

i=1 fy(Y |X = x,θ(m)
i ) fx(x|θ

(m)
i )

α
∫
T fx(x|θ)G0(dθ)+∑n

i=1 fx(x|θ
(m)
i )

.

We use the same methodology to compute the conditional expectation of the response given a

new set of covariates x and the observed data D, E[Y |X = x,D]. Again using iterated expectation,

we condition on the latent variables,

E [Y |X = x,D] = E [E [Y |X = x,θ1:n] |D] . (6)

Conditional on the latent parameters θ1:n that generated the observed data, the inner expectation is

E[Y |X = x,θ1:n] =
α
∫
T E [Y |X = x,θ] fx(x|θ)G0(dθ)+∑n

i=1E [Y |X = x,θi] fx(x|θi)

α
∫
T fx(x|θ)G0(dθ)+∑n

i=1 fx(x|θi)
.

Since we assume Y is a GLM, E [Y |X = x,θ] is available in closed form as a function of x and θ.
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The outer expectation of Equation (6) is usually intractable. We approximate it by Monte Carlo

integration with M posterior samples of θ1:n,

E [Y |X = x,D]≈
1

M

M

∑
m=1

E

[

Y |X = x,θ(m)
1:n

]

.

4.4 Comparison to the Dirichlet Process Mixture Model Regression

The DP-GLM models the response Y conditioned on the covariates X . An alternative is one where

we model (X ,Y ) from a common mixture component in a classical DP mixture (see Section 3), and

then form the conditional distribution of the response from this joint. We investigate the mathe-

matical differences between these approaches and the consequences of those differences. (They are

compared empirically in Section 6.)

A Dirichlet process mixture model (DPMM) has the form,

P ∼ DP(αG0), (7)

θi|P ∼ P,

Xi|θi,x ∼ fx(x|θi,x),

Yi|θi,y ∼ fy(y|θi,y).

This model has been studied in Escobar and West (1995) where (Xi,Yi) are assumed to have a

joint Gaussian distribution. When the covariance matrix is assumed to be diagonal, the regression

estimate is generally poor. However, when the covariance matrix is assumed to be fully populated,

computation becomes difficult with more than a few covariate dimensions. We focus on the case

with diagonal covariance. We study why it performs poorly and how the DP-GLM improves on

it with minimal increase in computational difficulty. The difference between Model (7) and the

DP-GLM is that the distribution of Y given θ is conditionally independent of the covariates X . This

difference has consequences on the posterior distribution and, thus, the posterior predictions.

One consequence is that the GLM response component acts to remove boundary bias for sam-

ples near the boundary of the covariates in the training data set. The GLM fits a linear predictor

through the training data; all predictions for boundary and out-of-sample covariates follow the local

predictors. The traditional DP model, however, only fits a local mean; all boundary and out-of-

sample predictions center around that mean. The boundary effects are compared in Figure 3. The

DP-GLM can be viewed as a Bayesian analogy of a locally linear kernel estimator while the regular

DP is similar to the Nadaraya-Watson kernel estimator (Nadaraya, 1964; Watson, 1964).

Another consequence is that the proportion of the posterior likelihood devoted to the response

differs between the two methods. Consider the log of the posterior of the DPMM given in Model

(7). Assume that fy is a single parameter exponential, where θy = β,

ℓ(θd p |D) ∝
K

∑
i=1

[

ℓ(βCi
)+ ∑

c∈Ci

ℓ(yc |βCi
)+

d

∑
j=1

ℓ(θCi,x j
|D)

]

. (8)

Here, ℓ denotes log likelihood and “∝ ” means “proportional in the log space.” The log of the DP-

GLM posterior for a single parameter exponential family GLM, where θy = (β0, . . . ,βd), has the

form,

ℓ(θd pglm |D) ∝
K

∑
i=1

[

d

∑
j=0

ℓ(βCi, j)+ ∑
c∈Ci

ℓ(yc |βT
Ci

xc)+
d

∑
j=1

ℓ(θCi,x j
|D)

]

. (9)
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As the number of covariates grows, the likelihood associated with the covariates grows in both

equations. However, the likelihood associated with the response also grows with the extra response

parameters in Equation (9), whereas it is fixed in Equation (8).

These posterior differences lead to two predictive differences. First, the DP-GLM is much

more resistant to dimensionality than the DPMM. Since the number of response related parameters

grows with the number of covariate dimensions in the DP-GLM, the relative posterior weight of

the response does not shrink as quickly in the DP-GLM as it does in the DPMM. This keeps the

response variable important in the selection of the mixture components and makes the DP-GLM a

better predictor than the DPMM as the number of dimensions grows.

As the dimensionality grows, however, the DP-GLM produces less stable predictions than the

DPMM. While the additional GLM parameters help maintain the relevance of the response, they

also add noise to the prediction. This is seen in Figure 3. The GLM parameters in this figure have

a Gaussian base measure, effectively creating a local ridge regression.1 In lower dimensions, the

DP-GLM produced more stable results than the DPMM because a smaller number of larger clusters

were required to fit the data well. The DPMM, however, consistently produced stable results in

higher dimensions as the response became more of a sample average than a local average. The

DPMM has the potential to predict well if changes in the mean function coincide with underlying

local modes of the covariate density. However, the DP-GLM forces the covariates into clusters that

coincide more with the response variable due to the inclusion of the slope parameters.

We now discuss the theoretical properties of the DP-GLM.

5. Asymptotic Properties of the DP-GLM Model

In this section, we study the asymptotic properties of the DP-GLM model, namely weak consistency

of the joint density estimate and pointwise consistency (asymptotic unbiasedness) of the regression

estimate. Consistency is the notion that posterior distribution accumulates in regions close to the

true distribution. Weak consistency assures that the posterior distribution accumulates in regions of

densities where “properly behaved” functions (i.e., bounded and continuous) integrated with respect

to the densities in the region are arbitrarily close to the integral with respect to the true density.

We then use the weak consistency results to give conditions for asymptotic unbiasedness of the

regression estimate. Both consistency and asymptotic unbiasedness act as frequentist justification of

Bayesian methods; more observations lead to models that tend toward the “correct” value. Neither

weak consistency nor asymptotic unbiasedness are guaranteed for Dirichlet process mixture models.

Notation for this section is more complicated than the notation for the model. Let f0(x,y) be

the true joint distribution of (x,y); in this case, we will assume that f0 is a density. Let F be the

set of all density functions over (x,y). Let Π f be the prior over F induced by the DP-GLM model.

Let E f0
[·] denote the expectation under the true distribution and EΠ f [·] be the expectation under the

prior Π f .

In general, an estimator is a function of observations. Assuming a true distribution of those

observations, an estimator is called unbiased if its expectation under that distribution is equal to

the value that it estimates. If an estimator has this property, it is called consistent. In the case of

1. In unpublished results, we tried other base measures, such as a Laplacian distribution. They produced less stable

results than the Gaussian base measure.
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Figure 3: A plain Dirichlet process mixture model regression (left) versus DP-GLM, plotted against

the number of spurious dimensions (vertical plots). We give the estimated mean function

along with a 90% predicted confidence interval for the estimated underlying distribution.

Data have one predictive covariate and a varying number of spurious covariates. The

covariate data were generated by a mixture model. DP-GLM produces a smoother mean

function and is much more resistant to spurious dimensionality.

DP-GLM, that would mean for every x in a fixed domain A and every n > 0,

E f0
[EΠ f [Y |x,(Xi,Yi)

n
i=1]] = E f0

[Y |x].
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Since we use Bayesian priors in DP-GLM, we will have bias in almost all cases. The best we

can hope for is a consistent estimator, where as the number of observations grows to infinity, the

mean function estimate converges to the true mean function. That is, for every x ∈ A ,

EΠ f [Y |x,(Xi,Yi)
n
i=1]→ E f0

[Y |x] as n → ∞.

5.1 Weak Consistency of the Joint Posterior Distribution

Weak consistency is the idea that the posterior distribution, Π f ( f |(Xi,Yi)
n
i=1) collects in weak neigh-

borhoods of the true distribution, f0(x,y). A weak neighborhood of f0 of radius ε, Wε( f0), is defined

as follows,

Wε( f0) =

{

f :

∣

∣

∣

∣

∫
f0(x,y)g(x,y)dxdy−

∫
f (x,y)g(x,y)dxdy

∣

∣

∣

∣

< ε
}

for every bounded, continuous function g. Aside from guaranteeing that the posterior collects in

regions close to the true distribution, weak consistency can be used to show consistency of the

regression estimate under certain conditions. We give conditions for weak consistency for joint pos-

terior distribution of the Gaussian and multinomial models and use these results to show consistency

of the regression estimate for these same models.

We now give a theorem for the asymptotic unbiasedness of the Gaussian model.

Theorem 1 Let Π f be the prior induced by the Gaussian model of Equation (2). If f0(x,y) has

compact support, is absolutely continuous over that domain and G0 has support Rd ×R
d
+×R

d+1×
R+, then

Π f (Wε( f0) |(Xi,Yi)
n
i=1)→ 1

as n → ∞ for every ε > 0.

Posterior consistency of similar models, namely Dirichlet process mixtures of Gaussians, has been

extensively studied by Ghosal et al. (1999), Ghosh and Ramamoorthi (2003), and Tokdar (2006) and

convergence rates in Walker et al. (2007). The compact support condition for f0 allows for broad

array of base measures to produce weakly consistent posteriors. See Tokdar (2006) for results on

non-compactly supported f0.

We now give an analogous theorem for the multinomial model.

Theorem 2 Let Π f be the prior induced by the multinomial model of Equation (3). If f0(x) has

compact support, is absolutely continuous, G0 has support Rd ×R
d
+×R

d+1, and P f0
[Y = k |X = x]

is absolutely continuous in x for k = 1, . . . ,K, then

Π f (Wε( f0) |(Xi,Yi)
n
i=1)→ 1

as n → ∞ for every ε > 0.

The proofs of Theorems 1 and 2 are given in the Appendix.
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5.2 Consistency of the Regression Estimate

We approach consistency of the regression estimate by using weak consistency for the posterior of

the joint distribution and then placing additional integrability constraints on the base measure G0.

We now give results for the Gaussian and multinomial models.

Theorem 3 Let Π f be the prior induced by the Gaussian model of Equation (2). If

(i) G0 and f0 satisfy the conditions of Theorem 1, and

(ii)
∫
(β0 +∑d

i=1 βixi)G0(dβ)< ∞ for every x ∈ C ,

then

lim
n→∞

E f0
[EΠ f [Y |x,(Xi,Yi)

n
i=1]] = E f0

[Y |x]

almost surely P
∞
f0

.

Similarly, we give a theorem for the multinomial model.

Theorem 4 Let Π f be the prior induced by the multinomial model of Equation (3). If

(i) G0 and f0 satisfy the conditions of Theorem 2, and

(ii) P f0
[Y = k |X = x] is continuous in x for k = 1, . . . ,K,

then

lim
n→∞

E f0
[PΠ f [Y = k|x,(Xi,Yi)

n
i=1]] = P f0

[Y = k|x]

almost surely P
∞
f0

for k = 1, . . . ,K.

See Appendix B for proofs of Theorems 3 and 4.

5.3 Consistency Example: Gaussian Model

Examples of prior distributions that satisfy Theorems 1 and 3 are as follows.

5.3.1 NORMAL-INVERSE-WISHART

Note that in the Gaussian case, slope parameters can be generated by a full covariance matrix: using

a conjugate prior, a Normal-Inverse-Wishart, will produce an instance of the DP-GLM. Define the

following model, which was used by Müller et al. (1996),

P ∼ DP(αG0), (10)

θi |P ∼ P,

(Xi,Yi) |θi ∼ N(µ,Σ).

The last line of Model (10) can be broken down in the following manner,

Xi |θi ∼ N (µx,Σx) ,

Yi |θi ∼ N
(

µy +bT Σ−1
x b(Xi −µx),σ2

y −bT Σ−1
x b
)

,
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where

µ =

[

µy

µx

]

, Σ =

[

σ2
y bT

b Σx

]

.

We can then define β as,

β0 = µy −bT Σ−1
x µx, β1:d = bT Σ−1

x .

The base measure G0 is defined as,

(µ,Σ)∼ Normal Inverse Wishart(λ,ν,a,B).

Here λ is a mean vector, ν is a scaling parameter for the mean, a is a scaling parameter for the

covariance, and B is a covariance matrix.

5.3.2 DIAGONAL NORMAL-INVERSE-GAMMA

It is often more computationally efficient to specify that Σx is a diagonal matrix. In this case, we

can specify a conjugate base measure component by component:

σi, j ∼ Inverse Gamma(a j,b j), j = 1, . . . ,d,

µi, j |σi, j ∼ N(λ j,σi, j/ν j), j = 1, . . . ,d,

σi,y ∼ Inverse Gamma(ay,by),

βi, j |σi,y ∼ Nd+1(λy,σy/νy).

The Gibbs sampler can still be collapsed, but the computational cost is much lower than the full

Normal-Inverse-Wishart.

5.3.3 NORMAL MEAN, LOG NORMAL VARIANCE

Conjugate base measures tie the mean to the variance and can be a poor fit for small, heteroscedastic

data sets. The following base measure was proposed by Shahbaba and Neal (2009),

log(σi, j)∼ N(m j,σ,s
2
j,σ), j = y,1, . . . ,d,

µi, j ∼ N(m j,µ,s
2
j,µ), j = 1, . . . ,d,

βi, j ∼ N(m j,β,s
2
j,β) j = 0, . . . ,d.

5.4 Consistency Example: Multinomial Model

Now consider the multinomial model of Shahbaba and Neal (2009), given in Model (3),

P ∼ DP(αG0),

θi|P ∼ P,

Xi, j|θi,x ∼ N
(

µi j,σ2
i j

)

, j = 1, . . . ,d,

P(Yi = k|Xi,θi,y) =
exp
(

βi,0,k +∑d
j=1 βi, j,kXi, j

)

∑K
ℓ=1 exp

(

βi,0,ℓ+∑d
j=1 βi, j,ℓXi, j

) , k = 1, . . . ,K.

Examples of prior distributions that satisfy Theorems 2 and 4 are as follows.
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5.4.1 NORMAL-INVERSE-WISHART

The covariates have a Normal-Inverse-Wishart base measure while the GLM parameters have a

Gaussian base measure,

(µi,x,Σi,x)∼ Normal Inverse Wishart(λ,ν,a,B),

βi, j,k ∼ N(m j,k,s
2
j,k), j = 0, . . . ,d, k = 1, . . . ,K.

5.4.2 DIAGONAL NORMAL-INVERSE-GAMMA

It is often more computationally efficient to specify that Σx is a diagonal matrix. Again, we can spec-

ify a conjugate base measure component by component while keeping the Gaussian base measure

on the GLM components,

σi, j ∼ Inverse Gamma(a j,b j), j = 1, . . . ,d,

µi, j |σi, j ∼ N(λ j,σi, j/ν j), j = 1, . . . ,d,

βi, j,k |σi,y ∼ N(m j,k,s
2
j,k), j = 0, . . . ,d, k = 1, . . . ,K.

5.4.3 NORMAL MEAN, LOG NORMAL VARIANCE

Likewise, for heteroscedastic covariates we can use the log normal base measure of Shahbaba and

Neal (2009),

log(σi, j)∼ N(m j,σ,s
2
j,σ), j = 1, . . . ,d,

µi, j ∼ N(m j,µ,s
2
j,µ), j = 1, . . . ,d,

βi, j,k ∼ N(m j,k,β,s
2
j,k,β) j = 0, . . . ,d, k = 1, . . . ,K.

6. Empirical Study

We compare the performance of DP-GLM regression to other regression methods. We studied data

sets that illustrate the strengths of the DP-GLM, including robustness with respect to data type, het-

eroscedasticity and higher dimensionality than can be approached with traditional methods. Shah-

baba and Neal (2009) used a similar model on data with categorical covariates and count responses;

their numerical results were encouraging. We tested the DP-GLM on the following data sets.

6.1 Data Sets

We selected three data sets with continuous response variables. They highlight various data difficul-

ties within regression, such as error heteroscedasticity, moderate dimensionality (10–12 covariates),

various input types and response types.

• Cosmic Microwave Background (CMB) (Bennett et al., 2003). The data set consists of 899

observations which map positive integers ℓ= 1,2, . . . ,899, called ‘multipole moments,’ to the

power spectrum Cℓ. Both the covariate and response are considered continuous. The data

pose challenges because they are highly nonlinear and heteroscedastic. Since this data set is

only two dimensions, it allows us to easily demonstrate how the various methods approach

estimating a mean function while dealing with non-linearity and heteroscedasticity.
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• Concrete Compressive Strength (CCS) (Yeh, 1998). The data set has eight covariates: the

components cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate and

fine aggregate, all measured in kg per m3, and the age of the mixture in days; all are con-

tinuous. The response is the compressive strength of the resulting concrete, also continuous.

There are 1,030 observations. The data have relatively little noise. Difficulties arise from the

moderate dimensionality of the data.

• Solar Flare (Solar) (Bradshaw, 1989). The response is the number of solar flares in a 24

hour period in a given area; there are 11 categorical covariates. 7 covariates are binary and 4

have 3 to 6 classes for a total of 22 categories. The response is the sum of all types of solar

flares for the area. There are 1,389 observations. Difficulties are created by the moderately

high dimensionality, categorical covariates and count response. Few regression methods can

appropriately model this data.

Data set testing sizes ranged from very small (20 observations) to moderate sized (800 observations).

Small data set sizes were included due to interests in (future) online applications.

6.2 Competitors

The competitors represent a variety of regression methods; some methods are only suitable for

certain types of regression problems.

• Ordinary Least Squares (OLS). A parametric method that often provides a reasonable fit

when there are few observations. Although OLS can be extended for use with any set of

basis functions, finding basis functions that span the true function is a difficult task. We

naively choose [1X1 . . . Xd]
T as basis functions. OLS can be modified to accommodate both

continuous and categorical inputs, but it requires a continuous response function.

• CART. A nonparametric tree regression method (Brieman et al., 1984) generated by the Mat-
lab function classregtree. It accommodates both continuous and categorical inputs and any

type of response.

• Bayesian CART. A tree regression model with a prior over tree size (Chipman et al., 1998);

it was implemented in R with the tgp package.

• Bayesian Treed Linear Model. A tree regression model with a prior over tree size and a

linear model in each of the leaves (Chipman et al., 2002); it was implemented in R with the

tgp package.

• Gaussian Processes (GP). A nonparametric method that can accommodate only continuous

inputs and continuous responses. GPs were generated in Matlab by the program gpml of

Rasmussen and Williams (2006).

• Treed Gaussian Processes. A tree regression model with a prior over tree size and a GP on

each leaf node (Gramacy and Lee, 2008); it was implemented in R with the tgp package.
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Method Mean Absolute Error Mean Square Error

Training set size 30 50 100 250 500 30 50 100 250 500

DP-GLM 0.58 0.51 0.49 0.48 0.45 1.00 0.94 0.91 0.94 0.83
Linear Regression 0.66 0.65 0.63 0.65 0.63 1.08 1.04 1.01 1.04 0.96

CART 0.62 0.60 0.60 0.56 0.56 1.45 1.34 1.43 1.29 1.41

Bayesian CART 0.66 0.64 0.54 0.50 0.47 1.04 1.01 0.93 0.94 0.84

Treed Linear Model 0.64 0.52 0.49 0.48 0.46 1.10 0.95 0.93 0.95 0.85

Gaussian Process 0.55 0.53 0.50 0.51 0.47 1.06 0.97 0.93 0.96 0.85

Treed GP 0.52 0.49 0.48 0.48 0.46 1.03 0.95 0.95 0.96 0.89

Table 1: Mean absolute and square errors for methods on the CMB data set by training data size.

The best results for each size of training data are in bold.

• Basic DP Regression. Similar to DP-GLM, except the response is a function only of µy,

rather than β0 +∑βixi. For the Gaussian model,

P ∼ DP(αG0),

θi|P ∼ P,

Xi|θi ∼ N(µi,x,σ2
i,x),

Yi|θi ∼ N(µi,y,σ2
i,y).

This model was explored in Section 4.4.

• Poisson GLM (GLM). A Poisson generalized linear model, used on the Solar Flare data set.

It is suitable for count responses.

6.3 Cosmic Microwave Background (CMB) Results

For this data set, we used a Gaussian model with base measure

µx ∼ N(mx,s
2
x), σ2

x ∼ exp
{

N(mx,s,s
2
x,s)
}

,

β0:d ∼ N(my,0:d ,s
2
y,0:d), σ2

y ∼ exp
{

N(mx,s,s
2
x,s)
}

.

This prior was chosen because the variance tails are heavier than an inverse gamma and the mean

is not tied to the variance. It is a good choice for heterogeneous data because of those features.

Computational details are given in Appendix C.

All non-linear methods except for CART (DP-GLM, Bayesian CART, treed linear models, GPs

and treed GPs) did comparably on this data set; CART had difficulty finding an appropriate band-

width. Linear regression did poorly due to the non-linearity of the data set. Fits for heteroscedas-

ticity for the DP-GLM, GPs, treed GPs and treed linear models on 250 training data points can be

seen in Figure 2. See Figure 4 and Table 1 for results.

6.4 Concrete Compressive Strength (CCS) Results

The CCS data set was chosen because of its moderately high dimensionality and continuous covari-

ates and response. For this data set, we used a Gaussian model and a conjugate base measure with
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Figure 4: The average mean absolute error (top) and mean squared error (bottom) for ordinary least

squares (OLS), tree regression, Gaussian processes and DP-GLM on the CMB data set.

The data were normalized. Mean +/− one standard deviation are given for each method.

conditionally independent covariate and response parameters,

(µx,σ2
x)∼ Normal − Inverse−Gamma(mx,sx,ax,bx),

(β0:d ,σ2
y)∼ Multivariate Normal − Inverse−Gamma(My,Sy,ay,by).

This base measure allows the sampler to be fully collapsed but has fewer covariate-associated pa-

rameters than a full Normal-Inverse-Wishart base measure, giving it a better fit in a moderate di-

mensional setting. In testing, it also provided better results for this data set than the exponentiated

Normal base measure used for the CMB data set; this is likely due to the low noise and variance of

the CCS data set. Computational details are given in Appendix C.

Results on this data set were more varied than those for the CMB data set. GPs had the best

performance overall; on smaller sets of training data, the DP-GLM outperformed frequentist CART.

Linear regression, basic DP regression and Bayesian CART all performed comparatively poorly.

Treed linear models and treed GPs performed very well most of the time, but had convergence

problems leading to overall higher levels of predictive error. Convergence issues were likely caused

by the moderate dimensionality (8 covariates) of the data set. See Figure 5 and Table 2 for results.

6.5 Solar Flare Results

The Solar data set was chosen to demonstrate the flexibility of DP-GLM. Many regression tech-

niques cannot accommodate categorical covariates and most cannot accommodate a count-type re-
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Figure 5: The average mean absolute error (top) and mean squared error (bottom) for ordinary least

squares (OLS), tree regression, Gaussian processes, location/scale DP and the DP-GLM

Poisson model on the CCS data set. The data were normalized. Mean +/− one standard

deviation are given for each method.

Method Mean Absolute Error Mean Squared Error

30 50 100 250 500 30 50 100 250 500

DP-GLM 0.54 0.50 0.45 0.42 0.40 0.47 0.41 0.33 0.28 0.27

Location/Scale DP 0.66 0.62 0.58 0.56 0.54 0.68 0.59 0.52 0.48 0.45

Linear Regression 0.61 0.56 0.51 0.50 0.50 0.66 0.50 0.43 0.41 0.40

CART 0.72 0.62 0.52 0.43 0.34 0.87 0.65 0.46 0.33 0.23

Bayesian CART 0.78 0.72 0.63 0.55 0.54 0.95 0.80 0.61 0.49 0.46

Treed Linear Model 1.08 0.95 0.60 0.35 1.10 7.85 9.56 4.28 0.26 1232

Gaussian Process 0.53 0.52 0.38 0.31 0.26 0.49 0.45 0.26 0.18 0.14

Treed GP 0.73 0.40 0.47 0.28 0.22 1.40 0.30 3.40 0.20 0.11

Table 2: Mean absolute and square errors for methods on the CCS data set by training data size.

The best results for each size of training data are in bold.

sponse. For this data set, we used the following DP-GLM,

P ∼ DP(αG0),

θi |P ∼ P,

Xi, j |θi ∼ (pi, j,1, . . . , pi, j,K( j)),

Yi |θi ∼ Poisson

(

βi,0 +
d

∑
j=1

K( j)

∑
k=1

βi, j,k1{Xi, j=k}

)

.

We used a conjugate covariate base measure and a Gaussian base measure for β,

(p j,1, . . . , p j,K( j))∼ Dirichlet(a j,1, . . . ,a j,K( j)), β j,k ∼ N(m j,k,s
2
j,k).
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Figure 6: The average mean absolute error (top) and mean squared error (bottom) for tree regres-

sion, a Poisson GLM (GLM) and DP-GLM on the Solar data set. Mean +/− one standard

deviation are given for each method.

Method Mean Absolute Error Mean Squared Error

50 100 200 500 800 50 100 200 500 800

DP-GLM 0.52 0.49 0.48 0.45 0.44 0.84 0.76 0.71 0.69 0.63

Poisson Regression 0.65 0.59 0.54 0.52 0.48 0.87 0.84 0.80 0.73 0.64

CART 0.53 0.48 0.50 0.47 0.47 1.13 0.88 1.03 0.88 0.83

Bayesian CART 0.59 0.52 0.51 0.47 0.45 0.86 0.80 0.78 0.71 0.60
Gaussian Process 0.55 0.47 0.47 0.45 0.44 1.14 0.83 0.83 0.81 0.67

Table 3: Mean absolute and square errors for methods on the Solar data set by training data size.

The best results for each size of training data are in bold.

Computational details are given in Appendix C.

The only other methods that can handle this data set are CART, Bayesian CART and Poisson

regression. GP regression was run with a squared exponential covariance function and Gaussian

errors to make use of the ordering in the covariates. The DP-GLM had good performance under

both error measures. The high mean squared error values suggests that frequentist CART overfit

while the high mean absolute error for Poisson regression suggests that it did not adequately fit

nonlinearities. See Figure 6 and Table 3 for results.

6.6 Discussion

The DP-GLM is a relatively strong competitor on all of the data sets. It was more stable than most

of its Bayesian competitors (aside from GPs) on the CCS data set. Our results suggest that the DP-

GLM would be a good choice for small sample sizes when there is significant prior knowledge; in

those cases, it acts as an automatic outlier detector and produces a result that is similar to a Bayesian
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GLM. Results from Section 4 suggest that the DP-GLM is not appropriate for problems with high

dimensional covariates; in those cases, the covariate posterior swamps the response posterior with

poor numerical results.

7. Conclusions and Future Work

We developed the Dirichlet process mixture of generalized linear models (DP-GLM), a flexible

Bayesian regression technique. We discussed its statistical and empirical properties; we gave con-

ditions for asymptotic unbiasedness and gave situations in which they hold; finally, we tested the

DP-GLM on a variety of data sets against state of the art Bayesian competitors. The DP-GLM was

competitive in most setting and provided stable, conservative estimates, even with extremely small

sample sizes.

One concern with the DP-GLM is computational efficiency as implemented. All results were

generated using MCMC, which does not scale well to large data sets. An alternative implementation

using variational inference (Blei and Jordan, 2006), possibly online variational inference (Sato,

2001), would greatly increase computational feasibility for large data sets.

Our empirical analysis of the DP-GLM has implications for regression methods that rely on

modeling a joint posterior distribution of the covariates and the response. Our experiments suggest

that the covariate posterior can swamp the response posterior, but careful modeling can mitigate the

effects for problems with low to moderate dimensionality. A better understanding would allow us

to know when and how such modeling problems can be avoided.
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Appendix A.

In the Gibbs sampler, the state is the collection of labels (z1, . . . ,zn) and parameters (θ∗1, . . . ,θ∗K),
where θ∗c is the parameter associated with cluster c and K is the number of unique labels given

z1:n. In a collapsed Gibbs sampler, all or part of (θ∗1, . . . ,θ∗K) is eliminated through integration. Let

z−i = (z1, . . . ,zi−1,zi+1, . . . ,zn). A basic inference algorithm is given in Algorithm 1. Convergence

criteria for the Gibbs samplers in our numerical examples are given in Appendix C. See Gelman

et al. (2004) for a more complete discussion on convergence criteria.

We can sample from the distribution p(zi |D,z−i,θ∗1:K) as follows,

p(zi |D,z−i,θ∗1:K) ∝ p(zi |z−i)p(Xi |z1:n,D,θ∗1:K)p(Yi |Xi,z1:n,D,θ∗1:K). (11)

The first part of Equation (11) is the Chinese Restaurant Process posterior value,

p(zi |z−i) =

{

nz j

n−1+α if zi = z j for some j 6= i,
α

n−1+α if zi 6= z j for all j 6= i.
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Algorithm 1: Gibbs Sampling Algorithm for the DP-GLM

Require: Starting state (z1, . . . ,zn), (θ∗1, . . . ,θ∗K), convergence criteria.

1: repeat
2: for i = 1 to n do
3: Sample zi from p(zi |D,z−i,θ∗1:K).
4: end for
5: for c = 1 to K do
6: Sample θ∗c given {(Xi,Yi) : zi = c}.

7: end for
8: if Convergence criteria are met then
9: Record (z1, . . . ,zn) and (θ∗1, . . . ,θ∗K).

10: end if
11: until M posterior samples obtained.

Here nz j
is the number of elements with the label z j. The second term of Equation (11) is the same

as in other Gibbs sampling algorithms. If possible, the component parameters θ∗1:K can be integrated

out (in the case of conjugate base measures and parameters that pertain strictly to the covariates)

and p(Xi |z1:n,D,θ∗1:K) can be replaced with
∫

p(Xi |z1:n,D,θ∗1:K)p(θ∗1:K |z1:n)dθ∗1:K .

The third term of Equation (11) is not found in traditional Dirichlet process mixture model samplers.
In some cases, this term can also be collapsed, such as Gaussian model with a Normal-Inverse-
Gamma base measure. In that case,

p(Yi |Xi,zc,Dc) =
Γ((nn +1)/2)

Γ(nn/2)
(nnsn)

−1/2
exp

(

−1/2(nn +1) log

(

1+
1

nnsn

(Yi −mn)
2

))

,

Ṽ =
(

V−1 + X̃T
c X̃c

)−1
,

m̂n = Ṽ
(

m0V−1 + X̃T
c Yc

)

,

mn = X̃im̂n,

nn = ny0 +nc,

s2
n = 4

(

s2
y0 +1/2

(

m0V−1mT
0 +Y T

c Yc − m̂T
n Ṽ−1m̂n

))

/
(

(ny0 +nc)X̃cṼ X̃T
c

)

.

Here, we define X̃c = {[1X j] : z j = zc}, Yc = {Yj : z j = zc}, X̃i = [1Xi], nc is the number of data

associated with label zc and the base measure is define as,

σ2
y ∼ Inverse−Gamma(ny0,s

2
y0),

β |σ2
y ∼ N(m0,σ2

yV ).

Appendix B.

Proofs for the main theorems.

B.1 Proof of Theorem 1

Both Theorems 1 and 2 rely on a theorem by Schwartz (1965).
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Theorem 5 (Schwartz, 1965) Let Π f be a prior on F . Then, if Π f places positive probability on

all neighborhoods
{

f :

∫
f0(x,y) log

f0(x,y)

f (x,y)
dxdy < δ

}

for every δ> 0, then Π f is weakly consistent at f0.

The proof for Theorem 1 follows closely both Ghosal et al. (1999) and Tokdar (2006).

Proof Without loss of generality, assume d = 1. Since f0 has compact support, there exists an x0

and a y0 such that f0(x,y) = 0 for |x| > x0 or |y| > y0. Fix ε > 0. Following Remark 3 of Ghosal

et al. (1999), there exist σ̄x > 0 and σ̄y > 0 such that

∫ x0

−x0

∫ y0

−y0

f0(x,y) log
f0(x,y)∫ x0

−x0

∫ y0

−y0
φ( x−θx

σ̄x
)φ( y−θy

σ̄y
) f0(x,y)dθxdθy

< ε/2.

Let P0 be a measure on R
3 ×R

2
+, that is, a measure for (µx,β0,β1,σx,σy). Define it such that

dP0 = f0×δ0×δσ̄x
×δσ̄y

. Fix a λ > 0 and κ > 0. Choose a large compact set K such that [−x0,x0]×
[−y0,y0]× [−y0,y0]×{σ̄x}×{σ̄y} ⊂ K.Let B = {P : |P(K)/P0(K)−1|< κ}. Since the support of

G0 is R3 ×R
2
+, Π(B)> 0.

Following Ghosal et al. (1999) and Tokdar (2006), it can be shown that there exists a set C such

that Π(B ∩C )> 0 and for every P ∈ B ∩C ,

∫ x0

−x0

∫ y0

−y0

f0(x,y) log

∫
K φ( x−µx

σx
)φ( y−β0−β1x

σy
)dP0∫

K φ( x−µx

σx
)φ( y−β0−β1x

σy
)dP

<
κ

1−κ
+2κ < ε/2

for a suitable choice of κ. Therefore, for f = φ∗P for every P ∈ B ∩C ,

∫
f0(x,y) log

f0(x,y)

f (x,y)
dxdy ≤

∫ x0

−x0

∫ y0

−y0

f0(x,y) log
f0(x,y)∫ x0

−x0

∫ y0

−y0
φ( x−θx

σ̄x
)φ( y−θy

σ̄y
) f0(x,y)dθxdθy

+
∫ x0

−x0

∫ y0

−y0

f0(x,y) log

∫
K φ( x−µx

σx
)φ( y−β0−β1x

σy
)dP0∫

K φ( x−µx

σx
)φ( y−β0−β1x

σy
)dP

< ε.

Therefore, Π f places positive measure on all weak neighborhoods of f0, and hence satisfies Theo-

rem 5.

Proof [Theorem 2] The proof of Theorem 2 follows along the same lines as the proof for Theorem

1. Instead of the continuous response, however, there is a categorical response. The continuity

condition on the response probabilities ensures that there exists a y0 > 0 such that there are m

continuous functions b1(x), . . . ,bm(x) with |bi(x)|< y0 and

P f0
[Y = i |X = x] =

exp(bi(x))

∑m
j=1 exp(b j(x))

.
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Using arguments similar to those in the previous proof, there exists σ̄x > 0 such that,

∫ x0

−x0

f0(x, i) log
f0(x, i)∫ x0

−x0
φ( x−θx

σ̄x
) f0(x)

exp(bi(x))
∑m

j=1 exp(b j(x))
dθx

< ε/2.

Define P0 such that dP0 = f0(x)×{σ̄x}×b1(x)×·· ·×bm(x). The rest of the proof follows as pre-

viously, with small modifications.

B.2 Proof of Theorem 3

We now show pointwise convergence of the conditional densities. The following propositions will

be used to prove Theorems 3 and 4.Let fn(x,y) be the Bayes estimate of the density under Π f after

n observations,

fn(x,y) =
∫
F

f (x,y)Π f (d f |(Xi,Yi)
n
i=1) .

Proposition 6 Weak consistency of Π f at f0 for the Gaussian model and the multinomial model

implies that fn(x,y) converges pointwise to f0(x,y) and fn(x) converges pointwise to f0(x) for (x,y)
in the compact support of f0.

Proof Both fn(x,y) and fn(x) can be written as expectations of bounded functions with respect to

the posterior measure. In the Gaussian case, both fn(x,y) and fn(x) are absolutely continuous; in

the multinomial case, fn(x) is absolutely continuous while the probability P fn
[Y = k |x] is absolutely

continuous in x for k = 1, . . . ,K. Due to absolute continuity, the result holds.

This can be used to show that the conditional density estimate converges pointwise to the true

conditional density.

Proposition 7 Let fn(x,y) an fn(x) be as in Proposition 6. Then fn(y|x) converges pointwise to

f0(y|x) for any (x,y) in the compact support of f0.

Proof From Proposition 6, fn(x,y) converges pointwise to f0(x,y) and fn(x) converges pointwise

to f0(x). Then,

lim
n→∞

fn(y|x) = lim
n→∞

fn(x,y)

fn(x)
=

f0(x,y)

f0(x)
= f0(y|x).

The denominator value, fn(x), is greater than 0 almost surely because it is a mixture of Gaussian

densities.

Now we proceed to the proof of Theorem 3.

Proof [Theorem 3] The conditions for Theorem 3 assure that Propositions 6 and 7 hold. Because

of this and the fact that G0 places positive measure only on densities with a finite expectation, the

results hold.

B.3 Proof of Theorem 4

The proof follows in the same manner as that for Theorem 3.
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Appendix C.

Implementation details.

C.1 CMB Computational Details

The DP-GLM was run on the largest data size tested several times; log posterior probabilities were

evaluated graphically, and in each case the posterior probabilities seem to have stabilized well before

1,000 iterations. Therefore, all runs for each sample size were given a 1,000 iteration burn-in with

samples taken every 5 iterations until 2,000 iterations had been observed. The scaling parameter α
was given a Gamma prior with shape and scale set to 1. The means and variances of each component

and all GLM parameters were also given a log-normal hyper distribution. The model was most

sensitive to the hyper-distribution on σy, the GLM variance. Small values were used (log(my) ∼
N(−3,2)) to place greater emphasis on response fit. The non-conjugate parameters were updated

using the Hamiltonian dynamics method of Neal (2010). Hyperparameters were chosen based on

performance on a subset of 100 data points; values were then held fixed all other data sets. This

may produce an overly confident error assessment, but the limited size of the data set did not allow

a pure training-validation-testing three way partition. A non-conjugate base measure was used on

this data set due to small sample sizes and heteroscedasticity. The conjugate measure, a normal-

inverse-gamma, assumes a relationship between the variance and the mean,

µ |σ2,λ,ν ∼ N(λ,σ2/ν).

Therefore, smaller variances greatly encourage the mean µ to remain in a small neighborhood

around around the prior value, λ. Naturally, this property can be overcome with many observa-

tions, but it makes strong statements about the mean in situations with few total samples or few

samples per cluster due to heteroscedasticity. This model was implemented in Matlab; a run on the

largest data set took about 500 seconds.

C.2 CCS Computational Details

Again, the DP-GLM was run on the largest data size tested several times; log posterior probabilities

were evaluated graphically, and in each case the posterior probabilities seem to have stabilized

well before 1,000 iterations. Therefore, all runs for each sample size were given a 1,000 iteration

burn-in with samples taken every 5 iterations until 2,000 iterations had been observed. The scaling

parameter α was given a Gamma prior with shape and scale set to 1. The hyperparameters of the

conjugate base measure were set manually by trying different settings over four orders of magnitude

for each parameter on a single subset of training data. Again, this may produce an overly confident

error assessment, but the limited size of the data set did not allow a pure training-validation-testing

three way partition. All base measures were conjugate, so the sampler was fully collapsed. α was

updated using Hamiltonian dynamics (Neal, 2010). Original results were generated by Matlab; the

longest run times were about 1000 seconds. This method has been re-implemented in Java in a

highly efficient manner; the longest run times are now under about 10 seconds. Run times would

likely be even faster if variational methods were used for posterior sampling (Blei and Jordan, 2006).
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C.3 Solar Computational Details

Again, the DP-GLM was run on the largest data set size tested several times; log posterior probabil-

ities were evaluated graphically, and in each case the posterior probabilities seem to have stabilized

well before 1,000 iterations. Therefore, all runs for each sample size were given a 1,000 itera-

tion burn-in with samples taken every 5 iterations until 2,000 iterations had been observed. The

scaling parameter α was set to 1 and the Dirichlet priors to Dir(1,1, . . . ,1). The response param-

eters were given a Gaussian base distribution with a mean set to 0 and a variance chosen after

trying parameters with four orders of magnitude on a fixed training data set. This may produce an

overly confident error assessment, but the limited size of the data set did not allow a pure training-

validation-testing three way partition. All covariate base measures were conjugate and the β base

measure was Gaussian, so the sampler was collapsed along the covariate dimensions and used in the

auxiliary component setting of Algorithm 8 of Neal (2000). The β parameters were updated using

Metropolis-Hastings. Results were in generated by Matlab; run times were substantially faster than

the other methods implemented in Matlab (under 200 seconds).
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