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Abstract In this paper, we present a new preference disaggregation method for multiple
criteria sorting problems, called DIS-CARD. Real-life experience indicates the need of con-
sidering decision making situations in which a decision maker (DM) specifies a desired
number of alternatives to be assigned to single classes or to unions of some classes. These
situations require special methods for multiple criteria sorting subject to desired cardinalities
of classes. DIS-CARD deals with such a problem, using the ordinal regression approach
to construct a model of DM’s preferences from preference information provided in terms
of exemplary assignments of some reference alternatives, together with the above desired
cardinalities. We develop a mathematical model for incorporating such preference informa-
tion via mixed integer linear programming (MILP). Then, we adapt the MILP model to two
types of preference models: an additive value function and an outranking relation. Illustrative
example is solved to illustrate the methodology.

Keywords Multiple criteria sorting · Preference disaggregation · Desired class cardinality ·
Additive value function · Outranking relation

1 Introduction

Multiple criteria sorting problems involve an assignment of a set of alternatives evaluated
on a family of criteria into homogeneous classes which are given in a preference order. The
classes have a semantic definition and are pre-defined, which means that they do not result
from the analysis. Such a discrimination among two or more sets of alternatives is a problem
of a major practical interest in such fields as finance (e.g., long term obligation rating for
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government entities, business failure prediction, or credit risk assessment), medicine (e.g.,
groups of patients at different risk levels), human resource management (e.g., portfolio selec-
tion), or environmental protection (e.g., analysis of environmental impacts of different energy
policies).

For decades, sorting problems were approached only with statistical discrimination meth-
ods. However, since 1980s one observes landmark research in multiple criteria decision
aiding (MCDA) sorting methods [26]. This research was focused on the development of
preference modeling procedures that enable incorporation of the DM’s preference informa-
tion into the sorting model. Precisely, preference information elicited from the DM, and
considered in various approaches, is either direct or indirect. Direct preference information
specifies parameters of the employed preference model and limiting or central profiles (see,
e.g., [1,20,24]) of the classes defined in the criteria space, while indirect preference informa-
tion is a set of exemplary assignments of some reference alternatives to particular classes or to
unions of some classes (see, e.g., [15,21,25]). The former may refer, e.g., to substitution rates
among criteria in an additive linear value function model considered within multi-attribute
value theory (MAVT) [14], or to weights of the criteria and comparison thresholds used in
the outranking approach [22]. The latter is necessary for finding the parameters of preference
models used for sorting within either MAVT or the outranking approach, via a disaggregation
procedure called ordinal regression [23].

Although in many real-world sorting problems it is necessary to take into account require-
ments with respect to the desired cardinality of classes, these problems did not receive due
attention in MCDA research. In fact, people often express this type of requirements, using
statements like the following ones: “we wish to accept at least 5 and not more than 10 candi-
dates”, “we need to reject at least 30 applications and not more than 20 others may deserve
further consideration”, “at most 10 % of the employees can be provided with the highest
incentive package”, or “the cardinalities of all classes needs to be balanced”. Note that these
are most often imprecise statements which refer to the lower and upper limits on the number
of alternatives to be assigned to a particular class or to unions of some classes. These bounds
are specified either as explicit numbers or as a percent of the whole set of alternatives.

In this paper, we present a method, called DIS-CARD, which handles the above require-
ments about desired cardinalities of classes. In DIS-CARD, this type of information is com-
bined with “traditional” preference information provided in a direct way, but with some
tolerated imprecision, or in an indirect way, i.e. with assignment examples. The latter type of
preference informations makes that DIS-CARD is based on the ordinal regression approach.
Using the ordinal regression approach, one gets, in general, a rich set of compatible instances
of the assumed preference model, and, consequently, one can use such a compatible instance
which best satisfies the required cardinalities of classes. Compatible instance means here
a set of parameter values which ensures that the assumed preference model represents (is
concordant with) the preference information provided by the DM. Note that the requirement
of imprecise or indirect preference information is an advantage of the proposed method,
because it is easier to provide for the DM than precise and direct preference information.

In the literature, there is known only one work [18] close to the approach proposed in
this paper. This work, however, is concerned with more formal discussion on the so-called
“Constrained Sorting Problem” (CSP). In particular, in [18] the authors introduce the notion
of “the category size” defined as “the proportion by which an evaluation vector corresponding
to a realistic alternative is assigned to the category”. They consider the cases when a complete
description of the set of alternatives A is available (static CSP) or when A is imprecisely
known beforehand (anticipatory CSP). They also discuss ways of expressing constraints on
category sizes for both static and anticipatory CSPs. Finally, they propose a procedure for
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inferring the values for preference model parameters that accounts for the preference about
the size of categories in the context of the UTADIS method [4].

DIS-CARD is focused instead on adapting some well-known MCDA sorting methods to
deal specifically with desired cardinalities of classes. In particular, assuming an additive value
function preference model, apart from considering a threshold-based sorting procedure as in
UTADIS [4], we propose also an example-based sorting procedure as in [8,17]. Moreover,
we adapt our proposal to some popular outranking methods, which are based on assignment
examples [15], limiting class profiles [20,24], or central and typical class profiles [1,2]. In
this way, DIS-CARD is concerned with the preference modeling point of view rather than
with some theoretical considerations and ordinal regression formulation concerning a single
method (UTADIS). We show that the preference information concerning the desired cardi-
nalities of classes can be translated into mathematical constraints which are irrespective of the
underlying method. Moreover, we suitably adapt (in case of value-based methods) or newly
introduce (in case of outranking-based methods) disaggregation procedures which make it
possible to account for this type of preference information. Finally, we present some proce-
dures for selection of a single preference model instance compatible with the requirements
concerning the desired class cardinalities. We also discuss the way of computing all possi-
ble assignments for each alternative. Although our proposal is focused on the case where
both assignment examples and final recommendation for each alternative are single class
assignments, when discussing an example-based value-driven sorting procedure, we show
how DIS-CARD can be extended to the case of assignment examples and recommendation
concerning an interval of contiguous classes.

The organization of the paper is the following. In the next section, we introduce basic
concepts and notation that will be used in the paper. We also outline existing multiple criteria
sorting methods and define the models that we refer to in our approach. In Sect. 3, we present
the mathematical model which handles the preference information referring to the desired
cardinalities of classes. In Sect. 4, we discuss how to choose a single instance of the prefer-
ence model compatible with the new type of preference information considered in this paper.
Section 5 provides an illustrative example showing a practical application of DIS-CARD.
The last section concludes the paper.

2 Concepts and notation

We shall use the following notation:

– A = {a1, a2, . . . , ai , . . . , an}—a finite set of n alternatives;
– AR = {a∗, b∗, . . .}—a finite set of reference alternatives, on which the DM accepts to

express preferences; usually, AR ⊆ A;
– G = {g1, g2, . . . , g j , . . . , gm}—a finite set of m evaluation criteria, g j : A → R for all

j ∈ J = {1, 2, . . . ,m};
– X j = {g j (ai ), ai ∈ A}—the set of all different evaluations on g j , j ∈ J ; we assume,

without loss of generality, that the greater g j (ai ), the better alternative ai on criterion g j ,
for all j ∈ J ;

– x1
j , x2

j , . . . , x
n j (A)
j —the ordered values of X j , xk

j < xk+1
j , k = 1, 2, . . . , n j (A) − 1,

where n j (A)=|X j | and n j (A) ≤ n; consequently, X =∏m
j=1 X j is the evaluation space;

– C1,C2, . . . ,C p—predefined preference ordered classes, each having a specific semantic
definition; Ch+1 is preferred to Ch, h = 1, . . . , p − 1.

Table 1 summarizes the notation used throughout the paper.
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2.1 Value-driven sorting procedures

When approaching sorting problems with the use of MAVT [14], we shall employ a preference
model in the form of an additive value function:

U (a) =
m∑

j=1

u j (g j (a)) =
m∑

j=1

u j (a)

with general marginal value functions u j , taking values u j (xk
j ), k = 1, . . . , n j (A), j ∈ J , in

characteristic points. Marginal value functions are monotone non-decreasing and normalized,
so that comprehensive value U is bounded to the interval [0, 1], i.e.:

u j (xk
j )− u j (x

(k−1)
j ) ≥ 0, j ∈ J, k = 2, · · · , n j (A),

u j (x1
j ) = 0, j ∈ J,

∑m
j=1 u j (x

n j (A)
j ) = 1.

⎫
⎪⎬

⎪⎭
EUD

base

The first method based on the ordinal regression approach, that was designed for multiple
criteria sorting problems, and that employs an additive value function, was UTADIS (see,
e.g., [4,25]). The preference information supplied by the DM is a set of assignment exam-
ples on a subset of reference alternatives AR . Each assignment example specifies a desired
assignment of a corresponding reference alternative a∗ ∈ AR to a single class:

a∗ → ChDM(a∗).

The original UTADIS used a threshold-based sorting procedure, where each class Ch, h =
1, . . . , p, is delimited by the lower bh−1 and upper bh thresholds defined on the compre-
hensive value U . These thresholds are equal to the infimum and supremum values for an
alternative to be assigned to class Ch , respectively. A pair (U,b), where U is a value func-
tion and b = [b1, . . . , bp−1] is a vector of thresholds bh, h = 1, . . . , p − 1, such that
0 < b1 < b2 < · · · < bp−1 < 1, is consistent with the preference information provided by
the DM, if for all a∗ ∈ AR , such that a∗ → ChDM(a∗):

bhDM(a∗) > U (a∗) ≥ bhDM(a∗)−1.

Consequently, the set of constraints which represents preference information given in the
form of assignment examples is the following:

U (a∗) ≥ bhDM(a∗)−1
U (a∗)+ ε ≤ bhDM(a∗)

}

for all a∗ ∈ AR

b1 ≥ ε, bp−1 + ε ≤ 1,
bh ≥ bh−1 + ε, h = 2, . . . , p − 1,

⎫
⎪⎪⎬

⎪⎪⎭

EUD
pref

where ε is a small positive value (we will use this interpretation of ε in all below formulations).
In order to achieve higher discriminating and predicting ability, Doumpos and Zopounidis
[25] proposed to calculate an additive value function and the values of thresholds delimiting
the classes, by maximizing the minimum distance of the comprehensive values of reference
alternatives from the class thresholds.

The UTADIS method was generalized in [10] and [15] by allowing imprecise assignments,
and by taking into account the whole set of compatible additive value functions as DM’s pref-
erence model; in consequence, the DM gets information about the range of possible classes
to which each alternative can be assigned. Köksalan and Özpeynirci [15] consider marginal
value functions which are piecewise linear, as in the original UTADIS, whereas Greco et al.
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Table 1 Notation

Notation Meaning

E X
Y Set of constraints which models Y for method X

X ∈ {UD,UE,EL,EBP,EBO,EC,ECD,ECA,EnCD,EnCA, PR}
Y ∈ {base, pref, card, post-opt}

UD UTADIS

UE Assignment-based value-driven sorting procedure

EL ELECTRE

EBP Pessimistic procedure of ELECTRE TRI

EBO Optimistic procedure of ELECTRE TRI

EC ELECTRE-like assignment-based procedure

ECD Descending rule of ELECTRE TRI-C

ECA Ascending rule of ELECTRE TRI-C

EnCD Descending rule of ELECTRE TRI-nC

EnCA Ascending rule of ELECTRE TRI-nC

PR FlowSort

Base Monotonicity of marginal functions and normalization

of the comprehensive scores (values, indices, or flows)

Pref Preferences in form of assignment examples

Card Desired cardinalities of classes

Post-opt Optimization criteria for post-optimality analysis

U (a) Comprehensive value of alternative a ∈ A

u j (a) Marginal value of alternative a ∈ A on criterion g j

ChDM(a∗) Desired precise assignment for reference alternative a∗ ∈ AR

[CLU (a),CRU (a)] Assignment of a with a value function U

C(a, b) Concordance index for ordered pair (a, b) ∈ A × A

ψ j (a, b) Marginal concordance index for ordered pair (a, b) ∈ A × A

d j (a, b) Marginal discordance index for ordered pair (a, b) ∈ A × A

q j Indifference threshold for criterion g j

p j Preference threshold for criterion g j

v j Veto threshold for criterion g j

k j Weight of criterion g j

[q j,in f , qsup
j ] Value interval specified by the DM for indifference threshold q j

[p j,in f , psup
j ] Value interval specified by the DM for preference threshold p j

λ Concordance (cutting) level

S Outranking relation

Sc Non-outranking relation

va,Ch Binary variable corresponding to assignment of a to Ch

Cmin
h Desired minimum cardinality of class Ch

Cmax
h Desired maximum cardinality of class Ch

C
min-perc
h (in %) Desired minimum cardinality (in % of the cardinality of A) of class Ch

C
max-perc
h (in %) Desired maximum cardinality (in % of the cardinality of A) of class Ch
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Table 1 continued

Notation Meaning

Cmin
h,l Desired minimum cardinality of union of classes Ch ,Ch+1, …, Cl

Cmax
h,l Desired maximum cardinality of union of classes Ch ,Ch+1, …, Cl

a∗
j (a j,∗) Alternative a ∈ A with the best (worst) evaluation on g j

employ in the UTADISGMS method [10] general monotone value functions and, additionally,
propose to compute necessary assignments which specify the most certain recommendations
worked out on the basis of all compatible value functions considered simultaneously. Both
methods are interactive in the sense that during the solution process the DM is occasionally
required to place some additional reference alternatives into classes, that affects classification
of the remaining alternatives as well.

When it comes to an example-based value driven sorting procedure, classes are implic-
itly delimited by some assignment examples rather than threshold on a utility scale (see,
e.g., [11,17]). Precisely, such a procedure is driven by a value function U and its associated
assignment examples. The procedure assigns an alternative a ∈ A to an interval of classes
[CLU (a),CRU (a)], in the following way (note that we assume precise assignment examples):

LU (a) = Max
{

hDM(a∗) : U (a∗) ≤ U (a), a∗ ∈ AR
}
,

RU (a) = Min
{

hDM(a∗) : U (a∗) ≥ U (a), a∗ ∈ AR
}
.

In particular, if there is at least one assignment example for each class, then each non-refer-
ence alternative can be assigned either to one or two consecutive classes. When using such
a procedure, the consistency of a value function U with a set of assignment examples could
be modeled in the following way:

U (a∗) ≥ U (b∗)+ ε,

for all a∗, b∗ ∈ AR, such that hDM(a∗) > hDM(b∗).

}

EUE
pref

2.2 ELECTRE-like methods

When approaching sorting problems with the use of outranking methods [22], we shall employ
a preference model in the form of an outranking relation which becomes true when a concor-
dance index is greater than some cutting level. We will also not take into account the veto phe-
nomenon. In order to construct an outranking model, we assume that the intra-criterion pref-
erence information concerning indifference and preference thresholds p j ≥ q j ≥ 0, j ∈ J ,
respectively, is given. Note that when comparing two alternatives a, b ∈ A on a given cri-
terion, the zone between indifference and preference thresholds corresponds to hesitation
between opting for indifference and preference. We admit that the DM provides a real inter-
val for each threshold, rather than a precise value. We use the following notation to represent
these intervals:

– [q j,in f , qsup
j ], where q j,in f and qsup

j are, respectively, the least and the greatest value of
indifference threshold allowed by the DM,

– [p j,in f , psup
j ], where p j,in f and psup

j are, respectively, the least and the greatest value of
preference threshold allowed by the DM.
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The concordance index represents the strength of the coalition of criteria being in favor of
the statement “a outranks b” (aSb). It is defined in the following way:

C(a, b) =
m∑

j=1

ψ j (a, b),

where the marginal concordance indices ψ j (a, b), j ∈ J , are defined as in [7] and [13],
i.e., they are general non-decreasing real-valued functions with clearly distinguished zones
of strict and weak preference as well as indifference, and not only piecewise linear or of
other arbitrarily chosen shape. We are bounding, however, the area of variation of a mar-
ginal concordance index in the zone of weak preference using some extreme linear shapes
of this index, which are consistent with the intra-criterion preference information provided
by the DM. Moreover, we assume that no criterion is more important than all the other cri-
teria jointly. Consequently, the compatible marginal concordance indices are defined by the
following set of constraints:

∑m
j=1 ψ j (a∗

j , a j,∗) = 1, for all j ∈ J :
(g j (a∗

j ) = x
n j (A)
j ) and (g j (a j,∗) = x1

j ) with a∗
j , a j,∗ ∈ A,

ψ j (a∗
j , a j,∗) ≤ 0.5, j ∈ J,

for all (a, b, c, d) ∈ A × A × A × A, j ∈ J :
ψ j (a, b) ≥ ψ j (c, d) if g j (a)− g j (b) > g j (c)− g j (d),
ψ j (a, b) = ψ j (c, d) if g j (a)− g j (b) = g j (c)− g j (d),

for all (a, b) ∈ A × A, j ∈ J :
ψ j (a, b) = 0 if g j (a)− g j (b) ≤ −psup

j ,

ψ j (a, b) ≥ ε if g j (a)− g j (b) > −p j,in f ,

ψ j (a, b) = ψ j (a∗
j , a j,∗) if g j (a)− g j (b) ≥ −q j,in f ,

ψ j (a, b)+ ε ≤ ψ j (a∗
j , a j,∗) if g j (a)− g j (b) < −qsup

j ,

ψ j (a, b) ≥ ψ j (a∗
j , a j,∗) · [p j,in f − (g j (b)− g j (a))]/(p j,in f − q j,in f )

if − q j,in f > g j (a)− g j (b) > −p j,in f ,

ψ j (a, b) ≤ ψ j (a∗
j , a j,∗) · [psup

j − (g j (b)− g j (a))]/(psup
j − qsup

j )

if − qsup
j > g j (a)− g j (b) > −psup

j .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EEL
base

If the compatible concordance indices would be used in a method that takes into account
class profiles B = {b0, b1, . . . , bp}, then in the above formulation one should consider set
A ∪ B instead of A only. For a more detailed definition and explanation of each constraint,
see [7]. Note that the lower and upper bounds for indifference and preference thresholds can
be defined by means of non-decreasing functions taking g j (a) as an argument; then, they are
denoted by [q j,in f (a), qsup

j (a)] and [p j,in f (a), psup
j (a)]. In particular, these can be affine

functions which are used in most ELECTRE methods. Moreover, in case the DM is able to
provide preference information about the weights of the criteria k j , j ∈ J , we may represent
the DM’s preference statements in the following way:

– interval weights of the criteria k j , i.e. k j ∈ [k j,∗, k∗
j ] ⇒ ψ j (a∗

j , a j,∗) ≥ k j,∗ and
ψ j (a∗

j , a j,∗) ≤ k∗
j ,

– pairwise comparisons of the weights of the criteria, e.g., ki ≥ k j ⇒ ψi (a∗
i , ai,∗) ≥

ψ j (a∗
j , a j,∗).

We conclude that a outranks b, if C(a, b) ≥ λ, where λ ∈ [0.5, 1] is a concordance cutting
level, and that a does not outrank b (aScb), otherwise. Knowing whether S is true or not for
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an ordered pair of alternatives (a, b) ∈ A × A, one is able to represent situations of weak
(Q) or strict (P) preference, indifference (∼), and incomparability (?) among a and b:

aSb and bSca ⇔ aQb or a Pb ⇔ a � b,
where �= {Q ∪ P},

aSb and bSa ⇔ a ∼ b,
aScb and bSca ⇔ a?b.

⎫
⎪⎪⎬

⎪⎪⎭

The first outranking-based method for multiple criteria sorting problems was ELECTRE TRI
[24]. It compares alternatives to some evaluation profiles which are considered as represen-
tative fictitious alternatives delimiting the classes from the top and from the bottom. The
profiles are denoted by b0, b1, . . . , bp , with bh, h = 1, . . . , p − 1, being the upper profile of
class Ch and the lower profile of class Ch+1. The method verifies the truth of an outranking
relation S between pairs composed of alternatives and class profiles, and exploits this relation
to assign each alternative to a specific class, using two assignment procedures. A pessimistic
procedure compares a successively to bh , for h = p − 1, . . . , 0, and assigns it to class Ch+1,
finding the first profile bh , such that aSbh . Using the terms of the model employed in this
paper, a is assigned to Ch , according to the pessimistic procedure, if the following set of
constraints is satisfied:

C(a, bt ) ≥ λ, for t = 0, . . . , h − 1,
C(a, bt )+ ε ≤ λ, for t = h, . . . , p − 1.

}

However, since ELECTRE TRI requires that bt dominates bt−1, t = 1, . . . , p, the above set
of conditions could be reduced to the following set of constraints:

C(a, bh−1) ≥ λ,

C(a, bh)+ ε ≤ λ, if h < p.

}

As far as an optimistic procedure is concerned, it compares a successively to bh, h =
1, . . . , p, and assigns it to class Ch , such that bh is the first profile for which bh � a.
As a result, a is assigned to Ch , if the following set of constraints is satisfied:

C(a, bt ) ≥ λ− M · v1(a, bt ),

C(bt , a)+ ε ≤ λ+ M · v2(a, bt ),

v1(a, bt )+ v2(a, bt ) ≤ 1,

⎫
⎬

⎭
for t = 1, . . . , h − 1; if h > 1,

C(bh, a) ≥ λ,

C(a, bh)+ ε ≤ λ,

}

if h < p,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where v1(a, bt ) and v2(a, bt ) are binary variables, which guarantee that either C(a, bt ) ≥ λ

or C(bt , a) < λ holds for t = 1, . . . , h − 1. Note that although original ELECTRE TRI
method does not require the DM to specify assignment examples, the above set of constraints
may be used in the ordinal regression approach to model such exemplary assignments in case
the DM is able to provide some. Then, such a set of constraints needs to be added for all
a∗ ∈ AR with the proviso that h is replaced by hDM(a∗). Let us denote the collective set
of constraints obtained in this way by EEBP

pref (for a pessimistic procedure) and EEBO
pref (for an

optimistic procedure).
Specifying the class profiles can be an overwhelming task for a DM. For such decision

making situations, there were proposed some outranking methods which require the DM
to provide indirect preference information in the form of assignment examples (see, e.g.,
[6,16,21]). An outranking model is said to be consistent with a set of assignment examples
if and only if:

∀a∗, b∗ ∈ AR, a∗Sb∗ ⇒ hDM(a∗) ≥ hDM(b∗),
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which can be expressed in a equivalent way as:

∀a∗, b∗ ∈ AR, hDM(a∗) > hDM(b∗) ⇒ b∗Sca∗.

In terms of an outranking model used in this paper, these requirements can be translated into
the following set of constraints:

C(a∗, b∗)+ ε ≤ λ, for all (a∗, b∗) ∈ AR × AR,

such that hDM(a∗) < hDM(b∗).

}

EEC
pref

The assignment of the remaining alternatives relies on construction of the model which
maintains the desired relations between them and the reference alternatives.

Note that an outranking model based on the concordance index without veto phenomenon
is employed in a variety of multiple criteria methods (see, e.g., [5,16]). However, within the
proposed framework, we could also model the truth and falsity of the outranking relation in
a different way. For example, to avoid the need of specification of comparison thresholds
by the DM, we could use a simplified model which is in line with the axiomatic approach
of Bouyssou and Marchant [3]. Precisely, ψ j (a, b) = ψ j (a∗

j , a j,∗), if g j (a) ≥ g j (b), and
ψ j (a, b) = 0, otherwise. Furthermore, we could take advantage of a more complete model
used in ELECTREGKMS [7], and require aSb to be true if and only if concordance index
C(a, b) is not less than a concordance cutting level λ, and a is not significantly (by more
than a veto threshold) worse than b on any criterion, i.e.:

C(a, b) =
m∑

j=1

ψ j (a, b) ≥ λ and g j (b)− g j (a) < v j , j ∈ J,

On the contrary, a does not outrank b, if either concordance index C(a, b) is less than a
concordance cutting level λ, or there is at least one criterion g j for which b is evaluated
better than a by more than a veto threshold v j , i.e.:

C(a, b) =
m∑

j=1

ψ j (a, b) < λ+ M0(a, b) and g j (b)− g j (a) ≥ v j − M · M j (a, b),

where M j (a, b) ∈ {0, 1}, j = 0, . . . ,m, and
m∑

j=0

M j (a, b) ≤ m.

Alternatively, we could refer to the credibility degree used in [21], which is defined as follows:

S(a, b) = C(a, b) · [1 − dmax (a, b)],
where dmax (a, b) = max j∈J d j (a, b), and d j (a, b) is a single-criterion discordance index,
which takes a value in the range [0, 1], depending on the comparison of the difference
g j (b)− g j (a) with the veto threshold v j (for details, see [21]). In the latter variant, the DM
would be required to provide precise values for comparison thresholds.

It is also worth stressing that the approach presented in this paper remains valid for the
original definition of the credibility degree presented in the ELECTRE TRI method [19,24].
However, the use of such a model in the context of imprecise or indirect preference informa-
tion is limited by the weak efficiency of non-linear mixed integer programming solvers.

In the following sections, the considered sorting methods based on preference model either
in the form of value function or outranking relation, will be called UTADIS-like methods or
ELECTRE-like methods, respectively.
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Table 2 Evaluation table for the
assessment problem of sales
managers

Alternative g1 g2 g3

Abramov (A) 100 100 44

Chen (C) 85 37 42

Dall (D) 72 69 59

Ellison (E) 13 0 68

Furukawa (F) 0 43 13

Girouille (G) 93 86 31

Hartley (H) 55 23 17

Ivashko (I) 72 23 25

Johnson (J) 32 86 97

Morillo (M) 29 70 12

Naray (N) 41 88 100

Petersson (P) 49 1 0

Stevens (S) 60 50 12

Trainini (T) 15 9 8

Youssef (Y) 2 51 64

Table 3 The allowed ranges of
possible values of indifference
and preference thresholds for the
assessment problem of sales
managers

q j,in f qsup
j p j,in f psup

j

g1 2 4 6 9

g2 1 3 5 7

g3 1 3 4 5

Illustrative example (part 1)
For the purpose of illustration, let us reconsider the problem discussed in [9], which is
about evaluating the performance of company’s international sales managers in order to sort
them into four classes associated with incentive packages, C={low (LO), lower-middle
(LM), upper-middle (UM), high (HI)}. We will refer to it in the following sections to illus-
trate different aspects of the proposed framework. We will approach the problem with the
UTADIS-like procedure and the ELECTRE-like procedure, both requiring the DM to provide
some assignment examples.

Personnel department has considered 15 managers working in different countries. They
have taken into consideration three criteria with an increasing direction of preference: sales
skills (g1), territory management skills (g2), and customer satisfaction (g3). The evaluations
of the alternatives are provided in Table 2 (the abbreviations of the names will be used to
refer to the alternatives in the mathematical constraints).

Let us assume that the DM is able to express the following precise judgments about
four sales managers: Chen deserves high (HI) incentive package, Ivashko should receive
upper-middle (UM) bonus, and the desired classes for Youssef and Trainini are lower-middle
(LM) and low (LO), respectively. In order to get a recommendation using the ELECTRE-like
method, the DM has to provide preference information consisting of the intervals of possible
values of indifference and preference thresholds (see Table 3).
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The set of constraints which defines the set of value functions compatible with the pro-
vided assignment examples is the following [to save space, we provide only exemplary
monotonicity constraints (two for each marginal value function)]:

u1(g1(Y))− u1(g1(F)) ≥ 0; . . . ; u1(g1(A))− u1(g1(G)) ≥ 0;
u2(g2(P))− u2(g2(E)) ≥ 0; . . . ; u2(g2(A))− u2(g2(N)) ≥ 0;
u3(g3(T))− u3(g3(P)) ≥ 0; . . . ; u3(g3(N))− u3(g3(J)) ≥ 0;
u1(g1(F)) = 0; u2(g2(E)) = 0; u3(g3(P)) = 0;
u1(g1(A))+ u2(g2(A))+ u3(g3(N)) = 1;
U (C) ≥ U (I)+ ε; U (I) ≥ U (Y)+ ε; U (Y) ≥ U (T)+ ε.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The set of constraints which defines the set of compatible outranking models is the follow-
ing [to save space, we provide only exemplary constraints concerning the shape of marginal
concordance functions (one for each constraint type)]:

ψ1(A,F)+ ψ2(A,E)+ ψ3(N,P) = 1;
ψ1(A,F) ≤ 0.5; ψ2(A,E) ≤ 0.5; ψ3(N,P) ≤ 0.5;
ψ1(A,D) ≥ ψ1(A,C), since g1(A)− g1(D) > g1(A)− g1(C);
ψ1(A,C) ≥ ψ1(T,F), since g1(A)− g1(C) = g1(T)− g1(F);
ψ1(C,A) = 0, since g1(C)− g1(A) ≤ −psup

1 = −9;
ψ1(A,C) ≥ ε, since g1(A)− g1(C) > −p1,in f = −6;
ψ1(A,C) = ψ1(A,F), since g1(A)− g1(C) ≥ −q1,in f = −2;
ψ1(C,A)+ ε ≤ ψ1(A,F), since g1(C)− g1(A) < −qsup

1 = −4;
ψ1(H,S) ≥ ψ1(A,F) · 1/4, since − q1,in f > g1(H)− g1(S) > −p1,in f ;
ψ1(H,S) ≤ ψ1(A,F) · 4/5, since − qsup

1 > g1(H)− g1(S) > −psup
1 ;

. . .

C(T,Y)+ ε ≤ λ; C(T,I)+ ε ≤ λ; C(T,C)+ ε ≤ λ;
C(Y,I)+ ε ≤ λ; C(Y,C)+ ε ≤ λ;
C(I,C)+ ε ≤ λ.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Provided preference information is consistent, and, consequently, a set of compatible
instances of the preference model is not empty.

3 Preference information referring to the desired cardinalities of classes

In this section, we present mathematical models which represent preference information of
the DM referring to the desired cardinalities of classes. Note that in all formulations below,
M is an auxiliary variable equal to a big positive value, ε is a small positive value, and va,Ch

is a binary variable associated with assignment of alternative a to class Ch .
Let us first introduce the base model which will be used by different sorting methods. For

all these methods, whenever contrary is not explicitly stated, we assume that each alternative
a ∈ A is to be assigned to exactly one class, i.e., for all a ∈ A:

p∑

h=1

va,Ch = 1,

and that all exemplary assignments provided by the DM are reproduced, i.e., for all reference
alternatives a∗ ∈ AR :

va∗,ChDM (a∗) = 1.
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The constraints specific for each method are the following:

– for the UTADIS-like method using class thresholds:

(U D1) U (a) ≥ bh−1 − M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,
(U D2) U (a)+ ε ≤ bh + M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A.

}

EUD
card

Constraints (U D1) and (U D2) compare U (a) for all alternatives in A with the lower
bh−1 and upper bh thresholds of class Ch, h = 1, . . . , p. If a binary variable va,Ch , which
is associated with the comparison of a with thresholds delimiting the class Ch , was equal
to 0, then the corresponding constraints would always be satisfied, which is equivalent to
elimination of these constraints. On the contrary, if va,Ch was equal to 1, then alternative
a would be assigned to class Ch , because its comprehensive value U (a) satisfies the fol-
lowing conditions: bh−1 ≤ U (a) < bh . As a result, U (a) is greater than comprehensive
values of all reference alternatives assigned by the DM to any class worse than Ch , and
it is smaller than comprehensive values of all reference alternatives assigned by the DM
to any class better than Ch .

– for an example-based value driven sorting procedure:

(U E1) U (a)+ M · (1 − va,Ch ) ≥ U (b)+ ε − M · (1 − vb,Ch−1),

h = 2, . . . , p, for all a ∈ A, for all b ∈ A \ {a},
(U E2) U (a)+ ε − M · (1 − va,Ch ) ≤ U (b)+ M · (1 − vb,Ch+1),

h = 1, . . . , p − 1, for all a ∈ A, for all b ∈ A \ {a}.

⎫
⎪⎪⎬

⎪⎪⎭

EUE
card

Constraints (U E1) and (U E2) make sure that, when assigned to class Ch , the compre-
hensive value of alternative a is greater than comprehensive values of all alternatives
(including non-reference ones) assigned by the procedure to class Ch−1, and it is less
than comprehensive values of all alternatives assigned to class Ch+1.
If we did not require the final recommendation for each alternative to be a single class
assignment, the respective model would be the following:

(U E1′)
∑p

h=1 va,Ch ≥ 1,
(U E2′) U (a)+ M · (1 − va,Ch ) ≥ U (aC<h )+ ε, h = 2, . . . , p,

for all a ∈ A, for all aC<h ∈ AR, such that hDM(aC<h ) < h,
(U E3′) U (a)+ ε − M · (1 − va,Ch ) ≤ U (aC>h ), h = 1, . . . , p − 1,

for all a ∈ A, for all aC>h ∈ AR, such that hDM(aC>h ) > h.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

EUE′
card

The explanation of the constraints is analogous to the explanation given in the previous
case with the proviso that we collate comprehensive value of a with comprehensive values
of reference alternatives only.

– for the ELECTRE-like method with preference information in the form of assignment
examples:

(EC1) C(aC<h , a)+ ε ≤ λ+ M · (1 − va,Ch ), h = 2, . . . , p,
for all a ∈ A, for all aC<h ∈ AR, such that hDM(aC<h ) < h,
(EC2) C(a, aC>h )+ ε ≤ λ+ M · (1 − va,Ch ), h = 1, . . . , p − 1,
for all a ∈ A, for all aC>h ∈ AR, such that hDM(aC>h ) > h.

⎫
⎪⎪⎬

⎪⎪⎭

EEC
card

Constraints (EC1) and (EC2) guarantee that, when assigned to class Ch , alternative a
does not outrank any reference alternative assigned by the DM to a class worse than Ch ,
and is not outranked by any reference alternative assigned by the DM to a class better than
Ch , respectively. Consequently, a is either incomparable to each of these alternatives, or
it is preferred to (worse than) reference alternatives assigned by the DM to classes worse
(better) than Ch .
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– for a pessimistic rule of the ELECTRE-TRI-like method:

(E B P1) C(a, bh−1) ≥ λ− M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,
(E B P2) C(a, bh)+ε ≤ λ+M · (1 − va,Ch ) h = 1, . . . , p − 1, for all a ∈ A.

}

EEBP
card

Constraints (E B P1) and (E B P2)make sure that, when assigned to class Ch , alternative
a outranks all lower profiles of classes not better than Ch , and does not outrank all lower
profiles of classes better than Ch .

– for an optimistic rule of the ELECTRE-TRI-like method:

(E BO1) C(bh, a) ≥ λ− M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(E BO2) C(a, bh)+ ε ≤ λ+ M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(E BO3) C(a, b<h)+ M · v1

a,bh
≥ λ− M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A, for all b<h ∈ {bt , t = 1, . . . , h − 1},
(E BO4) C(b<h, a)+ ε − M · v2

a,bh
≤ λ+ M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A, for all b<h ∈ {bt , t = 1, . . . , h − 1},
(E BO5) v1

a,bh
+ v2

a,bh
≤ 1 + M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EEBO
card

Constraints (E BO1) and (E BO2) guarantee that all upper profiles of classes not worse
than Ch are preferred to alternative a which is assigned to class Ch . Further, constraints
(E BO3), (E BO4), and (E BO5) make sure that upper profiles of classes worse than
Ch are not preferred to a (i.e., for all bt , t = 1, . . . , h − 1, either bt Sca or aSbt , which
guarantees that one of the following relations holds: a ∼ bt or a � bt or a?bt ).

In Appendix A, we present mathematical models representing assignment rules used in
ELECTRE-TRI-C [1], ELECTRE-TRI-nC [2] and FlowSort [20] outranking methods. These
models can further incorporate the preference information referring to the desired cardinali-
ties of classes. This proves generality of the proposed methodology.

Let us pass now to the modeling of the desired cardinalities of classes in terms of con-
straints which will be added to the previously defined mathematical models. These constraints
are the same irrespective of the sorting method under consideration:

– Ch should contain at least Cmin
h and at most Cmax

h alternatives, with Cmin
h ≤ Cmax

h :

(C L)
∑

a∈A va,Ch ≥ Cmin
h ,

(CU )
∑

a∈A va,Ch ≤ Cmax
h .

}

Note that if va,Ch was equal to 0, then we relax all conditions which are necessary to
assign a to class Ch . On the contrary, if va,Ch was equal to 1, then a is assigned to class
Ch , since all constraints which are necessary to place a in Ch are satisfied. Constraint
(C L) ensures that there are at least Cmin

h alternatives assigned to Ch , whereas constraint
(CU ) guarantees that there are at most Cmax

h alternatives assigned to Ch . Obviously, we
can use either (C L) or (CU ) only to model the requirements concerning the lower or
upper bound on the cardinality of class Ch , respectively.

– Ch should contain at least Cmin-perc
h (in %) and at most Cmax-perc

h (in %) of alternatives,

with Cmin-perc
h ≤ Cmax-perc

h ”:

(C L%)
∑

a∈A va,Ch ≥ �Cmin-perc
h · n�,

(CU%)
∑

a∈A va,Ch ≤ �Cmax-perc
h · n�.

}
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If the DM expressed the desired cardinality of class Ch in terms of the percentage of the
whole set of alternatives A (e.g., 5, 10 %, a quarter, one third, or half of all alternatives),
such statement would be modeled analogously to situation when the cardinality is pro-
vided explicitly. However, if Cmin-perc

h (Cmax-perc
h ) of n was not equal to a natural number,

we need to guarantee that the smallest (the greatest) number of alternatives which may
be assigned to Ch is equal to �Cmin-perc

h · n� (�Cmax-perc
h · n�).

– the range of k contiguous classes Ct , t = h, h +1, . . . , h + k −1, should contain at least
Cmin

h,k and at most Cmax
h,k alternatives, with Cmin

h,k ≤ Cmax
h,k and k ≥ 1:

(UC L)
∑h+k−1

t=h

∑
a∈A va,Ct ≥ Cmin

h,k ,

(UCU )
∑h+k−1

t=h

∑
a∈A va,Ct ≤ Cmax

h,k .

}

This type of statement could be used to express the requirements with respect to the
cardinality of class union C≥

h (classes not worse than Ch , i.e., a set of the (p − h + 1)
best classes) and C≤

h (classes not better than Ch , i.e., a set of the h worst classes). Obvi-
ously, the statements expressing the cardinality of the union of classes with respect to the
percentage of the whole set of alternatives could be modeled analogously to the previous
case.

– relative comparisons of cardinalities of different classes, e.g., class Ch should contain
not less alternatives than class Cl , i.e.:

∑

a∈A

va,Ch ≥
∑

a∈A

va,Cl .

This kind of inequality could also be used to model the requirement that the number of
alternatives assigned to each class should be more or less the same, i.e. they should not
differ by more than a given number.

Let us denote the set of constraints modeling the statements of the DM referring to the
cardinalities of classes by E req

card.

Illustrative example (part 2)
For our illustrative example, let us additionally assume that the DM needs to obey some fund-
ing limits and, thus, (s)he defines some requirements with respect to the numbers of sales
managers who should be assigned to the best and to the worst class. Precisely, the sorting
method should assign from 2 to 4 alternatives to class HI, and from 3 to 5 alternatives to
class LO. Translating these requirements into mathematical constraints requires the use of
binary variable va,Ch for each a ∈ A and h ∈ H . For example, a binary variable vA,CH I is
associated with the assignment of Abramov (A) to class HI.

The constraints which guarantee that all assignment examples and all desired cardinalities
of classes are reproduced is the following:

vC,CH I = 1; vI,CU M = 1; vY,CL M = 1; vT,CL O = 1;
vA,CL O + vA,CL M + vA,CU M + vA,CH I = 1; . . . ;
vY,CL O + vY,CL M + vY,CU M + vY,CH I = 1;
vA,CL O + vC,CL O + · · · + vT,CL O + vY,CL O ≥ 3;
vA,CL O + vC,CL O + · · · + vT,CL O + vY,CL O ≤ 5;
vA,CH I + vC,CH I + · · · + vT,CH I + vY,CH I ≥ 2;
vA,CH I + vC,CH I + · · · + vT,CH I + vY,CH I ≤ 4.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Further, the constraints specific for the UTADIS-like method are the following (to save
space, for both UTADIS- and ELECTRE-like methods we provide explicitly only exemplary
constraints regarding assignment of Abramov (A) to different classes):

U (A)+ M · (1 − vA,CL M ) ≥ U (C)+ ε − M · (1 − vC,CL O ); . . . ;
U (A)+ M · (1 − vA,CL M ) ≥ U (Y)+ ε − M · (1 − vY,CL O );
U (A)+ M · (1 − vA,CU M ) ≥ U (C)+ ε − M · (1 − vC,CL M ); . . . ;
U (A)+ M · (1 − vA,CU M ) ≥ U (Y)+ ε − M · (1 − vY,CL M );
U (A)+ M · (1 − vA,CH I ) ≥ U (C)+ ε − M · (1 − vC,CU M ); . . . ;
U (A)+ M · (1 − vA,CH I ) ≥ U (Y)+ ε − M · (1 − vY,CU M );
U (A)+ ε − M · (1 − vA,CL O ) ≤ U (C)+ M · (1 − vC,CL M ); . . . ;
U (A)+ ε − M · (1 − vA,CL O ) ≤ U (Y)+ M · (1 − vY,CL M );
U (A)+ ε − M · (1 − vA,CL M ) ≤ U (C)+ M · (1 − vC,CU M ); . . . ;
U (A)+ ε − M · (1 − vA,CL M ) ≤ U (Y)+ M · (1 − vY,CU M );
U (A)+ ε − M · (1 − vA,CU M ) ≤ U (C)+ M · (1 − vC,CH I ); . . . ;
U (A)+ ε − M · (1 − vA,CU M ) ≤ U (Y)+ M · (1 − vY,CH I ).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The constraints specific for the ELECTRE-like method are the following:

C(A,Y)+ ε ≤ λ+ M · (1 − vA,CL O );
C(A,I)+ ε ≤ λ+ M · (1 − vA,CL O );
C(A,C)+ ε ≤ λ+ M · (1 − vA,CL O );
C(T,A)+ ε ≤ λ+ M · (1 − vA,CL M );
C(A,Y)+ ε ≤ λ+ M · (1 − vA,CL M );
C(A,I)+ ε ≤ λ+ M · (1 − vA,CL M );
C(T,A)+ ε ≤ λ+ M · (1 − vA,CU M );
C(Y,A)+ ε ≤ λ+ M · (1 − vA,CU M );
C(A,I)+ ε ≤ λ+ M · (1 − vA,CU M );
C(T,A)+ ε ≤ λ+ M · (1 − vA,CH I );
C(Y,A)+ ε ≤ λ+ M · (1 − vA,CH I );
C(C,A)+ ε ≤ λ+ M · (1 − vA,CH I ).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

4 Multiple criteria sorting methods respecting requirements referring to the desired
cardinalities of classes

Let us define the set of instances of the preference model compatible with the preference infor-
mation provided by the DM for each sorting method under consideration. For the value-driven
sorting procedures, a compatible value function satisfies the following set of constraints:

– for the UTADIS-like procedure EUD consisting of EUD
base, EUD

pref, EUD
card, and E req

card;

– for an example-based procedure EUE consisting of EUE
base, EUE

pref, EUE
card, and E req

card.

For the ELECTRE-like procedures, a compatible outranking model is defined by concordance
indices C(a, b), concordance cutting level λ, indifference q j , and preference p j thresholds,
and weights k j , for all a, b ∈ A, j ∈ J , satisfying the following set of constraints:

– for the ELECTRE-like method with preference information in the form of assignment
examples—EEC consisting of: EEL

base, EEC
pref, EEC

card, and E req
card;

– for a pessimistic rule of the ELECTRE-TRI-like method—E E B P consisting of:
EEL

base, EEBP
pref , EEBP

card , and E req
card;
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– for an optimistic rule of the ELECTRE-TRI-like method—EEBO consisting of: EEL
base,

EEBO
pref , EEBO

card , and E req
card.

In order to verify that the set of compatible instances of the preference model (set of value
functions UAR or set of outranking relations SAR ) is not empty, we consider the following
mixed integer linear program (MILP):

Maximize: ε, subject to E AR
,

where E AR
is equal to EUD or EUE or EEC or EEBP or EEBO, depending on the sorting

method under consideration. Let us denote by ε∗ the maximal value of ε obtained from the
solution of the above MILP problem, i.e., ε∗ = max (ε), subject to E AR

. We conclude that
the set of compatible instances of the preference model is not empty, if E AR

is feasible and
ε∗ > 0.

If the set of compatible instances of the preference model is not empty, there is usu-
ally more than one compatible instance. For the UTADIS-like method, a reasonable way
of selecting a single value function consists in maximization of the distance between the
values of alternatives placed in each class and the respective class thresholds; in this way,
one gets as “sharp” discrimination between classes as possible. This requires consideration
of the set of constraints EUD′

, which is obtained by replacing EUD
card in EUD by the following

set of constraints, which define the difference between comprehensive values of alternatives
and class thresholds, using additional slack variables ε(C), ε∗(Ch), ε

∗(Ch), ε∗(a,Ch), and
ε∗(a,Ch), h = 1, . . . , p, and a ∈ A:

U (a)+ ε∗(a,Ch) ≥ bh−1 − M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,
ε∗(a,Ch) ≥ ε∗(Ch), h = 1, . . . , p, for all a ∈ A,
ε∗(Ch) ≥ ε(C), h = 1, . . . , p,
U (a)+ ε∗(a, bh) ≤ bh + M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,
ε∗(a,Ch) ≥ ε∗(Ch), h = 1, . . . , p, for all a ∈ A,
ε∗(Ch) ≥ ε(C), h = 1, . . . , p,
ε(C) ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

EUD
post-opt

In order to achieve sharp discrimination, we can conduct the following optimizations in a
lexicographic order:

– maximization of the minimal distance of the comprehensive values of alternatives from
the respective class thresholds, i.e.: Maximize : ε(C), subject to EUD′

;
– maximization of the sum of minimal distances of the comprehensive values of alternatives

from each class threshold, i.e.: Maximize : ∑p
h=1(ε∗(Ch)+ ε∗(Ch)) (with the proviso

that ε(C) is equal to the optimal value obtained in the previous point);
– maximization of the sum of elementary distances of the comprehensive values of alterna-

tives from the corresponding class thresholds, i.e.: Maximize : ∑
a∈A

∑p
h=1(ε∗(a,Ch)+

ε∗(a,Ch)) (with the proviso that ε∗(Ch) and ε∗(Ch) are equal to the optimal value
obtained in the previous point).

Note that for an example-based value-driven sorting procedure, we should maximize the dis-
tance between comprehensive values of the alternatives placed in different classes, rather than
between the values of alternatives placed in each class and the respective class thresholds.

For the ELECTRE-like methods, we could proceed analogously and emphasize the con-
sequences of assigning the alternatives to particular classes, by making the result of the
corresponding concordance tests as sharp as possible. Let us present it on the example of the
ELECTRE-like method with preference information in the form of assignment examples.
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The selection of a single instance of the compatible outranking relation for the ELECTRE-
TRI-like methods can be conducted analogously. We will consider the set of constraints EEC′

,
which is obtained by replacing EEC

card in EEC by the following set of constraints with addi-
tional slack variables ε(C), ε∗(C<h), ε

∗(C>h), ε∗(a,C<h), and ε∗(a,C>h), h = 1, . . . , p,
and a ∈ A:

C(aC<h , a)+ ε∗(a,C<h) ≤ λ+ M · (1 − va,Ch ), h = 2, . . . , p,
for all a ∈ A, for all aC<h ∈ AR, such that hDM(aC<h ) < h,
ε∗(a,C<h) ≥ ε∗(C<h), h = 2, . . . , p, for all a ∈ A
ε∗(C<h) ≥ ε(C), h = 2, . . . , p,
C(a, aC>h )+ ε∗(a,C>h) ≤ λ+ M · (1 − va,Ch ) h = 1, . . . , p − 1,
for all a ∈ A, for all aC.h ∈ AR, such that hDM(aC>h ) > h,
ε∗(a,C>h) ≥ ε∗(C>h), h = 1, . . . , p − 1, for all a ∈ A,
ε∗(C>h) ≥ ε(C), h = 1, . . . , p − 1,
ε(C) ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EEC
post-opt

Then, analogously to the UTADIS-like method, we could first maximize ε(C), then the sum
of ε∗(C<h) and ε∗(C>h) for h = 1, . . . , p, and finally the sum of elementary differences
ε∗(a,C<h) and ε∗(a,C>h) for a ∈ A and h = 1, . . . , p.

Alternatively, as suggested by Köksalan et al. [15], we could try to force alternatives in
higher-level classes to outrank alternatives in lower-level classes, and minimize the number
of pairs of alternatives for which this requirement is not satisfied. For this reason, we intro-
duce new binary variables wa,a∗ and wa∗,a for all a ∈ A \ AR and all a∗ ∈ AR . If wa,a∗
was equal to 1, then the desired outranking relation between a and a∗ would be violated.
Consequently, to select an outranking model with the mini number of such violations, we
solve the following MILP problem:

Minimize :
∑

a∈A\AR

∑

a∗∈AR

wa,a∗ + wa∗,a

subject to:

E EC

C(a, aC<h ) ≥ λ− M · (1 − va,Ch )− M · wa,aC<h
, h = 2, . . . , p,

for all a ∈ A \ AR, for all aC<h ∈ AR, such that hDM(aC<h ) < h
C(aC>h , a) ≥ λ− M · (1 − va,Ch )− M · waC>h ,a

, h = 1, . . . , p − 1,
for all a ∈ A \ AR, for all aC>h ∈ AR, such that hDM(aC>h ) > h.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

EEC′
post-opt

Note that instead of choosing any particular instance of the preference model, we could also
take into account all compatible instances and determine the set of possible assignments for
each alternative a ∈ A. To check whether a could be possibly assigned to a class Ch , it is
sufficient to assume in the set of constraints E AR

that va,Ch is equal to 1, and, subsequently,
check whether the resulting set of constraints is feasible. This needs to be done for all a ∈ A
for each particular class Ch, h = 1, . . . , p. This approach may be particularly useful in the
process of incremental specification of assignment examples by the DM. Knowing the set
of possible assignments for each alternative, the DM may wish to change the assignment
suggested by the method at a current stage of interaction—such a change will be possible
when the set of compatible instances of the preference model in the next iteration will not be
empty.

123



1160 J Glob Optim (2013) 56:1143–1166

Table 4 The final assignments
for the assessment problem of
sales managers

Class Number of alternatives: assigned alternatives

UTADIS-like method

HI 3: Abramov, Chen, Girouille

UM 5: Dall, Hartley, Ivashko, Johnson, Naray

LM 4: Ellison, Petersson, Stevens, Youssef

LO 3: Furukawa, Morillo, Trainini

ELECTRE-like method

HI 4: Abramov, Chen, Dall, Girouille

UM 5: Ivashko, Johnson, Morillo, Naray, Stevens

LM 3: Furukawa, Hartley, Youssef

LO 3: Ellison, Petersson, Trainini

As suggested in [18], in order to support specification of the desired cardinalities of classes
Ch, h = 1, . . . , p, one may compute the extreme possible cardinalities given a set of com-
patible preference model instances. In the framework of DIS-CARD, this can be achieved
by solving the following problem:

Maximize (Minimize):
∑

a∈A

va,Ch , subject to E AR
.

Note that thus obtained maximal and minimal cardinalities of each class are certainly, respec-
tively, not greater and not less than the corresponding requirements specified by the DM. Obvi-
ously, the number of alternatives that are possibly assigned to Ch when considering the set of
compatible model instances, may be, in general, greater than the maximal cardinality of Ch .

Illustrative example (part 3)
In order to choose a single instance which would underly the final recommendation for our
illustrative example, for the UTADIS-like method, we maximize the slack variables to obtain
as sharp discrimination as possible, whereas for the ELECTRE-like method, we try to force
alternatives in higher-level classes to outrank alternatives in lower-level classes and we min-
imize the number of violations of this requirement. The corresponding assignments obtained
with the use of both sorting methods are presented in Table 4.

The assignments of reference alternatives are reproduced and the number of alternatives
assigned to the best and to the worst class are within the pre-defined limits. Obviously, the
recommendation worked out for some non-reference alternatives is different in case of both
methods. In particular, there are seven such alternatives for which the assignment is differ-
ent, whereas for the remaining four alternatives the class is the same for UTADIS-like and
ELECTRE-like methods. The differences stem from:

– Fundamental differences in assumptions of these methods. Let us remind that the purpose
of UTADIS-like methods is to model the decision making situation with an overall value
function, and to assign a score to each alternative. Such a score reflects a comprehensive
value of the alternative on all criteria considered jointly, and drives the assignment of
alternatives to decision classes. The additive value function used in UTADIS-like meth-
ods is a compensatory aggregation model admitting that a loss on any criterion can be
compensated by a gain on another criterion. When it comes to ELECTRE-like methods,
their preference structure is based on a binary outranking relation between particular alter-
natives and reference profiles characterizing decision classes. The outranking relation is a
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non-compensatory aggregation model. Moreover, it does not assign any numerical score
to each alternative. Its exploitation has purely ordinal character.

– Different optimization criteria taken into account when selecting a single compatible
instance of the preference model.

– Resulting different priorities assigned to the evaluation criteria in the selected instances
of the preference model underlying the final recommendation. Precisely, for the UTA-
DIS-like method the maximal difference between comprehensive values of alternatives
and class thresholds is equal to 0.142. The greatest share in the comprehensive values is
assigned to criterion g1, whereas the least share is assigned to criterion g2. Consequently,
sales managers with the best evaluations on g1 (e.g., Abramov, Girouille) are assigned
to class HI, whereas alternatives with relatively poor evaluations on g1 are attributed
worse incentive packages. When it comes to the ELECTRE-like method, the number of
violations of the desired outranking relation between alternatives in higher-level classes
and alternatives in lower-level classes is equal to 12 (pairs (Youssed, Ellison), (Ivashko,
Furukawa), (Chen, Johnson), etc.). The greatest weights are assigned to g1 and g2, which
favors alternatives with at least moderately good evaluations on these criteria.

Obviously, the DM may wish to continue the solution process. Precisely, (s)he may add
some assignment examples, contradicting the recommendation obtained at the current stage
for some non-reference alternatives. Moreover, (s)he may add some requirements with respect
to the desired cardinalities of classes UM or LM, or make the requirements which have been
already provided for classes HI and LO more precise.

5 Conclusions

In this paper, we introduced a new approach to multiple criteria sorting problems which
allows incorporation of preference information concerning the desired cardinalities of clas-
ses. The main motivation for this proposal comes from the common use of such requirements
in practical situations, the willingness of the DMs to refer to the bounds on the cardinali-
ties of classes, and some undesired properties of the recommendation worked out with the
use of traditional methods, which do not admit any control of the cardinalities of clas-
ses. We proposed some mixed-integer programming models, which allow incorporation
of the preference information of this type. Moreover, we have shown that the introduced
approach is valid for any type of employed preference model. Precisely, we have proposed
some value driven sorting procedures, and some ELECTRE-like methods which are model-
ing the DM’s preferences with an outranking relation and require the DM to define the classes
with the use of either class profiles, or characteristic alternatives, or assignment examples.

Further research directions include thorough experimental analysis of the introduced
approach, and its application to some real world problems e.g., in the field of finance. More-
over, this type of preference information may be used in disaggregation procedures which
aim to infer precise parameters for the ELECTRE-like methods from imprecise or indirect
preferences of the DM.
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Appendix A: Handling of preference information referring to the desired cardinalities
of classes in ELECTRE-TRI-C, ELECTRE-TRI-nC and FlowSort methods

In this section, we recall the ELECTRE-TRI-C, ELECTRE-TRI-nC and FlowSort methods,
and we formulate mathematical models representing their assignment rules. These models
can further incorporate the preference information referring to the desired cardinalities of
classes.

A.1 ELECTRE-TRI-C

ELECTRE-TRI-C is an outranking method for multiple criteria sorting problems in which
each class is defined by a single characteristic reference alternative instead of a pair of class
profiles. Let B = {b0, b1, . . . , bp, bp+1} denote the set of (p + 2) characteristic alterna-
tives, where b0 and bp+1 have the worst and the best evaluations on all criteria, respectively,
whereas bt , t = 1, . . . , p, are alternatives provided by the DM, which are characteristic for
particular classes and fulfill several intuitive conditions defined in [1]. In particular, bt need
to dominate bt−1, t = 1, . . . , p + 1. ELECTRE-TRI-C uses two assignment rules, called
descending and ascending rules. They employ a selecting function ρ(a, bt ). The authors
suggest that ρ(a, bt ) = min {C(a, bt ),C(bt , a)} fulfills the desired properties of such a
function. The descending rule, compares a successively to bh , for h = p, . . . , 0, for a partic-
ular concordance cutting level λ, seeking for the first characteristic alternative bh , such that
C(a, bh) ≥ λ. If h = p, then it assigns a to C p; if h = 0, then a is placed in C1; otherwise
a is assigned to Ch if ρ(a, bh) > ρ(a, bh+1), or to Ch+1 if ρ(a, bh+1) ≥ ρ(a, bh). On the
contrary, an ascending rule compares a successively to bt , h = 1, . . . , p + 1, seeking for the
first characteristic alternative bh , such that C(bh, a) ≥ λ. If h = 1, then a is assigned to C1;
if h = p + 1, then a is placed in C p; otherwise a is assigned to Ch if ρ(a, bh) > ρ(a, bh−1),
or to Ch−1 if ρ(a, bh−1) ≥ ρ(a, bh).

The models which allow subsequent incorporation of the preference information referring
to the desired cardinalities of classes are the following:

– for the descending rule of the ELECTRE-TRI-C-like method:

(EC D1) C(a, bh)+ M · v1
a,bh

≥ λ− M · (1 − va,Ch ),

h = 1, . . . , p, for all a ∈ A,
(EC D2) C(a, bh+1)+ ε − M · v1

a,bh
≤ λ+ M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(EC D3) C(bh, a)+ M · v1

a,bh
≥ C(a, bh+1)+ ε − M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(EC D4) C(a, bh−1)+ M · v2

a,bh
≥ λ− M · (1 − va,Ch ),

h = 1, . . . , p, for all a ∈ A,
(EC D5) C(a, bh)+ ε − M · v2

a,bh
≤ λ+ M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EC D6) C(a, bh)+ M · v2

a,bh
≥ C(bh−1, a)− M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EC D7) v1

a,bh
+ v2

a,bh
≥ 1 − M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,

(EC D8) v1
a,bh

+ v2
a,bh

≤ 1 + M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EECD
card

Constraints (EC D1) and (EC D2) make sure that, when assigned to class Ch , alterna-
tive a outranks all alternatives which are characteristic for classes not better than Ch ,
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and does not outrank all alternatives characteristic for classes better than Ch . Constraint
(EC D3) guarantees satisfying the condition necessary for a to be assigned to Ch rather
than to Ch+1. On the other hand, (EC D4) and (EC D5) make sure that a outranks all
characteristic alternatives for classes worse than Ch , and does not outrank all charac-
teristic alternatives for classes not worse than Ch . Constraint (EC D6) guarantees that
when (EC D4) and (EC D5) are satisfied, a would be assigned to Ch rather than to Ch−1.
Constraints (EC D7) and (EC D8) employ binary variables v1

a,bh
and v2

a,bh
, guaranteeing

that either (EC D1), (EC D2), and (EC D3), or (EC D4), (EC D5), and (EC D6) will
hold. As a result, one of the two possible sets of conditions for the assignment of a to Ch

will be satisfied.
– for the ascending rule of the ELECTRE-TRI-C-like method:

(EC A1) C(bh, a)+ M · v1
a,bh

≥ λ− M · (1 − va,Ch ),

h = 1, . . . , p, for all a ∈ A.
(EC A2) C(bh−1, a)+ ε − M · v1

a,bh
≤ λ+ M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EC A3) C(a, bh)+ M · v1

a,bh
≥ C(bh−1, a)+ ε − M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EC A4) C(bh+1, a)+ M · v2

a,bh
≥ λ− M · (1 − va,Ch ),

h = 1, . . . , p, for all a ∈ A,
(EC A5) C(bh, a)+ ε − M · v2

a,bh
≤ λ+ M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A.
(EC A6) C(bh, a)+ M · v2

a,bh
≥ C(a, bh+1)− M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(EC A7) v1

a,bh
+ v2

a,bh
≥ 1 − M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,

(EC A8) v1
a,bh

+ v2
a,bh

≤ 1 + M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EECA
card

The explanation of the constraints is analogous to the explanation given for the descend-
ing rule, i.e. assignment of alternative a to class Ch is conditioned by satisfying either
(EC A1), (EC A2), and (EC A3), or (EC A4), (EC A5), and (EC A6).

A.2 ELECTRE-TRI-nC

The ELECTRE-TRI-nC method [2] generalizes ELECTRE-TRI-C by admitting classes
Ch, h = 1, . . . , p, to be characterized by several typical reference alternatives Bh = {br

h, r =
1, . . . ,mh} instead of a single central profile only. The method considers categorical credi-
bility (concordance) indices defined as follows:

C(a, Bh) = maxr=1,...,mh {C(a, br
h)},

C(Bh, a) = maxr=1,...,mh {C(br
h, a)}.

Note that these categorical indices could be defined in the following way with the use of
binary variables v(a, br

h), for a ∈ A, h = 1, . . . , p, and r = 1, . . . ,mh :

C(a, Bh) ≥ C(a, br
h), h = 1, . . . , p, for r = 1, . . . ,mh,

C(a, Bh) ≤ C(a, br
h)+ v(a, br

h), h = 1, . . . , p, for r = 1, . . . ,mh,∑mh
r=1 v(a, br

h) ≤ mh − 1, h = 1, . . . , p,
C(Bh, a) ≥ C(br

h, a), h = 1, . . . , p, for r = 1, . . . ,mh,

C(Bh, a) ≤ C(br
h, a)+ v(br

h, a), h = 1, . . . , p, for r = 1, . . . ,mh,∑mh
r=1 v(b

r
h, a) ≤ mh − 1, h = 1, . . . , p.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

123



1164 J Glob Optim (2013) 56:1143–1166

In this way, C(a, Bh)(C(Bh, a)) is required to be not less than concordance indices
C(a, br

h)(C(b
r
h, a)), r = 1, . . . ,mh , and to be equal to at least one of them, which, in fact,

needs to be maximal.
The descending and ascending assignment rules are analogical as in the ELECTRE-TRI-

C method, but refer to the categorical indices rather than traditional credibility indices.
To save space, we present a model which allows subsequent incorporation of the prefer-
ence information referring to the desired cardinalities of classes for the descending rule
only:

(EnC D1) C(a, Bh)+ M · v1
a,Bh

≥ λ− M · (1 − va,Ch ),

h = 1, . . . , p, for all a ∈ A,
(EnC D2) C(a, Bh+1)+ ε − M · v1

a,Bh
≤ λ+ M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(EnC D3) C(Bh, a)+ M · v1

a,Bh
≥ C(a, Bh+1)+ ε − M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(EnC D4) C(a, Bh+1)+ ε − M · v1

a,Bh
≤ C(a, Bh)+ M · (1 − va,Ch ),

h = 1, . . . , p − 1, for all a ∈ A,
(EnC D5) C(a, Bh−1)+ M · v2

a,Bh
≥ λ− M · (1 − va,Ch ),

h = 1, . . . , p, for all a ∈ A,
(EnC D6) C(a, Bh)+ ε − M · v2

a,Bh
≤ λ+ M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EnC D7) C(a, Bh)+ M · v2

a,Bh
+ M · vx

a,Bh
≥ C(Bh−1, a)− M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EnC D8) C(a, Bh)+ M · v2

a,Bh
+ M · vy

a,Bh
≥ C(a, Bh−1)− M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EnC D9) C(a, Bh)− M · v2

a,Bh
− M · vy

a,Bh
≤ C(a, Bh−1)+ M · (1 − va,Ch ),

h = 2, . . . , p, for all a ∈ A,
(EnC D10) vx

a,Bh
+ v

y
a,Bh

≤ 1 + M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,
(EnC D11) v1

a,Bh
+ v2

a,Bh
≥ 1 − M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,

(EnC D12) v1
a,Bh

+ v2
a,Bh

≤ 1 + M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EEnCD
card

The explanation of the role of the constraints is analogical as for the ELECTRE-TRI-C
method. Constraint (EnCD3) and (EnCD4) guarantee satisfying the conditions necessary for
a to be assigned to Ch rather than to Ch+1, whereas constraints (EnCD7)–(EnCD10) guar-
antee that a would be assigned to Ch rather than to Ch−1. For detailed explanation of these
conditions, see [2].

A.3 FlowSort

FlowSort is a PROMETHEE-like method for multiple criteria sorting problems [20]. The
assignment of a given alternative is based on its comparison with either limiting profiles or
central profiles in terms of the positive (incoming), negative (leaving), and/or net outranking
flows. Let us focus on the procedure which employs limiting profiles B = {b0, b1, . . . , bp},
such that bt dominates bt−1, t = 1, . . . , p, and net outranking flows defined as follows
for any a ∈ A ∪ B (let us denote by R(a) = B ∪ {a}, where a is an alternative to be
assigned):
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�R(a)(a) = �+
R(a)(a)−�−

R(a)(a) = 1/(|R(a)| − 1)
∑

b∈R(a)

π(a, b)− π(b, a)

= 1/(|R(a)| − 1)
∑

b∈R(a)

m∑

j=1

π j (a, b)− π j (b, a),

where π j , j ∈ j , is a preference function, indicating the degree to which a is preferred to
b on criterion g j with respect to the provided indifference q j and preference p j thresholds.
In [12], we have generalized the family of PROMETHEE methods so that it accounts for
imprecise preference information in the form of admissible ranges of indifference and pref-
erence thresholds (see notation in Sect. 2.2). Moreover, we defined preference functions as
general non-decreasing ones, and not only of arbitrarily chosen shape. Precisely, they need
to satisfy the following set of conditions:

∑m
j=1 π j (a∗

j , a j,∗) = 1 : (g j (a∗
j ) = x

n j (A)
j ) and (g j (a j,∗) = x1

j )

with a∗
j , a j,∗ ∈ A, j ∈ J,

π j (a∗
j , a j,∗) ≤ 0.5, j ∈ J,

for all (a, b, c, d) ∈ A × A × A × A, j ∈ J :
π j (a, b) ≥ π j (c, d) if g j (a)− g j (b) > g j (c)− g j (d),
π j (a, b) = π j (c, d) if g j (a)− g j (b) = g j (c)− g j (d),

for all (a, b) ∈ A × A, j ∈ J :
π j (a, b) = 0 if g j (a)− g j (b) ≤ q j,in f ,

π j (a, b) ≥ ε if g j (a)− g j (b) > qsup
j ,

π j (a, b)+ ε ≤ π j (a∗
j , a j,∗) if g j (a)− g j (b) < p j,in f ,

π j (a, b) = π j (a∗
j , a j,∗) if g j (a)− g j (b) ≥ psup

j .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EPR
base

These conditions ensure normalization, monotonicity, and desired shape of the preference
functions in the areas of indifference, weak preference, and strict preference (for detailed
explanation, see [12]) Obviously, in case of a FlowSort-like method in all above formula-
tions one should consider set A ∪ B rather than A only. The model which allows subsequent
incorporation of the preference information referring to the desired cardinalities of classes is
the following:

(P R1) �R(a)(a) ≥ �R(a)(bh−1)− M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A,
(P R2) �R(a)(a)+ ε ≤ �R(a)(bh)+ M · (1 − va,Ch ), h = 1, . . . , p, for all a ∈ A.

}

EPR
card

The models for the case of using central profiles (rather than limit profiles) and/or considering
positive and negative flows separately (rather than net outranking flows) could be formulated
analogously.
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