

Abstract—The paper presents a new and improved

automated random testing technique named as Dirt Spot

Sweeping Random (DSSR) strategy based on the rationale that,

“when failures lies in the contiguous locations across the input

domain, the effectiveness of random testing can be further

improved through diversity of test cases”. The DSSR strategy
selects neighboring values for the subsequent tests on

identification of failure. Resultantly, selected values sweep

around the failure leading to the discovery of new failures in

the vicinity. To evaluate the effectiveness of DSSR strategy a

total of 60 classes (35,785 lines of code), each class with 30 x 105

calls, were tested by Random (R), Random+ (R+) and DSSR

strategies. T-Test analysis showed significantly better

performance of DSSR compared to R strategy in 17 classes and

R+ strategy in 9 classes. In the remaining classes all the three

strategies performed equally well. Numerically, the DSSR

strategy found 43 and 12 more unique failures than R and R+

strategies respectively. This study comprehends that DSSR

strategy will have a profound positive impact on the failure-

finding ability of R and R+ testing.

Index Terms—Software testing, automated random testing,

ADFD.

I. INTRODUCTION

Chan et al. [1] discovered that there are sub-domains of

failure-causing inputs across the input domain. They divided

these into point, block and strip domains on the basis of their

occurrence. Chen [2] found that altering the technique of test

case selection could increase the performance of random

testing. Moreover, he also found that the performance

increased up to 50% when test inputs were selected evenly

across the input domain. This was mainly attributed to the

better distribution of input, which increased the chances of

selecting inputs from failure domains.

Based on the assumption that in a significant number of
classes, failure domains are contiguous, the Dirt Spot

Sweeping Random 1 strategy is devised to give higher

priority to the failure domains for identification of new
failures efficiently. The DSSR strategy is implemented in the
York Extensible Testing Infrastructure (YETI)2, a random

testing tool. To evaluate the effectiveness of DSSR strategy a

total of 60 classes (35,785 lines of code) of 32 different

projects from the Qualitas Corpus3, each class with 30 × 105

calls, were tested by R, R+ and DSSR strategies.

This paper is organized as follows: Section II describes the

Manuscript received February 5, 2014; revised April 9, 2014.

Mian Asbat Ahmad and Manuel Oriol are with the Department of

Computer Science, University of York, YO10 5DD, UK (e-mail:

mian.ahmad@york.ac.uk, manuel.oriol@york.ac.uk).
1The name refers to the cleaning robots strategy, which insists on places

where dirt has been found in large amount.
2 http://www.yetitest.org
3 http://www.qualitascorpus.com

DSSR strategy. Section III presents implementation of the

DSSR strategy. Section IV explains the experimental setup.

Section V reveals results of the experiments. Section VI

discusses the results. Section VII presents related work and

Section VIII concludes the study.

II. DIRT SPOT SWEEPING RANDOM STRATEGY

Dirt Spot Sweeping Random strategy combines the R+

strategy with a Dirt Spot Sweeping (DSS) functionality. It is

based on two intuitions. First, boundaries have interesting

values and using these values in isolation can provide high

impact on test results. Second, failures reside in contiguous

patterns. If this is true, DSS increases the performance of the

test strategy. Before presenting the details of the DSSR

strategy, it is pertinent to review briefly the R and the R+

strategy.

A. Random Strategy (R)

The random strategy is a black-box testing technique in

which the SUT is executed using randomly selected test data.

Test results obtained are compared to the defined oracle. The
generation of random test data is comparatively cheap and

does not require too much intellectual and computational

effort [3]. It is mainly for this reason that various researchers

have recommended R strategy in automated testing tools.

YETI [4], AutoTest [5], Randoop [6] and Jartege [7] are

some of the most common automated testing tools based on

R strategy. Experiments performed by various researchers

[8], [9], [10] have proved experimentally that random testing

is simple to implement, cost effective, efficient and free from
human bias as compared to its rival techniques.

B. Random Plus Strategy (R+)

The random+ strategy [5] is an extension of the R strategy.

It uses some special pre-defined values which can be simple

boundary values or values that have high tendency of finding

failures in the SUT. Boundary values are the values in the

start and end of a particular type [11]. For instance, such

values for int could be MAX_INT, MAX_INT-1, MAX_INT-2,

MAX_INT-3 0, MIN_INT, MIN_INT+1, MIN_INT+2, and

MIN_INT+3. The tester might also add some other special

values that are considered effective in finding failures in the

SUT. This static list of interesting values is manually updated

before the start of the test and has a high priority (10%) than

selection of random values because of more relevance and

better chances of finding failures.

C. Dirt Spot Sweeping (DSS)

Chan et al. [1] found that there are sub-domains of

failure-causing inputs across the input domain. They divided

these domains into three types called point, block and strip

domains (Fig. 1) and argued that a strategy has more chances

Dirt Spot Sweeping Random Strategy

Mian Asbat Ahmad and Manuel Oriol

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

294DOI: 10.7763/LNSE.2014.V2.139

of hitting the failure domains if test cases are selected farther

from each other. Other researchers [12]-[14] also tried to

generate test cases further away from one another targeting

these domains and achieved better performance.

a) Point domain b) Block domain c) Strip domain

Fig. 1. Failure domains across the input domain [2].

In DSS, if a value reveals failure from the block or strip

domain then for the selection of the next test value, DSS may

not look farthest from the known value but picks the closest

value to find another failure from the same region. DSSR

strategy relies on DSS that comes into action when a failure

is found in the system. On finding a failure, it immediately
adds the value causing the failure and its neighboring values

to the existing list of interesting values. For example, in a

program when the int type value of 50 causes a failure in the

system then DSS will add values from 47 to 53 to the list of

interesting values. The addition of neighboring values will

explore other failures present in the block or strip domain of

the SUT. The list of interesting values in DSSR strategy is

dynamic and changes during the test execution of each

program as against R+ where the list remains static.

Fig. 2. DSSR strategy covering block and strip domain.

Fig. 2 shows how DSS explores the failures residing in the

block and strip patterns of a program. The coverage of block

and strip pattern is shown in spiral form because first failure

leads to second, second to third and so on till the end. In case

the failure is positioned on the point pattern then the added

values may not be effective because point pattern is only an

arbitrary failure point in the whole input domain.

D. Structure of Dirt Spot Sweeping Random Strategy

The DSSR strategy continuously tracks the number of

failures during the execution of the test. This tracking is done

in a very effective way with zero or minimum overhead [15].

The test execution is started by R+ strategy and continues till

a failure is found in the SUT after which the program copies

the values leading to the failure as well as the surrounding

values to the variable list of interesting values.

Both the variables currentFaults and oldFaults are

initialized to 0 at the start of the test, when a fault is found the

currentFaults value is incremented which make the

condition true. The flowchart presented in Fig. 3 depicts the

case when fault is caused by a primitive type value. The

DSSR strategy identifies its type and adds values only of that
particular type to the list of interesting values. The resultant

list of interesting values provides relevant test data for the

remaining test session and the generated test cases are more

targeted towards finding new faults around the existing fault

in the given SUT.

Fig. 3. Working mechanism of DSSR strategy.

Table I presents the data types with the corresponding

neighboring values to be added to the list of interesting

values.

TABLE I: DATA TYPES AND VALUES TO BE ADDED

Data Type Values added

X is int, double, float,

long, byte, short & char

X, X+1, X+2, X+3,

X-1, X-2, X-3

X is String

X, X + “ ”, “ ” + X

X.toUpperCase()

X.toLowerCase()

X.trim(), X.substring(2)

X.substring(1, X.length()-1)

X is object of user

defined class

Call its constructor recursively

until empty or primitive values

In the table the test value is represented by X where X can

be int, double, float, long, byte, short, char and String.

All values are converted to their respective types before

adding them to the list of interesting values.

E. Explanation of DSSR Strategy on a Concrete Example

The DSSR strategy is explained through a simple program

seeded with three faults. The first fault is a division by zero

exception denoted by 1 while the second and third faults are

failing assertion denoted by 2 and 3 respectively in the given

program. It is followed by the description of how the strategy

performs execution.

//Calculate square and verify result.

public class Math1 {

public void calc (int num1) {

int result1 = num1 * num1;

int result2 = result1 / num1; // 1

assert result1 >= num1; // 2

assert Math.sqrt(result1) == num1; // 3

}

}

In the above code, one primitive variable of type int is

used; therefore, the input domain for DSSR strategy is from

-2,147,483,648 to 2,147,483,647. The strategy further select

values (0, Integer.MIN_VALUE & Integer.MAX_VALUE) as

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

295

interesting values that are prioritized for selection as test

inputs. As the test starts, three faults are quickly discovered

by DSSR strategy in the following order:

Failure 1: The strategy selects value 0 for variable num1

in the first test case because 0 is available in the list of

interesting values and its priority is higher than other values.

This will cause Java to generate division by zero exception

(1). After discovering the fault, the strategy adds its

surrounding values to the list of interesting values i.e. 1, 2, 3,

-1, -2, -3.

Failure 2: After a few tests the DSSR strategy may select

Integer.MAX_VALUE for variable num1 from the list of

interesting values leading to the discovery of the 2nd fault

because int variable result1 will not be able to store the

square of Integer.MAX_VALUE. Instead of the actual square

value Java assigns 1 (Java rule) to variable result1 that will

lead to the violation of the next assertion (2).

Failure 3: In the third test case the strategy may pick -3 as

a test value, which is added to the list of interesting values

after the discovery of first fault. This may lead to the third

fault where assertion (3) fails because the square root of 9 is

3 against the input value of -3.

TABLE II: COMPARATIVE PERFORMANCE OF R, R+ AND DSSR STRATEGIES

S. No Class Name LOC R R+ DSSR

Mean Max Min R-STD Mean Max Min R-STD Mean Max Min R-STD

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ActionTranslator
AjTypeImpl
Apriori
BitSet
CatalogManager
CheckAssociator
Debug
DirectoryScanner
DiskIO
DOMParser
Entities
EntryDecoder
EntryComparator
Entry
Facade
FileUtil
Font
FPGrowth
Generator
Group
HttpAuth
Image
InstrumentTask
IntStack
ItemSet
Itextpdf
JavaWrapper
JmxUtilities
List
NameEntry
NodeSequence
NodeSet
PersistentBag
PersistentList
PersistentSet
Project
Repository
Routine
RubyBigDecimal
Scanner
Scene
SelectionManager
Server
Sorter
Sorting
Statistics
Status
Stopwords
StringHelper
StringUtils
TouchCollector
Trie
URI
WebMacro
XMLAttributesImp
l
XMLChar
XMLEntityManger
XMLEntityScanner
XObject
XString

709
1180
292
575
538
351
836

1714
220
92

328
675
163
37

3301
83

184
435
218
88

221
2146

71
313
234
245
513
645

1718
172
68

208
571
602
162
470
63

1069
1564

94
1603
431
279
47

762
491
32

332
178
119
222
460

3970
311
277

1031
763
445
318
546

96
80
3
9
7
7
4

33
4
7
3
8

13
6
3
1

12
5

17
11
2

13
2
4
4
8
3
8
5
4

38
28
68
65
36
65
31
7
4
3

26
3

15
2
3

16
53
7

43
19
3

21
5
5
8

13
17
12
19
23

96
83
4
9
7
8
6

39
4
7
3
9

13
6
3
1

12
5

17
11
2

17
2
4
4
8
2
8
6
4

46
29
68
65
36
71
31
7
4
5

27
3

21
2
3

17
53
8

45
19
3

22
5
5
8

13
18
12
19
24

96
79
3
9
7
2
4

20
4
3
3
7

13
6
3
1

11
5

17
10
2
7
1
4
4
8
2
6
4
4

30
26
68
65
36
60
31
7
4
2

26
3

11
1
3

12
53
7

40
19
3

21
5
5
8

13
17
12
19
21

0
0.02
0.10

0
0

0.16
0.13
0.10

0
0.19

0
0.10

0
0
0
0

0.03
0
0

0.02
0

0.15
0.13

0
0
0

0.23
0.07
0.11

0
0.10
0.03

0
0
0

0.04
0
0
0

0.20
0.02

0
0.20
0.09

0
0.08

0
0.03
0.02

0
0

0.02
0
0
0
0

0.01
0
0

0.04

96
80
3
9
7
6
5

35
4
7
3
8

13
6
3
1

12
5

17
10
2

12
2
4
4
8
4
8
6
4

36
28
68
65
36
66
40
7
4
3

26
3

17
3
3

23
53
7

44
19
3

21
5
5
8

13
17
12
19
23

96
83
4
9
7
9
6

38
4
7
3
9

13
6
3
1

12
5

17
4
2

14
2
4
4
8
4
8
6
4

45
29
68
65
36
78
40
7
4
5

27
3

21
3
3

25
53
8

46
19
3

22
5
6
8

13
17
12
19
24

96
79
3
9
7
2
4

31
4
3
3
7

13
6
3
1

11
5

17
11
2
4
1
4
4
8
3
7
4
4

30
26
68
65
36
62
40
7
4
2

26
3

12
2
3

22
53
6

42
19
3

21
5
5
8

13
16
12
19
23

0
0.02
0.13

0
0

0.18
0.12
0.05

0
0.11

0
0.10

0
0
0
0

0.03
0
0

0.15
0

0.15
0.09

0
0
0

0.06
0.04
0.10

0
0.12
0.04

0
0
0

0.04
0
0
0

0.27
0.02

0
0.16
0.06

0
0.03

0
0.08
0.02

0
0

0.01
0

0.14
0
0

0.01
0
0

0.02

96
80
3
9
7
7
5

36
4
7
3
8

13
6
3
1

12
5

17
11
2

14
2
4
4
8
4
8
6
4

38
28
68
65
36
69
40
7
4
3

27
3

17
3
3

24
53
8

44
19
3

21
5
5
8

13
17
12
19
24

96
83
4
9
7
9
8

39
4
7
3
9

13
6
3
1

12
5

17
11
2

16
2
4
4
8
4
8
6
4

45
29
68
65
36
78
40
7
4
5

27
3

21
3
3

25
53
8

45
19
3

22
5
7
8

13
17
12
19
24

96
79
3
9
7
6
4

32
4
7
3
7

13
6
3
1

11
5

17
11
2

11
2
4
4
8
3
7
5
4

30
26
68
65
36
64
40
7
4
2

26
3

12
3
3

22
53
7

42
19
3

21
5
5
8

13
17
12
19
23

0
0.01
0.14

0
0

0.73
0.19
0.04

0
0
0

0.08
0
0
0
0

0.02
0
0
0
0

0.07
0
0
0
0

0.05
0.04
0.09

0
0.08
0.03

0
0
0

0.05
0
0
0

0.25
0.01

0
0.14

0
0

0.04
0

0.06
0.02

0
0

0.01
0

0.28
0
0
0
0
0

0.02

 Total 35,785 1040 1075 973 2.42 1061 1106 1009 2.35 1075 1118 1032 1.82

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

296

The above process explains that including the border,

fault-finding and surrounding values to the list of interesting
values in DSSR strategy leads to the discovery of faults

quickly and in fewer tests as compared to R and R+ strategies.

The R and R+ strategies takes more time and number of tests

to discover the second and third faults because the search for

new unique faults starts again randomly in spite of the fact

that the remaining faults are very close to the first fault.

III. IMPLEMENTATION OF DSSR STRATEGY

Implementation of the DSSR strategy is made in the YETI,

an open-source automated random testing tool. YETI, coded

in Java, is capable of testing systems developed in procedural,

functional and object-oriented languages. Its language

agnostic meta-model enables it to test programs written in

multiple languages including Java, C#, JML and .NET. The

core features of YETI include easy extensibility for future

growth, capability to test programs using multiple strategies,

high speed tests execution, real time logging, GUI support

and auto generation of test report at the end of test session

[16], [17].

IV. EVALUATION

The DSSR strategy is experimentally evaluated by

comparing its performance with that of R and R+ strategy [5].

General factors such as system software and hardware, YETI

specific factors like percentage of null values, percentage of
newly created objects and interesting value injection

probability have been kept constant in the experiments.

A. Research Questions

For evaluating the DSSR strategy, the following research

questions were formulated and addressed in this study:

1) Is there an absolute better strategy among R, R+ and

DSSR strategies?

2) Are there specific classes for which any of the three

strategies provide better results?

3) Can we pick the best default strategy among R, R+ and

DSSR strategies?

B. Experiments

To evaluate the performance of DSSR we performed

extensive testing of programs from the Qualitas Corpus [18].

The Qualitas Corpus is a curated collection of open source

Java projects designed with the aim of helping empirical

research in software engineering. These projects have been

collected in an organized form containing both the source and

binary forms. Version 20101126 containing 106 open source

Java projects was used in our experiments. From 32

randomly selected projects, 60 classes were selected at

random with the help of automated pseudo-random generator.

Every class was tested thirty times by each strategy (R, R+,

DSSR). Test details of the classes are presented in Table II.

Programs tested at random typically fail most of the times as

a result of large number of calls. Therefore, it is necessary to

cluster failures that likely represent the same failure. The

traditional way is to compare the full stack traces and error

types and use this as an equivalence class [8], [16] called a

unique failure. The same concept of unique failure has been

adapted in the present study. Every class is evaluated through

105 calls in each test session. Because of the absence of the

contracts and assertions in the code under test, undeclared

exceptions were considered as unique failures in accordance

with previous studies [16].

C. Performance Measurement Criteria

The literature review revealed that the F-measure is used

where testing stops after identification of the first failure and

the system is given back to the developers to remove the

failure. Currently automated testing tools test the whole

system and print all discovered failures in one go, therefore,

F-measure is not the favorable choice. In our experiments,

performance of the strategy was measured by the maximum

number of failures detected in the SUT by a particular

number of test calls [8], [19]. This measurement, similar to

E-measure, is effective because it considers the performance

of the strategy when all other factors are kept constant.

V. RESULTS

The total of mean values of unique failures in DSSR (1075)

is higher than for R (1040) or R+ (1061) strategies. DSSR

also finds a higher number of maximum unique failures

(1118) than both R (1075), and R+ (1106). DSSR strategy

finds 43 and 12 more unique failures compared to R and R+
respectively. The minimum number of unique failures found

by DSSR (1032) is also higher than R (973) and R+ (1009),

which attributes to higher efficiency of DSSR strategy over R
and R+ strategies.

A. Is There an Absolute Better Strategy among R, R+ and

DSSR Strategies?

Based on our findings DSSR strategy performs better than

R and R+ strategies. Fig. 4 presents the average improvement

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

297

TABLE III: T-TEST RESULTS OF THE CLASSES SHOWING DIFFERENT

RESULTS

of DSSR strategy over R and R+ strategies for 17 classes

showing substantial difference between DSSR and R, DSSR

and R+. The blue line with diamond symbol shows the

performance of DSSR over R and the red line with square

symbols depicts the performance of DSSR over R+ strategy.

The findings show that DSSR strategy perform up to 33%
better than R and up to 17% better than R+ strategy. In some

cases DSSR perform equally well with R and R+ but in no

case DSSR performed lower than R and R+. Based on the

results it can be stated that DSSR strategy is a better choice

than R and R+ strategy.

B. Are There Classes for Which Any of the Three

Strategies Provide Better Results?

T-Tests applied to the data given in Table III showed

significantly better performance of DSSR compared to R
strategy in 17 classes and R+ strategy in 9 classes. In the

remaining classes all the three strategies performed equally

well. It is interesting to note that in no single case R and R+

strategies performed better than DSSR strategy. We attribute

this to DSSR possessing the qualities of R and R+ whereas

containing the spot sweeping feature.

C. Can We Pick the Best Default Strategy between R, R+

and DSSR Strategies?

Analysis of the experimental data reveals that DSSR

strategy has an edge over R and R+. This is mainly because of

the additional feature of DSS in DSSR strategy, which can

identify new faults quickly in the case of different faults or

helps in debugging by providing more faults revealing input

in the case of single fault. However, further analysis of DSSR

strategy in terms of code coverage and overhead is required

before picking it as a default strategy.

Fig. 4. Improvement of DSSR strategy over R and R+ strategy.

VI. DISCUSSION

In the present study, we evaluated DSSR strategy against R

and R+ strategies under identical conditions. This is in

accordance with the common practice to evaluate

performance of an extended strategy by applying it in

combination with other existing strategies to the same

programs and comparing the results obtained [20], [21]. We

used random testing as a baseline for comparison as

advocated by Arcuri et al. [22]. In our experiments we

selected projects from the Qualitas Corpus [18], which is a

collection of open source java programs maintained for

independent empirical research. The selection of programs in

the current study is made through random process to avoid

any bias and maintain representative selection of classes. All

the three strategies have the potential of finding failures.
However, DSSR strategy found more number of unique

failures than both R and R+ strategies as reflected in the
results. This improved performance of the strategy can be

attributed to the additional feature of DSS in the DSSR

strategy. In DSSR strategy no pre-existing test cases are

required because it utilizes the border values from R+ and

regenerate the data very cheaply in a dynamic fashion

different for each class under test without any prior test data

and with comparatively lower overhead. DSSR strategy

relies on R+ strategy to identify the first unique failure. We
noticed in our experiments that discovery of first unique
failure in the early stage of the test triggers the activation of

Dirt Spot Sweeping, resulting in quick finding of failures in
the SUT. The process is delayed when the identification of
the first unique failure is not accomplished in the early stage
by R+ strategy. The limitation of the new strategy may be

addressed in future studies by avoiding the reliance of DSSR

strategy on R+ for the discovery of first failure.

VII. RELATED WORK

Random testing used in the current study is a popular

technique with simple algorithm but a proven method to find
subtle failures in complex programs and Java libraries [23],

[24]. Its simplicity, ease of implementation and efficiency in
generating test cases make it one of the best choices for test

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

298

automation [10]. Some of the well-known automated tools

based on R strategy include Jartege [7], Eclat [23], JCrasher

[24], AutoTest [5] and YETI [16]. In pursuit of better test

results and lower overhead, many variations of R strategy

have been proposed. Adaptive random testing (ART) [2],

Quasi-random testing (QRT) [14] and Restricted Random

testing (RRT) [12] achieved better results by selecting test

inputs randomly but evenly spread across the input domain.

Mirror Adaptive Random Testing (MART) [13] and

Adaptive Random Testing through dynamic partitioning [27]

increased the performance by reducing the overhead of ART.

The main reason behind better performance is that even

spread of test input increases the chance of exploring the

failure patterns present in the input domain. A more recent

research study [25] stresses the effectiveness of data

regeneration in close vicinity of the existing test data. Their

findings showed up to two orders of magnitude more efficient
test data generation than the existing techniques. Two major

limitations of their study are the requirement of existing test

cases to regenerate new test cases and increased overhead

due to using “meta heuristics search” based on hill climbing
algorithm to regenerate new data.

VIII. CONCLUSION

In the present study, we developed a new Dirt Spot

Sweeping Random strategy as an upgraded version of the R+

strategy based on the Dirt Spot Sweeping feature, which

strengthens the ability of finding more failures in lower
number of tests. The DSSR strategy is particularly more

effective when the failure domain forms block and strip

patterns across the input domain. In addition, the findings of
the present study indicated significantly better performance
of DSSR in comparison with R and R+ strategies with respect

to finding higher number of failures.

ACKNOWLEDGMENT

The authors are thankful to the Department of Computer

Science, University of York for physical and financial
support. Thanks are also extended to Prof. Richard Paige for

his valuable guidance, help and generous support.

REFERENCES

[1] F. Chan, T. Chen, I. Mak, and Y. Yu, “Proportional sampling strategy:
Guidelines for software testing practitioners,” Information and

Software Technology, vol. 38, no. 12, pp. 775–782, 1996.

[2] T. Y. Chen, “Adaptive random testing,” in Proc. Eighth International

Conference on Qualify Software, 2008, pp. 443.

[3] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer, “On the
number and nature of faults found by random testing,” Software

Testing Verification and Reliability, vol. 9999, no. 9999, pp. 1–7, 2009.

[4] M. Oriol and S. Tassis, “Testing .net code with yeti,” in Proc. the 2010

15th IEEE International Conference on Engineering of Complex

Computer Systems, ser. ICECCS ’10, Washington, DC, USA: IEEE

Computer Society, 2010, pp. 264–265.

[7] C. Oriat, “Jartege: A tool for random generation of unit tests for java

classes,” CoRR, vol. abs/cs/0412012, 2004.

[8] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Experimental assessment
of random testing for object-oriented software,” in Proc. the 2007

International Symposium on Software Testing and Analysis, ser.

ISSTA ’07, New York, NY, USA: ACM, 2007, pp. 84–94.

[9] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,”
Software Engineering, IEEE Transactions on, vol. SE-10, no. 4, pp.

438 –444, July 1984.

[10] R. Hamlet, “Random testing,” Encyclopedia of Software Engineering,

Wiley, 1994, pp. 970–978.

[11] B. Beizer, Software Testing Techniques, 2nd ed., New York, NY, USA:

Van Nostrand Reinhold Co., 1990.

[12] K. P. Chan, T. Y. Chen, and D. Towey, “Restricted random testing,” in
Proc. the 7th International Conference on Software Quality, ser.

ECSQ ’02, London, UK, UK: Springer-Verlag, 2002, pp. 321–330.

[13] T. Y. Chen, F. C. Kuo, R. G. Merkel, and S. P. Ng, “Mirror adaptive
random testing,” in Proc. the Third International Conference on

Quality Software, ser. QSIC ’03, Washington, DC, USA: IEEE

Computer Society, 2003, pp. 4.

[14] T. Y. Chen and R. Merkel, “Quasi-random testing,” in Proc. the 20th

IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE ’05, New York, NY, USA: ACM, 2005.

[15] A. Leitner, A. Pretschner, S. Mori, B. Meyer, and M. Oriol, “On the
effectiveness of test extraction without overhead,” in Proc. the 2009

International Conference on Software Testing Verification and
Validation, Washington, DC, USA: IEEE Computer Society, 2009.

[16] M. Oriol, “Random testing: Evaluation of a law describing the number
of faults found,” in Proc. Software Testing, Verification and Validation

(ICST), 2012 IEEE Fifth International Conference on, April 2012, pp.

201–210.

[17] M. Oriol and Mian, “York Extensible Testing Infrastructure,” Sept
2011.

[18] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H.

Melton, and J. Noble, “Qualitas corpus: A curated collection of java

code for empirical studies,” in Proc. 2010 Asia Pacific Software
Engineering Conference (APSEC2010), Dec. 2010, pp. 336-345.

[19] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed

random test generation,” in Proc. the 29th international conference on

Software Engineering, ser. ICSE ’07, Washington, DC, USA: IEEE

Computer Society, 2007, pp. 75–84.

[20] W. Gutjahr, “Partition testing vs. random testing: The influence of
uncertainty,” Software Engineering, IEEE Transactions on, vol. 25, no.

5, pp. 661 –674, sep/oct 1999.

[21] D. Hamlet and R. Taylor, “Partition testing does not inspire confidence
[program testing],” IEEE Transactions on Software Engineering, vol.

16, no. 12, pp. 1402 –1411, dec 1990.

[22] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical
results and practical implications,” IEEE Transactions on Software

Engineering, vol. 38, pp. 258–277, 2012.

[23] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation and
classification of test inputs,” in Proc. the 19th European Conference

Object-Oriented Programming, 2005, pp. 504–527.

[24] C. Csallner and Y. Smaragdakis, “Jcrasher: An automatic robustness
tester for Java,” Software—Practice & Experience, vol. 34, no. 11, pp.

1025–1050, Sep. 2004.

[25] S. Yoo and M. Harman, “Test data regeneration: generating new test
data from existing test data,” Softw. Test. Verif. Reliab., vol. 22, no. 3,

pp. 171–201, May 2012.

[26] T. Chen, R. Merkel, P. Wong, and G. Eddy, “Adaptive random testing
through dynamic partitioning,” in Proc. Fourth International

Conference on Quality Software, sept. 2004, pp. 79–86.

Mian Asbat Ahmad is a PhD scholar at the Department

of Computer Science, the University of York, UK. He

completed his M(IT) and MS(CS) from Agric.

University Peshawar, Pakistan in 2004 and 2009

respectively. His research interests include new

automated random software testing strategies.

Manuel Oriol is a lecturer at the Department of

Computer Science, the University of York, UK and a

principal scientist at ABB Corporate Research,

Industrial Software Systems, in Baden-Daettwil,

Switzerland. He completed his PhD from University of

Geneva and an M.Sc. from ENSEEIHT in Toulouse,

France. His research interests include software testing,

software engineering, middleware, dynamic software

updates, software architecture and real-time systems.

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

299

[5] A. Leitner, I. Ciupa, B. Meyer, and M. Howard, “Reconciling manual
and automated testing: The autotest experience,” presented at the 40th

Annual Hawaii International Conference on System Sciences, ser.

HICSS ’07, Washington, DC, USA: IEEE Computer Society, 2007.

[6] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random

testing for Java,” presented at OOPSLA 2007 Companion, Montreal,

Canada. ACM, Oct. 2007.

