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Abstract. For a fixed hyperelliptic curve C given by the equation y2 ¼ f ðxÞ with f A Z½x�
having distinct roots and degree at least 5, we study the variation of rational points on the
quadratic twists Cm whose equation is given by my2 ¼ f ðxÞ. More precisely, we study the Di-
richlet series Df ðsÞ ¼

P 0
m00aCmðQÞjmj�s where the summation is over all non-zero squarefree

integers. We show that Df ðsÞ converges for <ðsÞ > 1. We extend its range of convergence as-
suming the ABC conjecture. This leads us to study related Dirichlet series attached to binary
forms. We are then led to investigate the variation of rational points on twists of superelliptic
curves. We apply this study to certain classical problems of analytic number theory such as the
number of powerfree values of a fixed polynomial in Z½x�.

2000 Mathematics Subject Classification: 11G30; 11M41.

1 Introduction

The idea of attaching a Dirichlet series to study a sequence of numbers can be traced
back to Riemann and Dirichlet in their foundational work concerning the distri-
bution of prime numbers. In this paper, we employ a similar idea to the study of ra-
tional points on quadratic twists of hyperelliptic curves. Using the current knowledge
of diophantine geometry we establish a half-plane of convergence for these series.
Using the ABC conjecture, we can widen the half-plane of convergence. We then
make precise conjectures on the abscissa of convergence for these series and discuss
analogous results in the case of twists of superelliptic curves. Finally, we apply these
results to the study of squarefree values and more generally, powerfree values of
polynomials.

To be precise, let f ðxÞ A Z½x� be a polynomial of degree rb 5 and with distinct
complex roots. For each squarefree integer m, we may consider the hyperelliptic
curve

Cm : my2 ¼ f ðxÞ:

1 Research partially supported by an NSERC grant.



A consequence of the award-winning theorem of Faltings [Fal] is that

aCmðQÞ < y:

A famous conjecture of Caporaso, Harris and Mazur [CHM] predicts the existence
of a constant kr depending only on r such thataCmðQÞa kr, for every m and every f

of degree r. In order to study this conjecture (and related conjectures) it is natural to
consider the Dirichlet series

Df ðsÞ ¼
P 0
y

m¼�y

aCmðQÞ
jmjs ;

and determine its abscissa of convergence, where the dash on the summation indicates
(unless otherwise specified) that we run over all non-zero squarefree integers.
Using the deep work of Vojta [Voj], we proved in an earlier paper [LM] the fol-

lowing:

Theorem 1. Df ðsÞ converges for <ðsÞ > 1.

Here is a brief sketch of the argument. The rational points of Cm can be viewed
as points of C :¼ C1 with co-ordinates lying in the quadratic field Qð ffiffiffiffi

m
p Þ. Let

h : CðQÞ ! R be a height function on C corresponding to a projective embedding of
C and J the Jacobian variety of C. Then Vojta [Voj] showed that there is a constant g
depending only on C such that for all finite extensions K=Q,

afP A CðKÞ : hðPÞb ggaaJðKÞtorkðgÞ10rank JðKÞ;

where kðgÞ is a constant depending only on g and rank JðKÞ denotes the Mordell-
Weil rank of JðKÞ. We apply this to K ¼ Qð ffiffiffiffi

m
p Þ. Using descent theory (as in p. 282

of [Silv] or p. 95 of [H]), we have

rank JðQð
ffiffiffiffi

m
p

ÞÞf logm

log logm

for m su‰ciently large. By a well-known theorem of Northcott, JðQð ffiffiffiffi

m
p ÞÞtor is uni-

formly bounded so that from Vojta’s result, we deduce

afP A CðQð
ffiffiffiffi

m
p

ÞÞ : hðPÞb ggfme

for any e > 0. Thus, we see that

P 0
y

m¼�y

1

jmjsafP A CðQð
ffiffiffiffi

m
p

ÞÞ : hðPÞb gg
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converges for <ðsÞ > 1. Since the contribution from the points of bounded height and
bounded degree is finite by Northcott’s theorem, the series

P 0
y

m¼�y

1

jmjsafP A CðQð
ffiffiffiffi

m
p

ÞÞ : hðPÞa gg

converges for <ðsÞ > 1. Thus, Df ðsÞ converges for <ðsÞ > 1.
If we can show that the series in fact converges for <ðsÞ ¼ 1, then we can deduce

by standard analytic number theory that

P 0

jmjax

aCmðQÞaP

m

0
aCmðQÞ x

jmj ¼ OðxÞ;

indicating that aCmðQÞ is uniformly bounded ‘‘on average.’’ It may happen that
every twist has a rational point as in the case when f ðxÞ has a rational root. In such
a case, the series Df ðsÞ diverges at s ¼ 1. However, if f ðxÞ has no rational root, we
expect the series to converge in a wider region as the following theorem shows. In
fact, if we agree thataCmðQÞ counts rational points ðx; yÞ with y0 0 (a convention
we will follow throughout this paper), then one of the results we will prove in this
paper is:

Theorem 2. Let rb 5 and set dr ¼ 2=ðr� 4Þ if r is even and 2=ðr� 3Þ if r is odd. As-
suming the ABC conjecture, Df ðsÞ converges for <ðsÞ > dr.

Notice that in the above theorem, dr tends to zero as r tends to infinity. By standard
analytic number theory, we deduce the following corollary.

Corollary 3. For any e > 0, we have under the same conditions as in Theorem 2,

P 0

jmj<x

aCmðQÞf xdrþe:

The corollary implies that the number of jmja x for whichaCmðQÞb 1 is OðxdrþeÞ.
This result was also observed independently by Granville. It would be interesting to
prove such results without assuming ABC. This may be possible since we are only
applying ABC ‘‘on average.’’ At the moment, we are unable to do this. However, the
following unconditional result will be proved below.

Theorem 4.

P 0

jmjax

aCmðQÞ ¼ Wðx2=rÞ:

It may be useful to the reader if we recall the W-notation. We write

f ðxÞ ¼ WðgðxÞÞ
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if there is a positive constant c such that for infinitely many x tending to infinity, we
have

j f ðxÞj > cgðxÞ:

Theorem 4 implies that the abscissa of convergence of Df ðsÞ lies somewhere between
2=r and dr and it is very likely that it is 2=r for rb 5. We remark that for r ¼ 3 or
r ¼ 4, the Dirichlet series has no finite abscissa of convergence. To see this, consider
the case r ¼ 3 (the case r ¼ 4 being similar). In both these cases, C is an elliptic curve
and it is well-known that there are infinitely many m such that CmðQÞ is infinite.
In the context of Theorem 4, we mention the important work of Stewart and Top

[ST] concerning ranks of twists of elliptic curves. Theorem 2 of [ST] implies, in our
context, that

P 0

jmjax

aCmðQÞg x2=r

log2 x
:

In any case, these observations imply that the abscissa of convergence of Df ðsÞ is
greater than or equal to 2=r.
We also list below some unconditional results that can be derived from the con-

vergence of Df ðsÞ. For example, one can deduce an ‘‘average form’’ of the ABC con-
jecture from Theorem 1.
Our interest in the study of Df ðsÞ was motivated by our earlier work related to

some conjectures of Rubin and Silverberg [RS1]. Their work was in turn motivated
by a ‘‘controversial’’ conjecture of Honda [H]. Here is a more precise description of
this work.
Let f ðxÞ A Z½x� be a cubic polynomial with distinct complex roots. Let E be an

elliptic curve defined over Q by

E : y2 ¼ f ðxÞ:

The quadratic twist, denoted ED, of E is given by

ED : Dy2 ¼ f ðxÞ:

Honda [H] conjectured that there is a constant C depending only on E but not on D

such that

rankZ EDðQÞ < C:

Rubin and Silverberg [RS1] made an equivalent formulation of Honda’s conjecture
in terms of the convergence of a certain infinite series. We begin by stating their result.
Let ĥhE : EðQÞ ! Rb0 be the canonical height function on EðQÞ and let ĥhD ¼ ĥhED

be the canonical height function on EDðQÞ for a non-zero square-free integer D.
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They defined the Dirichlet series

TEð j; kÞ ¼
P

D

jDj�k P

P AEDðQÞ�EDðQÞtor
ĥhDðPÞ�j

where the sum is over all non-zero square-free integers D.

Theorem 5 (Rubin, Silverberg). If j is a positive real number, then the following con-

ditions are equivalent:

(1) rankZ EDðQÞ < 2j for every D A Znf0g;
(2) TEð j; kÞ converges for some kb 1;

(3) TEð j; kÞ converges for every kb 1.

Now let f ðxÞ A Z½x� be a polynomial of degreeb 5 and with distinct roots, as before.
Then the curve

C : y2 ¼ f ðxÞ

has genus gb 2.
Consider the series Tf ð j; kÞ defined analogously to TEð j; kÞ, where the canonical

height being chosen with respect to the ‘‘theta divisor’’ Y on the Jacobian variety J of
C. More precisely, let

e : C ,! J

be an embedding of C into J of the form

P 7! ½ðPÞ � ðP0Þ�

for a fixed base point P0 A CðQÞ. We assume that P0 is chosen so that Y ¼ eðC g�1Þ is
a symmetric divisor on J. (This is possible when C is a hyperelliptic curve.) Let ĥh be
the (logarithmic) canonical height on J with respect to Y.

Let Cm be a twist of C given by

Cm : my2 ¼ f ðxÞ:

A special case of the Mordell-Weil theorem tells us that if Jm is the Jacobian of Cm

and L ¼ Qð ffiffiffiffi

m
p Þ, then JmðLÞ is finitely generated. We may view rational points on

Cm as points of C with co-ordinates lying in the field Qð ffiffiffiffi

m
p Þ. With this understand-

ing, it is natural to consider

Tf ð j; kÞ ¼
P 0
y

m¼�y

1

jmjk
P

P ACmðQÞnCmðQÞtor

1

ĥhðPÞ j
:
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As noted in [RS1], the series converges for k > 1 if one invokes the unproved hy-
pothesis of Caporaso, Harris and Mazur [CHM], since the inner sum would be Oð1Þ
by the hypothesis for any jb 0. In an earlier paper [LM] mentioned before, we
proved the convergence for k > 1 and any j > 0 without the unproved hypothesis.
The key tool used was an e¤ective version of Mumford’s gap principle. In section 2
below, we will show that this can be improved to give:

Theorem 6. If rb 5, there is a constant c depending only on f such that Tf ð j; kÞ con-
verges for k ¼ 1 and j > c.

Since the series Tf ð j; kÞ is dominated by Df ðkÞ, we deduce from Theorem 2 the fol-
lowing improvement.

Theorem 7. Let rb 5. Assuming the ABC conjecture, the series Tf ð j; kÞ converges for
k > dr and all j real.

The ABC conjecture can be stated in the following way. Let F A Z½x; y� be a ho-
mogenous form of degree r, with no repeated factors. Then for any coprime integers
u, v satisfying Fðu; vÞ0 0, we have

radFðu; vÞ :¼
Q

pjFðu; vÞ
pgmaxðjuj; jvjÞ r�2�e

for any e > 0. For many applications, even a ‘‘quasi’’-ABC conjecture (or more pre-
cisely, a d-quasi-ABC conjecture) of the form: there exists a d > 0 such that

radðF ðu; vÞÞgmaxðjuj; jvjÞd;

would have tremendous consequences. In this context, an important corollary of our
work in [LM] is the following estimate for the exceptional set.

Theorem 8. For any d < 2, the number of pairs of integers juj; jvjaH satisfying

radðF ðu; vÞÞamaxðjuj; jvjÞd

is OðH dþeÞ for any e > 0.

For various reasons, it is useful to have lower bounds for ‘‘stratified’’ radicals. More
precisely, we can define the i-th radical radiðnÞ of a natural number n as follows. Let

n ¼ Q

pjn
pvpðnÞ

be its unique factorization and set

radiðnÞ ¼
Q

1avpðnÞai

p:

Then:
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Theorem 9. Assuming the ABC conjecture,

radiðFðu; vÞÞgmaxðjuj; jvjÞ r�2�2=i�e:

In particular,

rad1ðFðu; vÞÞgmaxðjuj; jvjÞ r�4�e

for any e > 0.

In other words, for rb 5, Fðu; vÞ is ‘‘nearly squarefree,’’ assuming the ABC conjec-
ture.

Motivated by these observations, we are led to introduce in section 4, a family of
Dirichlet series associated to binary forms. One family of Dirchlet series is particu-
larly interesting. Consider

RF ; iðsÞ ¼
P

ðu; vÞ¼1;Fðu; vÞ00

1

jradi F ðu; vÞjs
:

Then, we have the following theorem.

Theorem 10. Assuming the ABC conjecture, RF ; iðsÞ converges for

<ðsÞ > 2=ðr� 2� 2=iÞ:

A quasi-ABC conjecture implies convergence in some half-plane.

The Dirichlet series RF ;1ðsÞ has a curious connection to the question of whether there
are infinitely many primes p such that

2p�1 D 1 ðmod p2Þ;

the so-called non-Wieferich primes. Heuristics suggest that the number of primes
pa x for which

2p�1
1 1 ðmod p2Þ

is � log log x. At the moment, 1093 and 3511 are the only primes p < 32� 1012 for
which the congruence holds. We will show:

Theorem 11. Suppose that for some rb 5, and Fðx; yÞ ¼ x r � y r, the Dirichlet series

RF ;1ðsÞ converges for some real number s ¼ s0. Then there are infinitely many non-

Wieferich primes. In particular, for any d > 0, a d-quasi ABC conjecture implies that

there are infinitely many non-Wieferich primes.
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In light of this theorem, it is therefore not surprising that the study of the series
RF ;1ðsÞ or more generally RF ; iðsÞ seem to lie at the boundary of our understanding.
We are unable to establish any half-plane of absolute convergence for them even
though they resemble Df ðsÞ in many ways. The connection between ABC and non-
Wieferich primes was first made by Silverman [Silv2]. However, it will be noted
that his proof needs a d-quasi-ABC, with d > 1=2, to deduce the infinitude of non-
Wieferich primes whereas our proof only requires any d > 0.
Instead of considering hyperelliptic curves, we may consider in a similar fashion

the superelliptic case:

C : ya ¼ f ðxÞ

and consider its a-th power free twists Cm given by

mya ¼ f ðxÞ:

An analysis similar to Theorem 1 and 2 leads us to the following:

Theorem 12. Let C be of genus greater than 1. The Dirichlet series

FCðs;QÞ :¼ P 0
y

m¼�y

aCmðQÞ
jmjs ;

where the sum is over all a-th powerfree integers, converges for <ðsÞ > 1. If we assume

the ABC conjecture, it converges for <ðsÞ > drðaÞ, where

drðaÞ ¼
2

r� r0þð2�hÞa
a�1

where r0 is the reduced residue class of modulo a satisfying ajrþ r0, and h ¼ 0 or 1
according as ajr or not. Note that drð2Þ ¼ dr as defined in Theorem 2.

Instead of attaching a Dirichlet series to study the number of rational points of twists
of hyperelliptic curves or superelliptic curves, one may also consider Dirichlet series
of the form

FCðs;ZÞ :¼
P 0
y

m¼�y

aCmðZÞ
jmjs ;

where the summation is over all a-th powerfree integers. (One may even consider the
series with Z replaced by the ring of S-integers. The results proved below hold in this
general context also.)
We will prove:
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Theorem 13. Assuming the ABC conjecture, the Dirichlet series FCðs;ZÞ converges for
<ðsÞ > 1= r� 1þ 1

a�1

� �

.

Here again, we can show unconditionally that

Theorem 14.

P 0

jmjax

aCmðZÞ ¼ Wðx1=rÞ:

In the special case a ¼ 2, Cutter, Granville and Tucker [CGT] proved the above re-
sult assuming the ABC conjecture. They also supplied some heuristic reasoning to
suggest this result is best possible. It is highly likely that

P 0

jmjax

aCmðZÞf x1=rþe

for any e > 0. This would imply that the abscissa of convergence for the series
FCðs;ZÞ is 1=r.

This observation, together with Theorem 4 leads us to formulate the abscissa con-

jecture: the series FCðs;QÞ and FCðs;ZÞ have abscissa of convergence 2=r and 1=r
respectively.

These results have some relevance to the classical problem of analytic number
theory of determining how often a given polynomial represents squarefree numbers
or more generally an a-th powerfree number. We refer the reader to the excellent
survey [Pa] concerning this important question of analytic number theory. However,
it is important to highlight some of the history concerning this problem. The question
seems to have been first raised by Nagell in 1922 and treated in more detail by Ricci
in 1933 using sieve methods. But both of these works could only address the question
of how often a polynomial of degree r represented r-th powerfree numbers. It was not
until in 1976, when Hooley derived an asymptotic formula for the number of na x

such that f ðnÞ is ðr� 1Þ-th powerfree. Already this involved non-trivial methods of
sieve theory as well as an application of Weil’s celebrated result of the Riemann hy-
pothesis for zeta functions of curves over finite fields. A spectacular breakthrough
was made by Mohan Nair [Na] in 1976 when he was able to use ideas of algebraic
number theory to deduce an asymptotic formula for how often f ðnÞ is a-th powerfree
for ab ð

ffiffiffi

2
p

� 1=2Þr. In subsequent work, he was even able to obtain error terms of
the form OðxyÞ with y < 1. In spite of these remarkable advances, we are still unable
to determine if n4 þ 1 is infinitely often a squarefree number. In 1998, Granville
[Gran] used the ABC conjecture to derive an asymptotic formula for the number of
na x for which f ðnÞ is squarefree. We will prove:

Theorem 15. Assume the ABC conjecture. Let f ðxÞ be an irreducible polynomial over

Z½x� of degree r. If ab 3, the number of na x such that f ðnÞ is a-th power free is equal

to

cf ðaÞxþOðx1=ða�1ÞþeÞ;
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where

cf ðaÞ ¼
Q

p

1� rðpaÞ
pa

� �

and rðpaÞ is the number of roots of f ðxÞmod pa. For a ¼ 2, we get assuming the ab-

scissa conjecture,

cf ð2ÞxþOðx1�2=ðrþ2ÞþeÞ

for rb 3.

We may also consider the allied problem of how often f ðpÞ is squarefree or a-th
power free for prime numbers pa x.

Theorem 16. Assume the ABC conjecture. Let f ðxÞ be an irreducible polynomial over

Z½x� of degree r. If ab 3, the number of primes pa x such that f ðpÞ is a-th power free

is equal to

~ccf ðaÞpðxÞ þO
x

logA x

� �

;

for any A > 1, where

~ccf ðaÞ ¼
Q

p

1� ~rrðpaÞ
fðpaÞ

� �

;

and ~rrðpaÞ denotes the number of coprime residue classes mod pa which are roots of

f ðxÞmod pa. If in addition, we assume the generalised Riemann hypothesis, then the

error term is

Oðx1=2þ1=2a log xÞ:

If the abscissa conjecture is true, then for a ¼ 2, the number of such primes pa x is

~ccf ð2ÞpðxÞ þOðx1�1=ðrþ2ÞþeÞ;

assuming in addition the generalised Riemann hypothesis.

It seems di‰cult to derive an asymptotic formula in the case a ¼ 2 assuming only the
ABC conjecture. This may be possible. But a straightforward modification of the
argument in [Gran] does not seem to work.
Our final theorem concerns an equivalent formulation of the ABC conjecture in

terms of double Dirichlet series.
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Theorem 17. The ABC conjecture is true if and only if

BF ð j; kÞ :¼
P 0

ðu; vÞ¼1

jradFðu; vÞj�k
Hðu=vÞ�j

converges for every k and j satisfying

kðr� 2Þ þ j > 2

for every homogenous binary form F in Z½x; y� of degree rb 3. If the convergence is

established for the specific form Fðx; yÞ ¼ xyðxþ yÞ of degree 3, then the ABC con-

jecture follows. (Here, Hðu=vÞ is equal to maxðjuj; jvjÞ is the exponential height func-

tion.)

In this paper, our goal is to study these and allied Dirichlet series and indicate how
some of their analytic properties give us Diophantine information. Before embarking
on this task, let us review the main result of [LM]. Let K=Q be a number field, C=K a
hyperelliptic curve of genus gb 2, and J=K the Jacobian variety of C.

Mumford [Mu] showed that if fxng is a sequence of distinct points in CðKÞ lying
in some finitely generated subgroup of JðKÞ and ordered by increasing height, then
there exists an integer N and a number a > 1 such that

jxnþN jb ajxnj:

However, the nature of N was not specified. Using a lemma of Silverman we made
Mumford’s argument explicit in [LM], and obtained the following result.

Theorem 18 (J.-J. Lee, R. Murty). If rb 5, then Tf ð j; kÞ converges for every k > 1 and

any positive real number j.

Remark. This is equivalent to Theorem 2 in [LM], where the series was expressed in
terms of naive height, due to the property of

hxðPÞ � ĥhðPÞ;

where hxðPÞ denotes the naive height on the x-coordinate of P.

In this note, we show the convergence of this series for the case when k ¼ 1. This was
not treated in the earlier paper [LM] since the analysis is delicate and requires a new
idea. Our paper begins with this result. An interesting consequence of this result is the
estimate

P 0

jmjax

aCmðQÞf xðlog xÞA

for some A > 0. Thus, ‘‘average’’,aCmðQÞ is OðlogAjmjÞ.
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2 Convergence of Tf ( j, k) for kF 1

Notice that if y0 0, then the height of a rational point P ¼ ðx; yÞ A CmðQÞ satisfies

ĥhðPÞg logjmj:

To see this, we may write

f ðxÞ ¼ ar
Q

i

ðx� aiÞ ¼ my2

where ar is the leading coe‰cient of f ðxÞ and ai are the roots of f ðxÞ. Writing
x ¼ u=v with u and v coprime integers, we find my2 ¼ f ðu=vÞ. Let us treat the case r
even (the case r odd being similar). Thus,

mðvr=2yÞ2 ¼ vrf ðu=vÞ:

If y0 0, the right hand side is a non-zero integer. As m is squarefree, it follows that
vr=2y is also an integer. Thus,

jarj
Q

i

ju� aivjbm

so that at least one of the factors on the left has to be at least gjmj1=r. Therefore
hðu=vÞg logjmj. As the naive height and the canonical height di¤er by Oð1Þ, the re-
sult follows. Thus,

Tf ð j; kÞf
P 0
y

m¼�y

1

jmjk
�aCmðQÞ
ðlogjmjÞ j

:

Before we begin, we remark that the conjecture of Caporaso, Harris and Mazur
[CHM], namely that the number of rational points on a curve (defined over Q say)
of genus g is bounded by a constant depending only on g, for gb 2, implies that
Tf ð j; kÞ converges for k ¼ 1 and j > 1.

We want to prove the convergence without assuming this conjecture.

We begin by ordering the finite set of points in CðQð ffiffiffiffi

m
p ÞÞ in the order of increasing

height to have a sequence fxng. The convergence of the sum in question is determined
by

P

xn ACðQð ffiffiffi

m
p ÞÞ�CðQð ffiffiffi

m
p ÞÞtor

1

ĥhðxnÞ j
:

(See [LM, Proposition 7].)

The following is an improved estimate of our earlier proof of Proposition 7 of [LM].
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Proposition 19. Let f ðxÞ A Z½x� be a polynomial of degree rb 5 and with distinct roots.

Let C be the curve y2 ¼ f ðxÞ. There are constants g and c, depending only on f , such

that for jmj > g, we have

P

xn ACðQð ffiffiffi

m
p ÞÞ�CðQð ffiffiffi

m
p ÞÞtor

1

ĥhðxnÞ j
f

cnðmÞ

ðlogjmjÞ j

for any positive real number j. Here nðmÞ is the number of prime divisors of m.

Proof. We partition the indices n in this sum into residue classes (modN) for some N
with an estimate of Nf crankZ JmðQÞ (see [LM, Lemma 4 and Proposition 7]). For each
such residue class t ðmodNÞ and n ¼ qN þ t, an e¤ective version of Mumford’s gap
principle gives us

ĥhðxnÞ ¼ jxnj2 > a2qjxtj2 ¼ a2�ðn�tÞ=N jxtj2:

As a > 1 and ĥhðxtÞg logjmj, we find that for each residue class t ðmodNÞ, the con-
tribution is

f jxtj�2j ¼ ĥhðxtÞ�j
f ðlogjmjÞ�j:

Summing this for t ðmodNÞ together with an estimate of Nf c rankZ JmðQÞ f cnðmÞ

gives

P

xn ACðQð ffiffiffi

m
p ÞÞ�CðQð ffiffiffi

m
p ÞÞtor

1

ĥhðxnÞ j
f

cnðmÞ

ðlogjmjÞ j
: r

Remark. The sum of the remaining terms in Tf ð j; kÞ (that is, those terms for which
jmj is not large enough) is finite by the result of Northcott. (See [LM, §3].)

Thus, Proposition 19 implies that the convergence of Tf ð j; kÞ is determined by the
convergence of the series

P

y

m¼2

cnðmÞ

mkðlogmÞ j
:

This series is now studied by standard methods of analytic number theory.

Lemma 20 (Partial Summation). Suppose fangyn¼1 is a sequence of complex numbers

and f ðtÞ is a continuously di¤erentiable function on ½1; x�. Set

AðtÞ ¼
P

nat

an:

Dirichlet series and hyperelliptic curves 689



Then

P

nax

an f ðnÞ ¼ AðxÞ f ðxÞ �
ð x

1

AðtÞ f 0ðtÞ dt:

Proof. See [M], Chapter 2. r

Proposition 21. The series

P

y

m¼2

cnðmÞ

mðlogmÞ j

converges for j > c.

Proof.We use the well-known theorem (see for example, Exercise 4.4.17 of [M]): there
is an A > 0 so that

P

max

cnðmÞ @Axðlog xÞc�1 as x ! y:

Then the partial summation theorem tells us that

P

max

cnðmÞ

mðlogmÞ j
@

Aðlog xÞc�1

ðlog xÞ j
�
ð x

1

Aðlog tÞc�1

tðlog tÞ j
1� 1

j log t

� �

dt;

which converges if j > c as x ! y. r

Remark. An e¤ective version of Faltings theorem on Mordell’s conjecture, due to
Vojta, that was applied in [LM] leads us to the above series with c ¼ 10.
If we follow the proof of [LM, §4], our improved estimate gives us the bound

P

xn ACðQð ffiffiffi

m
p ÞÞ�CðQð ffiffiffi

m
p ÞÞtor

1

ĥhðxnÞ j
f

10rank JmðQÞ

ðlogmÞ j
f

10nðmÞ

ðlogjmjÞ j
;

thus we have

Tf ð j; kÞf
P

y

m¼2

10nðmÞ

mkðlogmÞ j
;

which converges for k ¼ 1 and j > 10.

As noted earlier, we may deduce from this that

P 0

jmjax

aCmðQÞf
P

m

0 x log j x

jmj log jjmj
10nðmÞ

f xðlog xÞA

for any A > 10.
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3 Proofs of Theorems 2 and 4

We begin by recalling the ABC conjecture in the form we will apply it below. For
each natural number n, define the radical of n to be

radðnÞ ¼
Q

pjn
p:

We will also write the squarefree part of n to be

sfðnÞ ¼
Q

p akn; a odd

p

and the radical of the square part of n to be

sqðnÞ ¼
Q

p akn; a evenb2

p:

We note that sfðnÞ sqðnÞ ¼ radðnÞ and that sfðnÞ sqðnÞ2 j n. Consequently, sqðnÞa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=sfðnÞ
p

. The ABC conjecture states that whenever we have three mutually coprime
integers A, B, C such that

Aþ B ¼ C

then

maxðjAj; jBj; jCjÞfe radðABCÞ1þe

for all e > 0. Elkies [Elk] showed that the ABC conjecture when combined with the
celebrated Belyi theorem [Bel] implies the following the stronger (and equivalent)
statement. Let Fðx; yÞ A Z½x; y� be a homogenous form of degree r, with no repeated
factors. Then, for any coprime integers u, v with Fðu; vÞ0 0, we have

maxðjuj; jvjÞr�2�e
fe radðF ðu; vÞÞ

for any e > 0. The ABC conjecture arises from the special case of Fðx; yÞ ¼
xyðxþ yÞ. We record for future reference what this implies for sfðFðu; vÞÞ.

Lemma 22. Assuming the ABC conjecture,

sfðFðu; vÞÞgmaxðjuj; jvjÞr�4�e;

for any e > 0.

Proof. By the ABC conjecture, we have

sfðFðu; vÞÞ sqðFðu; vÞÞgmaxðjuj; jvjÞr�2�e:
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Clearly,

sfðF ðu; vÞÞ½sqFðu; vÞ�2aF ðu; vÞfmaxðjuj; jvjÞ r:

Inserting this into the previous inequality, we get

maxðjuj; jvjÞ r�2�e
f sfðF ðu; vÞÞ1=2 maxðjuj; jvjÞ r=2

from which we deduce the result. r

We will now apply this to prove Theorem 2. Recall that f ðxÞ is a polynomial of de-
gree rb 5 with distinct roots. Now let F ðu; vÞ be vrf ðu=vÞ if r is even and vrþ1f ðu=vÞ
when r is odd. Then Fðu; vÞ is a homogenous form with no repeated factors, since f

has distinct roots. Moreover, F has degree r or rþ 1 according as r is even or odd.
We begin our analysis with the r even case. Let us observe that if m is squarefree

and my2 ¼ f ðu=vÞ, with u, v coprime integers, then

mðvr=2yÞ2 ¼ Fðu; vÞ:

Thus, sfðF ðu; vÞÞ ¼ m. Conversely, if sfðF ðu; vÞÞ ¼ m, then Fðu; vÞ ¼ mw2 for some
integer w. Thus ðu=v;w=vr=2Þ is a rational point on Cm. Therefore,

P 0
y

m¼�y

1

jmjk
aCmðQÞ ¼

P

ðu; vÞ¼1;Fðu; vÞ00

1

jsf Fðu; vÞjk
:

By the lemma above, the series is dominated by

P

ðu; vÞ¼1

1

maxðjuj; jvjÞkr�4k

and since the sum is symmetric, we may suppose that juj > jvj and find that the series
converges if kðr� 4Þ > 2 which is the statement of Theorem 2.
For the case r is odd, we proceed similarly. In this case, F has degree rþ 1 and

so we see that the series converges for <ðsÞ > 2=ðr� 3Þ. This completes the proof of
Theorem 2.
As we remarked, for jb 0, we have

Tf ð j; kÞaDf ðkÞ:

Thus, Theorem 7 is immediate in case jb 0. If j < 0, then we write j ¼ �t, with
t > 0 and observe that

Tf ð�t; kÞ ¼
P

ðu; vÞ¼1

hðu=vÞ t

jsfðFðu; vÞÞjk
:
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As hðu=vÞ ¼ logmaxðjuj; jvjÞ, and the earlier analysis provides a lower bound for
sfðF ðu; vÞÞ, we deduce Theorem 7 immediately from this.

To deduce Corollary 3, we recall that if a Dirichlet series
P

y

n¼1
an
n s converges abso-

lutely for <ðsÞ > a, then
P

nax an f xb, for any b > a. To see this, note that

P

nax

an f
P

nax

anðx=nÞb f xb:

Since the Dirichlet series
P 0y

m¼�y
1

jmj saCmðQÞ converges for <ðsÞ > dr, the corollary
is now immediate.

The corollary is interesting from another perspective. The number aCmðQÞ repre-
sents the number of integral solutions of

Fðu; vÞ ¼ mw2;

with w0 0. It is trivial to see that the number of solutions of the Thue inequality
jFðu; vÞja x is Oðx2=rÞ. As we record below, one can even prove an asymptotic for-
mula with a main term like x2=r. This means that

P

max

aCmðQÞ ¼ Wðx2=rÞ:

This implies that the abscissa of convergence of the series is greater than 2=r.

4 Dirichlet series attached to binary forms

Given a binary form F ðx; yÞ A Z½x; y�, there are at least three natural Dirichlet series
we may associate with F . These are

TF ðsÞ ¼
P

ðu; vÞ¼1;Fðu; vÞ00

1

jFðu; vÞj s ;

RF ðsÞ ¼
P

ðu; vÞ¼1;Fðu; vÞ00

1

jradðF ðu; vÞÞjs ;

DF ðsÞ ¼
P

ðu; vÞ¼1;Fðu; vÞ00

1

jsfðFðu; vÞÞj s ;

the last one being related to the Df ðsÞ where f ðxÞ ¼ Fðx; 1Þ when r is even. The
easiest of the three series to study is naturally the first one, which we shall call the
Thue series attached to F . In 1933, Mahler [Ma] proved that the number of integers
x, y satisfying jF ðx; yÞja h is equal to

AFh
2=r þOðh1=ðr�1ÞÞ
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where AF is the area of region defined by the inequality jF ðx; yÞja 1 for rb 3. Let us
note that the coprimality condition of u and v in the definition of TF ðsÞ means that

TF ðsÞzðrsÞ ¼
P

Fðu; vÞ00

1

jFðu; vÞj s :

This implies that TF ðsÞ has an analytic continuation to <ðsÞ > 1=ðr� 1Þ except for a
simple pole at s ¼ 2=r. In particular, the abscissa of convergence of the Dirichlet se-
ries TF ðsÞ is 2=r. Since for real s, we have

DF ðsÞbRF ðsÞbTF ðsÞ;

we deduce that the abscissa of convergence of both DF ðsÞ and RF ðsÞ must be greater
than or equal to 2=r. Theorem 1 implies that DF ðsÞ converges for <ðsÞ > 1 and rb 5.
Thus, RF ðsÞ converges for <ðsÞ > 1 and rb 5.
There are also other interesting results that can be deduced from these obser-

vations. One of them is to consider the ‘‘exceptional set’’ for the ABC conjecture.
To be precise, let us consider the set SdðHÞ of pairs ðu; vÞ with juj; jvjaH satisfying
radðFðu; vÞÞamaxðjuj; jvjÞd. This number of pairs is, for any k > 1,

f
P

juj; jvjaH

maxðjuj; jvjÞdk

jradðFðu; vÞÞjk
fH dk

RF ðkÞ;

which is fH dþe, since the series RF ðsÞ converges for <ðsÞ > 1 and we may set
k ¼ 1þ e=d. If d < 2, the result is therefore non-trivial. This completes the proof of
Theorem 8.
Let us now consider the Dirichlet series RF ; iðsÞ defined in the introduction. Using

an argument analogous to the one used in the proof of Lemma 15, we get

radiðnÞðradðnÞ=radiðnÞÞ iþ1
a n:

Thus,

radiðnÞb rad1þ1=iðnÞn�1=i

which means in our context that

radiðF ðu; vÞÞb rad1þ1=iðF ðu; vÞÞmaxðjuj; jvjÞ�1=i
gmaxðjuj; jvjÞr�2�2=i�e:

This implies Theorem 9.

5 Wieferich primes and Dirichlet series

In this section, we will prove Theorem 10. Our analysis will follow closely that of
Silverman [Silv2]. Let us write

2n � 1 ¼ anbn
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where an ¼ rad1ð2n � 1Þ is squarefree and bn is squareful, ðan; bnÞ ¼ 1. Then, as
in [Silv2], we see that if p is a prime dividing an, then 2p�1 D 1 ðmod p2Þ. Indeed,
if t is the order of 2mod p, we see that tjn. Writing 2 t ¼ 1þ kp, we see that
2n ¼ ð1þ kpÞn=t 1 1þ kpn=t ðmod p2Þ so that pa k because pjan and not bn. Thus,
2p�1 ¼ ð1þ kpÞðp�1Þ=t

1 1þ kpðp� 1Þ=t ðmod p2Þ implying that p is not a Wieferich
prime. Thus, if an is unbounded, then there are infinitely many primes p such that
2p�1 D 1 ðmod p2Þ. This means, we must have rad1ð2n � 1Þ unbounded. Considering
the form Fðx; yÞ ¼ x r � yr with rb 5 and the set of values x ¼ 2n, y ¼ 1, we im-
mediately see from this that if rad1ð2nr � 1Þ is bounded, for infinitely many n, then
the Dirichlet series RF ;1ðsÞ cannot converge in any half-plane. This completes the
proof of Theorem 10. We note that assuming a quasi-ABC, we get that RF ;1ðsÞ con-
verges in some half-plane.

6 The superelliptic case

We may also consider twists of the curve

ya ¼ f ðxÞ:

It is more appropriate to define the curve

Cm : mya ¼ f ðxÞ:

One may then consider the Dirichlet series

FCðs;QÞ :¼
P 0
y

m¼�y

aCmðQÞ
jmjs ;

where the dash on the sum now means we run over a-th power free numbers. Using
the methods to prove Theorem 1, we see that this Dirichlet series converges for
<ðsÞ > 1. We will now use the ABC conjecture to deduce that this series converges in
a larger half-plane.

Arguing as before, we get

vrmya ¼ Fðu; vÞ;

and letting r0 be the reduced residue class mod a so that rþ r0 1 0 ðmod aÞ, we may
write this as

mwa ¼ vr0Fðu; vÞ:

Taking the radical of both sides of the equation, we deduce, with h ¼ 0 or 1 accord-
ing as ajr or not, that

jmj jwjg ðmaxðjuj; jvjÞÞ rþh�2�e;
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on the ABC conjecture. However,

jwjf maxðjuj; jvjÞ rþr0

jmj

� �1=a

so that

jmjða�1Þ=a
gmaxðjuj; jvjÞrð1�1=aÞ�r0=aþh�2�e:

Thus, if u=v is the x co-ordinate of Cm, the above inequality must be satisfied. This
means that

mgmaxðjuj; jvjÞ r�r0=ða�1Þ�ð2�hÞa=ða�1Þ�e:

If we let xðCmÞ denote the set of x co-ordinates of Cm, then

FCðs;QÞ ¼ P

ðu; vÞ¼1

P

m:u=v A xðCmÞ

1

jmjs :

From our estimates, we deduce that FCðs;QÞ converges for <ðsÞ > drðaÞ, where

2

drðaÞ
¼ r� r0 þ ð2� hÞa

a� 1
� e:

This completes the proof of Theorem 12.

A consequence of this result is that we can determine the average number of points
on twists of the Fermat curve. Indeed, if f ðxÞ ¼ xa þ 1 above, we let Fm be the equa-
tion

Fm : mya ¼ xa þ 1:

Since daðaÞ ¼ 2ða� 1Þ=ða2 � 3aÞ, we deduce under the conditions of Theorem 12 that

P 0

jmjax

aFmðQÞf x2ða�1Þ=ða2�3aÞþe;

where the sum is over all a-th powerfree integers. In particular, for a > 5, we see that
the number of jmja x for which the equation

xa þ ya ¼ mza

has a non-trivial solution isfx4=a, assuming the ABC conjecture.
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7 Integral points on hyperelliptic curves and superelliptic curves

We begin with a simple remark. If f ðxÞ is a polynomial of degree r without repeated
factors, then as noted in [Gran], we have

radð f ðnÞÞg jnjr�1�e;

assuming the ABC conjecture. Thus,

f ðnÞ
sqð f ðnÞÞ b radð f ðnÞÞg jnjr�1�e:

Thus,

sqð f ðnÞÞf n1þe;

which means that

sfð f ðnÞÞg jnjr�2�e:

In other words, the Dirichlet series

P 0
y

n¼�y

1

jsfð f ðnÞÞjs ;

where the sum is over all integers n with f ðnÞ0 0, converges for <ðsÞ > 1=ðr� 2Þ.
This is the series

P 0
y

m¼�y

aCmðZÞ
jmjs :

We deduce immediately that

P 0

jmjax

aCmðZÞf x1=ðr�2Þþe;

by the ABC conjecture.

In the superelliptic case, we proceed similarly as in the previous section to deal with
the series

P 0
y

m¼�y

aCmðZÞ
jmjs
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where the dash on the summation indicates we go over non-zero a-th power free in-
tegers. Assuming the ABC conjecture, we have that if

mya ¼ f ðxÞ

for some integers x, y and m a-th powerfree, then,

jmyjb jrad f ðxÞjg jxjr�1�e

so that

jmj jxjr
jmj

� �1=a

g jxjr�1�e:

Thus,

jxjr�1�r=a�e
f jmj1�1=a:

In other words,

jmjg jxjr�a=ða�1Þ�e:

Thus the series FCðs;ZÞ converges for <ðsÞ > 1=ðr� 1þ 1=ða� 1ÞÞ. This completes
the proof of Theorem 13.

To deduce Theorem 14, the series

P 0
y

m¼�y

1

j f ðmÞj s ;

where the sum is over those integers m for which f ðmÞ0 0, converges for <ðsÞ > 1=r.
Clearly,

FCðs;ZÞb
P 0
y

m¼�y

1

j f ðmÞj s

since the a-th powerfree part of f ðmÞ is less than or equal to j f ðmÞj. As the latter
series has abscissa of convergence 1=r, it follows that the abscissa of convergence of
FCðs;ZÞ is b 1=r. Theorem 14 is now immediate from standard analytic number
theory.

8 Powerfree values of polynomials

Notice that if d a j f ðnÞ, with ab 2, we deduce arguing as in the previous sections,
that

f ðnÞ
d a�1

b radð f ðnÞÞg nr�1�e:
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Thus,

df n1=ða�1Þþe:

This means that in the application of the simple asymptotic sieve in Hooley’s book
[Hoo], we can count the number of a-free values of f ðnÞ very easily and derive an
asymptotic formula with very good error terms. Indeed, if NdðxÞ is the number of
na x for which d a j f ðnÞ, then the sieve of Eratosthenes gives that the number of
na x for which f ðnÞ is a-th power free is

P

nax

P

d aj f ðnÞ
mðdÞ ¼

P

d

mðdÞNdðxÞ:

We split the sum into two parts, da y and db y, with y to be suitably chosen. As
noted above, if d a j f ðnÞ, then

nr

d a�1
g

f ðnÞ
d a�1

b rad f ðnÞg nr�1�e;

the last inequality coming from the ABC conjecture. Thus,

d a�1
f n1þe:

In other words, if we take y ¼ Oðx1=ða�1ÞþeÞ, we see the contribution for db y is
zero. If rðd aÞ is the number of solutions of

f ðnÞ1 0 ðmod d aÞ

then the above sum is equal to

P

day

mðdÞ xrðd aÞ
d a

þOðrðd aÞÞ
� �

:

Since rðmÞfme, we easily find the error term above to be Oðy1þeÞ. Analyzing the
first expression as in [Hoo], we find that it is

x
P

y

d¼1

mðdÞ rðd
aÞ

d a
þO

x

ya�1�e

� �

:

The summation above easily changes into an infinite product since rðd aÞ is a multi-
plicative function of d by virtue of the Chinese remainder theorem. Let us therefore
set

cf ðaÞ ¼
Q

p

1� rðpaÞ
pa

� �

:
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Then, with our choice of y, we get assuming the ABC conjecture, that the number of
na x for which f ðnÞ is a-th power free is

cf ðaÞxþOðx1=ða�1ÞþeÞ;

in the case ab 3. For a ¼ 2, we use the abscissa conjecture to obtain an improved
error term. As before, we write our sum as

P

day

mðdÞNdðxÞ þ
P

d>y

mðdÞNdðxÞ;

with y to be suitably chosen. Indeed, the abscissa conjecture implies that

P 0

max

aCmðZÞf x1=rþe:

The first term for da y is

cf ð2ÞxþOðy1þeÞ

as in [Hoo]. Thus, in the above analysis, the summation over d > y is treated as fol-
lows. The sum

P 0

y<d

NdðxÞ

is dominated by

P

mfx r=y2
aCmðZÞ:

We can transform this into a sum over squarefree m by noting two things. Each
natural number n enumerated by the penultimate sum is also counted in

P 0

jmjfx r=y2
aCmðZÞ

where the sum is now over squarefree numbers. The number of repetitions of each n

cannot be more than the number of divisors of f ðnÞ which is Oðx eÞ for any e > 0. To
be precise, if dðmÞ denotes the number of divisors of m, then we have

P

d>y

NdðxÞa
P

nax

P

max=y2; f ðnÞ¼mu2
1

a
P

nax

P 0

m1ax=y2; f ðnÞ¼m1v2
dð f ðnÞ=m1Þf xe

P 0

max=y2
aCmðZÞ;
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using the well-known estimate that dðmÞ ¼ OðmeÞ. Thus, the summation over d > y

is bounded by

xe
P 0

mfx r=y2
aCmðZÞ;

which isfðx r=y2Þ1=rþe by the abscissa conjecture. Choosing y ¼ xr=rþ2 gives a final
error term offx1�2=ðrþ2Þþe. This completes the proof of Theorem 15.

As is well-known, it may happen that cf ðaÞ or ~ccf ðaÞ could be zero for ‘‘trivial’’ rea-
sons. For instance, the polynomial f ðxÞ ¼ xðxþ 1Þðxþ 2Þðxþ 3Þ is always divisible
by 8 when x is an integer and consequently will never attain squarefree values or cu-
befree values. This ‘‘triviality’’ can be eliminated as remarked in [Gran] by letting B

equal the gcd of f ðnÞ as n ranges over all the integers and then defining B 0ðaÞ to be
the smallest divisor of B such that B=B 0ðaÞ is a-th powerfree. One can then derive
results for how often f ðnÞ=B 0ðaÞ is a-th powerfree. The method would then give a
positive proportion of such numbers.

It is now evident that similar results can be deduced for powerfree values of homo-
geneous binary forms of degree r. We state this below in the following way.

Theorem 23. Assume the ABC conjecture. Let Fðu; vÞ be a homogenous binary form of

degree r without any repeated factors. Then, the number of pairs ðu; vÞ with 1a ua x

and 1a va y such that Fðu; vÞ is a-th powerfree is

c 0f ðaÞxyþOðmaxðx; yÞ2=ða�1ÞþeÞ

for ab 3. For a ¼ 2, we get assuming the abscissa conjecture that the number for which

F ðu; vÞ is squarefree is

c 0f ð2ÞxyþOðmaxðx; yÞ2�8=ðrþ4ÞþeÞ:

9 Powerfree values of polynomials with prime arguments

We will now prove Theorem 16. We proceed as in the previous section with the ele-
mentary sieve formula. Let pdðxÞ be the number of primes pa x such that d a j f ðpÞ.
If ~rrðd aÞ is the number of coprime residue classes ai mod d a which are roots of
f ðaiÞ ¼ 0 mod d a, then

pdðxÞ ¼
P

ai

pðx; d a; aiÞ;

where pðx; k; aÞ denotes the number of primes pa x which are congruent to a mod-
ulo k. Thus, the number of primes pa x for which f ðpÞ is a-th powerfree is

P

d

mðdÞpdðxÞ ¼
P

d

mðdÞP
ai

pðx; d a; aiÞ:
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We now have several ways to proceed. We can split our sum as before

P

day

mðdÞpdðxÞ þ
P

d>y

mðdÞpdðxÞ:

Assuming the ABC conjecture, we see that the second sum extends only over those d
with d < x1=ða�1Þþe. Estimating pdðxÞ by

~rrðd aÞ
d a

þOð~rrðd aÞÞ;

we see that the second sum is bounded by

f
x1þe

ya�1
þOðx1=ða�1ÞþeÞ:

For the initial sum, we may apply the Siegel-Walfisz theorem (see page 133 of [Dav]).
This theorem states that for any A and B positive,

pðx; k; aÞ ¼ pðxÞ
fðkÞ þO

x

logB x

� �

uniformly for ka logA x. Thus, taking y ¼ logA x for any A > 0, we deduce that the
number of primes in question is

~ccf ðaÞpðxÞ þO
x

logB x

� �

;

for any B > 0. We could have applied the Bombieri-Vinogradov theorem (see p. 135
of [Dav]) with no appreciable gain in the error term. However, if we invoke the gen-
eralized Riemann hypothesis, which is the assertion that for k and a relatively prime,

pðx; k; aÞ ¼ pðxÞ
fðkÞ þOðx1=2 log kxÞ;

then the error term is easily seen to befx1=2y log x.
Thus, choosing ya ¼ x1=2 we find the error is

f x1=2þ1=2a log x;

as indicated in Theorem 16.
Finally, if a ¼ 2, and the abscissa conjecture is invoked as in our discussion of the

previous section, we obtain an error term of

f x1�1=ðrþ2Þþe
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assuming in addition the generalized Riemann hypothesis. To see this, we split our
sum as before into d < y and db y. In the initial segment, we invoke the GRH and
obtain an error term of Oðx1=2y log xÞ and in the second part, we apply the abscissa
conjecture as before to get an error term of

xr

y2

� �1=rþe

:

We choose y so that y1þ2=r ¼ x1=2 which gives us the final estimate.
Clearly, a similar result to Theorem 23 can be derived for prime arguments. We

leave this as an exercise to the reader.

10 Dirichlet series related to the ABC conjecture

It now seems natural to consider the Dirichlet series

AF ð j; kÞ :¼
P 0

ðu; vÞ¼1

jsf Fðu; vÞj�k
Hðu=vÞ�j

where Hðu=vÞ ¼ expðhðu=vÞÞ is the usual exponential height, and the dash on the
summation indicates we sum over u, v with F ðu; vÞ0 0. We may also consider the
related series

BF ð j; kÞ :¼
P 0

ðu; vÞ¼1

jradFðu; vÞj�k
Hðu=vÞ�j

which can be viewed as exponential height analogues of the series considered in the
earlier sections. We can now prove Theorem 17: the ABC conjecture is true if and
only if BF ð j; kÞ converges for every k and j satisfying kðr� 2Þ þ j > 2.

Proof. Clearly, the ABC conjecture implies the series converges if kðr� 2Þ þ j > 2.
Conversely, for k and j satisfying kðr� 2Þ þ j > 2, we have that

P 0

ðu; vÞ¼1

Hðu=vÞðr�2ÞkjradF ðu; vÞj�k
Hðu=vÞ�j�ðr�2Þk

converges. Choose j and k so that kðr� 2Þ þ j ¼ 3. There are infinitely many such k,
j. Thus, for su‰ciently large Hðu=vÞ, we have

Hðu=vÞr�2
f jradFðu; vÞjHðu=vÞ3=k

from which we deduce the ABC conjecture by taking k to be arbitrarily large.
r

A similar result can be stated for AF ð j; kÞ. More precisely, we have
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Theorem 24. AF ð j; kÞ converges for every k and j satisfying kðr� 4Þ þ j > 2 if and

only if

sf Fðu; vÞgHðu=vÞr�4�e:

11 Concluding remarks

A tantalizing question that arises from the previous discussion is if the ABC conjec-
ture has anything to say about Honda’s conjecture or the other way around. If
AF ð j; kÞ or BF ð j; kÞ can be shown to converge for some j < 0 as the ABC conjecture
predicts, then we would derive a quasi-ABC conjecture from such a result. In case
jb 0, let us note that

AF ð j; kÞaTF ð j; kÞ;

and the latter series we have shown converges for k > 1 and jb 0 as well as k ¼ 1
and j su‰ciently large. The ABC conjecture would emerge from understanding the
behaviour of BF ð j; kÞ for j < 0.
It is not clear what the relationship is (if any) between the ABC conjecture and the

Honda conjecture. However, in the light of the theorem of Rubin and Silverberg
[RS1], we have by Theorem 21 that they have some resemblance in the context of
convergence of certain (double) Dirichlet series.
If Honda’s conjecture is false and there are quadratic twists of a fixed elliptic curve

with arbitrarily large Mordell-Weil rank, then it seems to be very di‰cult to find
them. One method suggested by Silverman of producing elliptic curves of large rank
is to produce elliptic curves with many integral points. However, from our study of
integral points on curves my2 ¼ f ðxÞ with f ðxÞ of degree 3 or 4, we would expect

P 0

jmjax

aCmðZÞf x1=3þe

so that finding many integral points on twists of elliptic curves would be very di‰cult.
We also remark that these results are easily extended to number fields. More pre-

cisely, one may consider a hyperelliptic curve over a number field K and consider
quadratic twists of this curve and study the variation of the number of rational points.
The number field analogue of the ABC conjecture was formulated by Vojta [Voj2]
and one has similar estimates. Thus all of the previous analysis goes through without
much alteration. In this context, it is useful to remark that a beautiful theorem of
Moret-Bailly says that if we had an ‘‘e¤ective Mordell’’ theorem for a single curve,
valid for all number fields, then the ABC conjecture would follow. Thus the variation
of rational points for a single curve over all algebraic number fields suggests a fruitful
line of inquiry.
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