# Dirubidium tricadmium tetrakis(sulfate) pentahydrate

## Diptikanta Swain and T. N. Guru Row\*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India

Correspondence e-mail: ssctng@sscu.iisc.ernet.in

#### **Key indicators**

Single-crystal X-ray study T = 90 K Mean  $\sigma$ (S–O) = 0.003 Å R factor = 0.022 wR factor = 0.059 Data-to-parameter ratio = 11.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound,  $Rb_2Cd_3(SO_4)_4$ ·5H<sub>2</sub>O, arose as an unexpected product during the attempted synthesis of an  $Rb_2Cd_2(SO_4)_3$  potassium cadmium sulfate langbeinite, It has two layers, layer *A* containing Cd octahedra bridged by sulfate groups and layer *B* containing edge-shared Cd octahedra, with Rb atoms occupying interstial positions. The layers are connected by way of Cd-O-S links.

## Comment

The system  $Rb_2SO_4$ -CdSO<sub>4</sub>-H<sub>2</sub>O was selected in an attempt to synthesize the langbeinite-type phase  $Rb_2Cd_2(SO_4)_3$  by a slow evaporation method. Instead, the title compound, (I) (Fig. 1), a hydrated double salt, arose at 313 K.

The crystal structure of (I) is isomorphous with  $K_2Mn_3(SO_4)_4$ ·5H<sub>2</sub>O (Hidalgon *et al.*, 1996). The Cd atoms are octahedrally coordinated by O atoms of either sulfate groups or water molecules (Table 1).

Among the five water molecules, O18W bonds to two Cd atoms  $[Cd1-O18W-Cd2 = 114.72 (12)^{\circ}]$ . The four other water molecules are singly coordinated to Cd atoms. The crystal packing (Fig. 2) results in pseudo-layers parallel to the *bc* plane. Two types of layers, namely layer *A* formed by Cd octhedra bridged by sulfate groups and layer *B* containing edge-sharing Cd octahedra, occur. The pseudo-layers, which are connected by way of Cd-O-S bonds, repeat in a ... BABBAB... fashion along the *a* axis, with the Rb cations in interstitial positions. A network of O-H···O bonds (Table 2) helps to consolidate the crystal packing.



View of the asymmetric unit of (I), showing 50% displacement ellipsoids. H atoms have been omitted for clarity.

## **Experimental**

Colourless plates of (I) were synthesized by slow evaporation at 313 K of an aqueous solution containing equimolar amounts of  $Rb_2SO_4$  and  $CdSO_4$ . The temperature was maintained by a thermostat to control the evaporation rate.

 $D_x = 3.473 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation Cell parameters from 890 reflections

 $\theta = 0.9-28.7^{\circ}$ 

 $\begin{aligned} R_{\rm int} &= 0.031 \\ \theta_{\rm max} &= 25.4^\circ \end{aligned}$ 

 $h = -23 \rightarrow 23$ 

 $k=-11\rightarrow 11$ 

 $l = -11 \rightarrow 11$ 

 $\mu = 9.06 \text{ mm}^{-1}$  T = 90 (2) KPlate, colourless

 $0.29 \times 0.16 \times 0.03 \text{ mm}$ 

3434 independent reflections

3296 reflections with  $I > 2\sigma(I)$ 

#### Crystal data

#### Data collection

Bruker SMART CCD diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{min} = 0.189, T_{max} = 0.755$ 13435 measured reflections

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.024P)^2]$                     |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.022$ | + 6.4725P]                                                 |
| $wR(F^2) = 0.059$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.10                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 3434 reflections                | $\Delta \rho_{\rm max} = 1.09 \text{ e } \text{\AA}^{-3}$  |
| 311 parameters                  | $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   |                                                            |

| Table 1  |      |         |      |
|----------|------|---------|------|
| Selected | bond | lengths | (Å). |

| Rb1-O8                 | 2.918 (3) | Rb2-O1                 | 3.364 (3) |
|------------------------|-----------|------------------------|-----------|
| $Rb1 - O20W^{i}$       | 2.935 (3) | Rb2-O5 <sup>iv</sup>   | 3.457 (3) |
| Rb1-O9                 | 2.960 (3) | Cd1-O6 <sup>vii</sup>  | 2.218 (3) |
| Rb1-O8 <sup>ii</sup>   | 2.962 (3) | Cd1-O1                 | 2.284 (3) |
| Rb1-O13 <sup>iii</sup> | 3.060 (3) | Cd1-O9 <sup>vi</sup>   | 2.288 (3) |
| Rb1-O16 <sup>iv</sup>  | 3.072 (3) | Cd1-O7 <sup>vi</sup>   | 2.295 (3) |
| Rb1-O6 <sup>ii</sup>   | 3.110 (3) | Cd1-O17W               | 2.304 (3) |
| Rb1-O12                | 3.147 (3) | Cd1-O18W               | 2.342 (3) |
| Rb1-O15 <sup>v</sup>   | 3.224 (3) | Cd2-O5                 | 2.238 (3) |
| Rb1-O14 <sup>iii</sup> | 3.430 (3) | Cd2-O11 <sup>vi</sup>  | 2.243 (3) |
| Rb1-O14 <sup>v</sup>   | 3.538 (3) | Cd2-O4                 | 2.277 (3) |
| Rb2-O15                | 2.777 (3) | Cd2-O19W               | 2.278 (3) |
| Rb2-O6 <sup>iv</sup>   | 2.824 (3) | Cd2-O10                | 2.316 (3) |
| Rb2-O11vi              | 2.886 (3) | $Cd2 - O18W^{iv}$      | 2.316 (3) |
| Rb2-O10                | 2.992 (3) | Cd3-O13                | 2.264 (3) |
| Rb2-O7 <sup>vii</sup>  | 3.096 (3) | Cd3-O16 <sup>iv</sup>  | 2.265 (3) |
| Rb2-O8 <sup>vii</sup>  | 3.097 (3) | Cd3-O14 <sup>iii</sup> | 2.293 (3) |
| Rb2-O4                 | 3.127 (3) | Cd3 - O21W             | 2.304 (3) |
| Rb2-O9 <sup>vi</sup>   | 3.131 (3) | Cd3-O20W               | 2.331 (3) |
| $Rb2-O19W^{iv}$        | 3.205 (3) | Cd3-O12                | 2.342 (3) |
|                        |           |                        |           |

Symmetry codes: (i) -x + 1, -y - 1, -z - 1; (ii)  $x, -y - \frac{3}{2}, +z - \frac{1}{2}$ ; (iii)  $-x + 1, +y - \frac{1}{2}, -z - \frac{1}{2}$ ; (iv)  $x, -y - \frac{1}{2}, +z - \frac{1}{2}$ ; (v) x, y - 1, z; (vi)  $x, -y - \frac{1}{2}, +z + \frac{1}{2}$ ; (vii) x, y + 1, z.



**Figure 2** Packing diagram of (I).

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                          | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------|------|--------------|--------------|---------------------------|
| O17W−H17B····O3 <sup>viii</sup>           | 0.82 | 1.95         | 2.755 (4)    | 166                       |
| O18W−H18A···O2 <sup>viii</sup>            | 0.82 | 1.82         | 2.627 (4)    | 168                       |
| O18W−H18B···O3                            | 0.82 | 1.79         | 2.599 (4)    | 169                       |
| $O19W-H19A\cdots O4^{vi}$                 | 0.82 | 2.02         | 2.807 (4)    | 162                       |
| $O19W - H19B \cdot \cdot \cdot O17W^{v}$  | 0.82 | 2.39         | 3.019 (4)    | 134                       |
| $O20W - H20A \cdot \cdot \cdot O21W^{ix}$ | 0.82 | 2.36         | 3.123 (4)    | 154                       |
| $O20W-H20B\cdots O13^{iv}$                | 0.82 | 2.38         | 2.966 (4)    | 129                       |
| $O20W-H20B\cdots O14^{ix}$                | 0.82 | 2.09         | 2.855 (4)    | 154                       |
| $O21W-H21A\cdots O5^{iv}$                 | 0.82 | 2.02         | 2.773 (4)    | 153                       |
| $O21W-H21A\cdots O15$                     | 0.82 | 2.50         | 2.914 (4)    | 112                       |
| $O21W - H21B \cdots O12^{iv}$             | 0.82 | 1.93         | 2.751 (4)    | 174                       |

Symmetry codes: (iv)  $x, -y - \frac{1}{2}, +z - \frac{1}{2}$ ; (v) x, y - 1, z; (vi)  $x, -y - \frac{1}{2}, +z + \frac{1}{2}$ ; (viii) -x, -y, -z; (ix) -x + 1, -y, -z - 1.

Water H atoms were positioned geometrically (O–H = 0.82 Å) and refined as riding, with the constraint  $U_{iso}(H) = 1.5U_{eq}(\text{carrier})$  applied. The highest electron-density peak is located 0.79 Å from atom S3.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3* (Farrugia, 1997) and *CAMERON* (Watkin *et al.*, 1993); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2003).

The authors thank the Department of Science and Technology, India (IRHPA-DST), for providing the CCD facility at the Indian Institute of Science.

#### References

Bruker (1998). *SMART* (Version 5.0) and *SAINT* (Version 6.02). Bruker AXS Inc. Madison Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hidalgon, A., Veintemillas, S., Rodriguez-Clemente, R., Molins, E., Balarew, C., Keremidchieva, B. & Spasov, V. (1996). Z. Kristallogr. 211, 153–157.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS and SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.