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DIRICHLET SERIES AND AUTOMORPHIC FORMS
ON UNITARY GROUPS

BY
TOBIAS ORLOFF1

Abstract. In a special case our unitary group takes the form

G = { geGL(p + 2,C)\'gRg= r}.

Here

IS      0      0
R= \0     0     1

\0     -1     0
is a skew-Hermitian matrix with entries in an imaginary quadratic number field K.
We suppose that -iR has signature (p + 1,1). This group acts naturally on the
symmetric domain

D = { w e Cp, z e C|lm(z) > -\'wSwf.

If T = G n SL(p + 2, 0K ) with 0K the ring of integers in K. then an automorphic
form /(h>, z) with respect to T has an expansion T.rg,.(w) ■ e1'"'rz. The functions
gr(w) are theta functions. Given another automorphic form g(w, z) with an expan-
sion T.,hs(w) ■ e2""" we define a Dirichlet series H,.(gr, h,.)r~\ Here (gr, hr) is a
certain positive definite inner product on the space of theta functions. The series is
obtained as an integral of Rankin type:

[       fg(lm(z)+   \i'wSwY dwdwdzdz
JPr\D

with Pr Q T a subgroup of "translations". The series is analytically continued by
studying the Eisenstein series arising when the above integral is transformed into an
integral over r \ D. In the case p = 1 our results have an application to some recent
work of Shintani, where the Euler product attached to an eigenfunction of the Hecke
operators is obtained, up to some simple factors, as a series of the above type.

1. Introduction. The principal result of this paper is the analytic continuation of a
certain type of Dirichlet series. The series are constructed by means of the Rankin
convolution of automorphic forms on unitary groups. We shall restrict mainly to the
case of unitary groups of signature (2,1), remarking on the general case in §10. In
the case of signature (2,1), a construction such as ours has appeared in a paper of
Shintani, and we shall discuss his results at the end of the introduction. To describe
our results, let K be a totally imaginary quadratic extension of a totally real number
field F. (Such a Kis called a CM-field.) Suppose [F: Q] = n and A is a collection of
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432 TOBIAS ORLOFF

n distinct embeddings of K into C, no two of which are complex conjugates of one
another. (Such a A is called a CM-type.) Suppose Sei satisfies S" = -S and
-iS*1 > 0 for all ju e A. Here p denotes the nontrivial element of Gal(K/F), which
we also denote by '-', a symbol which further denotes complex conjugation when
applied to elements of C. Let

(1.1) R = ¡S
0

lo
0
0

-1

0'
1
0,

G GL(3, K)

and define an algebraic group

(1.2) GQ=[geGL(3,K)\'g»Rg = R}.

Here / denotes the transpose. We consider GQ as the Q-rational points of a
Q-rational algebraic group G. We can identify the real points GR of this group with
the product Tl^fi^, where

G,= {g<=GL(3,C)\'gR»g = R>i}.
Here R1* g GL(3,C) is the matrix obtained by embedding the components of R into
C via p. Thus G^ is a unitary group of signature (2,1).

For elements g g Gq and u g A we have g* g Gu, and we consider GQ as
embedded in G R by this means. For any element g GR with

g = D
B
E
I

we denote by

S„ =
H„     I..

C^
F
J I

V

the /¿-component of g. Define a Hermitian symmetric domain D = Yl^^n.D^, where

(1.3) 2>M = {(w, z)\w g C,z g C, Im(z) > -\iwS"w}.

For a point 3 = (w, z) G D we denote by 5^ = (u^, zA) g D^ the u.-component of ¡.
In the above notation the element g g Gr acts on 3 g D by the formula

g(h) =
Aw + Bz + C   Dw + Ez + F
Hw + ¡Z + J ' Hw + Iz +J

Here we multiply two «-tuples of numbers by multiplying their corresponding
entries. For more details see [7].

Given a tuple k = (k )/¡e¡i of nonnegative integers we define a factor of auto-
morphy

(1.4) Ä8.i)k- IKHft + Ify + JJ1*
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DIRICHLET SERIES 433

Then j(gh, 0)k = j(g, h(0))k ■ j(h, ¡)k for g, h g Gr and 3 g D. (In general, given
tuples of numbers x = (x^)^^^ and t = (t)l)ll£A we define x' = n^A*^ whenever
this makes sense.) Choosing an arithmetic subgroup T of GQ, say for example
r = GQ n SL(3, 6\), where 6\ is the ring of integers in K, we can define an
automorphic form of weight k with respect to T to be a holomorphic function /:
D -» C such that

(1.5) /(Y(5))=y(Y, 5)7(5)
for all 7 g r. Although our domain is not a tube domain, such a function has a
Fourier-Jacobi expansion of the form

(1.6) fU)= £ gr(w)e2"«^>.

Here 7 is a certain lattice in K, tr(r • z) = E,l{=¡i>'%, and the gr(w) are functions of
w G C". Moreover, we can identify a suitable subgroup Pr £ T of "translations".
(See §2 for the precise definition.) Given another automorphic form g of weight m
and a Fourier-Jacobi expansion

g(a)= E Ar(MÓe¿":«'•«>,
re/

we define

(1.7) D(S,f,g) = J      fg(lm(z) + \iwSwr + m)/2+s+2dQ.
JPr\D

Here seCis considered an «-tuple (s,... ,s ) and JS2 is the GR-invariant measure on
D. With a suitable restriction on /and g this integral converges for Re(j) sufficiently
large and can be evaluated to give

D(s, f, g) = vol(C"/J)(4^y(k + m)/2-X(Hk + m)+s)

■    E    (gr, hr)r-<* + «>/2-*.
rej/U

Here r„(5(/c + m) + s) = n^e^r^/c^ + m^) + s) with the usual T-function, / is a
lattice associated to J, (gr, hr) is a certain positive definite inner product, and the
sum is taken over J modulo a group of units U. Then our main result (Theorem 7.1)
states that the function D(s, f, g) possesses an analytic continuation to a meromor-
phic function on the whole s-plane. Moreover, when multiplied by a suitable product
of L-functions and T-factors it becomes an entire function of s. Our methods do not
give a functional equation in a transparent form, except in a special case (see §8).

We now discuss the paper of Shintani referred to earlier [10]. This work is
concerned with automorphic forms on SU(2,1). Let / be such a form which is an
eigenfunction of all the Hecke operators. Shintani attaches an Euler product L(s, f)
to /and shows that L(s, f) is equal, up to some simple factors, to D(s, f, g A with
an automorphic form g, dependent on /. Thus our main result implies the analytic
continuability of L(s, /). This has also been obtained by Y. Flicker by a different
method [2].
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Notation. The notation of the introduction will be retained in the text. For a
symmetric (or Hermitian) matrix P the notation P > 0 signifies that P is positive
definite. Also, for a ring R with unit we denote by R* the group of invertible
elements of R. For positive integers m and n let R"' be the ring of m X « matrices
with entries in R. Write R"' = R? and Rm = /?'„,. The n X n identity matrix is
denoted by 1„, or simply 1 when there is no fear of confusion. We let GL(«, R) or
GL„(-R) denote (ÄJ^.We use the standard symbols Z, Q, R, and C to denote the
ring of integers, rational numbers, real numbers, and complex numbers, respectively.
Finally, for z g C we write e(z) = e2"'\

2. Automorphic forms and Fourier-Jacobi expansions. By a lattice A £ K3 we
mean a Z-submodule of finite, maximal Z-rank. For such a lattice define

(2.1) TA= (ygGq|Ay = A,dety = l}.

Define a subgroup jVq of GQ by

(2.2) "q = Y = *' 0
0
*
0

*

* /

Let r be an arbitrary subgroup of TA of finite index. Let Nr = NQ n I\ There is a
subgroup U of finite index in the group of totally positive units of 0F such that

(2.3) Ur =
(10      0  '0     «      0
*0    0     u~\

m G U

is a subgroup of I\ Also there are lattices L £ K and J £ F such that U ■ L = L,
U2   J = J, and

(2.4) M(L,J)
def

1 0 X
xS     1     y + jxSx

loo        1
x G L,y G /

is a subgroup of I\ Let Zr denote the set of elements of T which act trivially on D.
ZT is a finite group of matrices of the form £ • 13 with a root of unity f. Finally, let

(2.5) PT= Zr- £/r. M(L,J).

( PT depends on Y, U, L and /. ) Then PT is a subgroup of finite index in yVr.
Suppose/is an automorphic form of weight k with respect to T. Let

/l
0U

o1
y
i

with V G /.
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DIRICHLET SERIES 435

Then from (1.5),/(w, z + y) = f(w, z). Fix w and consider/as a function of z. It is
then a holomorphic function on an open subset of C" and it is invariant under
translation by the lattice J £ R". (Here we are considering F £ R" via the CM-type
A.) It follows that/has an expansion of the form

(2.6) /(",*)= E*,(w)-e(tr(r-z)),
rey

where/ = {r g F|trF/g(/-/) £ Z} and the gr(w) are holomorphic functions defined
everywhere on C". We call this expression the Fourier-Jacobi expansion of/. Now
choose

Y =
10        x    \

with x g L.AiJ i i -A*J-A

,oo      17
Then from (1.5),/(w + x, xSw + z + ^3cSx) = f(w, z). This implies

(2.7) gr(w + x) = gr(w)e(~tr(r ■ *S(" + I*))-

That is, gr(w) is a theta function with respect to the lattice L £ C". (Here we
consider K £ C" via the CM-type A.) It follows that g0(w) is constant and
gr(w) = 0 unless r*1 > 0 for each jti g A. Finally, choose

'10      0 \
y =    0     u      0        with u g U.

\0    0    h"1/

Then (1.5) implies

(2.8) gr(uw) = u-k ■ grui(w).

For an element y g Gq define /|^y as the function f(y(í)) -j(y, i)~k- The
automorphic form / is called a cusp form if the constant term in the Fourier-Jacobi
expansion of f\ky is zero for every y g Gq. It is worth noting that/is necessarily a
cusp form unless all the components of k are equal. This follows easily from setting
r = 0 in (2.8). Also,/is zero unless yk = 1 for all y g Zr.

3. Estimates for Fourier-Jacobi coefficients. Let/(tv, z) = Egr(w)e(tr(r • z)) be as
in §2, i.e. an automorphic form of weight k with respect to Y. In this section we
establish estimates for the functions / and gr which will be needed in the next
section. Write

(3.1) q(w,z) = lm(z) + UwSw.

From formula 1.17 of [7] we have

(3-2) <7(Y(s)) = <7(5H/(Y,5)r2    iory^GR.
We now recall the main theorem of reduction theory, suitably specialized to our

case (see Borel [1]). Thus, for subsets A £ R", B £ C", and an «-tuple of positive
numbers e = (£)l)(ie4 define a subset T(e, A, B) c D by

(3.3) T(e, A,B)= ( (w, z) G D\q(w, z) > e, Re(z) e A, w g B).
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436 TOBIAS ORLOFF

Here and henceforth a condition such as x > g for «-tuples x = (x^) and y = ( y^)
means x   > vM for each a g A.

Reduction theory (Theorem 1.10 of [1]). There exist compact subsets A £ R" and
B £ C", an «-tuple of positive numbers e, and a finite subset P of GQ so that

z) = rUg(i(u,ß)).     □
geP

Thus   we   can   find   a   fundamental   domain   for   T   contained   in   the   set
U^Pg(T(e, A, B)).

Proposition 3.1. If f is a cusp form, then the function ]"(3) • q(b)k/2 is bounded on
D.

Proof. Let T(e, A, B) and P £ GQ be as in the reduction theory above. By
assumption/| ay is a cusp form for every y g P. It follows from the Fourier-Jacobi
expansion of f\ky that (f\ky) • q(i)k/1 is bounded on T(e, A, B). But

\f\ky q(i)k/1\=\f{y{o)) ■ q(y{o))k/1\

by (3.2). Therefore 1/(3) • q(h)k/2\ is bounded on \JyePyT(e, A, B) and hence also
bounded on D = T ■ \JyePyT(e, A, B), since \f(0) • q(i)k/2\is invariant under T.

Proposition 3.2. Let f be as above.
(1) If fis a cusp form,

(3.4) Mw)l < Crk/1 ■ e(-tr(r • %wSw))

for 0 < r G J and with a constant C independent of r and w.
(2) If fis not a cusp form,

(3.5) |g,(vf)| < Crk ■ e(-tr(r- \wSw))

for 0 < r G J and with a constant C independent of r and w.

Proof. The proof of (1) follows from the formula

(3.6)

vol(R"//) ■ gr(w)e(i ■ tr(ry)) =  f f(w,x + iy)e(-\r(rx)) dxx ■ ■ ■ dxn
Jx e R"/7

for (w, iy) g D, with y g R". For, if / is a cusp form, then by Proposition 3.1
\f(w, x + iy)\ < Cq(w, iy)~k/1. Substituting this in (3.6) we obtain

\gr(w)\ < Cq(w, iy)~k/2e(-i ■ tr(r • y)).

Choosing^ = - kiwSw + \/r yields the inequality (3.4).
For the case in which / is not a cusp form, we need the following lemma.

Lemma 3.3. Let P be a finite subset of Gq. Given
* * \
* *     G   U yT    and   3 = (w, z) G D
b C j a<EP
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there is a constant M > 0, independent of y and 3, so that

(3.7) \aw + bz + cf > M- min(l, i^)1).

Here! = (1,...,1).

Proof. To simplify notation let us fix u g A and drop it as a subscript or
superscript. Thus for now a denotes a , b denotes b^, etc. Assume b i= 0. Then

(3.8) \b(aw + bz + c)\ >\lm(baw) +\b2\ ■ Im[z] + lm(bc)\.

Since y g Gq we have 'y^y = R- Hence

I s~l   0   0
(3.9) (a   b   c) 0

\0
0 -1
1 0

lä\
b

\c
0

or

(3.10) iaS'1 ■ ä = 2 ■ lm(cb).
Using this, the right-hand side of (3.8) may be written

(3.11)
Now,

(3.12) lm(baw) > -\b\-\aw\= -\b\-\a ■ iS~l(-iSw)\.

Therefore

\m(baw) +\b\2 -(lm(z) + UwSw) - \i\b\2\vSw + ^iaS^äl

(3.13)
- \i\b\   • wSw + Im(baw) + \iaS~1 ■ 5

> ¡[(iaS-1 ■ a)l/2 + \b\(-iwSw)l/2\2 > 0.

Using this in (3.11) and (3.8) we obtain

(3.14) \b(aw + bz + c)\>\b\2 -(lm(z) + UwSw) = \b\2 ■ 4(3).
This inequality should be read with the subscript (or superscript) a in place. Since
/»^Owe obtain

(3.15) \aw + bz + c]1 > Mq(i)1,

where M2 is the minimum nonzero absolute value of the norm of any. element of any
matrix in Ua(E/>ar. (This exists since öaePaT £ (l/N ■ &K)\ for some integer N.)

If b = 0 the equation (3.10) implies a = 0. Therefore

law + bz + c\   = Ici   > M.
This combined with (3.15) completes the proof of the lemma.

Returning to the proof of Proposition 3.2, suppose/is not a cusp form. It follows
from the remark at the end of §2 that k^ = k^ for any two u, \p g A. Let 3 g D.
Choose P and T(e, A, B) as in the reduction theory above. It follows that there are
a g P and yeTso that

a"1Y(3)G T(e,A,B).
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Let a' = a ^(3). Note that any automorphic form (cusp form or not) is bounded on
T(e, A, B). Let us say \f\ka\ < L on T(e, A, B) for each a g P. Then

|/(5)| = |/(Y-'«(5'))| = |/(«(5'))|-|7(Y-1,«(5'))r

= \f \ka(h') -j(a-ly, 9)"*| < L/M* max(l, q(hyk)

by Lemma 3.3. Substituting this inequality into (3.6) we obtain

|gr(w)| < e(~i ■ tr(rv)) ■ L/Mmax(l, q(0)~k).

Again choose y = - {iwSw + \/r. Since 0 < r g / and all the entries of k are equal,
it follows that r* is bounded below by a positive constant independent of r. Then

\gr(w)\ < e(-tr(r ■ \wSw)) ■ e2"" -(L/M)max(l, rk)

< Crk ■ e(-tr(r- \wSw))

with a constant C independent of r and w.

4. The Rankin convolution. Given two automorphic forms / and g we are going to
construct a Dirichlet series D(s, f, g) by "Rankin's method". For (w, z) g D let dQ,
be the GR invariant volume element given by

dti = q(w, z)"3 A dw^dWpdXpdyp
/xeA

(see [7, p. 574]). Here x^ and vy, are the real and imaginary parts of z^, respectively.
Now let

/(»»*)-  E 8Áw) ■ e(tr(rz))
r<EJ

and
g(w,z)=   Y. hs(w) ■ <?(tr(iz))

sey

be automorphic forms of weights k and m, respectively. Assume/ ■ g is a cusp form.
Consider the integral

(4.1) D(s, f, g) = [NT : Pr]-lf       fgq(w, zyk + m)/2 + sdV
JPT\D

with j = (5,... ,s) a complex parameter. The integrand is invariant under the action
Pr. (The factor [NT : Pj-]'1 is inserted so that D(s, f, g) is independent of the choice
of PT. See §2.)

Proposition 4.1. For Re(s) sufficiently large

Vol(Ryy) x(,)-i    r(Umx.*\D(s,f,g) = ~j—-rTT^477-1 ' r„(AU) + 1)
[iVr . fT\

■    E    (gr,hr)'-Ms)-\
r^j/U

where \(s) = \(k + m) + s — 3,
, _

(gr,hr)   =   / gr(w)«r(w)e(tr(rW,S'w))   A   dw^W
JC"/L „eA
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and as in the introduction,

r„(M.) + i)= UAH^ + m^ + s-l).

Proof. Assuming convergence, let us consider D(s, f, g) formally at first. One
sees easily that Pr\D may be represented by points (w, x + iy) with

(4.2) w g C/U X L, x g W/J, and v G R" with y > -^wSw.

Here two points w, w' in C" are equivalent modulo U X L if there are u g U and
v g L such that w' = wu + v. Integrating out the x-variable in (4.1) we obtain

(4-3) 7v(r"p7i) ■ /        £ g^e(2/ • ■**)>«<■*• z)x<i) a ^/vv
lAr.PrJ    ^ecyiyxi rej ^eA

Denote a typical term in the integrand by

/,(", >) = 7jv-rTfr])gf(w)^(w) ' e(2' ' tr(^)} ' Í(W' 'O

Make the substitution t = y + UwSw in the above integral. Also, let u g U act on
reiby multiplication by u2. Then the expression (4.3) may be written

(4.4)       / £   EW^'-^Â^A^.
Jw(=C"/UXL   r<=j/U ueU fteA

i>0

Recalling formula (2.8) and substituting this in (4.4) we obtain

<4-5)      7rTVpJ} / E   grhre(«(™Sw))t^e-<"^ A ¿V"A
l#r: *rJ •'wee»//- rey/t; ^i

(4-6)        -^^(4W)-^-1r(x(,) + i).   E <g„h,yr-«>>->.
Lvr- m-J /W/f

To justify these manipulations we use the estimates of §3. Thus, Proposition 3.1
applied to the cusp form / • g implies that the integral expression (4.1) converges
absolutely provided

f / \-{k + m)/2    t J» + m)/2 + Re(j),n/        q(w, z) q(w, z) dû
JPr\D

converges. That is, if Re(s) > 2. On the other hand, we can use Proposition 3.2 to
estimate (gr, hr). Thus

\(gr, hr)\<  f       \g,(w)\ • \h,(w)\ • e(tr(r ■ wSw))
Jr" /iJC"/L

A dw^dw^
pea
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where C is a positive constant independent of r and

\k + im    if/and g are cusp forms,

\k + m       if /is a cusp form and g
is not a cusp form,

ß = \k + \m       if/is not a cusp form
and g is a cusp form,

k + m if neither/nor g is a
cusp form.

Therefore the series of (4.6) is absolutely convergent for Re(s) > 3 + ß — \(k + m).
(Note that all of the components of ß — \(k + m) are equal.) Thus, all of the
previous manipulations are valid provided Re(i) > 3 + ß - \(k + m). □

We end this section by obtaining another expression for D(s, f, g). Let Q denote
a set of representatives for Pr \ T. Write

Pr\D=   U Y(r\Z>)    (disjoint union).

Substituting this in the integral of (4.1) we obtain

[Nr:PrYlL / f-gq(w,zyk + m)/2 + idV

= [Nr-.Pr]-1!        E /■ Yg^7 ■ <?(y(», z)f + m)/2+*dü.
•T\ö ye¡Q

Using formula (3.2) this becomes

[Nr: PrY1!     f-gE?_M, *) ■ ?(w, zf + m)/2+¡'dQ,
Jr\D

where

(4.7) Ex*d,s)=   Lj(y,i)x-\j(y,i)\'X~2s-
yeß

Postponing questions of convergence, £*(3, s) is a "group-theoretic" Eisenstein
series. In a more general context Langlands [3] has studied Eisenstein series and
obtained their analytic continuation and functional equation. In the next two
sections we shall derive the necessary analytic information in a different, more
explicit manner.

5. The coset space Pr \ T. To study the Eisenstein series (4.7) we need an explicit
set of representatives for PT\ T. Recall (§2) Pr = Zr • Ur ■ M(L, J). Let

(5.0) xT-"('yeT\j(y,i)ml}.

M(L, J) is a subgroup of finite index in Xr. Also, any two elements of T in the
same right coset of XT have the same bottom row, and conversely. Thus the coset
space Pr \ T can be described naturally in terms of the bottom rows of elements of
T, modulo a group of units. To get a clean result it is necessary to specialize

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRICHLET SERIES 441

somewhat the preceding discussion. Thus, choose {e^ satisfying £ = -f and
Im(f ") > 0 for all ju g A. Define

/s^1    0   0  >
(5.1) ^ = fÄ-i = f 0        0-1

10        1    0
(see (1.1)).

We assume

(5.2) 2ÍS"1 g 0F   (note that 2f5,~1 > 0).

Let 4> define a Hermitian form on K3 by <j>(x, y) = xfy'y. Note that

GQ = { g G tf33|<í>(*g, >>g) = *(x, y) for all x, v G ÄT3},

i.e. Gq is the unitary group of the Hermitian form <i>. We also choose the lattice A in
a special form. For this, choose an arbitrary integral ideal C of 0K and a fractional
ideal b such that 0K £ b and bp = b. Let

(5.3)- A- { (x, j,z)g/C3|xg2C,vg (p"1},*« b}.

We shall characterize the bottom rows of elements of T = TA for this choice of A.

Lemma 5.1. The lattice A has the following properties:
(1) A is an 0¡¿-module,
(2) {<b(x, y)\x, y ^ A} = b,
(3){^,x)|xeA}çTr^(b).

Proof. This follows easily from the definition of <¡> and A. D
Write

(5.4) Mx= { (jc.O.O) G /y*,f 2C}

and

(5.5) M= {(0, y,z) G Af3|v G (rl),z<Eb).

Then A = M -1 ®M, the sum being orthogonal with respect to <i>. Call a lattice an
(^lattice if it is also an (^module. Then M is an O ¿¿-lattice in the 2-dimensional
subspace QM = {(0, y, z)\y, z g K) of K3. (Here QM denotes the Q-linear span
of M.)

Lemma 5.2. Let W be a subspace of K3 and N £ W and <B'^-sublattice of A. Suppose
that there is a K-linear isomorphism a: W -* QM such that a(N) = M and <¡>(ax, ay)
= <¡>(x, y). Then A = N © M1, where N±= {x e A\<f>(N, x) = 0}.

Proof. If W± = [x g K3\<t>(W, x) = 0}, then K3 = W © W1-. Since N is an
(^lattice, we have W = Q/V. Therefore each element v g A may be written v = qx
+ y with_v G Wx , q g Q and x g N primitive, i.e. x/n G A for any integer « > 1.
The lemma will follow once we show q g Z. Note 4>(v, N) £ b by Lemma 5.1 and
4>(v, N) = q<b(x, N) = q<¡>(a(x), M). Therefore

b-l<p(a(x), M) = q-lI
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with an integral ideal /. Write a(x) = (0, f ~xa, b) g M a g &k and b g b. Then
<$>(a(x), M) = ab + bdK. Therefore q~lI = aOK + bb~l is an integral ideal. If q £
Z, then the ideal aOK + bb~l has a factor of the form nGK with an integer « > 1.
Then « divides a and Z>/« g = b. This implies that a(x)/n g M, which contradicts
the fact that x is primitive. D

For an element y G K3 let x(y) g AT3 denote the bottom row of y.

Proposition 5.3.

(5.6)

(5.7)

(x(Y)|yGrA)

{ x g b-1A\<b(x,x) = 0,1 e<i>(x, A)}.

x(y). The relation y^'y = 4>Proof. Suppose y g Gq and Ay = A.  Let x
implies <¡>(x, x) = 0. Moreover,
(5.8) A = Ay = (Mx ®M)y.

From the definition of M (5.5), all elements of the form (0,0, b) with b g b are in
(A/-1 ©M). Therefore 6 • x G A and sojc g b_1A. Finally, let y denote the second to
last row of y. Then xtfy = £. Moreover, from (5.5) it follows that (0, £~\0) g M1-
©M. Hence from (5.8), y g fA. Therefore 1 = <b(x, -¡~ly) g <#>(*, A). Thus (5.6) is
contained in (5.7).

Conversely, suppose that x is an element of (5.7). Choose y0 g A so that
<¡>(x, y0) = 1. By Lemma 5.1 there is c g b so that <t>(y0, y0) = -tr(c). Since x g b~*A
then ex g A. Let v = y0 + ex G A. Then
(5.9) <>(*,>>) = 1    (since <í>(jc, x) = 0 and <$>(y, y) = 0).
Let W be the ÄT-subspace of K3 generated by x and v. The relations (5.9) show that
W is isometric to

U = ( (0, m, v)\u, v s #} = QM
through the map a0: W -> Í/ with a0(jc) = (0,0,1) and a0(j0 = (0, f _1,0). More-
over, the map a0 takes the lattice TV = 6Ky + bx £ A to the lattice M (5.5).
Therefore by Lemma 5.2, A = N © N1-. By Witt's theorem, a0 may be extended to
an element a

(5.10)

Gq. Then
a(A) = a(/V © JV1) = M © «(A^).

Moreover, since det a(det a) = 1 we have

'det a

1/
and  so replacing a by ay"1  we may suppose that deta = l. Note (»(A/-1)
{(x,0,0)\x g /}   for some ideal / £ K.
{(0, y,z)\y g (r'lz G b}. Write

Write / = 2C (see 5.3).  Recall M

bx     V

b3       c3(
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From (5.10) it follows that Iax £ /, Ibx £ (f"1), Icx £ b, Ç-la2 g J, etc. Then a
simple computation shows det(a_1) g I'lJ. But det(a) = 1, so / • 7"1 is integral.
Similarly I~lJ is integral and so I = J, proving that a(A) = A. Now x(a_1) = x,
proving that (5.7) is contained in (5.6). (Note that as a matrix a"1 acts on the right.)

Remark. A natural choice for a discrete subgroup of GQ is GQ n SL3(6\). To see
how Proposition 5.3 applies in this case, choose C = 6K and b = (f_1) in (5.3). Let

¡2$ 0\
°= \ 1

I 0 1/
Note that oGQol is the unitary group of <t> (5.1) with S'1 replaced by 4ÇÇS'1 and
that oTAa~l = (oGqO'1) D SL3(C\). Moreover, (x, y, z) is the bottom row of an
element of oYKol if and only if (2f, x, y, z) is the bottom row of an element of TA.

6. Eisenstein series. Let <¡> be as in (5.1). For elements 3 = (w, z)gD and
x = (a, b, c) g ÍT3, let x ■ 3 = aw + bz + c. For two (^lattices A1( A2 £ K3 such
that <MA,, A2) £ 6\define

(6.1) E£(0,s; Ax, A2) =     £    (* • 3)* • \x ■ ¡\~ °    ,
.x-ei#/C£

where @ = [x g Ax - {0}\<i>(x, x) = 0, <b(x, A2) = 0K), 0 < À = (Xíl)íieA is an
«-tuple of integers, and seC. The series is well defined provided t/x • |w|~x = 1 for
every u g (9f. Assume this condition. When we have occasion to vary A, we will
write 0t = @(AX).

Theorem 6.1. The series (6.1) is convergent for Re(j) sufficiently large and defines
an analytic function of s. Suppose X > 0 for some ju g A. Then the function
£*(3, s; A,, A2) can be analytically continued to a meromorphic function on the whole
s-plane. Moreover, when multiplied by a suitable product of L-functions and T-factors it
becomes an entire function.

Proof. The proof of this theorem will be rather long. To begin, let us ignore
questions of convergence and consider the series of (6.1) formally at first. Let 1
denote the Möbius function on the integral ideals of QK and C a set of integral
representatives for the ideal class group of K. Let £%, = £%,(AX) = {x g Ax —
{0} \<j>(x, x) = 0, <b(x, A2) £ /}. Letting / run over all integral ideals, we have

E£(&,s; Ax, A2) = E'(0-     E    (x-i)X -\x- i\~2s~X

= E     E   »(/a)   E   (*-5)V3f2j~\
<4eC jge/T'/Oí ve^/Cji

Writing y = ß~lx this last sum becomes

(6.2)    E     E    i(ßA)-ß^\ß[2s-K      Y       (>-8)x-b"ar*"x.
tec ßeA-l/0*K y&XAifi-*A{i/0f,
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Letting Â2 = [x g K3\<t>(x, A2) £ 0K), we have by assumption Ax £ A2. liy g K3
satisfies <¡>(y, A2) £ A, then y g A A2. Thus the inner sum of (6.2) may be restricted
to the lattice ß'xAx n AÂ2. Note that ß g A'1 soAAx £ ß-'A,. Thus

AAX £ ß~xAx n AA2 £ ^Â2.

As[^4A2:,4A2]< oo it follows that once A is chosen there are only finitely many
possibilities for the lattice ß~lAx n AA2. Denoting these lattices by LA, (6.2) may be
written

E   E Lt(ßA)-ßx-\ß\-2s-\
(.Va)    -I^-SlE

.ve^(A)/^

where ß is summed over elements ß G A'X/0F such that ¿S^Aj n ^4Â2 = A. Since C
and L^ are finite sets, the analytic continuation of the series E£(0, s; A,, A2) is
reduced to the continuation of the following two types of series:

-2j-\
(6.3)

and

(6.4)

Y,L(ßA)-ßX
ß

l/5|"

E
ye¡*A(A)/0£

(y i) Lv-al

The series (6.3) has an analytic continuation by virtue of the fact that it has a simple
expression in terms of Hecke L-functions. The reader interested in the details should
consult [8, p. 659], where a similar problem is treated. (The condition ß'1Al n AA2
= A represents finitely many congruence conditions on ß.)

Let us now consider series of type (6.4). Since ¡MA(A) = [x g A fi AA2\x # 0,
<Í>(jc, x) = 0), it is enough to consider series of the form

(6-5) E\d,s; A) E     (m ■ ¡) \m
meS(M/«í

-2j-X

where A £ A2 is an arbitrary ^^lattice and R(A) = {x g A|jc # 0, 4>(x, x) = 0}.
Our method of analytic continuation is essentially that of [9, §13], where the case of
orthogonal groups is considered. We include a detailed treatment here so as to be
able to obtain certain necessary estimates. For a point 3 = (w, z) g D let

(6-6) 0(5) =
ls.i

w
\  0

0
z
1

w
z
1J

By a simple computation (see [7, p. 572])

'¿(a)"1
(6.7)

where

(6.8)

*-ß(a)
0

0

-T)(sr\
•'0(5),

«(a)-1-r- ~s..-1
-w

w
z — z
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and

(6.9) T,(3)_1 = -S(wSw + z - z).

Since 7)(3) > 0 and <b has signature (2,1), we conclude that £(¡j) > 0. Let

<mr     o   \
;   o       +T,(3)"\

Then ^(3) > 0. (^(3) is a minimal majorant of $.) Ifmei3 satisfies ^>(w, w) = 0,
then from (6.6), (6.7) and (6.10) we have

(6.11) (^(3)'«i)i+X/2=(2T?(3)-1)S+V2|«I-5rA.

With this equality in mind, our goal is to rewrite the series Ex(0, s; A) as a sort of
" Epstein zeta function". To be more precise let S g ä: be chosen such that Im 5 ° > 0
for all a G A and 82 = -d g F with d totally positive. Fixing 5 once and for all,
for any matrix A with coefficients in K define R(A) = \(A + A") and 1(A) =
jS~l(A - Ap). Now define maps from K3 to F£ which map A g K3 to

R(A)        1(A)
A = '  -1(A)     d~lR(A)

and m G K3 to m = (R(m), dl(m)). Under this map a lattice A £ K3 becomes a
lattice Ä £ F6. Using the isomorphism K ®QR = C„ (via the CM-type A) we may
extend these maps to R-linear maps from (C3)„ to (R66)„ and (C3)„ to (R6)„. Then it
is easily verified that RejvA'w) = vÄ'w for v, w € (C3)„ and A g (C3)„. Let us write
(jD = <i> and P = P(i) = &(h)- We need the following lemma.

Lemma 6.2. Let r = r(a)- (0,0, -2,0,0, -26"') ■ Q(ï)~\ Then
(l)<p •'/•= -P  'r,
(2) r<p-'r = 0,
(3) //« g A:3, i«e« (rep -<m)x = (2t,(3)-1(«i • 3))X-

This lemma may be proved by a straightforward calculation. D
Combining Lemma 6.2 with (6.11) we have

(6.12) Ex(i,s;A)=        £        (^(i))" + X/2(V«)* ■(mP'm)-^2.
meR(K)/0$

Here

(6.13) Ä(Ä)={meÄ|m^0,mtfi,m = 0}.
Since P > 0 it is a standard fact that the right-hand side of (6.12) converges for
Re(s) sufficiently large. Let A' be a coset of a lattice in F6. We generalize the series
(6.12) by defining

(6.14) Gx(0,s;X)=        £       (r<p'm)X(mP'm)-s-X/2.
m<=R{X)/Ux

Here Ux £ 0F is the group of units which stabilize the coset X. We shall now obtain
the analytic continuation of this series.
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For a variable t = u + iv g b " ( b is the upper half plane) define a (nonholomor-
phic) theta series by

(6.15)     6x(r,0; x) =   £  (rcp'/w)   • e(tr(u ■ mcp'm) + i ■ ti(v ■ mP'm)).
meX

Let T(<p, 3) denote the C-vector space generated by functions of the form

(6.16)   /(t;3, a, h, Y) =   £  {rtp'm) e[a(tr(u ■ mcp'm + ivmP'm)) + m ■ h\.

with arbitrary 0 « a e f, A e F6, and Y a coset of a lattice in F6. For a function
g(r) on b" and an element y = (" hd) g GL2(F) with totally positive determinant
define

g|Y(T) = g(y(r)) .(ct + d)-2 .(ct + ûî)"1"".

Proposition 6.3. There is a congruence subgroup T of SL2(0F) so that

(6.17) 0x(T,y,X)\y = 6x(T,y,X)
for all y g T. Moreover, given y G GL2(F) w/'í/i totally positive determinant,

'*x(.T,8;*)hrer(v,8),
a«i/ ?«e expression of this function as an element of T(cp, 3) t$ independent of 3.

For the proof of this proposition we refer the reader to [9, Proposition 7.1].
To continue with the proof of Theorem 6.1, there is a lattice L £ &F and a

subgroup U £ 0£ of finite index so that

T„ = /ii    MeTÏ-"1HO   1;      /    \ \0   l
and

iei

def M 0
'T"Uo   "-1 '0   „°> 1/ G  Í/

Consider the integral

(6.18) f ox(r,à;A)^+x/2^^,

observing that the integrand is invariant under L^T^. A fundamental domain for
UrTx is W/L + i • (Í/2\R"+), where L acts on R" by translation and U2 acts on
R"^ {u g R|ü > 0}" by multiplication. Integrating out the «-variable in (6.18) we
obtain

(6.19) Vol(R"/i)/ E     (r<p'm)X-e(itr(v mP'm))vi+x/2—.
JU\R\    meR,X) V

(Note that by definition (6.13), 0 <£ R( X). This causes no problem above as we have
assumed A   > 0 for some u g A.) Using a well-known principle we may rewrite
(6.19) as

(6.20) Vol(R"/L)/ E       (r<p'm)X ■ e(itr(v ■ mP'm))vs + x/2 —
R+    m^R(X)/U
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(6.21)     = Vol(R"/L)r(í + \X)(2iry -X/2 :X/2£       (rcp'm)  (mP'm)
meR(X)/U

(6.22) = Vol(R"/L)r(i + \\)(2tt)-s-X/2[Ux: U] Gx(¡, s; X)

(see (6.14)). All of the above steps are justified for Re(i) sufficiently large since the
series of (6.21) is absolutely convergent in that range. Thus we obtain the series
Gx(0, s; X) in terms of the integral of (6.18). To obtain the analytic continuation of
Gx(¡,s; X) write

where R is a set of representatives for { + 1}L/TT00 \ {±1}T. Substituting this in
(6.18) we obtain

dudv
(6.23)

where

í     8x(T,i;X)H¿(t,s)'
Jr\t,"

-A, ,-2j-2-\
\cr + d\Hx*(t,s) = vs+1    £    (cr + dy(cf+dy

The series H*(t, s) is an Eisenstein series on the Hubert modular group, and hence
its analytic properties are well known. From [8, Proposition 3.2] it follows that there
is a function T(s), which is a product of L-functions and T-factors, so that
Hx(t, s) = T(s) • //x*(t, s) possesses an analytic continuation to an entire function
on the whole s-plane. Moreover, given y g GL(2, F) with totally positive determi-
nant, and a compact set S £ C, there is a constant A > 0 (depending on y and S) so
that

(6.24) Hx(r,s)\y = 0(vx---v„)A    as (vx,... ,v„) -> (oo,..., oo),

the estimate being uniform in s g S. To complete the analytic continuation of
Gx(i, s; X) it remains to show that the integral (6.23) converges for all s g C (at
least when it is multiplied by T(s)). For this we first review the reduction theory for
the Hubert modular group. Thus, there is a finite set P £ SL(2, F) and a set

(6.25) W(8, e) = { u + iv G 6"||«| < 8, v > e)

with positive constants 8 and e, such that

b" = ï-  U y(W(8,e)).

Therefore

(6.26)
/     Mr, tk-lQMiXu«)dudv
'T\(|"

*/ E \ex\(t,y,X)\y\-\Hx\(t,s)\y
dudv

'W(8,e)

Since A^ > 0 for some jtx G A all the series 6x(t, 3; X) are zero at the cusp /oo. Hence
the estimate (6.24) shows that the above integral converges uniformly on compact
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subsets S £ C. This proves that T(s) ■ Gx(¿, s; X) is entire and completes the proof
of Theorem 6.1. D

For the proof of our main theorem we will need an estimate in the 3-variable of
the function £*(3, s; Ax, A2) (see (6.1)).

Proposition 6.4. Let S be a compact subset ofC. Then there exist positive constants
A, B, and C depending on S, and a polynomial R(w,w, z, z) independent of S, so that

(6.27) \T(s)Ex*(i, s; Ax, A2)| < C ■ R(w,w, z, z)A ■ q(w, z)~B

for all s g S, 3 g D. (Recall q(w, z) = Im(z) + \i'wSw.)

For the proof of Proposition 6.4 we will need two lemmas.

Lemma 6.5. // r and e are positive constants and A g R, then

(6.28) [   e>-(r"'' ■"■■)(vx...vn)Advx ■•• dvn < C ■ r~B,

where C and B are positive constants depending only on e and A. (The integration is
performed over the region vx > e,..., vn > e.)

We omit the proof of this lemma, which is routine.

Lemma 6.6. Let B be a nonnegative number and r = (a^^a h#A 0 < rM < 1. Then
(6.29) E     mBe-u(rm)< C ■ r~Bl

0<m<=0F

with a constant C > 0 depending on B and 0F but not on r.

Proof. Let ax,... ,an be a Z-basis of 0F consisting of totally positive elements a,.
Let (PF be embedded in R" via A. If 0 < m G 0F, then the parallelepiped P(m)
spanned by the line segments m,m + ax,...,m,m + an is entirely contained in R"+.
Moreover, if x g P(m), then
(6.30) xBe-tr(rx)> wfie-tr(r.(m + a,+ ■■•+„„))

> mBe-"("1 + '"" +a»)e~tr<'"m)

since 0 < r < 1. Therefore

£     «iVlr(r""< C-     £     f     jcV,r(' x)dxx ■■■ dxn
0<m^tSF 0 < m e 0F   P( m )

with a constant C depending on 0F. The right-hand side of the above inequality is
majorized by

Ci xBe-«rx)dxx ■■■ dxn = CT(B+ 1)VB^.
Jort

D

Proof of Proposition 6.4. For convenience we recall a formula obtained in the
proof of Theorem 6.1. (Note that from the proof of Theorem 6.1 it follows that it is
sufficient to estimate the series Gx(3, s; X) (6.14).)
(6.31)

r~/ \~-t ,^\      (2w)î+     T(s + X/2)     r       . . ,,. „ ,      . dudv
T(s)Gx{i,s;X)^ {¿       ]y\l{     'L>    f      ex(r,y,X)Hx(t,s) —
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(see (6.18)-(6.23).) Therefore we can estimate T(s)Gx(¡, s, X) by the inequality
(6.26). For this we need to estimate 0x(t, 3; X)\y in 3. By Proposition 6.3 it is
enough to estimate any element /(t, 3) =/(t; 3, a, h, Y) of 7(<p, 3) (see (6.16)).
Thus, let a = a(¡) and ß = ß(i) be the minimal and maximal eigenvalues of P,
respectively. Since rtp = -rP and \rP'm\ < \rP'r\1/2. \mP'm\1/2 we have

(6.32) |/(t, s)| <C,     £     \rP'r\X/2\mP!m\X/2e(iatr(vmP'm))
«E(«f)(

< Cx\rP'r\X/2ß^2    E     |Mr*(/fl • tr(HM|2)),

where Cx is a positive constant independent of 3, and ||«i||2 = m2+ • • • + »12, if
m = (mx,...,m6)<=F6. For 0 < m g &F let g6(«i) = #{x g (eV)6|||x||2 = m}.
One sees easily that g6(w) < Cm3 with a constant C independent of «1. Thus from
(6.32) we obtain

(6.33) |/(t, 3)| < C2\rP'r\X/2ßx/2     E     mx/2 + 3e(ia ■ tr(vam)).
0 < m e 6>F

Now, for v > e > 0 and 0 < m G C\,

(6.34) tr(u • am) > etr(a ■ w)

and

(6.35) tr(t; • am) > n(vam)l/" > na1/n ■ v1/n.

(The first inequality of line (6.35) follows from the arithmetic mean-geometric mean
inequality.) Write

e(ia ■ ix(vam)) = e(\ia ■ tr(vam)) ■ e(\ia ■ tr(i;a«î))

and apply (6.34) to the first factor and (6.35) to the second factor. Then for v > e we
obtain from (6.33)

(6.36) |/(t, 3)| < C2\rP'r\X/2ßx^2e(kinal/n ■ vl/")     £     mBe(\iaEix(a ■ m))
0<ffl£fff

with B = \X + 3. Applying Lemmas 6.5 and 6.6 and the estimate (6.24) we obtain
(forj g S)

dudv
'W{6,t)~ '    v2

(6.37)    / |/(t,3)| -\Hx(t,s)\y\^ < C3\rP'r\X/2B^a^a')^',

where a' = min(l, atrea) and C3, Bx, and B2 are positive constants independent of 3.
Now, for any positive definite Hermitian matrix H with eigenvalues 0 < 8X < ... <
8m we have 8X + ■ ■ ■ + 8m = tr H and 8X ■ ■ ■ 8m = det H. Therefore 8m < tr H and
8X > det(H) ■ ti(H)1-'". Thus the right-hand side of (6.37) is majorized by

(6.38) C3k/>VpX(trP)^-^^minfl, £^etFp.
(detP)B¡       \       (trP)5   J
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From the formulas for P and r (see (6.10)  and Lemma 6.2) we see that (6.38) is
majorized by an expression of the form

C ■ R(w,w, z,z)    • q(w, z)

with a polynomial R and positive constants A, B, and C independent of 3 = (w, z).
Combining this with (6.31) and (6.26) concludes the proof of Proposition 6.4. D

7. Analytic continuation of Dirichlet series. We now combine the results of the
previous sections to obtain our main theorem. Choose <> and A as in §5 (see (5.1)
and (5.3)). Let T = TA = {y g GQ|Ay = A, det(y) =1}. Now suppose/and g are
automorphic forms with respect to T, of weights k and m, respectively. Recall the
definition of D(s, f, g) from §4, (4.1).

Theorem 7.1. Assume f ■ g is a cusp form. Suppose k > m, k > m for some
a g A, and uk~m ■ \u\m~k = 1 for all u g Gf. Then the Dirichlet series D(s, f, g)
possesses an analytic continuation to the whole s-plane. Moreover, when multiplied by a
suitable product of L-functions and Y-factors it becomes an entire function.

Proof. As in (4.11) we may write

(7.1) D(s,f,g)= \     f    fgEk*_M,s;T)q(i)L^r- ^rJ jt\d
(k + m)/2+sdQ.

Here

(7.2) Ek*_m(0,s;T)=   E j(y, 5)*"1í(y, 5)|"2î + '

with Q a set of representatives for PT \ T.
Now, by Proposition 5.3 there is a natural correspondence between the coset space

/YXTand the set {x g b~lA\4>(x, x) = 0,1 g <b(x, A)}/ZU, with Z a finite group
of roots of unity and U £ 0F a subgroup of finite index. The correspondence is
[Xr: M(L, J)] to one (see (5.0)). Hence we obtain from (7.2) (with C =
[<9F:U]/[Z:l]-[Xr:M(L,J)]).

(7-3) E*_M, s; T) = cE*_m(0, s;b''A, A).

Here £A*_„,(3, s; b"'A, A) is defined by (6.1). By Theorem 6.1 there is a product
T(s) of L-functions and T-factors so that T(s)Ek*_m(i, s; b~lA, A) is an entire
function. Therefore the series

[Nr:Pr]-T(s)-D(s,f,g)

= c\    fgT(s)E*_m(i,s;b-'A,A)q(a)(
•>r\ n

(7'4' 2+VS2
T\D

will be an entire function provided that the integral converges for all 5 g C. That is
does is a consequence of the reduction theory and the estimate (6.27) of Proposition
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6.4. Thus, write D = T ■ \JyePyT(e, A, B) as in the reduction theory of §3. Then the
integral in (7.4) is bounded in absolute value by

/ \fg\-\T(s)E*_m(^s;b^A,A)\q(iyk + m)/2 + R^\dü\
JUrKPyT(e.A,B)

E  f \f"ygoy\\T(s)E*_m(y(¡)^^-1A,A)\
_ n J Tí *    A     R\lPJT(E,A, B)

_ „•'7pJT(e,A, B)

■ q(yU)yk+m)/2+ms)m

IT " sLyI • \T(s)E¡tUi> ?! ö-'Ay, Ay)|?(3)U + m)/2 + Re(i)Mß|.

Now, f\ky ■ g\my is a cusp form, and this together with the estimate (6.27) shows that
the above integral converges uniformly for s in a compact subset of C. (As this fact
may not be obvious we sketch a proof here. From Proposition 3.2 we may estimate
/l*Y ' g|mY by an expression of the form Y.r(k + m)/2e~2'n'u{'"q(i)), where the sum is
over totally positive elements r of a lattice in F. As in §6, we may split the
exponential into two pieces and use the arithmetic mean-geometric mean inequality
on the first piece and Lemma 6.6 on the second piece. Then for 3 g T(e, A, B),

\f\kl-g\my\zc-elDf>tJ",
where C and D are positive constants independent of 3 g T(e, A, B).   From this,
Lemma 6.5, and (6.27) the convergence of the integral follows readily.) D

8. A special case. We illustrate Theorem 7.1 by considering a special case in more
detail. Let K = Q(/), A = {identity}, and

<í> = 0
\o

0
—i
0/

Then D = {(w, z) g C2|Im(z) > \w\2). Choose the lattice A to be Z[/]3. Then
T = TA = Gq n SL(3,Z[/]). This is not a special case of the type of lattice consid-
ered in §5, but we do have a one-to-one correspondence between the bottom rows of
elements of T and [x g Z[i]3\x<j>'x = 0, 1 g <¡>(x, A)} (see Proposition 5.3). To
consider Eisenstein series, note that in this case

' 1
2/c
0

\

1
C^ Z[/],i/G Z

■   E  ;'(y, 5)x|y'(Y, 5)1" '•
yèPr\r

(We are using a slight variation of the notation employed in §6.) £*(5, s) is zero
unless A is divisible by 4, which we now assume. For an ideal / of Q(/) let a, denote
a generator of /. Define

¿x(*) = E«/l«/f2i-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



452 TOBIAS ORLOFF

From the description of the bottom rows of T we see easily that

Ex(i,s) = Lx(s)Ex*(i,s) =       E      (x ■ i)X\x ■ if s.

x<t>'x = 0

For t = u + iv G í) define a (nonholomorphic) theta series

0\(5'T)=   E   (ry'm) e(-2um<p'm + 2ivmP'm)
meZ6

(see §6 for the notation). Then

/   exd,T)vs~ldudv
yo.L) —0 •'«»O

= (4^rT(i)(J-|w|2)í-A£x(3,í).
Moreover, a detailed analysis shows

*a(8,y(t)) = (-iyd-l)/2(cr + d)X + l(cr + d)\(i, t)

for y = (achd) g T0(8) £ SL(2,Z). (To prove this we use the method of Shimura, [6,
§2].) We can then express the integral in (8.1) in terms of an integral over ro(8)\ b-
This introduces a (classical) Eisenstein series into the integrand. As before, this series
admits an analytic continuation, and thus implies the analytic continuability of
Ex(0, s). However, it also admits a functional equation of a manageable sort (see [6,
Lemma 3.3]). This can be used to obtain a functional equation for £\(5> s)- The
calculations are long and tedious, depending on explicit transformation laws for
theta functions. We shall not reproduce them here, although we will state the final
result: Let x be the Dirichlet character of (Z/4Z)* given by x(d) = (-l)<rf_1>/2. Let

00

L{x,s)=  Ex(¿W"s
í/=i

and write Fx(¡, s) = Tx(s)(y - |w|2)î + 1"x£x(3, s + 1), wherex

Tx(s) = 42V-T(í)(4vt)"s   T(i + l)L(x,2s + 1 - A).

Then

(8.2) Fx(i,\-s) = -Fx(i,s).
We now consider the Rankin convolution in this special case. An automorphic

form / of weight k with respect to T has a Fourier-Jacobi expansion of the form
00

f(w,z)= £«»•«(«)■
r = 0

One can show that T\D has only one cusp, so / is a cusp form if and only if
g0(w) = 0 in the above expansion. Let g be an automorphic form of weight m with
respect to T. Supposing that / • g is a cusp form, we define as before

2\(k + m)/2 + s
(8.3) D(s,f,g) = \i      fg{y-\w\2)

4 JPr\D
dQ,

pT\i
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(see (4.1)). In this case dû = (y - \w\2)~3 dx dy dwdw. Let us suppose k > m and
that k - mis divisible by 4. Applying the technique of §4 to the integral in (8.3) we
obtain

1     r l ,2\(* + m)/2 + j / 1   , „ \D(s,f,g) = -f^ Jg(y-\w\) E¿_^,&±j(k-m))dQ.

As we have just seen, Ex(¡, s) = Lx(s)E*(¡, s) possesses an analytic continuation
and functional equation (8.2). Applying this to D(s, f, g), let

®(s) = Tk_m(s+(k - m)/2 - l)Lk_m(s+(k - m)/2)D(s,f, g).

Then we have obtained the following proposition:

Proposition 8.1. 2>(s) is an entire function of s and satisfies the functional equation

2(2- s)= -2(s).

To understand the meaning of the T-factors and L-factors in 2(s) we return to
the paper of Shintani [10]. In the introduction to that paper the results are stated for
the special case of the unitary group given above. Thus if / is an automorphic form
which is a simultaneous eigenfunction of the Hecke operators and f(s, /) is the
corresponding Euler product, then Ç(s, f) multiplied by a T-factor is essentially
given as a product of a Dirichlet L-function, a Hecke L-function of the field Q(/)>
and D(s, f,gf). Here gf is an automorphic form dependent on /. The two L-factors
correspond to the two L-factors appearing in 2(s) above. Thus our result indicates
that the function f(s, /) multiplied by three T-factors becomes an entire function
with a functional equation. (Note that the Euler factors of f(i, /) are of degree six in
the rational primes.) In connection with this discussion we mention the papers [11,
12, and 13].

9. Congruence subgroups. In this section we briefly indicate how to generalize the
preceding results to congruence subgroups of T. We shall make a number of
simplifying assumptions: Let A = (c\)3 and T = GQ Ci SL(3, 0K) (see the remark at
the end of §5). Write

* = £
It    0
0    0

lo    1
and assume íeí(. We do not lose much generality by these assumptions, and
anyway, the general case may be handled in much the same manner. By a
congruence subgroup of T we mean a subgroup containing {yGr|(y-l)A£Ar-
A} for some integer N. Write

(9.1) y =
ax bx cx
a2 b2 c2

a-,     br,     c3/
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and define subgroups

r(A/) = { y G r|a! = b2 = c2 = 1 mod N, cx = a3

TX(N) = ( y g T\ax = b2 = c3 = 1 mod N, bx = a3

and

bx = a2 = Omod N,

and b3 = c2 = 0mod N2],

= 0 mod N,

andb3 = OmodN2},

To(N) = { Y e r|a3 sèx = OmodAf, Z)3 = OmodAf2}.

Clearly r(A') £ TX(N) ç T0(N), and a subgroup of T is a congruence subgroup if
and only if it contains T(N) for some N.

Lemma 9.1. If f(w, z) is an automorphic form of weight k with respect to T(N), then
f(Nw, N2z) is an automorphic form of weight k with respect toTx(N2).

0\
0
1/

Proof. Let

IN      0
o =    0     N2

\0      0
By a simple computation TX(N2) £ a~1T(N)o. But f(Nw, N2z) = f\ka is clearly an
automorphic form of weight k with respect to o~1T(N)o. D

Write Sk(N) for the space of all automorphic forms of weight k with respect to
TX(N). Define a homomorphism <n; T0(N) -* (6K/N)X by tr(y) = c3, with y written
as in (9.1). For a character x of (6K/N)X and an «-tuple of nonnegative integers k,
denote by Sk(N, x) the space of all holomorphic function/: D -» C satisfying

/(y(5)) = xMy))-/(y, a)*-/(a)
for all y G r0(A/).

Lemma 9.2. (1) TX(N)= (y g T|ö3 = 0 mod N,b3 = 0 mod N2,c3 = 1 modA^},
(2)r0(iV)= {y g r|a3 = 0 mod N,b3 s OmodJV2},
(3)TX(N) = ker(77), and

(4)Sk(N)= ®xSk(N,x)-
Proof. With y g T written as in (8.1), the equation y<í>'yp = <i> implies

6, 0
10

0     0
0 -1
1 0

lap3\

lC3P/

or

(9.2)
and

(9.3)

taxa% + c^f

ta2ap3 + c2bl

bxcp3

b2cp3 -1.

Suppose a3 s 0 mod N and ¿3 = 0 mod N2. Then equation (9.2) shows bx = 0 mod
A7, since c3 is prime to N. Suppose also c3 = 1 mod N. Then equation (8.3) implies
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b2 = 1 mod N. As det(y) = 1, it follows that ax = 1 mod N as well. This proves
assertions (1) and (2), and statements (3) and (4) follow easily from these. D

Given/ g Sk(N, x) and g G ^(A^, \b) the Dirichlet series D(s, f, g) is defined as
before (see (4.1)). Using Proposition 5.3 one sees easily that the Eisenstein series
arising in the integrand is substantially the same as the Eisenstein series considered
in §6. Thus it can be analytically continued and once again we obtain an analytic
continuation of D(s, f, g).

Note. The sense of Lemma 9.1 is that the Dirichlet series arising from automor-
phic forms on congruence subgroups are no more general than those coming from
automorphic forms on TX(N). Part (4) of Lemma 9.2 shows that we may even
restrict our attention to the spaces Sk(N, x)- This is in close analogy with the case of
elliptic modular forms on congruence subgroups of SL(2, Z).

10. The case of general unitary groups. In this concluding section we make some
brief remarks on the case of unitary groups of more general signature than
previously considered. In this case we take GQ as the unitary group of the matrix

R
Is     0     0
0      0      \p
0     -1„     0

Here S g GL(ç, K) satisfies 'S" = -S and -iS" > 0 for each fteA. Thus the real
points of Gq can be identified with n copies of a unitary group of signature
(p + q, p). This groups acts on a Hermitian symmetric domain D = Tl^^D^
analogous to (1.3). (For more details see [7].) The material in §§1, 2, 3 and 4 can be
duplicated in this more general setting. However, Proposition 5.3 of §5 does not
generalize as stated. To state a theorem in the general case denote by x(g) the
bottom p rows of an element g G GL(2/> + q, K). Define an element x g (0K)^p + q
to be primitive if x = x(g) for some g G GL(2/> + q, &K). Let

r=GQnSL(2p + q,0K).

Then we have

Proposition 10.1. There exist finitely many elements ax,... ,amofGqSO that

(10.1) I x G (&K)2p + q\x<b'x = 0, x is primitive }
m

(10.2) = \J{ax(a,y)\aeGL(p,e>K),yer}.
/ = i

Moreover, the union (10.2) is disjoint.

The proposition asserts that under left multiplication by GL(p, 6K) and right
multiplication by V, the set (10.1) has finitely many double cosets. This follows from
the well-known finiteness of the double coset space Aq \ GQ/r, with NQ defined as
in (2.2). Proposition 5.3 essentially asserts that in the case/? = q = 1, we may take
m = 1. Without proof we state that this continues to hold whenever q = 0 or 1, and
that in general m > 1 if q > 1.
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In §6 we obtained the analytic continuation of Eisenstein series defined as sums of
a factor of automorphy over a set such as (10.1) (see (6.1)). This method seems only
to work in the case p = 1 (rank one unitary groups). Restricting to this case but
allowing q > 1 we can generalize Theorem 7.1. Unfortunately, we do not obtain the
analytic continuation of D(s, f, g), but rather of ¿Z"Lxc¡D(s, /, g,), where/ = / ° a~l
and g, = g° ajl, with ax,...,am as in Proposition 10.1, and the c, are certain
numerical constants independent of/, g and s. This unsatisfying situation is imposed
on us by Proposition 10.1, and is the reason we restricted to the case p = q = 1
throughout the rest of this paper. It would be interesting to refine Proposition 10.1
by obtaining an explicit characterization of those elements x g (0K)^p+q which are
the bottom p rows of an element of Y. As already stated the conditions x<b'x = 0 and
x primitive are not in general sufficient. One may hope to remedy this by imposing
some congruence conditions on x and T, but this will not work in general.

Note added in proof. The author has recently learned of some recent work of
Piatetski-Shapiro and Rallis in which they obtain new integral representations and
analytic continuations of some L-functions attached to classical groups, including
unitary groups.
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