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Abstract

Background: Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop

protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded

from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins,

no computational tool is available till date. Thus, development of such a computational tool will be helpful in

predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides.

Results: Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino

acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to

map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in

support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies

were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC

feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating

resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-

based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed

for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed

approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while

assessed using an independent dataset of 75 insecticide resistant proteins.

Conclusions: This paper presents the first computational approach for discriminating the insecticide resistant proteins

from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been

developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:

8080/dirprot/. The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides

in wet-lab by targeting the insecticide resistant proteins.
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Background

Insecticides are used to control the insects affecting the

agricultural crops, parasitizing livestock, as well as to

eradicate the pests transmitting dangerous infectious

diseases. However, frequent application of insecticides

has resulted in the resurgence of pests and appearance

of resistant pest species. Insecticide resistance is the

heritable change in the sensitivity of a pest population

that is reflected in the repeated failure of a product

(insecticides) to achieve the expected level of control

when used according to the level of recommendation for

that pest species [1]. Several studies have indicated the

involvement of multiple genes in conferring the resistance

to many insect species [2–4]. Thus, characterization of

these genes is useful to understand the development of

resistance and designing new strategies to minimize the

development of insecticide resistance [5].

Three major mechanisms are involved in insecticide

resistance [5]: (i) detoxification of insecticides through al-

teration in the activities of enzymes like esterase, oxidases
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or glutathione S-transferases (GSTs) that prevents the

insecticide from reaching to its site of action [6–8], (ii)

Insensitivity of the insecticide target proteins [9, 10], be-

cause of which the insecticide no longer binds to its target

[11, 12] and (iii) reduction in insecticide uptake due to de-

crease in permeability of insect cuticle [13, 14]. Though

there is evidence of alteration in cuticular penetration,

most of the studies have focused and evaluated the

target site insensitivity and detoxification of insecticides

(metabolic resistance) mechanisms. Moreover, these

two mechanisms have been reported to cover a wide range

of resistance levels to almost all available insecticides [9].

The cytochrome P450 family of genes in insect play an

important role in the detoxification of insecticides re-

sulted in the development of resistance to insecticides

[4, 15, 16]. Besides, GSTs have also been reported to be

involved in the detoxification of insecticides [17, 18]. As

far as target-based mechanism is concerned, there are

three main targets for conventional insecticides viz.,

GABA (γ-amino butyric acid)-gated chloride ion chan-

nel, voltage-gated ion channel and acetylcholinesterases

[19]. The GABA receptor is the site of target for cyclodi-

ene (dieldrin) insecticides [20], where the resistance to

dieldrin (Rdl) is conferred by the change of a single

amino acid in GABA-gated chloride ion channel

encoded by Rdl gene [21]. Further, knockdown resist-

ance (Kdr) is one of the major forms of resistance to

DDT and pyrethroid insecticides [22], which is associ-

ated with mutations in the voltage-gated sodium channel

[22–25]. Acetylcholinesterase (AChE) in nerve synapses

is the target protein for the insecticides like organophos-

phorus (e.g., malathion, fenitrothion) and carbamate

(e.g., propoxur, sevin) [12]. The point mutation in the

insecticide-binding site of AChE has been identified as

the cause of insensitivity to these insecticides [26].

The above mentioned works help enable to under-

stand the molecular mechanisms involved in the insecti-

cide resistance. Further, the analysis of bio-molecules

involved in this phenomenon has confirmed the import-

ance of single genes in target site resistance and involve-

ment of multi-gene families like cytochrome P450 in

metabolic resistance [27]. Several studies on the effects

of mutational changes in target proteins on insecticide

resistance aid to the knowledge on the insect proteins

involved in this process. For instance, Riveron et al. [28]

demonstrated that the single amino acid change (L119F)

in an up regulated GST gene, GSTe2, confers high level

of metabolic resistance to DDT in the malaria vector

Anopheles funestus. In another study, Nwane et al. [29]

identified that two mutations at position 1014 of the S6
transmembrane segment of domain II in the voltage

gated sodium channel i.e., leucine to a phenylalanine

(L1014F) or to a serine (L1014S) confers resistance to

DDT and pyrethroid insecticides in Anopheles gambiae.

In the recent past, several studies have identified species-

specific insecticide resistant genes through transcriptome

and expression profile analysis. Hsu et al. [30] identified

90 P450, 42 GST, 31 CoE-related genes in Bactrocera

doralis, representing three major enzyme families involved

in insecticide metabolism and resistance. In another study,

49 P450, 31 GST and 21 CES-specific genes of Liposcelis

bostrychophila were reported to be involved in insecticide

resistance, through transcriptome and differential gene

expression analysis [31]. Recently, Cui et al. [32] identified

relevant genes in response to flubendiamide insecticide in

Asian corn borer (Ostrinia furnacalis), through de novo

transcriptome and expression-profile analysis.

Though the transcriptome and expression profile ana-

lysis is one way of identifying the resistance genes, it is

species specific. Moreover the expression profile analysis

is expensive as well as time consuming. Thus, develop-

ment of a computational tool for identifying the resistant

genes independent of the species and economically as

well would help in augmenting the research related to

the identification of insecticide resistant genes. However,

no computational tool is reported till date for the dis-

crimination of insecticide resistant proteins from the

proteins that do not confer resistance. Keeping this in

view, we propose a computational approach to discrimin-

ate the insecticide resistant proteins from non-resistant

proteins. The developed computational approach can be

used for identification of the resistant proteins across

species as well as with minimum resource (cost and time).

We have also developed an online prediction server that

can be easily used by experimental scientist and

researchers to predict an unknown protein sequence as

either insecticide-resistant or non-resistant protein. More-

over, computational identification of insecticide resistant

proteins will supplement the efforts needed to develop

insecticides in targeting the resistance proteins.

Methods

Collection and processing of data

In this study, protein sequences corresponding to four

important groups of insecticide resistant genes viz., cyto-

chrome P450, Kdr, Rdl and AChE were collected from

insecticide resistance gene database (http://www.cib.re

s.in/irgd/). We considered these four categories of genes

because they represent important families of insecticide

resistant genes which are resistant to commonly used

insecticides. Besides, the resistant protein sequences

were reported to be involved in two important resistance

mechanisms viz., detoxification-based and target-based.

Further, target-based resistant proteins are confined to

three main targets of insecticides i.e., AChE, GABA-

gated chloride ion channel and voltage-gated sodium

channel. A total of 822 sequences (772 cytochrome

P450, 30 AChE, 17 Rdl and 3 Kdr) belonging to 11

Meher et al. BMC Bioinformatics  (2017) 18:190 Page 2 of 14

http://www.cib.res.in/irgd/
http://www.cib.res.in/irgd/


insect species (Additional file 1) were collected. Ini-

tially, we removed the sequences having non-standard

residues. Then, four positive sets having 128, 285, 349

and 442 sequences were prepared, where the maximum

pair-wise sequence identities were 40%, 60%, 70% and 90%

respectively. The sequences with more than considered

level of pair-wise sequence identity were removed using

CDHIT [33]. For negative set, protein sequences (other

than the positive sets) of the considered species were

collected from the Uniprot (http://www.uniprot.org/)

database. For the species Acyrthosiphon pisum and Tribo-

lium castaneum, only the reviewed sequences were col-

lected, as large number of sequence are present in

Uniprot for these two species. On the other hand, all the

sequences available for remaining nine species were col-

lected. After removing the sequences having non-standard

residues as well as the identical sequences, a total of

12613 sequences were obtained. Further, to avoid homolo-

gous bias in the negative dataset, sequences with >40%

pair-wise identity were removed using CDHIT. Finally a

dataset with 3919 sequences was obtained and considered

as the negative dataset.

Feature generation

Protein sequences are the strings of amino acid residues,

and hence they need to be mapped onto numeric feature

vectors before being used as input in machine learning

classifier. In this study, amino acid composition (AAC),

di-peptide composition (DPC), pseudo amino acid com-

position (PAAC), composition-transition-distribution

(CTD) and auto correlation function (ACF) were used to

transform the protein sequences into numeric feature

vectors.

Amino acid composition (AAC)

AAC is a basic feature of protein sequence [34], which is

closely associated with its attributes, such as sub-cellular

location [35, 36], secondary structure content [37] and

domain [38]. AAC consists of 20 discrete numbers, each

of which represents the frequency of the native amino

acids in a protein sequence. Based on the AAC, each

protein sequence was encoded into a 20-dimensional

numerical vector.

Di-peptide composition (DPC)

One of the limitations of AAC is that it does not take

into account the local order information of amino acids

in the protein. On the other hand, DPC, which gives a

fixed pattern length of 400 (20 × 20), encapsulates the

global information about each protein sequence and the

order it contains [39]. For any di-peptide, its compos-

ition was computed as the ratio of the frequency of that

di-peptide to the total number possible di-peptide in the

protein sequence.

Pseudo amino acid composition (PAAC)

The concept of PAAC was originally introduced by Chou

[40] for predicting the protein sub-cellular locations and

membrane protein types. Based on the conventional AAC,

Chou proposed a set of discrete numbers to take into ac-

count the sequence order effects. PAAC has been proven

to be an extremely effective feature in many proteins and

protein-related systems [41]. The PAAC for each protein

sequence can be represented by a (20 + d)-dimensional

vector for d-tier correlation factor. Here, the PAAC was

extracted for 1st-tier correlation only, by which each

sequence was transformed into a 21-dimensional numeric

vector. For further details, one can refer to [40, 42, 43].

Composition-transition-distribution (CTD)

The CTD feature was introduced by Dubchak et al. [44]

for predicting protein folding classes. Thereafter, the

CTD feature has been adopted by many researchers for

protein function and structure studies [45, 46]. In CTD

feature, composition (C) is the number of amino acids of

a particular type divided by the total number of amino

acids. Transition (T) characterizes the frequency per-

centage with which amino acids of a particular type is

followed by other amino acids. Distribution (D) mea-

sures the chain length within which the first 25%,

50%, 75% and 100% of the amino acids of a particular

type is located respectively. Based on the CTD fea-

ture, each protein sequence of length L was encoded

to a L+{L*(L-1)/2} + (L*5)-dimension numeric vector.

Auto correlation function (ACF)

Sequence autocorrelation-based features assume that the

disturbances in each area are systematically related to

those in adjacent areas [47]. This concept helps to

analyze the dependency among the features of sequences

in each location. Autocorrelation features were com-

puted based on the distribution of amino acid properties

along the sequence, using all the 531 amino acid indices

available in AAindex database [48]. In this feature en-

coding, for an autocorrelation of order n, each sequence

was transformed into a numeric vector of length 531*n.

Supervised learning technique

For classification purpose we used the support vector

machine (SVM), which is a nonparametric algorithm

developed by Vapnik [49]. It is a very promising and

popular method for pattern recognition that has been

widely used for prediction purpose in the field of bio-

informatics [50–56]. It is proven to be very efficient in

many biological analyses due to their ability to handle

noise and large input dataset [57, 58]. A brief descrip-

tion about the working principle of SVM is described

as follows:
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Consider a binary classification problem with N sam-

ples or input vectors xi ∈ R
d, (i = 1, 2, …, N), where xi

with class levels yi ∈ {−1, 1} can be considered as the ith

protein or vector defined in d-dimensional space (which

depends upon the sequence encoding approach). In

present work, 1 refers to resistant class and −1 repre-

sents non-resistant class. The objective here is to con-

struct a binary classifier from the available sample

(training set) that has less probability of misclassifying

future sample (test set). Non-linear SVM maps input

vectors xi ' s into high dimensional feature space and

constructs an optimal separating hyper-plane (OSH) that

maximizes the distance between hyper-plane and nearest

data points of each class in the space. Mathematically, the

hyper-plane is represented as y = sgn(wT
x + b), where w

represents a weight vector that can map training data in

the input space to the outer space and b represents bias.

For a two class problem, it can be formulated as

w
T
xi þ b≥1 if yi ¼ 1

w
T
xi þ b≤−1 if yi ¼ −1

�

:

The SVM training procedure involves optimization of

convex quadratic problem i.e., with lagrangian multipliers

αi ≥ 0, maximize
X

N

i¼1

αi−
1

2

X

N

i¼1

X

N

j¼1

αiαjyiyjK xixj

� �

subject

to the constraints 0 ≤ αi ≤ c (i = 1, 2,…,N) and
X

N

i¼1

αiyi ¼ 0

, where c is the regularization parameter that controls

trade-off between margin and classification error. The xj '

s are called support vectors only if corresponding αj > 0.

After the SVM has been trained, the decision function for

classification of query sequence (x) can be formulated as

f xð Þ ¼ sgn
X

N

i¼1

yiαiK x:xið Þ þ b

 !

.

The choice of the proper kernel function K is import-

ant to train SVM model because the power of SVM

comes from the kernel representation that allows the

nonlinear mapping of input space to a higher dimen-

sional feature space. In this work, four commonly

used kernel functions [59] viz., linear (xi
′
xj), polyno-

mial ((γxi
′
xj + r)d), radial basis (− exp{−γ‖xi − xj‖

2}) and

sigmoid (tanh(γxi
′
xj + r)) were used, where r, d, γ >0

are the kernel parameters.

Validation of the model

Cross-validation procedure has been widely accepted for

assessing the performance of classifiers [60]. Thus, we

used the 10-fold cross-validation to assess the perform-

ance of our approach. It was carried out by partitioning

the dataset into 10 approximately equal-sized sets at

random, where nine partitions were used to train the

model and the remaining one part was used to assess

the model accuracy. This process was repeated 10 times

in such a way that each partition was tested once in the

model.

Performance evaluation

Different performance metrics viz., sensitivity (Sn), specifi-

city (Sp), accuracy (Ac), precision (Pre) and Matthew’s

correlation coefficient (MCC) were used to measure the

accuracy of the developed prediction approach. The Sn, Sp,

Ac, Pre and MCC parameters are defined as:Sn = tp/

(tp + fn), Sp = tn/(tn + fp), Ac = (tp + tn)/(tp + fn + tn +

fp), Pre = tp/(tp + fp), MCC ¼ tp� tnð Þ− f p� f nð Þ½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tpþ f nð Þ � tpþ f pð Þ � tnþ f nð Þ � tnþ f pð Þ
p

. True

positive (tp) is the number of resistant proteins cor-

rectly predicted as resistant proteins, true negative

(tn) is the number of non-resistant proteins correctly

predicted as non-resistant proteins, false negative

(fn) is the number of resistant proteins incorrectly

predicted as non-resistant proteins and false positive

(fp) is the number of non- resistant proteins incor-

rectly predicted as resistant proteins. Besides the

above mentioned performance metrics, area under

receiving operating characteristic curve (AUC-ROC)

[61] was also used to measure the predictive ability.

For given false positive rate (α) and true positive rate

(1-β) at different threshold values, the AUC-ROC

was computed as
X

i

1−βi:Δα
� �

þ 1=2ð Þ Δ 1−βð Þ:Δα½ �
� �

,

where Δ(1 − β) = (1 − βi) − (1 − βi − 1), Δα = αi − αi − 1

and i = 1,2, …, m (number of test instances) [62]. A

subroutine in R programming language was written

to compute the values of these performance metrics.

Training and testing datasets

Using four positive sets and one negative set (mentioned

under “collection and processing of data”), four datasets

were prepared that consists of both positive and negative

sequences. Here each dataset contains a different posi-

tive set and the same negative set (3919 negative se-

quences). All the four datasets are highly unbalanced as

the number sequences present in one class (non-resist-

ant class) is much larger than the other class (resistant

class). To avoid biasness towards the non-resistant class

(major class) while predicting using machine learning

classifier like SVM, balanced datasets were prepared that

consists of same number of sequences from both the

classes, where the sequences of the major class were

randomly drawn from the available sequences of the

major class. For instance, first balanced dataset contains

128 positive and 128 negative sequences, where the 128

negative sequences were randomly drawn from 3919

negative sequences. As the generalized predictive ability
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cannot be assured based on a single dataset, 100 sample

sets were prepared, where each sample set consists of

same number of positive and negative instances. Further,

in each sample set, a 10-fold cross validation procedure

was adopted. The performance metrics were computed

by taking average over the 10 folds as well as over 100

sample sets.

Mechanism-based classification

The insecticide resistance mechanism can be broadly

categorized into two types, viz., target-based mechanism

and detoxification-based mechanism. The Rdl, Kdr and

AChE genes come under target-based and cytochrome

P450 genes come under detoxification-based mechanism.

To test whether the genes under these two categories are

different or not, a binary classification was carried out by

employing SVM, where 15 sequences (with <90% pair-

wise sequence identity) from target-based and 452 se-

quences (with <90% pair-wise sequence identity) from

detoxification-based category were used. Similar to the

classification of resistant and non-resistant proteins, 100

sample sets were prepared where each sample set consists

of 15 sequences from each class. Since, there are 452

sequences in the detoxification-based category, 15 se-

quences were randomly drawn each time. As the number

of sequences in each sample is not large, leave-one-out

cross validation (LOOCV) technique was adopted for

classification of detoxification- and target-based resist-

ant proteins. Here, detoxification-based category was

considered as positive class and target-based category

as negative class.

Comparison with blast algorithm

Performance of the proposed approach was also compared

with that of Blastp [63], PSI-Blast [64] and Delta-Blast

[65], which are powerful algorithms to detect protein

homologs. Further, comparison was made through 10-fold

cross validation technique. For cross validation, offline

(local) Blast software was used with blastp, psiblast and

deltablast modules/programs in which the training set for

each fold of cross validation was defined as the database

and sequences of the corresponding test set were used as

query. Each query sequence was predicted as the resistant

or non-resistant category based on the top hit found in

the blast search. Three different e-values i.e., 0.1, 1 and 10

were used to assess the performance of the Blastp, PSI-

Blast and Delta-Blast. Furthermore, performance of the

proposed approach was compared based on best feature

set with which higher accuracies were obtained as

compared to the other feature sets.

Performance evaluation using independent dataset

To assess the generalized predictive ability of the proposed

approach, its performance was further tested using an inde-

pendent test dataset. The independent dataset was

collected based on published literature that includes 53

cytochrome P450, 2 Kdr, 3 Rdl and 17 AChE proteins.

Specifically, 115 cytochrome P450 genes were reported by

Hsu et al. [30]. Out of 115, we used 53 as they are available

in NCBI. Similarly, 2 Kdr, 3 Rdl and 17 AChE genes were

collected from NCBI, based on the study of Zuo et al. [66],

Wondji et al. [67] and Li and Han [68] respectively.

Sequences of the independent test set are provided in

Additional file 1.

Development of prediction server

An online prediction server was developed using HTML

and PHP, where the combination of best feature set and

classifier was used. A developed R-code was executed in

background upon submission of the sequences in

FASTA format to the server. The user has to submit the

protein sequences having only standard amino acid resi-

dues. This server can be used to predict the likelihood of

Fig. 1 Composition of amino acids in all the four categories of insecticide resistant proteins. It is observed that proportions of leucine are higher,

whereas proportions of cystene and tryptophan are lower in all the four categories
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Fig. 2 a ROC curves of SVM for different kernels and features, b bar plots of corresponding AUC-ROC values. It is seen that the AUC-ROC values

are higher for RBF kernel as compared to other kernels
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any unknown protein sequence being an insecticide re-

sistant protein with certain probability.

Results
Analysis of amino acid compositions

The composition of amino acids in four different groups

of insecticide resistant proteins is shown in Fig. 1. It is

seen that the proportions of leucine (L) are higher,

whereas the proportions of cystene (C) and tryptophan

(W) are lower in all the four categories.

Analysis of kernel functions

Based on a sample dataset consisting of 100 positive and

100 negative sequences that were drawn randomly from

the available positive and negative sequences, perform-

ance of SVM was analyzed. ROC curves for all the four

Table 1 Estimates of different performance metrics for SVM with RBF kernel in discriminating resistant from non-resistant proteins,

under all the feature sets as well as different percentage of sequence identity in the positive dataset

Performance metrics

Id(%) Feature Sn Sp Ac Pre MCC AUC-ROC

40 AAC 0.836 ± 0.018 0.952 ± 0.014 0.894 ± 0.012 0.946 ± 0.015 0.794 ± 0.024 0.924 ± 0.020

DPC 0.849 ± 0.013 0.983 ± 0.011 0.916 ± 0.009 0.980 ± 0.012 0.839 ± 0.017 0.948 ± 0.011

PAAC 0.836 ± 0.018 0.956 ± 0.014 0.896 ± 0.013 0.951 ± 0.015 0.798 ± 0.026 0.922 ± 0.018

CTD 0.841 ± 0.015 0.981 ± 0.011 0.911 ± 0.010 0.978 ± 0.013 0.831 ± 0.020 0.932 ± 0.010

ACF 0.836 ± 0.017 0.9530.016 0.895 ± 0.012 0.947 ± 0.017 0.795 ± 0.025 0.901 ± 0.017

60 AAC 0.870 ± 0.012 0.959 ± 0.008 0.914 ± 0.008 0.955 ± 0.009 0.832 ± 0.016 0.946 ± 0.008

DPC 0.875 ± 0.008 0.986 ± 0.007 0.931 ± 0.006 0.984 ± 0.007 0.866 ± 0.011 0.972 ± 0.005

PAAC 0.870 ± 0.014 0.960 ± 0.010 0.915 ± 0.010 0.956 ± 0.011 0.833 ± 0.020 0.947 ± 0.010

CTD 0.860 ± 0.011 0.985 ± 0.007 0.923 ± 0.007 0.983 ± 0.008 0.852 ± 0.014 0.959 ± 0.006

ACF 0.869 ± 0.011 0.964 ± 0.009 0.917 ± 0.007 0.960 ± 0.009 0.837 ± 0.015 0.932 ± 0.009

70 AAC 0.886 ± 0.011 0.961 ± 0.008 0.924 ± 0.008 0.958 ± 0.008 0.850 ± 0.015 0.953 ± 0.008

DPC 0.883 ± 0.008 0.987 ± 0.005 0.935 ± 0.005 0.986 ± 0.005 0.875 ± 0.009 0.973 ± 0.004

PAAC 0.891 ± 0.010 0.961 ± 0.008 0.926 ± 0.007 0.958 ± 0.008 0.854 ± 0.013 0.955 ± 0.007

CTD 0.866 ± 0.010 0.987 ± 0.005 0.926 ± 0.006 0.985 ± 0.006 0.859 ± 0.012 0.961 ± 0.006

ACF 0.888 ± 0.008 0.963 ± 0.009 0.925 ± 0.006 0.960 ± 0.009 0.853 ± 0.013 0.948 ± 0.007

90 AAC 0.886 ± 0.010 0.959 ± 0.006 0.923 ± 0.006 0.956 ± 0.006 0.847 ± 0.012 0.955 ± 0.006

DPC 0.899 ± 0.009 0.989 ± 0.005 0.944 ± 0.006 0.988 ± 0.005 0.892 ± 0.011 0.978 ± 0.004

PAAC 0.889 ± 0.011 0.959 ± 0.007 0.924 ± 0.007 0.956 ± 0.007 0.850 ± 0.014 0.956 ± 0.006

CTD 0.887 ± 0.008 0.987 ± 0.005 0.937 ± 0.005 0.985 ± 0.006 0.878 ± 0.010 0.972 ± 0.005

ACF 0.894 ± 0.010 0.967 ± 0.006 0.930 ± 0.006 0.964 ± 0.006 0.863 ± 0.013 0.949 ± 0.006

Id(%): maximum percentage of pair-wise sequence identity present in the positive dataset

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves

Fig. 3 Performance metrics of SVM with RBF kernel for different feature sets and different percentage of pair-wise sequence identity in the

positive set. It can be seen that the performance metrics are higher for DPC feature set as compared to other feature sets, irrespective of the

percentage of sequence identity in the positive dataset
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kernels as well as for all the five feature sets are shown

in Fig. 2a and the corresponding AUC-ROC values are

shown in bar plots (Fig. 2b). From the ROC curves it is

not clear that which kernel is better, whereas from

AUC-ROC plots it is clear that the values of AUC-ROC

are higher for the RBF kernel, irrespective of the feature

set used. Though in RBF kernel the AUC-ROC for ACF

feature set is highest, it is difficult to choose the best fea-

ture set while other three kernels are taken into account.

Therefore, all the feature sets and the RBF kernel were

used for further analysis.

Cross-validation performance analysis

For all the four datasets (mentioned under “Training

and testing datasets”) as well as for all the feature sets,

performance metrics averaged over 10-fold as well as

100 sample sets are given in Table 1. Moreover, to

analyze the trend in accuracies, performance metrics are

also plotted in line graphs (Fig. 3). It is observed that the

sensitivities are less as compared to the specificities

(Table 1). Further, higher accuracies are observed for the

dataset having resistant proteins with <90% pair-wise

sequence identity, whereas lower accuracies are observed

for the dataset having resistant proteins with <40% pair-

wise sequence identity (Table 1 and Fig. 3). Though the

specificities are observed almost unchanged, sensitivities

are observed to be increased with increase in the per-

centage of pair-wise sequence identity in the positive

dataset (Fig. 3). Besides, it is seen that the most of the

performance metrics for DPC and CTD feature sets are

higher as compared to the other feature sets (AAC,

PAAC and ACF). In particular, overall accuracy

(~90%), MCC (~89%) and AUC-ROC (~98%) are

observed to be highest for DPC feature set. Since the

number of sequences in the positive dataset having

sequences with <90% pair-wise sequence identity is larger

as compared to the dataset having sequences with <40%

pair-wise sequence identity, the former one is used in

subsequent analyses.

Analysis of mechanism-based classification

The values of performance metrics, with regard to classi-

fication of resistant proteins involved in target-based

mechanism and detoxification-based mechanism, mea-

sured over LOOCV as well as 100 sample sets are given

in Table 2. Performance metrics for all the feature sets

are observed ≥90% and are found to be highest in case

of DPC feature set. More specifically, overall accuracy

for the DPC feature set is observed >97%, with >95%

MCC and >97% AUC-ROC. Though the number of fea-

tures for AAC and PAAC feature sets are almost same,

classification accuracies for AAC feature set are seen to

be higher than that of PAAC feature set. Since the sensi-

tivity and specificity are >90%, it is inferred that hardly

one sequence is misclassified in each category (as the

number of sequences in each category is only 15).

Discriminating target-based resistant proteins from

non-resistant proteins

With regard to classification of target-based resistant pro-

teins and non-resistant proteins, performance metrics

over LOOCV and 100 sample sets (where each sample set

consists of 15 target-based resistant proteins and 15 non-

resistant proteins that were randomly drawn from the

3919 non-resistant proteins) are given in Table 3. The

values of performance metrics are observed to be higher

Table 2 Estimates of performance metrics for classification of detoxification and target-based resistant proteins, under different feature sets

Feature Sn Sp Ac Pre MCC AUC-ROC

AAC 0.927 ± 0.020 0.966 ± 0.042 0.946 ± 0.024 0.966 ± 0.041 0.894 ± 0.049 0.960 ± 0.023

DPC 0.967 ± 0.067 0.985 ± 0.031 0.976 ± 0.035 0.986 ± 0.029 0.955 ± 0.065 0.972 ± 0.051

PAAC 0.929 ± 0.016 0.952 ± 0.048 0.941 ± 0.027 0.953 ± 0.046 0.883 ± 0.054 0.956 ± 0.028

CTD 0.895 ± 0.042 0.979 ± 0.035 0.937 ± 0.024 0.979 ± 0.035 0.879 ± 0.047 0.935 ± 0.036

ACF 0.912 ± 0.041 0.927 ± 0.051 0.919 ± 0.037 0.927 ± 0.049 0.840 ± 0.074 0.967 ± 0.021

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves

Table 3 Estimates of performance metrics for discriminating target-based resistant proteins from non-resistant proteins, under

different features

Feature Sn Sp Ac Pre MCC AUC-ROC

AAC 0.912 ± 0.031 0.940 ± 0.055 0.926 ± 0.034 0.941 ± 0.052 0.854 ± 0.068 0.879 ± 0.045

DPC 0.924 ± 0.090 0.981 ± 0.041 0.952 ± 0.057 0.979 ± 0.043 0.909 ± 0.111 0.924 ± 0.083

PAAC 0.919 ± 0.029 0.947 ± 0.053 0.933 ± 0.034 0.948 ± 0.051 0.868 ± 0.067 0.880 ± 0.043

CTD 0.855 ± 0.037 0.945 ± 0.047 0.900 ± 0.034 0.941 ± 0.049 0.804 ± 0.069 0.844 ± 0.028

ACF 0.915 ± 0.037 0.927 ± 0.054 0.921 ± 0.037 0.928 ± 0.051 0.844 ± 0.074 0.846 ± 0.043

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves
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for DPC feature set. Specifically, accuracies in terms of all

the performance metrics are observed ≥90% for DPC

feature set, whereas the values of MCC and AUC-ROC

for rest of the feature sets are observed to be <90%.

Discriminating detoxification-based resistant proteins

from non-resistant proteins

The classification was also made between 452 detoxification-

based resistant proteins and 3919 non-resistant proteins,

by using SVM with RBF kernel. Performances metrics

were computed over 10 folds of cross validation as well as

100 sample sets (where each sample consists of 452

detoxification-based resistant proteins and 452 non-

resistant proteins that were drawn randomly from the

3919 non-resistant proteins) are presented in Table 4. It is

observed that the accuracies are higher for DPC feature

set and lower for AAC feature set. In particular, the values

of all the performances metrics for both CTD and DPC

feature sets are ≥90% (Table 4). Barring sensitivity, the

values of performance metrics in discriminating the

detoxification-based resistant proteins from non-resistant

proteins (Table 4) are higher as compared to that of

discriminating target-based resistant proteins from non-

resistant proteins (Table 3).

Comparative analysis

For comparing the proposed approach with Blast algo-

rithms, we prepared two different datasets. The first

dataset contains 442 resistant proteins (with < 90%

pair-wise sequence identity) and randomly drawn 442

non-resistant proteins (with <40% pair-wise sequence

identity), and the second dataset contains 128 resist-

ant proteins (with <40% pair-wise sequence identity)

and randomly drawn 128 non-resistant proteins (with

<40% pair-wise sequence identity). Furthermore, per-

formance of the proposed approach was compared

based on DPC feature set only as higher accuracies

were obtained for this feature set as compared to the

other feature sets. In both the datasets, no hits were

found for most of the query sequences with e-values

0.1 and 1. However, hits were found for all the query

sequences with e-value 10. Therefore, comparison was

made based on e-value 10 only, and the accuracies

averaged over 10-folds are given in Table 5. It is

observed that the overall accuracies of the proposed

approach are ~10% higher than that of Blastp, PSI-

Blast and Delta-Blast, in both datasets (Table 5).

Though, true positive rates (sensitivity) of the Blast

algorithms are higher, false positive rates (specificity)

are much lower at the same time. Among the Blast

algorithms, Delta-Blast performed better than both

Blastp and PSI-Blast, with both the datasets (Table 5).

Barring sensitivity, the proposed approach performed

better than Blast algorithms in terms of all the per-

formance metrics. It is further seen that the specific-

ities are higher for the first dataset as compared to

the second dataset.

Performance analysis based on independent test dataset

Both the datasets mentioned in “comparative analysis”

section were used to train the model for prediction of

the level (as resistant or non-resistant) of each test se-

quence. Furthermore, none of the test sequences were

present in the training set. It is observed that 69 out of

75 are correctly predicted while first dataset is used as

training set (Table 6). On the other hand, all the 75 in-

stances are correctly identified as insecticide resistant

proteins with second dataset as training set (Table 6).

Besides, it is seen that most of the sequences are cor-

rectly predicted with >0.9 probabilities irrespective of

Table 4 Estimates of different performance metrics for discriminating detoxification-based resistant proteins from non-resistant proteins

Feature Sn Sp Ac Pre MCC AUC-ROC

AAC 0.898 ± 0.009 0.963 ± 0.006 0.931 ± 0.006 0.960 ± 0.007 0.863 ± 0.013 0.960 ± 0.007

DPC 0.911 ± 0.006 0.992 ± 0.004 0.951 ± 0.004 0.991 ± 0.004 0.905 ± 0.008 0.980 ± 0.004

PAAC 0.901 ± 0.008 0.965 ± 0.006 0.933 ± 0.006 0.962 ± 0.007 0.867 ± 0.012 0.960 ± 0.006

CTD 0.907 ± 0.007 0.990 ± 0.004 0.948 ± 0.005 0.989 ± 0.004 0.900 ± 0.009 0.974 ± 0.004

ACF 0.912 ± 0.007 0.969 ± 0.006 0.941 ± 0.005 0.968 ± 0.006 0.883 ± 0.010 0.959 ± 0.005

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves

Table 5 Performance metrics for the proposed approach, Blast,

PSI-Blast and Delta-Blast, in discriminating the resistant proteins

from non-resistant proteins, where the positive dataset consists

of <40% (first) and <90% (second) pair-wise sequence identity

Dataset Method Sn Sp Ac Pre MCC

First Proposed 0.897 0.934 0.916 0.933 0.836

Blast 0.961 0.611 0.786 0.713 0.617

PSI-Blast 0.959 0.602 0.780 0.707 0.607

Delta-Blast 0.961 0.652 0.806 0.735 0.647

Second Proposed 0.875 0.891 0.883 0.901 0.784

Blast 0.958 0.350 0.654 0.596 0.392

PSI-Blast 0.958 0.358 0.658 0.601 0.400

Delta-Blast 0.958 0.466 0.712 0.646 0.495

Here, AUC-ROC values were not computed, as in Blast algorithms accuracies

are computed based on number of hits

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s

correlation coefficient
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the training datasets (Fig. 4). More clearly, 2 test se-

quences of cytochrome P450 and 4 sequences of AChE

are misclassified in the first training dataset (Fig. 4).

Online prediction server: DIRProt

A web server DIRProt has been developed to discrimin-

ate the insecticide resistant proteins from non-resistant

proteins. This server has been trained with the SVM (with

RBF kernel) for prediction of insecticide resistant proteins

based on DPC feature set. The web pages showing the

execution and results for an example dataset are shown in

Fig. 5a and b respectively. Help pages are also provided to

guide the user regarding generation of features, prediction

method and input–output. The sequences in FASTA for-

mat along with the annotations and probabilities with

which they are predicted as resistance proteins are shown

in the result page. For reproducible research, the trained

datasets are also provided in the server. The predic-

tion server is made freely accessible at http://cabgri

d.res.in:8080/dirprot for academic users.

Discussion

Extensive use of chemical insecticides has been selecting

resistant population of insect species to different insecti-

cides, worldwide [69, 70]. Around 590 insect species

have been reported to resist different insecticides till the

end of 2014 [71]. Insecticidal resistance has been

associated with the genetic changes in insects. For in-

stance, a mutation in an insect can alter the behavior,

metabolism and physiology by which insect may gain ad-

vantage in resisting to different insecticides [70]. Most of

the earlier studies are dealt with the mutational changes

associated with the insecticide resistance. Though in-

secticide resistance is an important researchable issue,

there is no computational tool available for prediction of

insecticide resistant proteins. Therefore, we made an

attempt to present the first computational approach for

prediction of insecticide resistant proteins.

We considered four different categories of insecticide

resistant proteins corresponding to four different classes

of insecticide resistance genes viz., cytochrome P450,

AChE, Rdl and Kdr. The leucine content was predomin-

antly found in all the four categories of proteins, which

has been reported to play an important role in insecti-

cide resistance. For instance, Prince et al. [72] reported

that leucine-rich repeat receptor-like kinase “brassinos-

teroid insensitive1-associated kinase1” contributes to the

innate immunity to aphids in Arabidopsis. The valine to

leucine (V419L) and the leucine to isoleucine mutations

(L925I) were identified in three pesticide-resistant

strains of bed bug (Cimex lectularius) [73]. Further, the

composition of tryptophan which has been reported to

present in the active site that interacts with trimethyl-

ammonium cationic group of AchE was found lowest

[73]. Hassani et al. [74] described that lysine and trypto-

phan (Lys12 and Trp39 and Trp54) are the most reactive

residues that play important role in disrupting the func-

tion of neuronal sodium channels by Ts gamma, which

is the most potent neurotoxin in the venom of the Bra-

zilian scorpion Tityus serrulatus.

For classification of insecticide resistant and non-

resistant proteins, initially the sequences were trans-

formed into numeric feature vectors based on different

feature generation techniques viz., AAC, DPC, PAAC,

ACF and CTD. The encoded numeric vectors were then

Fig. 4 Heat map of the probabilities with which 75 test sequences are predicted in two different training datasets. All the 75 sequences are

correctly predicted as resistant proteins in the second training dataset, whereas 69 are correctly predicted with the first training dataset. It is

further seen that most of the test sequences are correctly predicted with high probabilities (>0.9)

Table 6 Performance of the proposed approach based on an

independent dataset of 75 insecticide resistant proteins

Predicted

Resistance family Observed 1st training model 2nd training model

Cytochrome P450 53 51 53

Kdr 2 2 2

Rdl 3 3 3

AChE 17 13 17

Total 75 69 75
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used as input in binary SVM classifier. Prediction accur-

acies were found to be higher for RBF kernel as com-

pared to the other three kernels of SVM. Further, the

classification accuracies were found higher for DPC fea-

ture set as compared to the other feature sets, which

may be due to the fact that in DPC the local ordering of

amino acids were taken into account [42, 43]. Further-

more, in cross validation analysis (Table 1), the sensitiv-

ity was found to be increased with increase in the

percentage of pair-wise sequence identity in the positive

dataset. This may be due to the fact that with increase in

the pair-wise sequence identity in the positive dataset, it

is less-likely that a positive sequence will be misclassified

in the negative dataset. The accuracy in discriminating

the target-based and detoxification-based resistance pro-

teins from non-resistant proteins was also found to be

higher. Besides, higher discrimination accuracy was also

observed between target-based and detoxification-based

resistance proteins. Thus, it can be inferred that the

composition of di-peptides are not only different be-

tween resistant and non-resistant proteins but also

among insecticide resistant proteins involved in different

insecticide resistance mechanisms.

The performance of the proposed approach was com-

pared with Blast, PSI-Blast and Delta-Blast algorithms.

Though, prediction was made for three e-values i.e., 0.1,

1 and 10, no hits were found for most of the query

sequences (particularly negative) for the first two e-

Fig. 5 a Server page of DIRProt, b result page after execution with an example dataset. The result page is displayed in a tabular form, where the

last column is the probabilities with which the each sequences are predicted as insecticide-resistant proteins
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values. Thus performance metrics were computed based

on e-value 10 only, which is also the default e-value in

Blast algorithms. Though the resistant proteins were

predicted with higher accuracy, the specificities were

found much lower. It was also found that the specific-

ities are higher for the first dataset as compared to the

second dataset. One of the possible reasons for this may

be that when the pair-wise sequence identity is <40% in

the positive class (first dataset), sequence similarity be-

tween the classes will be less. On the other hand, when

the pair-wise sequence identity is <90% in the positive

class, sequence similarity between the positive and nega-

tive classes will be more by which the likelihood of a se-

quence of the negative class to be predicted in the

positive class will be more and vice versa. In terms of

overall accuracy, the proposed approach outperformed

all the three variations of Blast algorithm. Among the

Blast algorithms, Delta-Blast performed better followed

by PSI-Blast and Blast. The performance of the proposed

approach was also assessed using an independent test

dataset consisting of 75 resistant protein sequences (53

cytochrome P450, 2 Kdr, 3 Rdl and 17 AChE). Out these

75 sequences, all were correctly predicted when the pair-

wise sequence identity was <90% in the positive dataset of

training set, whereas 69 were correctly predicted in

for the training dataset having positive sequences

with <40% pair-wise sequence identity. Nevertheless,

the proposed approach achieved higher accuracy for

predicting the insecticide resistant proteins.

Conclusions

This paper presents the first computational approach for

predicting the insecticide resistant proteins. Based on

this approach, a web server has also been developed that

can be easily used by the scientists and researchers to

computationally identify the insecticide resistant pro-

teins. The proposed computational approach is believed

to supplement the wet-lab experiments for identifying

and targeting the insecticide resistant proteins to de-

velop dynamic and efficient insecticides.

Additional file

Additional file 1: It contains the list of insect species and

corresponding insecticide resistant gene types that were used in this

study. This file also contains the 75 insecticide resistant protein

sequences that were used as independent dataset. (PDF 185 kb)
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