
  

 
Abstract—The paper presents a new and improved 

automated random testing technique named as Dirt Spot 

Sweeping Random (DSSR) strategy based on the rationale that, 

“when failures lies in the contiguous locations across the input 

domain, the effectiveness of random testing can be further 

improved through diversity of test cases”. The DSSR strategy 
selects neighboring values for the subsequent tests on 

identification of failure. Resultantly, selected values sweep 

around the failure leading to the discovery of new failures in 

the vicinity. To evaluate the effectiveness of DSSR strategy a 

total of 60 classes (35,785 lines of code), each class with 30 x 105 

calls, were tested by Random (R), Random+ (R+) and DSSR 

strategies. T-Test analysis showed significantly better 

performance of DSSR compared to R strategy in 17 classes and 

R+ strategy in 9 classes. In the remaining classes all the three 

strategies performed equally well. Numerically, the DSSR 

strategy found 43 and 12 more unique failures than R and R+ 

strategies respectively. This study comprehends that DSSR 

strategy will have a profound positive impact on the failure- 

finding ability of R and R+ testing. 

 

Index Terms—Software testing, automated random testing, 

ADFD. 

 

I. INTRODUCTION 

Chan et al. [1] discovered that there are sub-domains of 

failure-causing inputs across the input domain. They divided 

these into point, block and strip domains on the basis of their 

occurrence. Chen [2] found that altering the technique of test 

case selection could increase the performance of random 

testing. Moreover, he also found that the performance 

increased up to 50% when test inputs were selected evenly 

across the input domain. This was mainly attributed to the 

better distribution of input, which increased the chances of 

selecting inputs from failure domains.  

Based on the assumption that in a significant number of 
classes, failure domains are contiguous, the Dirt Spot 

Sweeping Random 1  strategy is devised to give higher 

priority to the failure domains for identification of new 
failures efficiently. The DSSR strategy is implemented in the 
York Extensible Testing Infrastructure (YETI)2, a random 

testing tool. To evaluate the effectiveness of DSSR strategy a 

total of 60 classes (35,785 lines of code) of 32 different 

projects from the Qualitas Corpus3, each class with 30 × 105 

calls, were tested by R, R+ and DSSR strategies. 

This paper is organized as follows: Section II describes the 
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DSSR strategy. Section III presents implementation of the 

DSSR strategy. Section IV explains the experimental setup. 

Section V reveals results of the experiments. Section VI 

discusses the results. Section VII presents related work and 

Section VIII concludes the study. 

 

II. DIRT SPOT SWEEPING RANDOM STRATEGY 

Dirt Spot Sweeping Random strategy combines the R+ 

strategy with a Dirt Spot Sweeping (DSS) functionality. It is 

based on two intuitions. First, boundaries have interesting 

values and using these values in isolation can provide high 

impact on test results. Second, failures reside in contiguous 

patterns. If this is true, DSS increases the performance of the 

test strategy. Before presenting the details of the DSSR 

strategy, it is pertinent to review briefly the R and the R+ 

strategy. 

A. Random Strategy (R) 

The random strategy is a black-box testing technique in 

which the SUT is executed using randomly selected test data. 

Test results obtained are compared to the defined oracle. The 
generation of random test data is comparatively cheap and 

does not require too much intellectual and computational 

effort [3]. It is mainly for this reason that various researchers 

have recommended R strategy in automated testing tools. 

YETI [4], AutoTest [5], Randoop [6] and Jartege [7] are 

some of the most common automated testing tools based on 

R strategy. Experiments performed by various researchers 

[8], [9], [10] have proved experimentally that random testing 

is simple to implement, cost effective, efficient and free from 
human bias as compared to its rival techniques. 

B. Random Plus Strategy (R+) 

The random+ strategy [5] is an extension of the R strategy. 

It uses some special pre-defined values which can be simple 

boundary values or values that have high tendency of finding 

failures in the SUT. Boundary values are the values in the 

start and end of a particular type [11]. For instance, such 

values for int could be MAX_INT, MAX_INT-1, MAX_INT-2, 

MAX_INT-3 0, MIN_INT, MIN_INT+1, MIN_INT+2, and 

MIN_INT+3. The tester might also add some other special 

values that are considered effective in finding failures in the 

SUT. This static list of interesting values is manually updated 

before the start of the test and has a high priority (10%) than 

selection of random values because of more relevance and 

better chances of finding failures. 

C. Dirt Spot Sweeping (DSS) 

Chan et al. [1] found that there are sub-domains of 

failure-causing inputs across the input domain. They divided 

these domains into three types called point, block and strip 

domains (Fig. 1) and argued that a strategy has more chances 
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of hitting the failure domains if test cases are selected farther 

from each other. Other researchers [12]-[14] also tried to 

generate test cases further away from one another targeting 

these domains and achieved better performance.  
 

     
a) Point domain      b) Block domain    c) Strip domain 

Fig. 1. Failure domains across the input domain [2]. 

 

In DSS, if a value reveals failure from the block or strip 

domain then for the selection of the next test value, DSS may 

not look farthest from the known value but picks the closest 

value to find another failure from the same region. DSSR 

strategy relies on DSS that comes into action when a failure 

is found in the system. On finding a failure, it immediately 
adds the value causing the failure and its neighboring values 

to the existing list of interesting values. For example, in a 

program when the int type value of 50 causes a failure in the 

system then DSS will add values from 47 to 53 to the list of 

interesting values. The addition of neighboring values will 

explore other failures present in the block or strip domain of 

the SUT. The list of interesting values in DSSR strategy is 

dynamic and changes during the test execution of each 

program as against R+ where the list remains static.  
 

 
Fig. 2. DSSR strategy covering block and strip domain. 

 

Fig. 2 shows how DSS explores the failures residing in the 

block and strip patterns of a program. The coverage of block 

and strip pattern is shown in spiral form because first failure 

leads to second, second to third and so on till the end. In case 

the failure is positioned on the point pattern then the added 

values may not be effective because point pattern is only an 

arbitrary failure point in the whole input domain. 

D. Structure of Dirt Spot Sweeping Random Strategy  

The DSSR strategy continuously tracks the number of 

failures during the execution of the test. This tracking is done 

in a very effective way with zero or minimum overhead [15]. 

The test execution is started by R+ strategy and continues till 

a failure is found in the SUT after which the program copies 

the values leading to the failure as well as the surrounding 

values to the variable list of interesting values.  

Both the variables currentFaults and oldFaults are 

initialized to 0 at the start of the test, when a fault is found the 

currentFaults value is incremented which make the 

condition true. The flowchart presented in Fig. 3 depicts the 

case when fault is caused by a primitive type value. The 

DSSR strategy identifies its type and adds values only of that 
particular type to the list of interesting values. The resultant 

list of interesting values provides relevant test data for the 

remaining test session and the generated test cases are more 

targeted towards finding new faults around the existing fault 

in the given SUT. 

 
Fig. 3. Working mechanism of DSSR strategy. 

 

Table I presents the data types with the corresponding 

neighboring values to be added to the list of interesting 

values.  
 

TABLE I: DATA TYPES AND VALUES TO BE ADDED 

Data Type Values added 

X is int, double, float, 

long, byte, short & char 

X, X+1, X+2, X+3, 

X-1, X-2, X-3 

X is String 

X, X + “ ”, “ ” + X 

X.toUpperCase() 

X.toLowerCase() 

X.trim(), X.substring(2) 

X.substring(1, X.length()-1) 

X is object of user 

defined class 

Call its constructor recursively 

until empty or primitive values 

 

In the table the test value is represented by X where X can 

be int, double, float, long, byte, short, char and String. 

All values are converted to their respective types before 

adding them to the list of interesting values. 

E. Explanation of DSSR Strategy on a Concrete Example 

The DSSR strategy is explained through a simple program 

seeded with three faults. The first fault is a division by zero 

exception denoted by 1 while the second and third faults are 

failing assertion denoted by 2 and 3 respectively in the given 

program. It is followed by the description of how the strategy 

performs execution.  

//Calculate square and verify result. 

public class Math1 { 

public void calc (int num1) { 

int result1 = num1 * num1; 

int result2 = result1 / num1; // 1 

assert result1 >= num1; // 2 

assert Math.sqrt(result1) == num1; // 3 

} 

} 

In the above code, one primitive variable of type int is 

used; therefore, the input domain for DSSR strategy is from 

-2,147,483,648 to 2,147,483,647. The strategy further select 

values (0, Integer.MIN_VALUE & Integer.MAX_VALUE) as 
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interesting values that are prioritized for selection as test 

inputs. As the test starts, three faults are quickly discovered 

by DSSR strategy in the following order: 

Failure 1: The strategy selects value 0 for variable num1 

in the first test case because 0 is available in the list of 

interesting values and its priority is higher than other values. 

This will cause Java to generate division by zero exception 

(1). After discovering the fault, the strategy adds its 

surrounding values to the list of interesting values i.e. 1, 2, 3, 

-1, -2, -3. 

Failure 2: After a few tests the DSSR strategy may select 

Integer.MAX_VALUE for variable num1 from the list of 

interesting values leading to the discovery of the 2nd fault 

because int variable result1 will not be able to store the 

square of Integer.MAX_VALUE. Instead of the actual square 

value Java assigns 1 (Java rule) to variable result1 that will 

lead to the violation of the next assertion (2). 

Failure 3: In the third test case the strategy may pick -3 as 

a test value, which is added to the list of interesting values 

after the discovery of first fault. This may lead to the third 

fault where assertion (3) fails because the square root of 9 is 

3 against the input value of -3. 
 

TABLE II: COMPARATIVE PERFORMANCE OF R, R+ AND DSSR STRATEGIES 

S. No Class Name LOC R R+ DSSR 

Mean Max Min R-STD Mean Max Min R-STD Mean Max Min R-STD 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

ActionTranslator 
AjTypeImpl 
Apriori 
BitSet 
CatalogManager 
CheckAssociator 
Debug 
DirectoryScanner 
DiskIO 
DOMParser 
Entities 
EntryDecoder 
EntryComparator 
Entry 
Facade 
FileUtil 
Font 
FPGrowth 
Generator 
Group 
HttpAuth 
Image 
InstrumentTask 
IntStack 
ItemSet 
Itextpdf 
JavaWrapper 
JmxUtilities 
List 
NameEntry 
NodeSequence 
NodeSet 
PersistentBag 
PersistentList 
PersistentSet 
Project 
Repository 
Routine 
RubyBigDecimal 
Scanner 
Scene 
SelectionManager 
Server 
Sorter 
Sorting 
Statistics 
Status 
Stopwords 
StringHelper 
StringUtils 
TouchCollector 
Trie 
URI 
WebMacro 
XMLAttributesImp
l 
XMLChar 
XMLEntityManger 
XMLEntityScanner 
XObject 
XString 

709 
1180 
292 
575 
538 
351 
836 

1714 
220 
92 

328 
675 
163 
37 

3301 
83 

184 
435 
218 
88 

221 
2146 

71 
313 
234 
245 
513 
645 

1718 
172 
68 

208 
571 
602 
162 
470 
63 

1069 
1564 

94 
1603 
431 
279 
47 

762 
491 
32 

332 
178 
119 
222 
460 

3970 
311 
277 

1031 
763 
445 
318 
546 

96 
80 
3 
9 
7 
7 
4 

33 
4 
7 
3 
8 

13 
6 
3 
1 

12 
5 

17 
11 
2 

13 
2 
4 
4 
8 
3 
8 
5 
4 

38 
28 
68 
65 
36 
65 
31 
7 
4 
3 

26 
3 

15 
2 
3 

16 
53 
7 

43 
19 
3 

21 
5 
5 
8 

13 
17 
12 
19 
23 

96 
83 
4 
9 
7 
8 
6 

39 
4 
7 
3 
9 

13 
6 
3 
1 

12 
5 

17 
11 
2 

17 
2 
4 
4 
8 
2 
8 
6 
4 

46 
29 
68 
65 
36 
71 
31 
7 
4 
5 

27 
3 

21 
2 
3 

17 
53 
8 

45 
19 
3 

22 
5 
5 
8 

13 
18 
12 
19 
24 

96 
79 
3 
9 
7 
2 
4 

20 
4 
3 
3 
7 

13 
6 
3 
1 

11 
5 

17 
10 
2 
7 
1 
4 
4 
8 
2 
6 
4 
4 

30 
26 
68 
65 
36 
60 
31 
7 
4 
2 

26 
3 

11 
1 
3 

12 
53 
7 

40 
19 
3 

21 
5 
5 
8 

13 
17 
12 
19 
21 

0 
0.02 
0.10 

0 
0 

0.16 
0.13 
0.10 

0 
0.19 

0 
0.10 

0 
0 
0 
0 

0.03 
0 
0 

0.02 
0 

0.15 
0.13 

0 
0 
0 

0.23 
0.07 
0.11 

0 
0.10 
0.03 

0 
0 
0 

0.04 
0 
0 
0 

0.20 
0.02 

0 
0.20 
0.09 

0 
0.08 

0 
0.03 
0.02 

0 
0 

0.02 
0 
0 
0 
0 

0.01 
0 
0 

0.04 

96 
80 
3 
9 
7 
6 
5 

35 
4 
7 
3 
8 

13 
6 
3 
1 

12 
5 

17 
10 
2 

12 
2 
4 
4 
8 
4 
8 
6 
4 

36 
28 
68 
65 
36 
66 
40 
7 
4 
3 

26 
3 

17 
3 
3 

23 
53 
7 

44 
19 
3 

21 
5 
5 
8 

13 
17 
12 
19 
23 

96 
83 
4 
9 
7 
9 
6 

38 
4 
7 
3 
9 

13 
6 
3 
1 

12 
5 

17 
4 
2 

14 
2 
4 
4 
8 
4 
8 
6 
4 

45 
29 
68 
65 
36 
78 
40 
7 
4 
5 

27 
3 

21 
3 
3 

25 
53 
8 

46 
19 
3 

22 
5 
6 
8 

13 
17 
12 
19 
24 

96 
79 
3 
9 
7 
2 
4 

31 
4 
3 
3 
7 

13 
6 
3 
1 

11 
5 

17 
11 
2 
4 
1 
4 
4 
8 
3 
7 
4 
4 

30 
26 
68 
65 
36 
62 
40 
7 
4 
2 

26 
3 

12 
2 
3 

22 
53 
6 

42 
19 
3 

21 
5 
5 
8 

13 
16 
12 
19 
23 

0 
0.02 
0.13 

0 
0 

0.18 
0.12 
0.05 

0 
0.11 

0 
0.10 

0 
0 
0 
0 

0.03 
0 
0 

0.15 
0 

0.15 
0.09 

0 
0 
0 

0.06 
0.04 
0.10 

0 
0.12 
0.04 

0 
0 
0 

0.04 
0 
0 
0 

0.27 
0.02 

0 
0.16 
0.06 

0 
0.03 

0 
0.08 
0.02 

0 
0 

0.01 
0 

0.14 
0 
0 

0.01 
0 
0 

0.02 

96 
80 
3 
9 
7 
7 
5 

36 
4 
7 
3 
8 

13 
6 
3 
1 

12 
5 

17 
11 
2 

14 
2 
4 
4 
8 
4 
8 
6 
4 

38 
28 
68 
65 
36 
69 
40 
7 
4 
3 

27 
3 

17 
3 
3 

24 
53 
8 

44 
19 
3 

21 
5 
5 
8 

13 
17 
12 
19 
24 

96 
83 
4 
9 
7 
9 
8 

39 
4 
7 
3 
9 

13 
6 
3 
1 

12 
5 

17 
11 
2 

16 
2 
4 
4 
8 
4 
8 
6 
4 

45 
29 
68 
65 
36 
78 
40 
7 
4 
5 

27 
3 

21 
3 
3 

25 
53 
8 

45 
19 
3 

22 
5 
7 
8 

13 
17 
12 
19 
24 

96 
79 
3 
9 
7 
6 
4 

32 
4 
7 
3 
7 

13 
6 
3 
1 

11 
5 

17 
11 
2 

11 
2 
4 
4 
8 
3 
7 
5 
4 

30 
26 
68 
65 
36 
64 
40 
7 
4 
2 

26 
3 

12 
3 
3 

22 
53 
7 

42 
19 
3 

21 
5 
5 
8 

13 
17 
12 
19 
23 

0 
0.01 
0.14 

0 
0 

0.73 
0.19 
0.04 

0 
0 
0 

0.08 
0 
0 
0 
0 

0.02 
0 
0 
0 
0 

0.07 
0 
0 
0 
0 

0.05 
0.04 
0.09 

0 
0.08 
0.03 

0 
0 
0 

0.05 
0 
0 
0 

0.25 
0.01 

0 
0.14 

0 
0 

0.04 
0 

0.06 
0.02 

0 
0 

0.01 
0 

0.28 
0 
0 
0 
0 
0 

0.02 

 Total 35,785 1040 1075 973 2.42 1061 1106 1009 2.35 1075 1118 1032 1.82 
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The above process explains that including the border, 

fault-finding and surrounding values to the list of interesting 
values in DSSR strategy leads to the discovery of faults 

quickly and in fewer tests as compared to R and R+ strategies. 

The R and R+ strategies takes more time and number of tests 

to discover the second and third faults because the search for 

new unique faults starts again randomly in spite of the fact 

that the remaining faults are very close to the first fault. 
 

III. IMPLEMENTATION OF DSSR STRATEGY 

Implementation of the DSSR strategy is made in the YETI, 

an open-source automated random testing tool. YETI, coded 

in Java, is capable of testing systems developed in procedural, 

functional and object-oriented languages. Its language 

agnostic meta-model enables it to test programs written in 

multiple languages including Java, C#, JML and .NET. The 

core features of YETI include easy extensibility for future 

growth, capability to test programs using multiple strategies, 

high speed tests execution, real time logging, GUI support 

and auto generation of test report at the end of test session 

[16], [17].  

 

IV. EVALUATION 

The DSSR strategy is experimentally evaluated by 

comparing its performance with that of R and R+ strategy [5]. 

General factors such as system software and hardware, YETI 

specific factors like percentage of null values, percentage of 
newly created objects and interesting value injection 

probability have been kept constant in the experiments. 

A. Research Questions 

For evaluating the DSSR strategy, the following research 

questions were formulated and addressed in this study:  

1) Is there an absolute better strategy among R, R+ and 

DSSR strategies? 

2) Are there specific classes for which any of the three 

strategies provide better results? 

3) Can we pick the best default strategy among R, R+ and 

DSSR strategies? 

B. Experiments 

To evaluate the performance of DSSR we performed 

extensive testing of programs from the Qualitas Corpus [18]. 

The Qualitas Corpus is a curated collection of open source 

Java projects designed with the aim of helping empirical 

research in software engineering. These projects have been 

collected in an organized form containing both the source and 

binary forms. Version 20101126 containing 106 open source 

Java projects was used in our experiments. From 32 

randomly selected projects, 60 classes were selected at 

random with the help of automated pseudo-random generator. 

Every class was tested thirty times by each strategy (R, R+, 

DSSR). Test details of the classes are presented in Table II. 

Programs tested at random typically fail most of the times as 

a result of large number of calls. Therefore, it is necessary to 

cluster failures that likely represent the same failure. The 

traditional way is to compare the full stack traces and error 

types and use this as an equivalence class [8], [16] called a 

unique failure. The same concept of unique failure has been 

adapted in the present study. Every class is evaluated through 

105 calls in each test session. Because of the absence of the 

contracts and assertions in the code under test, undeclared 

exceptions were considered as unique failures in accordance 

with previous studies [16]. 

C. Performance Measurement Criteria 

The literature review revealed that the F-measure is used 

where testing stops after identification of the first failure and 

the system is given back to the developers to remove the 

failure. Currently automated testing tools test the whole 

system and print all discovered failures in one go, therefore, 

F-measure is not the favorable choice. In our experiments, 

performance of the strategy was measured by the maximum 

number of failures detected in the SUT by a particular 

number of test calls [8], [19]. This measurement, similar to 

E-measure, is effective because it considers the performance 

of the strategy when all other factors are kept constant. 

 

V. RESULTS 

The total of mean values of unique failures in DSSR (1075) 

is higher than for R (1040) or R+ (1061) strategies. DSSR 

also finds a higher number of maximum unique failures 

(1118) than both R (1075), and R+ (1106). DSSR strategy 

finds 43 and 12 more unique failures compared to R and R+ 
respectively. The minimum number of unique failures found 

by DSSR (1032) is also higher than R (973) and R+ (1009), 

which attributes to higher efficiency of DSSR strategy over R 
and R+ strategies. 

 
   

 

 
 

A. Is There an Absolute Better Strategy among R, R+ and 

DSSR Strategies? 

Based on our findings DSSR strategy performs better than 

R and R+ strategies. Fig. 4 presents the average improvement 
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of DSSR strategy over R and R+ strategies for 17 classes 

showing substantial difference between DSSR and R, DSSR 

and R+. The blue line with diamond symbol shows the 

performance of DSSR over R and the red line with square 

symbols depicts the performance of DSSR over R+ strategy. 

The findings show that DSSR strategy perform up to 33% 
better than R and up to 17% better than R+ strategy. In some 

cases DSSR perform equally well with R and R+ but in no 

case DSSR performed lower than R and R+. Based on the 

results it can be stated that DSSR strategy is a better choice 

than R and R+ strategy. 

B. Are There Classes for Which Any of the Three 

Strategies Provide Better Results? 

T-Tests applied to the data given in Table III showed 

significantly better performance of DSSR compared to R 
strategy in 17 classes and R+ strategy in 9 classes. In the 

remaining classes all the three strategies performed equally 

well. It is interesting to note that in no single case R and R+ 

strategies performed better than DSSR strategy. We attribute 

this to DSSR possessing the qualities of R and R+ whereas 

containing the spot sweeping feature. 

C. Can We Pick the Best Default Strategy between R, R+ 

and DSSR Strategies? 

Analysis of the experimental data reveals that DSSR 

strategy has an edge over R and R+. This is mainly because of 

the additional feature of DSS in DSSR strategy, which can 

identify new faults quickly in the case of different faults or 

helps in debugging by providing more faults revealing input 

in the case of single fault. However, further analysis of DSSR 

strategy in terms of code coverage and overhead is required 

before picking it as a default strategy.  

 

 
Fig. 4. Improvement of DSSR strategy over R and R+ strategy. 

 

VI. DISCUSSION 

In the present study, we evaluated DSSR strategy against R 

and R+ strategies under identical conditions. This is in 

accordance with the common practice to evaluate 

performance of an extended strategy by applying it in 

combination with other existing strategies to the same 

programs and comparing the results obtained [20], [21]. We 

used random testing as a baseline for comparison as 

advocated by Arcuri et al. [22]. In our experiments we  

selected projects from the Qualitas Corpus [18], which is a 

collection of open source java programs maintained for 

independent empirical research. The selection of programs in 

the current study is made through random process to avoid 

any bias and maintain representative selection of classes. All 

the three strategies have the potential of finding failures. 
However, DSSR strategy found more number of unique 

failures than both R and R+ strategies as reflected in the 
results. This improved performance of the strategy can be 

attributed to the additional feature of DSS in the DSSR 

strategy. In DSSR strategy no pre-existing test cases are 

required because it utilizes the border values from R+ and 

regenerate the data very cheaply in a dynamic fashion 

different for each class under test without any prior test data 

and with comparatively lower overhead. DSSR strategy 

relies on R+ strategy to identify the first unique failure. We 
noticed in our experiments that discovery of first unique 
failure in the early stage of the test triggers the activation of 

Dirt Spot Sweeping, resulting in quick finding of failures in 
the SUT. The process is delayed when the identification of 
the first unique failure is not accomplished in the early stage 
by R+ strategy. The limitation of the new strategy may be 

addressed in future studies by avoiding the reliance of DSSR 

strategy on R+ for the discovery of first failure. 
 

VII. RELATED WORK 

Random testing used in the current study is a popular 

technique with simple algorithm but a proven method to find 
subtle failures in complex programs and Java libraries [23], 

[24]. Its simplicity, ease of implementation and efficiency in 
generating test cases make it one of the best choices for test 
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automation [10]. Some of the well-known automated tools 

based on R strategy include Jartege [7], Eclat [23], JCrasher 

[24], AutoTest [5] and YETI [16]. In pursuit of better test 

results and lower overhead, many variations of R strategy 

have been proposed. Adaptive random testing (ART) [2], 

Quasi-random testing (QRT) [14] and Restricted Random 

testing (RRT) [12] achieved better results by selecting test 

inputs randomly but evenly spread across the input domain. 

Mirror Adaptive Random Testing (MART) [13] and 

Adaptive Random Testing through dynamic partitioning [27] 

increased the performance by reducing the overhead of ART. 

The main reason behind better performance is that even 

spread of test input increases the chance of exploring the 

failure patterns present in the input domain. A more recent 

research study [25] stresses the effectiveness of data 

regeneration in close vicinity of the existing test data. Their 

findings showed up to two orders of magnitude more efficient 
test data generation than the existing techniques. Two major 

limitations of their study are the requirement of existing test 

cases to regenerate new test cases and increased overhead 

due to using “meta heuristics search” based on hill climbing 
algorithm to regenerate new data. 

 

VIII. CONCLUSION 

In the present study, we developed a new Dirt Spot 

Sweeping Random strategy as an upgraded version of the R+ 

strategy based on the Dirt Spot Sweeping feature, which 

strengthens the ability of finding more failures in lower 
number of tests. The DSSR strategy is particularly more 

effective when the failure domain forms block and strip 

patterns across the input domain. In addition, the findings of 
the present study indicated significantly better performance 
of DSSR in comparison with R and R+ strategies with respect 

to finding higher number of failures. 
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