
Disaggregating the electricity sector in a CGE model to allow competition theory 
to explain the introduction of new technologies to the sector1 

 

Truong P. Truong and Hiroshi Hamasaki 
Institute of Transport and Logistics Studies, The University of Sydney Business School, University of Sydney NSW 

2006 Australia; truong.truong@sydney.edu.au, 
Economic Research Centre, Fujitsu Research Institute and Center for International Public Policy Studies, Tokyo, 

Japan; hiroshi.hamasak@jp.fujitsu.com, hamasaki@cipps.org  

Version: July 6, 2018 

 
Abstract 

The electricity sector in most CGE models is highly aggregate which makes it unsuitable for use 
in the analysis of the impacts of climate change or energy policies on the sector. A conventional 
approach is to disaggregate this sector into different technologies and then recombine the outputs 
(or costs) into that of a single sector using an aggregate production function (such as CRESH) or 
market share function (such as LOGIT). Such an approach is useful but not entirely transparent 
because it does not explain completely why the outputs of different technologies are only 
‘imperfectly substitutable’ while electricity is a homogeneous commodity. In this paper we 
propose a different approach where the ‘imperfect substitutability’ of different electricity outputs 
is explained not in terms of the nature of output and distribution activities but in terms of the 
different types of capacities used in the generation of electricity. These capacities have different 
economic and technological characteristics which differentiate themselves from one another and 
these characteristics also make each type of capacity suitable for the supply of electricity to 
different types of demand (or electricity ‘loads’). The ‘imperfect substitutability’ between 
different electricity generation technologies, therefore, is derived from the imperfect 
substitutability between these different generation capacities rather than between their outputs. 
We illustrate the applicability of the new approach with some empirical examples taken from the 
case of the Japanese electricity sector. (230 words).  

Keywords: Electricity generation, demand loads, technology competition, CGE modeling. 

                                                
1 An earlier version of this paper was presented at the 2nd International Conference on “Energy, Regional Integration 
and Socio-Economic Development” in Baku, Azerbaijan. 1-3 Oct 2014. 



1. Introduction 

Following the accidents at the Fukushima nuclear power plants in Japan in 2011, there was a 

shift towards the use of non-nuclear energy in electricity generation which includes both fossil 

fuels (natural gas, coal, and oil) as well as renewable (hydro, wind, solar, geothermal) energy. 

This shift can have significant impacts on the environment (in terms of CO2 emissions) as well as 

on the welfare of consumers (in terms of higher electricity prices). To understand these impacts, 

it is important that the scope and mechanism of substitution between different types of electricity 

generation technologies be properly understood. Up to now, models which are used for the study 

of this type of substitution are often ‘bottom-up’ partial equilibrium models which assume that 

outputs from these technologies are perfectly substitutable, but given the different capacities of 

these technologies in the short run and their different marginal running costs, their utilizations 

will depend on a ‘merit order’ (i.e. lowest marginal running cost capacities will be utilized first, 

then the next more expensive ones, until the most expensive (marginal) capacity is utilized to 

meet with a certain level of (total) demand. Such a ‘partial equilibrium’ approach may describe 

well the competition between different technologies in the short run but often leaves the levels of 

capacities for the long run unexplained. A ‘top-down’ general equilibrium model, on the other 

hand, may be able to explain the long run demand for capacities in terms, not only of short run 

marginal running costs, but also of long run marginal capital (i.e. capacity) costs. However, such 

a model is often highly aggregate, assuming only a single electricity sector with little description 

of the technologies involved. When the model is disaggregated into various ‘sub-sectors’ each to 

represent a different technology, a different issue arises and that is: how to re-aggregate the 

outputs of different technologies to add up to the total output of the single electricity sector. If 

the outputs of these technologies are assumed to be perfectly substitutable (which is reasonable 

since electricity is a homogenous commodity) then the outputs of these technologies can be 

simply added up to a total output. But perfect substitution poses a different challenge: ‘corner’ 

solution and how to overcome this. A bottom-up linear programming approach handles this issue 

by the assumption of fixed capacities for different types of technologies, and hence no single 

technology can cope with the total demand for electricity output, but fixed capacities (and the 

associated mathematical problem of mixed complementarities) are not easily handled within the 

neoclassical framework of a top-down CGE model, therefore a ‘conventional’ approach is to 

assume that electricity outputs from different technologies are only imperfectly substitutable so 



that they can be considered as though intermediate inputs into a neoclassical production function 

(such as CRESH) or as imperfect choices in a probabilistic market share function (such as 

LOGIT)2 and then let these functions the selection of outputs from different sources (i.e. 

technologies). But the assumption of imperfect substitution (or imperfect choices) is artificial, 

and not well explained, when considered in the context of empirical evidences (since electricity 

is a fairly homogenous product and their production cost structures are fairly deterministic). For 

example, attempts at explaining the imperfect substitutability of the outputs in terms of the 

different transmission and distribution costs, or different ‘availability factors’ and/or supply 

characteristics (‘intermittency, etc.) of the supplied outputs cannot be sustained. Firstly, 

transmission and distribution activities should be considered as part of the secondary (or 

‘margin’) activities rather than the primary (generation or production) activities.3 Transmission 

and distribution costs will often affect the final consumer’s or purchaser’s price but not 

producer’s price. Secondly, if different technologies have different ‘availability factors’ and/or 

‘intermittency’ characteristics, then this must be taken into consideration but as part of the 

determination of the quantities of their outputs rather than their ‘qualities’. Confounding these 

issues can lead to artificiality and inaccuracies. For example, suppose that wind (or solar) 

electricity is available only for certain time periods. This may or may not affect the ‘quality’ (i.e. 

‘value’) of supply, and even if it does, the effect may not always be in the same direction. Thus, 

if supply is available only during peak hours, then the effect would be different than if it is 

available only during off-peak periods. The values of the outputs in these cases are influenced, 

not by their supply ‘qualities’ but rather by the levels of demand during these different periods.  

                                                
2 In the case of CRESH, this is the so-called ‘technology bundle’ approach first used in the MEGABARE model 
(ABARE (1996)) and subsequently also adopted in many other models (see Cai and Arora (2015) for a good review 
of this approach). In the case of LOGIT, this function strictly is not a ‘production function but rather a ‘market 
share’ function, i.e. outputs are still assumed to be perfectly substitutable, but the costs of production are not directly 
‘substitutable’ or comparable because they are ‘probabilistic’. Clarke and Edmonds (1993) for example assumed that 
the costs of (steel) production are probabilistic due to the problem of ‘geographical heterogeneity’. Probabilistic 
discrete choice function (such as LOGIT) is often used in the context of discrete individual choice, where the 
‘attributes’ of the individual consumers are unobservable, and hence their utilities are assumed to be 
probabilistically distributed. In the case of technological choice, the interpretation must be different: here it is the 
‘unobserved attributes’ or characteristics of the supply cost functions that makes the choices between these 
alternative supply sources ‘imperfect’.  
3 In fact, most models, including our approach, will treat these activities as separate rather than as a single activity. 



Because of this conceptual4 difficulty associated with the assumption of imperfect 

substitutability between electricity outputs, in this paper, we retain the conventional assumption 

(in a ‘bottom-up’ linear programming approach) that electricity outputs from different 

technologies are perfectly substitutable. However, we recognize the ‘imperfect substitutability’ 

between the technologies that produce these outputs, and this imperfect substitutability arises not 

from the ‘qualities’ of their outputs but rather from the different engineering as well as economic 

characteristics of the capacities which are used to produce these outputs. It can be said that ex-

post electricity outputs are perfectly substitutable once produced, but ex-ante (i.e. in 

consideration of the types of technologies (or types of capacities) used to produce them; the 

choices between these capacities are only ‘imperfectly substitutable’. Furthermore, the choices 

between the different types of capacities are also conditional on the particular types of electricity 

demand (i.e. electric ‘loads’) which are to be satisfied, and these types of demand loads are also 

imperfectly substitutable. In short, while electricity outputs are highly substitutable, their means 

of production are only imperfectly substitutable.  

The plan of the paper is as follows. Section 2 presents a theoretical analysis of the electricity 

sector with different features of demand and supply in electricity generation as well as different 

structures of the electricity supply market taken into account. Section 3 then applies this analysis 

to an empirical study of the Japanese electricity market to see how the imposition of various 

climate change and/or energy policies in Japan can impact on the electricity sector, especially 

after the Fukushima nuclear incidences. Section 4 concludes the paper and gives some 

suggestions for future extensions. 

                                                
4 There is another more practical issue and that is the problem of  non-addability of all the quantities of electricity 
outputs from different technologies into that of the sector as a whole when using an aggregate production function 
such as CRESH or CES (or in the case of a LOGIT market share function, non-addability of all the technology costs 
into the total cost of the sector as a whole because of the probabilistic nature of the cost functions). This ‘adding up’ 
problem, however, is a relatively minor issue because it can always be resolved either by an ‘adjustment’ factor, or 
by the use of a so-called ‘volume preserving’ production function such as ACES (see Dixon and Rimmer (2003)) 
This type of function has been used in the context of land-use and labour market specification (see Giesecke et al. 
(2013), Dixon and Rimmer (2003, 2006)). The problem, however, is more conceptual than practical because there is 
a significant difference between the assumption of ‘imperfect substitutability’ between land or labour inputs (which 
are seen to be heterogeneous commodities) and the assumption of ‘imperfect substitutability’ between electricity 
outputs (which are seen to be more homogeneous). 



2. Theoretical analysis of the electricity supply sector 

Electricity has some special characteristics which makes a study of the electricity market rather 

different from a study of other markets. Firstly, electricity is a non-storable commodity5 

therefore this imposes a special restriction on production activity: output at any time cannot 

exceed capacity of production. Secondly, electricity demand is highly variable in the short run 

(daily) as well as in the medium or long run (seasonally or yearly). This means the issue of 

capacity planning to meet with different types of demand (referred to as ‘loads’) must often be 

considered as joint decision with the issue of output allocation. Traditionally in the literature, 

these joint issues of capacity and output decisions are often discussed under the heading of ‘peak 

load’ pricing and investment rules where, firstly, total electricity demand is divided into different 

types of loads which together will make up a  so-called ‘load duration curve’ (see Figure 1). 

From this load duration curve, demand at different periods of time can then be identified as 

consisting of many kinds of loads each to be looked after by different types of capacities.6 These 

capacities are then considered as suitably constructed from different types of technologies, each 

with a different set of engineering as well as economic characteristics. For example, base load 

capacities (typically constructed from coal or nuclear technologies) would have high per unit 

capital costs but low running costs. In contrast peak load capacities (normally constructed from 

oil or gas technologies) would have low per unit capital costs but high running costs. 

Intermediate between these two types are ‘intermediate load capacities’ using technologies such 

as hydroelectric or geothermal. A theoretical concept which has been used to capture the 

engineering and economic characteristics of these different types of capacities is the so-called 

‘load factor’. Engineers define the load factor (of a machine, plant, or system) as the ratio of the 

average power to the maximum power during a certain period of time. This factor compares the 

average rate of output to the maximum rate and it can be used to indicate the extent of the 

‘reserve power’ still held by a machinery while running. Such reserve power can then be used to 

indicate the extent of ‘reliability’ or ‘certainty-of-supply’ which can be expected from the 
                                                
5 Even if storable, the cost of storing electricity is large hence it is impractical (and expensive) to consider storing 
electricity as a means to circumvent the production-capacity constraint. In this respect, electricity is similar to other 
services (including for example transport as a service) even though electricity is a commodity rather than a service. 
6 Although different types of capacities are often associated with different types of demand e.g. (peak capacity for 
peak demand, base capacity for base demand, etc.) the correspondence between capacity type and demand type is 
not one-on-one. Thus, for example, gas-type capacity can be used to satisfy both peak demand as well as base 
demand, wind powered electricity or solar-powered electricity can be used to satisfy either base load or peak load, 
but depending on the timing of their output availability in particular regions. 



machine. Seen from an economic point of view, however, the concept of load factor can be used 

to indicate the level of economic efficiency or productivity being associated with a particular type 

of capacity. Therefore, this concept can be used as a parameter or variable in the problem of 

production optimization (in the short run) or capacity planning (in the long run).7 

Let Ki, i={1,2,3} stand for the base load, intermediate load and peak load capacities respectively, 

and let Qi, i={1,2,3} be the total outputs generated by these capacities during the total time 

period T of the load duration curve. The ‘load factors’ for these capacities can then be defined as 

i=Qi/[KiT]. For example, if Ki is in megawatts (MW), T is in hours (h) then the maximum 

output that can be produced from capacity Ki in T hours is [KiT] in megawatt-hours (MWh). If 

the actual output produced from such capacity (measured by the area of the load duration curve 

covered by capacity Ki) is only Qi < KiT then the load factor is i=Qi/[KiT] <1. It can be seen 

from Figure 1 that the load factor for a base load capacity is usually large relative to that of an 

intermediate or peak load capacity. 

Let ri be the marginal running costs associated with capacity Ki and ci be the marginal capital 

rental cost of this capacity.8 The total marginal cost of producing a unit of output from capacity 

Ki over the production time period T is therefore given by [ri+ci/(iT)] where the first part ri is 

                                                
7 Load factor is not the same thing as ‘capacity factor’ which is purely an engineering factor and which defines the 
ratio of average unrestricted output of a machine relative to the maximum (‘rated’) output. Capacity factor is a 
‘supply’ characteristic of a machine not dependent on demand, while load factor is both a supply characteristic and 
also an indicator of demand level. A capacity factor can be less than 100% if the machine needs regular shut down 
for maintenance and/or repair, or if (in the case of hydroelectric, wind, or solar powered generation plants) the 
‘inputs’ required for the operation of the machine is not available at all times. In this latter case, the concept of an 
‘availability factor’ can be used in place of ‘capacity factor’. Both of these concepts, however, relate only to the 
supply side. On the demand side, a similar concept of ‘demand factor’ has also been used to describe the ratio of the 
average power demanded by a system of consumer-operated machineries relative to the maximum power which can 
demanded if all machineries are turned on together at the same time and at full capacity. Capacity factor and 
demand factor are only ‘partial equilibrium’ concepts, relating either to the supply, or to the demand side, but ‘load 
factor’ is a genuine ‘general equilibrium’ concept relating both to the supply side (engineering characteristics) as 
well as demand side (load characteristics). Thus, this is perhaps the reason why Watkins (1915) exclaimed: “We 
owe the term [load factor] to the electrical engineers. But it is not impossible that economists will prove the better 
interpreters of an idea that relates so definitely to economic technology”. 
8 If both ri and ci are constants then they can also be referred to as the average or per unit running and capital costs 
respectively. Constant ri implies there is no diminishing returns in the short run, while constant ci implies there is 
‘constant returns to scale’ (CRTS) in the long run. In practice, ri can consist of things like materials, fuels, and 
labour costs associated with the production of a marginal unit of output while ci can be measured by the so-called 
‘levelised capital cost’ which is the ‘rental’ cost of a unit of capital of type i (to be distinguished from the capital 
price or per unit construction costs of capital). 



also referred to as the ‘short run’ marginal cost (SRMC)9 and the second part (ci/(iT) is referred 

to as the ‘effective’ marginal capital cost (MCC).10 The sum of these two cost components then 

defines the ‘long run’ marginal cost (LRMC) and this is the cost to be considered in the long run 

optimization of capacity. The LRMC is therefore seen to be dependent on the load factor i while 

the SRMC is not. 

                                                
9 Since in the short run, capacity is assumed to be fixed, its costs do not enter into the marginal (i.e. variable) cost 
calculation. 
10 Note that ri will be measured in ($/kWh) while ci is in ($/kW), therefore (ci/T) is in ($/kWh) and i is a 
dimensionless ratio used to convert the actual installed capacity cost ci into effective (i.e. utilized) capacity cost. 



 

 
 

 

 

 

 

 

 

 
 

Figure 1  
A typical load duration curve for an electricity market 
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Figure 2  
Cost curves for a technology with constant returns to scale in the long-run and capital is divisible 

(i.e. continuously variable). 
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Figure 3 
Capacity utilization and production level in the electricity generation market 
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2.1 Constant returns to scale in production and perfect competition in the market 

Now consider the case of an electricity supply technology with constant returns to scale (CRTS) 

operating in a perfectly competitive (PC) market. CRTS implies the long run marginal cost 

(LRMC) of production is constant (while short run marginal cost can be increasing with 

production level due to diminishing returns in the short run).11 For simplicity, assume that the 

SRMC is a constant hence average variable cost (AVC) will also be a constant. Short run 

average total cost (SRATC) therefore will be a decreasing function of production with the 

minimum being at the point of maximum capacity utilization where LRMC = SRMC + MCC 

(see Figure 2). If demand in the short run falls short of the maximum capacity utilization level 

(e.g. D1 in Figure 2) then to ensure that capacity is utilized to the full extent possible, price may 

need to fall below the level of LRMC to reach the level of SRMC (e.g. P1 in Figure 2). On the 

other hand, if demand far exceeds capacity in the short run then the price level may need to rise 

above the LRMC (e.g. to P2 in Figure 2) to ration demand to existing capacity. Only when 

demand is equal exactly to long run equilibrium level (assumed to be DLR in Figure 2) that the 

competitive pricing rule P = LRMC will result in both full cost recovery for the supplier and also 

market equilibrium. 

Now, assume that total electricity demand on average is represented by a demand curve such as 

D on the right hand diagram of Figure 3. Since actual demand is highly fluctuating and is 

assumed to consist of different types or ‘loads’, the (instantaneous) level of demand can be 

assumed to be represented by different demand curves such as D1 (when only the ‘base’ load is 

present), D2 (when both the ‘base’ and ‘intermediate’ loads are present), or D3 (when the ‘peak’ 

load is also present). These are represented in the left diagram of Figure 3 with demand (i.e. 

output units in kWh) being converted into capacity unit (kW). To cater for the different types 

(and therefore levels) of demand, supply capacities are also categorized into different types: 

‘base’, ‘intermediate’, and ‘peak’ capacities.12 If these capacities are now ‘ordered’ along the 

                                                
11 LRMC is defined as the minimum of all SRATC (short run average total cost) as the level of ‘scale’ or capacity is 
continuously varied. SRATC is the sum of average fixed cost (AFC) and average variable cost (AVC). 
12 In practice, there is also a special type of capacity called “always turned on” which applies to the case of some 
renewable energy technologies (such as solar, wind, etc.). These capacities are “always turned on’ because the 
outputs from these capacities are not subject to the supplier’s decision but are conditional on the natural environment 
(availability of sunlight, wind, etc.), therefore they must be left ‘turned on’ (except when under repair or 



horizontal axis according to their levels of increasing LRMC costs, then the overall LRMC curve 

can be said to represent the ‘supply curve’ (of capacity) for the electricity market.13 Capacity 

planning therefore implies the following optimisation problem: 
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where Ctot is the total production cost over the production time period T and Ktot is the 

(minimum) total capacity required to satisfy demand at all times for the period T; Ki, i={1,2,3} 

are the ‘optimal’ levels of capacities for different types. The first order condition for optimality 

gives:14 
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where is the Lagrange multiplier associated with the total capacity constraint (2). Equation (3) 

can be interpreted as the requirement that at optimality the LRMC of supply (for a unit of 

capacity) must be equal to the ‘shadow value’ of capacity, i.e. for any type of capacityTo 

determine the value of multiply both sides of equation (3) with K i and sum up over all i’s, we 

have: 
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maintenance). The concept of ‘load factor’ in this case is replaced by the concept of ‘availability factor’, i.e. the 
percentage of the total time when output is available from this type of capacity. 
13 For simplicity, it is assumed in Figure 3 that each capacity of a particular type (e.g. base capacity) has a single and 
constant LRMC curve but in practice, each LRMC curve can be upward-sloping and also consisting of different 
types dependent on the particular type of technology used. Hence instead of a simple step function as shown in 
Figure 3, the actual LRMC can be of multi steps or smoothly upward sloping. This, however, will not change the 
main arguments of the analysis. 
14 Strictly speaking, the values of i’s can be seen to be related to the choices of Ki’s for any given load duration 
curve, therefore, although the optimization problem of (1)-(2) is formulated in terms of the values of Ki’s, the 
optimal results can be formulated in terms of the values of i’s rather than Ki’s. 



The values of Vtot and Ftot can be referred to as the total variable (i.e. running) and total fixed (i.e. 

capital) costs respectively and equation (4) says that with optimal capacities Ki’s being chosen, 

the shadow value of capacity will be given simply by the total effective utilization cost per unit 

of capacity, i.e. (Ctot/Ktot). From the values of ri, ci, and , equations (3) can be used to determine 

the optimal values of the load factors i’s (and hence the optimal values of i’s) as follows. First, 

assume that one of the load factors can be chosen as a ‘reference’ parameter, R (for example, 

choose the load factor for the base capacity as a ‘reference’ parameter, i.e. 1=R). Other load 

factors can then be determined relative to this reference parameter using equation (3):  
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        (6) 

From equation (6) the (optimal) levels of the load factors can be determined relative to an 

assumed load factor of a ‘reference’ capacity, i.e. R . The find the absolute levels of all the 

optimal load factors, it is necessary to refer to the actual level of the load duration curve. Thus, 

for example, assuming that )0(
R   is the initial value of the load factor assumed for the reference 

capacity. From equation (6), the (relative) optimal load factors for all other capacities can be 

estimated. Refer to these as )0(
i  and calculate the total outputs produced from all capacities, as

 
i iii i TKQ )( )0()0(  . Clearly, it is unlikely that this total will happen to be equal to the actual 

level i iQ  as derived from the load duration curve, therefore we write:  
i iii i TKQ )( )0(

where 1 . We then iterate the next level of the reference load factor as )0()1(
RR    and re-

estimate all the non-reference load factors using (6) again. Repeat this process until the value of 

  gets close to 1.15 

With equation (6), it can be seen that if ri0 then the optimal load factor for capacity i should be 

considered as ‘infinite’. This can correspond to the case of some renewable electricity 

technologies such as wind or solar electricity where running cost is practically zero because there 

                                                
15 We carry out this iteration in one of our experiments (see section 3 below) and the value of  is seen to converge 
fairly quickly, from .858 to .972 in just two iterations, and then .994 and .999 if the iterations continue. Furthermore, 
it was also observed that the final absolute values of the optimal load factors are not dependent on the initial choice 
of a ‘reference’ load factor. In our experiment, we can choose either coal or oil technologies as a ‘reference’ case 
without changing the final results. 



is no fuel cost. In practice, however, ‘infinite’ load factor implies capacity should ‘always be left 

on’16 which means it is excluded from the optimization problem of equation (1). Therefore, 

equation (6) in fact applies only to those capacities which have ri>0. In these cases, if we 

compare two different types of capacities with ri>rR but ci<cR (for example, comparing oil-based 

and gas-based electricity to coal based electricity), equation (6) will say that iR and this 

makes sense. On the other hand, if ri<rR and ci<cR (for example, the case of biomass or waste-

based electricity as compared to coal based electricity), equation (6) will say i>R which is also 

reasonable. Finally, for the intermediate case of ri<rR but ci>cR (for example, the case of nuclear 

electricity versus coal-based electricity), equation (6) cannot say definitely whether i>R or 

i<R and this depends on the relative magnitudes of ci and cR. This is also reasonable. Therefore, 

all of this can show that equation (6) is indeed a reasonable criterion for guiding the decisions on 

outputs of different technologies to meet with electricity demand in the short run (given fixed 

capacities). Alternatively, it can also be used in the long run to plan for capacities as shown 

below. 

In the short run when capacities (Ki’s) are fixed, output allocation will be guided mainly by the 

relative values of the short run marginal costs (ri’s). If some of these costs are changed (for 

example, following the imposition of a climate change policy which puts a tax on the emissions 

of CO2 in some technologies), the optimal load factors for these technologies will also change. 

The change in the optimal load factors can be used to guide production changes in the short run 

when capacities are fixed. This can be explained as follows.  

Let K={i} be the set of technologies (also used to denote the set of capacity), and let D={j} 

denote the set of demand categories.17 Let A={Aij} be a matrix which describes the proportion of 

total capacity which is of type i and used to cater for demand of type j. We can also define a 

corresponding matrix B={ i Aij/
i j

iji A }={Bij} which will represent the proportion of total 

                                                
16 See footnote 13. In fact, with renewable electricity, the ‘load factor’ is not a relevant parameter and therefore, it is 
replaced by the so-called ‘availability factor’ which is an exogenous parameter rather than one being determined 
endogenously by optimization 
17 Up to now, it has been assumed that different capacity types are used to cater for different demand categories 
(‘loads’ type). However, the match between capacity types and demand loads is not one-to-one, hence the different 
sets K and D. 



output or production which is from capacity i and used to cater for demand of type j. We then 

have: 
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where )/( SS
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S
i QQS   is the proportion of total output (supply) coming from technology 

(capacity) of type i, and )/( DD
j

D
j QQS   is the proportion of total demand belonging to category 

j. These proportions are given by the column sum and row sum respectively of the B matrix as 

seen from equations (7a) and (7b). For equilibrium between supply and demand, we also have: 
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Similarly, let D
j

D
j Qdq ln  be the log-change in demand of category j, and DD Qdq ln  be the 

log-change in total demand.18  We have: 

                                                
18 DQ  is the total area under the load duration curve, and D

jQ  is the component area covered only by the specific 
demand load of type j (see Figure 1). 
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In the short run when capacity is fixed, we simply have: i
S
i

S
i dQdq lnln  . 

2.1.1 Static short run production analysis. 

 If we now assume that in the short run, not only are capacities being fixed, i.e. 

i
S
i

S
i dQdq lnln  , but there are no relative supply-price (or cost) movements between the 

different technologies. This means production decisions can be based simply on a static picture 

of the relative cost differences between different technologies which in turn resulted in the 

relative optimal load factors of the different capacities as given by equation (6), then we can 

assume that *lnln ii
S
i ddq    where   is a constant to be determined by the equilibrium 

condition between total supply and total demand in the short run.19 Now we can now set the 

market equilibrium as qqq DS  , and from equations (8) and (9), we have: 
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Equation (10) can then be used to estimate the equilibrium value for   which is then used to 

determine the optimal supply from various capacities as given by the relationship 

.lnln *
ii

S
i ddq    

                                                
19 We also note from equation (6) that optimal load factor is a relative concept, i.e. its absolute level cannot be 
determined without reference to a specific equilibrium condition between total supply capacities and total demand 
for all of their outputs. Therefore the constant  can be interpreted as a necessary parameter for this equilibrium 
condition, rather than as an arbitrary factor to relate the actual load factor level i  to its optimal value *

i .  



Consider, for example, a simple situation where demand from various categories change by the 

same proportion20 (which is also equal to the proportionate change in total demand), i.e. 

.; jqq DD
j   In this case equation (10) can be re-written as: 


i

i
S
i

D dSq *ln           (11) 

i.e. the value of   is given simply by the difference between the log-change in total demand Dq  

and the quantity share-weighted log changes in optimal load factors.  

2.1.2 Dynamic short run production analysis. 

Optimal load factors take into account the static (but optimal) supply constraints with respect to 

production activities in the short run, but it does not take into account the full dynamic picture of 

production variation over time when the supply-price or cost levels of various technologies can 

change (even if the relative optimal load factors do not change). This means the equilibrium 

‘constant’   in equation (11) needs to be interpreted as a static equilibrium condition for total 

supply/demand rather than as a behavioral parameter to be used for setting the supply levels of 

various technologies over time. To avoid using this static parameter in such a dynamic situation, 

we can revise the condition *lnln ii
S
i ddq    as follows. Firstly, we can let 

*lnln ii
S
i ddq    when 0ln and **  iii d  . On the other hand, if 0ln and **  iii d 

then we set *lnln ii
S
i ddq   . The first condition implies *

i  continues to act as though a 

constraint to production level even if this constraint is not binding. The second condition 

represents the situation when the optimal load factor constraint actually becomes binding. The 

use of *
i  therefore is being restricted to being just a constraint (actual21 as well as optimal) to 

production activities, but not being used to set production levels. 

                                                
20 i.e. the ‘shape’ of the load duration curve remains the same even if the absolute level of the curve has shifted. In 
this case, it can be assumed that the ‘structure’ of underlying demand loads (i.e. shapes of individual load curves) 
have remained the same, and this means the quantity shares of all the loads stay the same, not only for the overall 
time period, but also for specific individual time-periods. 
21 In estimating the values of *

i  according to equation (6), the actual (i.e. physical) limits to these optimal values 

are implicitly incorporated because the absolute level of *
i  is determined only in relation to a particular 



To set the actual levels of production, we can rely on standard microeconomic theory of 

production in the short run, i.e. using the short run marginal cost curve of each technology as a 

‘supply’ curve, and from this, estimate a short run ‘price elasticity of supply’ for each technology 

( S
iE ). With this elasticity parameter, and with *

i  acting as a constraint, we can now set 

production levels as follows: 

**   iflnlnln ii
S

i
S
iii

S
i PdEddq        (12a) 

**  iflnlnln iii
S

i
S
ii

S
i dPdEdq        (12b) 

From equation (12a), it can be seen that if S
iE  is very large (supply curve is almost horizontal22) 

then *
i will always act as a binding constraint23. On the other hand (equation (12b)), if S

iE  is 

very small, almost zero (supply curve is almost vertical24) then we end up with *
i  still acting as 

a constraint, but almost always non-binding. 

2.1.3 Long run capacity planning 

For the long run, when capacities can be changed, the planning for different capacities can 

proceed as follows. Firstly, we note that optimal load factors can change in the long run not only 

due to expected changes in running costs in the future but also to changes in marginal capital 

costs (see equation (6)). Secondly, demand levels in the future are also expected to change. 

Therefore, capacity changes in the future can be given by the following relation: 
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equilibrium condition, therefore implicitly *

i  is optimal but also within the boundary of ‘actual’ (i.e. 
technologically feasible) values. 
22 For example, unlimited wind or solar powered electricity at zero production cost because these resources – if 
available – are ‘free’. Also, if coal-based electricity is available, and coal is very cheap, its supply curve can also be 
considered as though horizontal.  
23 This case is equivalent to the ‘static’ pricing condition considered in the previous section. 
24 Which may represent a situation of physical resource constraint, such as wind or solar electricity production being 
bounded by actual the actual wind or solar condition of a particular region rather than being constrained by 
economic cost of production.  



In the simple case when it is assumed ,; jqqqq SDD
j   equation (12) can reduce to: 
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Equation (13) can be used to determine the level of planning for capacity of various 

technologies, depending on the changes in the level of their optimal load factors in the long run, 

as well as on the predicted changes in the level of demand for electricity of various categories. 

This equation gives more details as to the (‘bottom-up’) factors that can affect investment in a 

particular type of technology/capacity as compared to a the more ‘general’ approach of a 

conventional top-down model. In the latter case, the concern is often focused only on a ‘rate of 

return’ to capital investment – usually applicable to the whole electricity sector rather than to any 

particular technology, and no details are mentioned of the technological factors (such as load 

factor optimization and constraints) or economic factors (such as demand variation and changes 

between different categories, i.e. the level and shape of the load duration curve). The new 

approach presented here thus can be regarded as an improvement, not only over the conventional 

‘top-down’ approaches, but also over a standard bottom-up model where capacities are often 

assumed as fixed or given exogenously rather than being considered as factors which can be 

endogenous determined within the model.  

2.2 Imperfect Competition 

So far, it has been assumed that the marginal capacity costs (ci) are constant for all capacity 

types, implying that all technologies are subject to constant returns to scale (CRTS) and 

furthermore capacity level Ki can be continuously varied (‘infinitely divisible’) so that it can 

correspond exactly to the optimal level as indicated by the intersection between the long run 

demand curve and LRMC curve (see Figure 2). In practice, however, some technologies may 

exhibit a certain degree of scale economies due to a number of factors. For example, these 

technologies may require large up front capital investments which cannot be divided into smaller 

(optimal) amount (problem of so-called capital indivisibility or ‘lumpiness’).25 In such a case, the 

                                                
25 The ‘lumpiness’ of capital or capacity can arise from factors other than technological. For example, coal-fired 
power stations may need to be located nearer to the source of coal supply (mines or ports) to minimize transport 
costs. Nuclear powered stations may need to be located nearer to the source of water supply (for cooling purposes). 



actual installed capacity would tend to be larger26 than the optimal level  and this means the 

average long run total cost (ATC) will tend to be a decreasing function of production level rather 

than being a constant (at the minimum ATC level). In this case the LRMC (minimum long run 

ATC) will stay below the actual level of ATC and therefore competitive pricing rule (price = 

LRMC) cannot apply because such a pricing rule will result in producers running at a loss. Scale 

economies, on the other hand, imply some degree of ‘natural monopoly’ or market power 

(Baumol, 1977). This means instead of the competitive pricing rule, producers can mark-up the 

supply price over LRMC and control the level of production accordingly. The extent of this price 

mark-up will depend on the strength of the market power that each supplier possesses. Thus, for 

example, in a model which assumes one or two ‘dominant’ suppliers among a group of ‘fringe 

competitors’27, the dominant suppliers are those who possess some degree of market power such 

that they together can act as though Cournot oligopolists restricting supply to raise the price 

above the LRMC level to maximize their profits. The Cournot oligopolists (as a group) will face 

with a demand curve which is ‘residual’ from the total market demand curve after subtracting the 

competitive supply curves (i.e. LRMC curves) of all the ‘fringe competitors’, i.e. we have: 

FL
Fj

j
Li

itot QQQQQ  
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where Qtot is the total level of demand for the market, Qi and Qj are the outputs of individual i 

and j respectively in the L- and F-groups (L stands for ‘Leaders’ and F stands for ‘Fringe’). 

Assuming that fringe competitors behave as perfect competitors, i.e. their output and capacity 

decisions will continue to be determined by the optimal relation: *lnln ii
S
i ddq    as 

described in the previous section,28 this then leaves only the decisions of members of the L-group 

to be considered in this section. Since total QL is ‘given’ (as the ‘residual’ demand from Qtot after 

                                                                                                                                                       
Both are also to be located further away from residential areas to conform to environmental regulations. This results 
in geographical concentration and hence in capital ‘lumpiness’ of these power plants. 
26 It can also be smaller, but for reason of security of supply (to avoid the problem of black out or brown out when 
demand temporarily exceeds normal total supply) it is more likely to be larger. 
27 This is the so-called ‘dominant versus fringe competitors’ model of electricity supply, often adopted in most 
‘bottom-up’ approaches, see for example, Cardell, Hitt, and Hogan (1997), Bonacina and Gulli (2007), Wolak 
(2007). 
28 In this case, there is no need for the adjustment constant  for the F-group because the supply by the L-group will 
act as a ‘residual’ which ensures total supply and demand are in equilibrium, because 
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taking away the total output QF of the F-group), the only issue is how the Cournot oligopolists 

will share this total among themselves. Cournot oligopolists are known to maximize their own 

profits according to the following model: 

)().(),( iiiiiLiiQ QCQQQPQQMax i
i

       (16) 

Here, ),( ii QQi is the profit function of the ith-member in the L-group, taking the level of 

production of all other members in this group, i.e. )( iLi QQQ  , as given; )( iiL QQP   is the 

inverse of the residual demand function, and Ci(.) is the total cost function for the i-producer. 

Assuming that both PL(.) and Ci(.) are differentiable, then the first-order condition for optimality 

is given by: 

0/)./(  iiiiLL dQdCQQPP         (17) 

The first two terms on the left-hand side of the equation represent the marginal revenue from an 

additional unit of output, while the third term represents the marginal cost (MCi) of that output.29 

Given that each Cournot oligopolist takes the total outputs of all other members are given, this 

implies dQi=dQL, or )/()/( LLiL dQdPQP  . Equation (16) can then be written in an 

alternative form: 
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     (18) 

Equation (18) says that a Cournot oligopolist’s price mark-up over its MC is proportional to its 

market30 share within the group (i.e. S
L

S
i

S
i QQS / ) and inversely related to the price elasticity of 

the residual demand curve (i.e. D
L ). If MC is to change, for example following the imposition of 

some climate change or energy policies in the electricity sector, then the level of equilibrium 

supply price for the L-group as a whole will also change. This determines not only the supply 

price for the L-group but also for the F-group (since they are price-takers or price-followers), i.e. 

                                                
29 Note that in contrast to the optimization problem (1) which is concerned with capacity planning (in the long run), 
optimization problem (16) is concerned only with profit maximisation in the short run, i.e. conditional on the given 
levels of capacities. Therefore, the value of dCi/dQi = MCi in equation (17) is to be interpreted as equal to the value 
of the short run (i.e. running) cost ri. 
30 Note that this ‘market share’ is defined in terms of quantity rather than cost- or value share. See also footnotes 16 
and 18 above.  



for the market as a whole. From equation (18), let i be the ratio (or power of change) of the MC 

for the i-supplier, i.e. iMCi is the ‘new’ marginal cost level compared to the ‘old’ level MCi. If 

similarly PL is defined as the ‘new’ equilibrium price for the L-group as a whole compared to 

the ‘old’ equilibrium price PL, then a relationship between  and the i’s can be determined as 

follows. Let iS and *
iS  be the ‘old’ and the ‘new’ shares for supplier i respectively following 

changes to the equilibrium price. From equation (18) we can write:31 

iLiL
D
L SPMCP  /)(           (19a) 

*)/()( iLiiL
D
L SPMCP            (19b) 

Summing over all i’s in equation (19a) and (19b) and noting that   


Li Li ii SS 1* , we 
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or: 

















 

 Li
i
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Equation (21) says that is simply the marginal-cost-weighted average of all the i ’s. Equation 

(21) can then be used to determine the new equilibrium price (for the L- group and the market as 

a whole), and given this equilibrium price, the outputs for members of the L- group can be 

determined accordingly. For example, equation (19a) can be used to ‘calibrate’ the value of the 

elasticity D
L  assuming an initial equilibrium price for the oligopolists (which is also the initial 

equilibrium price for the market). Given this elasticity value, equation (19b) then can be used to 

determine the new share *
iS  for the ith-member of the L-group.  

As an alternative to equation (21), we can also sum up equation (18) over the L-group to give: 

                                                
31 Assuming that the price elasticity of demand for the residual demand curve D

L is an ‘arc-elasticity’, i.e. measured 
as an average over the two price situations. 
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or: 

)]/1(/[)( D
L

Li
iL nMCP  


         (22b) 

where n is the number of members in the L-group. Equation (22) is equivalent to saying that the 

oligopolists as a whole acts as though as a monopolist, with price markup over the (average) 

marginal cost given by the inverse of the price elasticity of the (residual) demand curve. 

Equation (22b) can therefore be used to determine the (‘new’) equilibrium price LP  for the 

monopolist (and the market as a whole) following some policy ‘shocks’ to the marginal costs. 

Once this new equilibrium price is determined, the relative market shares between the 

oligopolists can then be determined via equation (18) or (19a)-(19b) as before. The relative 

market shares must of course be conditional on the feasibility of production levels given the 

(short run) fixed capacities of all the oligopolists. Therefore, we can impose the ‘feasibility’ 

constraints on these shares as follows: 
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The first term on the right hand side of equation (23) indicates the constraint that – given fixed 

capacity, production changes cannot exceed the change in (optimal) load factor. The terms 

within the square brackets on the right hand side of equation (23) stands for the change in 

‘residual’ demand  (i.e. total ‘residual supply’ from of the L-group), taking into account changes 

in total supply ( SQd ln ) and changes in supply of the F-group. 

 



 
 
 

Figure 4 
Strategic behaviour between (a) Cournot oligopolists price leaders (L) using technologies which have scale economies, and (b) 

perfectly competitive fringe suppliers (F) who use technologies which have no scale economies, in (c) the electricity market (graphs 
are not to scale). 
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3. Application to the case of Japan 

Electricity in Japan is produced from coal, oil, gas, nuclear energy and hydro power with some 

small proportions from renewable energy sources. To decompose the electricity sector in the 

GTAP v9 data base32 (Aguiar et al., 2016) into these different technologies, we use a 

methodology which can be described as follows. First we define the set of electricity generation 

technologies as consisting of those using coal, oil, gas, nuclear energy, hydro power, onshore 

wind, solar energy, biomass, waste, and other renewable energy (mainly geothermal). To 

facilitate a study into future usage of carbon capture and storage (CCS) technologies, we also add 

coal CCS, oil CCS, and gas CCS to the set of technologies by taking away 1% of the shares from 

coal, oil, and gas respectively and giving these to the CCS counterpart.33 Next, to distribute the 

values of the inputs into the electricity sector in the GTAP data base to these technologies, we 

make the following assumptions. 

a. Generation activities: generation activities are technology specific, therefore the distribution 

of fuels, capital, labour and non-fuel materials inputs into these technologies must vary 

according to the different cost structures of these technologies: 

i. Fuel inputs: All coal inputs into the electricity sector are assumed to go into the coal and 

coal-CCS technologies in proportion to their outputs34; similarly for gas as fuels into gas 

and gas-CCS technologies, and oil (and p_c) as fuels into oil and oil-CCS technologies. 

For nuclear technology, in principle, uranium should be considered as the main source of 

fuel into this technology. However, in practice, since there is no explicit ‘uranium’ 

commodity in the GTAP data base, a ‘proxy’ fuel must be found such that this can 

adequately represent the extent of fuel inputs into (and therefore, running costs of) this 

technology. First, we look at commodity ‘omn’ (other mining and minerals nec 

commodities) which is supposed to include ‘uranium’ within it, but in the GTAP data 

base, ‘omn’ makes up only a negligible value compared to the value of nuclear 
                                                
32 We use GTAP v9 database but choose the base year as 2007 rather than 2011. This is because 2011 is the year of 
the Fukushima accidents and we want to use the model to test the impacts of the Fukushima accidents, hence 2011 
cannot be chosen as the base year. 
33 This small proportion will not affect greatly the accuracy of the initial data base but will allow the simulation of 
the growth of CCS technologies to be carried out because growth cannot occur on a zero initial basis. 
34 We assume that CCS technologies use 20% more fuels than non-CCS counterpart However, the emissions levels 
from CCS technologies are assumed to be 1/10 of the emissions from non-CCS counterparts, i.e. 9/10 of the 
emissions are ‘captured and stored’, see IPCC (2005). 



electricity output. Therefore, this cannot be a main fuel source for nuclear electricity. 

Next, we look at the ‘p_c’ commodity (which is described as including also the 

‘processing of nuclear fuel’). However, since almost all of the p_c commodity input into 

the electricity sector has been allocated to the oil and oil-CCS technologies (to make up 

the required ‘fuel-to-output’ ratios for these technologies), there is little left to be 

considered as significant input into other technologies. Therefore, we finally look at 

electricity as a potential candidate. Electricity input makes up about 10% of the value of 

total electricity output which is a significant figure that cannot be attributed simply to 

‘own consumption’ or considered as part of the ‘transmission and distribution losses’. 

The only feasible alternative explanation for this level of electricity input is that it must 

have been used as part of the total fuels input into the production of nuclear electricity, 

e.g. used in the processing of uranium. We therefore allocate a significant part of this 

total electricity input into the electricity sector as fuels to the nuclear technology, to 

make up to a level of about 21% of the total value of the nuclear electricity technology 

output.35 The rest of the electricity input is then distributed to all other technologies 

(including ‘non-generation’ activities) in accordance with the values of their outputs. 

Finally, for the rest of other technologies, we make the following assumptions: (1) for 

Biomass technology, we assume that all ‘agricultural and forestry commodity inputs’ 

into the electricity sector can be regarded as ‘fuels’ for the Biomass technology; (2) for 

electricity produced from ‘waste’ (ElyWas), since ‘waste’ is in principle ‘a commodity 

of no value’, there is no explicit representation of the value of waste in the data base; 

however, ‘waste’ can be considered as part of the ‘margin’ commodity in the ‘trade and 

transport’ of commodities from producers to consumers, therefore, we assign a small 

proportion of this margin commodity to the ‘fuels input’ into the ElyWas technology to 

make up to a level of 10% of the total value of this technology output. 

ii. Capital inputs: we use the EIA (2013) and IEA/NEA/OECD (2010) information on 

‘overnight capital cost’ ($/kW) – see Table 1, and also information on installed 

capacities (Million kW) for electricity generation by various technologies in Japan36 to 

estimate the values of the capital stock ($US million) in these technologies. The ‘capital’ 
                                                
35 21% is the empirically accepted value of fuel-to-output ratio in the nuclear electricity technology for Japan in 
2007. 
36 http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=7. 



endowment input in the GTAP database, however, refers to the value of capital services 

rather than capital stock. However, if we assume that the values of capital services are 

also in proportion to the values of the capital stocks, then we can use the latter to 

distribute the former. For the total value of capital services associated with the 

generation of electricity (as versus in non-generation activities), we assume a proportion 

of 67.7% (i.e. 32.3% is the total value of capital services are assumed to be associated 

with non-generation activities). 

iii. Labour inputs: the EIA (2013) information on fixed ($/kW-yr) and variable ($/MWh) 

O&M (operation and maintenance) costs – see Table 1, together with the information on 

production outputs (billion kWh) of various technologies can be used to estimate the 

total value of O&M costs for each technology. Assuming that these costs would consist 

mainly of labour (and some material costs), the relative proportions of these costs for 

different technologies therefore can then be used to distribute the total value of labour 

endowment in the generation of electricity. Again, as in the case of capital services, we 

assume 67.7% of the total value of all labour inputs into the electricity sector is 

associated with generation activities (leaving 32.3% to be allocated to the non-generation 

activities). 

iv. Intermediate material inputs: non-fuel material inputs into the electricity sector can be 

allocated to generation and non-generation activities as follows. Firstly, as in the case of 

capital and labour inputs, we assume 32.3% of all non-fuel material inputs into the 

electricity sector are allocated to non-generation activities.37 The rest is then allocated to 

the generation technologies in such a way that the total supply prices of all technologies 

are in accordance with some empirically estimated relative supply price. 

b. Non-generation activities: As already mentioned above, 32.3% of the total value of capital, 

labour, and some non-fuel material inputs into the electricity sector output in Japan in 2007 are 

assumed to belong to non-generation activities. This makes up about 20.8% of the total value of 

the total electricity sector output (see Table 2). 

                                                
37 Except for ‘agricultural sector’ commodity inputs which have already been allocated to biomass technology, 
‘minerals’ which are allocated to nuclear technology, part of the margin commodities which are allocated to the 
electricity-from-waste technology. 



Table 1: Cost Characteristics of Electricity Generating Technologies in the US and Japan 

Code Technology 
Description 

EIA Specification 
 

Overnight 
Capital Cost 
($/kW) 

Fixed 
O&M 
Cost 
($/kW-yr) 

Variable 
O&M 
Cost 
($/MWh) 

ElyCoa Coal Scrubbed Coal New  2,719 31 4 
ElyOil Oil Conv. Gas/Oil Comb Cycle 915 13 4 
ElyGas Gas Advanced Gas/Oil CC  1,549 15 3 
ElyNu Nuclear Advanced Nuclear  5,501 93 2 
ElyHyd Hydro Conventional Hydroelectric  2,936 15 3 
ElyWon Wind Onshore Wind  2,213 40 0 
ElySol Solar Photovoltaic  3,564 25 0 
ElyBio Biomass Biomass CC 4,114 106 5 
ElyWas Waste Municipal Solid Waste 8,312 393 9 
ElyOth Other Renewables Geothermal 2,494 113 0 
CoaCCS Coal CCS Dual Unit Advanced PC with CCS 6,567 73 8 
OilCCS Oil CCS Advanced CC with CCS 2,084 32 7 
GasCCS Gas CCS Advanced CC with CCS 2,084 32 7 

Source: Figures for Japan are from IEA/NEA/OECD (2010) Table 3.1 and for the US are from EIA (2013), Cai and 
Arora (2015). 

 

Table 2: Output and cost components of the generating and non-generating activities in the 
electricity sector in Japan in 2007 

Technology Output 
share 

 

Output 
(Billion 
kWh) 

Capacity 
(Million 

kW) 

Capital  
($ mill.) 

Labour  
($ mill.) 

Natural 
Resource 
($ mill.) 

Fuels  
($ mill.) 

Non-
fuels  

($ mill.) 

Supply 
price 

($/kWh) 
ElyCoa 0.252 259.7 43.9 4310.1 3183.8 0 6904.5 7076.9 0.083 
ElyOil 0.130 134.0 78.6 2599.0 1641.6 0 26514.1 3650.8 0.257 
ElyGas 0.273 281.3 54.5 3050.5 2586.0 0 15636.9 7666.6 0.103 
ElyNu 0.256 263.8 47.5 9436.2 1624.3 0 4601.6 7189.2 0.087 
ElyHyd 0.076 78.3 47.3 4015.4 719.9 1004 161.5 2134.3 0.103 
ElyWON 0.0009 0.9 1.5 97.7 0.012 24 1.8 24.0 0.168 
ElySol 0.0007 0.7 1.9 197.7 0.005 49 1.4 18.4 0.394 
ElyBio 0.0055 5.6 2.1 316.1 86.4 0 13.4 153.5 0.101 
ElyWas 0.0020 2.1 0.8 237.4 58.0 0 63.3 57.1 0.199 
ElyOth 0.0010 1.0 0.5 38.4 0.040 10 2.1 27.9 0.076 
CoaCCS 0.0010 1.0 0.2 41.7 25.3 0 32.5 28.1 0.124 
OilCCS 0.0010 1.0 1.2 92.7 22.1 0 244.3 28.1 0.376 
GasCCS 0.0010 1.0 0.2 18.5 22.1 0 68.3 28.1 0.133 
Non-GEN(*)       8252.2 4756.5   754.4 13339.5 0.030 
Total 1.000 1030.5 280.3 32703.5 14726.1 1087.3 55000.1 41422.3 0.144 

(*): non-generation (transmission and distribution) activities. 



From the output, capacity, and cost information in Table 2, we can calculate the actual load 

factor (ALF) for different technologies in Japan in 2007 and compare these with the theoretically 

‘optimal’ values (OLF) which are estimated using equation (6). These values are shown in Table 

3. It can be seen from this Table that the actual load factors for fossil fuel technologies (ElyCoa, 

ElyOil, ElyGas) are generally higher than their theoretical optimal values, whereas the opposite 

is true for nuclear, hydro and other renewable technologies.. This implies that fossil fuel 

technologies are being ‘over utilized’ inefficiently and the opposite is true for non-fossil fuel 

technologies. This information is useful because it indicates that (in the short run) there are 

rooms for reducing the use of fossil fuel technologies and increasing the use of non-fossil fuel 

technologies and this will in fact improve on the efficient utilization of existing capacities. 



Table 3: Actual and Optimal Load Factors for Different Generating Technologies in Japan in 
2007 

Technology Actual 
load factor 

(ALF) 

Optimal 
load factor 

(OLF)  

Availability 
factor 
(AF) 

Actual LF/ 
Optimal LF 
(ALF/OLF) 

Optimal LF/ 
Avail. Factor 

(OLF/AF) 
ElyCoa 0.676 0.560 0.9 1.21 0.62 
ElyOil 0.195 0.156 0.9 1.25 0.17 
ElyGas 0.589 0.402 0.9 1.47 0.45 
ElyNu 0.634 0.727 0.9 0.87 0.81 
ElyHyd 0.189 0.450 0.45 0.42 1.00 
ElyWon 0.066 0.250 0.25 0.26 1.00 
ElySol 0.040 0.120 0.12 0.34 1.00 
ElyBio 0.302 0.700 0.7 0.43 1.00 
ElyWas 0.302 0.434 0.7 0.70 0.62 
ElyOth 0.219 0.700 0.7 0.31 1.00 
CoaCCS 0.669 0.444 0.9 1.51 0.49 
OilCCS 0.096 0.129 0.9 0.74 0.14 
GasCCS 0.478 0.322 0.9 1.49 0.36 



Having decomposed the electricity sector data for Japan into various technologies, the next step 

is to implement the theoretical structure of this sector (as explained in section 2) into a CGE 

model38 and use this for various simulation experiments. The implementation consists of creating 

three options: (1) all technologies in the electricity sector are assumed to be subject to constant 

returns to scale and all suppliers are perfect competitors (see section 2.1), this option is referred 

to as the ‘perfectly competitive’ (PC) scenario; (2) some technologies39 in the electricity sector 

are assumed to be market ‘leaders’, i.e. possessing some degree of market power due to the 

inherent ‘scale economies’ in their cost structures, and if these market leaders are assumed to act 

as though Cournot oligopolists (as described in section 2.2) then this option is referred to as the 

‘imperfectly competitive’ (IC) scenario; (3) finally, to facilitate a comparison with a 

‘conventional’ approach where the so-called ‘technology bundle’ approach (using a CRESH 

production function) is used, we also implement this approach in the model, and refer to this 

option as the ‘CRESH’ approach.40 With a CRESH approach, there is the issue of value-

preserving (i.e. sum of all the values of technology ‘inputs’ should equal the value of total 

electricity output) or ‘volume (or quantity)-preserving’ (i.e. sum of all the quantities of 

technology ‘inputs’ should equal the total quantity of electricity output), therefore, we 

distinguish between these two cases by referring to them respectively as CRESHV (value-

preserving) and CRESHQ (quantity-preserving) cases. Furthermore, a CRESH approach does not 

pay attention to the issue of capacity (i.e. ‘optimal’ load factor) constraint. Therefore, to facilitate 

a comparison with our approach, this restriction is also implemented as an option (L).41  

Experiment 1: Japan’s heavy reliance on non-nuclear technologies following the 
Fukushima accidents 

After the accidents at the Fukushima nuclear power plants in Japan in March 2011, electricity 

generation in Japan had to rely mainly on natural gas, coal, and petroleum products with some 

                                                
38 We use the GTAP-E model (Burniaux and Truong, 2002) as a basic platform to implement this structure and the 
modified model is then referred to as GTAP-ETD for “GTAP-E model with electricity ‘Technology Decomposition’ 
39 The model is flexible with respect to this choice because in practice, different market situations in different 
countries or regions may have different sets of technologies which can play the role of ‘dominant’ suppliers. For the 
case of Japan, we assume that (after the Fukushima accidents) only coal, gas technologies can play this role. 
40 Details of this approach are given in the Appendix. 
41 This means ‘CRESHQ’ implies a standard CRESH approach with quantity-preserving restriction but no load-
factor restriction. This means the load factor can exceed 1, which is infeasible. In our approach, we impose the 
restriction that load factor cannot exceed the ‘optimal’ value implied by equation (6). Therefore, only CRESHQL 
would be comparable with our approach. 



small contribution from hydro and other renewable technologies to replace nuclear electricity 

capacity which was damaged in this accident (see Figure 5). To test the realism of our model in 

describing the Japanese electricity sector, we use the model to simulate a scenario of ‘Fukushima 

accidents’. To simulate this scenario, we shock the level of electricity generation capacity as well 

as output of nuclear technology by about -93% (this represents a fall in nuclear electricity output 

from a level of around 263.8 billion kWh in 2007 to a level of about 17.5 billion kWh in 2012 

after the accident). We also shock the total level of electricity generation in Japan by about -

8.7% (representing a fall in total electricity production from 1030.5 billion kWh in 2007 to 940.8 

billion kWh in 2012). Note that in our model, we make a distinction between supply structure 

(composition of different types of capacities) and demand structure (composition of different 

types of demand), therefore an assumption must be made about the relationship between the two 

(i.e. structure of the A matrix as described in section 2.1).42 This is described in Table 4. We then 

let the model work out the various shares of all the technologies in the electricity market as well 

as estimating the possible increase in electricity price following these changes in supply capacity 

and outputs. The results are shown in Figures 6 and 7. 

In Figure 6, it can be seen that following the Fukushima accident, coal oil and gas (and also 

renewable) energy were used to replace nuclear energy in the generation of electricity and 

therefore the market shares for these technologies expanded. With a conventional CRESH 

approach, it seems all technologies (including hydro) will share in this expansion. However, with 

our new approach, it seems gas technology will enjoy the greatest expansion then followed by 

coal and oil. Hydro electricity does not expand as much as predicted by the CRESH approach. 

When we compare these model predictions with the actual data in 2013, it is clear that our model 

predictions are much closer to the actual result of 2013. Comparing the results of the PC and IC 

assumptions, it seems they are fairly close, although the outputs (and hence market shares) for 

gas and coal technologies (assumed to be ‘dominant’ players) are slightly less for the IC case as 

compared to the PC case. This is to be expected because suppliers with some market power 

would tend to restrict production output to raise the price level. This is confirmed in Figure 7 

where the price increase for the IC case is slightly higher than that for the PC case (12.58% as 

compared to (12.55%) although  this difference is almost negligible (partly because this is the 

                                                
42 The A matrix is given exogenously (and can be shocked) but the B matrix is endogenously determined because it 
depends on the optimal values of the load factors. 



short run). The price increase for the case of CRESH approach seems to be the highest at 12.65% 

but only for the case of ‘quantity-preserving’ restriction (CRESHQ), otherwise, price increase 

would be smaller at (11%) if this restriction is not imposed (CRESHV). All the price increases 

by all approaches as predicted by the model do fall within the range of the actual price increases 

in 2012 when household experienced a price increase of 8% and industrial customers, 15%. 

These actual price increases continued to magnify through to 2013, when their values are nearly 

double of those in 2012. All this seem to indicate that our model predictions are very much ‘short 

run’ predictions, and this is also to be expected.43   

                                                
43 The ‘closure’ for our Fukushima experiment is a ‘short run’ one with all factor endowments assumed to remain 
unchanged and the only ‘shocks’ to the economy are those relating to capacity and total output of the electricity 
sector.  



 

 

Figure 5 
Japan’s net electricity output by different technologies before and after the Fukushima accident 
in 2011 



Table 4: Shares of supply and demand categories in the electricity generation market for Japan 
in 2007 

Technology 
(supply options) 

Shares of demand categories supplied by each supply option category 
Peak Intermediate Base Total  

ElyCoa 0 0 0.157 0.157 
ElyOil 0.28 0 0 0.28 
ElyGas 0 0.194 0 0.194 
ElyNu 0 0 0.169 0.169 
ElyHyd 0 0 0.169 0.169 
ElyWon 0.002 0.001 0.002 0.005 
ElySol 0.005 0.002 0 0.007 
ElyBio 0 0 0.008 0.008 
ElyWas 0 0 0.003 0.003 
ElyOth 0 0 0.002 0.002 
CoaCCS 0 0 0.001 0.001 
OilCCS 0.004 0 0 0.004 
GasCCS 0 0.001 0 0.001 
Total  0.292 0.199 0.51 1 



 

 

Figure 6 
Impacts of the Fukushima accidents: actual and predicted market shares for different electricity 
generating technologies in Japan before and after the accidents: (1) 2007 and 2013: actual shares, 
(2) CRESH: model predictions using the ‘technology bundle’ value-preserving (V), or quantity-
preserving (Q) constraints imposed, and/or also load factor (L) restriction; (3) PC: model 
prediction using the new approach with the ‘perfectly competitive’ market assumption; (4) IC: 
model prediction using the new approach with the ‘imperfectly competitive’ market assumption 
(with coal, gas, and nuclear technologies assumed to be ‘dominant’ players). 
 



 

 

Figure 7 
Impacts of the Fukushima accidents: actual and predicted electricity price increases following the 
Fukushima accident: (1) 2012 and 2013: actual percentage price increases in 2012 and 2013 
respectively for household (HH) and industrial (IND) customers, (2) CRESH: model predictions 
using the ‘technology bundle’ approach with value-preserving (V), or quantity-preserving (Q) 
constraints imposed, and/or also load factor (L) restriction; (3) PC: model prediction using the 
new approach with the ‘perfectly competitive’ market assumption; and (4) IC: model prediction 
using the new approach with the ‘imperfectly competitive’ market assumption (with coal, gas, 
and nuclear technologies assumed as ‘dominant’ players). 



 
Experiment 2: Japan’s Post-Kyoto commitments with and without an accompanying 

energy targeting policy 

Japan’s obligation under the Kyoto Protocol involves a cut back on CO2 emission levels by about 

31.8% (if measured from the 2007 emissions level). ‘Post Kyoto’, however, the target as aimed 

by the Government of Japan44 is to reduce CO2 emissions by about 26% (measured from the 

2013 level) and this is to be achieved by the year 2030. The government can impose this CO2 

emissions target on the economy with or without an accompanying energy policy. It is expected 

that without an accompanying energy policy, the increase in market shares of non-fossil fuel 

based technologies will not be as great as to be able to replace for the reduction in the market 

share of nuclear based electricity. Therefore, the government also imposed some targets for 

energy shares for the year 2030.45 These consist of : 20-24% share for renewable electricity (of 

which 1.0-1.1% is for geothermal, 3.7-4.6% is for Biomass, 1.7% is for wind energy 7% is for 

solar, and 8.6-9.2% is for hydro electricity); coal oil and gas shares will be 26%, 3% and 27% 

respectively, and finally, nuclear electricity will also be targeted to reach 20-22% by 2030. 

We can use our model to estimate what would be the economic cost (in terms of a carbon tax or 

emission price to be put on CO2 emissions level in Japan46 to achieve the climate change policy 

target, but also to estimate the impacts of the energy targeting policy on the climate policy. To do 

this, we first bring the data up-to-date to 2013 by shocking the levels of electricity generated by 

different technologies to the actual levels of 2013 and also shock the capacity level of nuclear 

electricity to the actual level in 2013 after the Fukushima accidents.47 Next, as estimated by the 

government, electricity generation (and consumption) would be increased by about 1.45% over 

the period 2013-2030, so this would be used as an exogenous shock for electricity generation in 

the model to reflect the ‘reference’ situation. The ‘Post-Kyoto’ climate policy scenario (CP) is 

then defined as the situation when the total level of CO2 emissions in 2030 would be reduced by 

                                                
44 See http://www.mofa.go.jp/press/release/press4e_000811.html.  
45 See http://www.meti.go.jp/press/2015/07/20150716004/20150716004_2.pdf.  
46 Emission levels and prices refer to all sectors of the Japanese economy and not just the electricity sector. In this 
paper, we assume that there is a domestic emission trading scheme imposed on the Japanese economy, therefore the 
emission price would be uniform across all sectors, but the cut back on emissions would be different across different 
sectors.   
47 This would be similar to the ‘Fukushima’ experiment except that here the market shares of different technologies 
would be exogenously shocked to bring them to the actual 2013 levels (whereas in the Fukushima experiment these 
market shares are endogenously determined and only the total level of production was exogenously shocked).   



26% below the 2013 level (but keeping the total amount of electricity generation and 

consumption in the economy at the same as in the ‘reference’ case). A CO2 tax can be imposed 

which would be regarded as the ‘price’ for achieving this total emission reduction. Figures 8-16 

report on the results of our model simulations. 

Firstly, from Figure 8, it can be seen that our model’s prediction of what would happen to the 

market shares of different technologies when a climate change policy is imposed would depend 

on the types of approaches used. If a conventional technology bundle approach is used, the 

results seem to indicate that depending on whether a value-preserving (V) or a quantity-

preserving (Q) option is chosen, the picture can be significantly different over the long run.48 A 

quantity-preserving option may allow for the market shares of all technologies to vary more 

‘freely’ than if a value-preserving option was chosen. Neither of these options, however, can 

guarantee that the variations in market shares (i.e. in production volumes) are always consistent 

with existing or future capacity constraints. Therefore, to guarantee this consistency, a ‘double’ 

restriction may be imposed, and that is, not only that quantities add up (or are ‘preserved’) but 

also the variations in production volumes are consistent with variations in capacities. This is 

implied in the ‘QL’ option, i.e. Quantity-preserving with Load factor constraint restriction 

imposed. When this ‘double restrictions’ are imposed, interestingly, the results then come back 

being closer to the original ‘value-preserving’ option results. Furthermore, these results are also 

closer to the results of the new approach, in the sense that (i) expansion in nuclear technology is 

seen to be very limited, (ii) hydro and other renewable technologies can expand, but not to the 

same extent as gas and oil technologies – contrary to a common expectation that non-fossil fuel 

technologies would tend to do better than fossil fuel technologies under the imposition of a 

climate change policy. Finally, the CRESH approach would tend to predict that coal technology 

would be reduced significantly, but our new approach seem to maintain that this is not 

necessarily the case. Coal may suffer, but at the expansion of gas, rather than oil, hydro, or 

renewable. The extent of gas expansion would differ under the PC and IC assumptions, with the 

combined market shares of gas and coal increased under the IC case (as expected, because both 

are assumed to be ‘suppliers with market powers’) but coal cannot compete against gas, even if 

both are assumed to be ‘oligopolists’. Comparing the results of all approaches with the ‘energy 

targets’ for 2030, it is clear that these targets are not achievable, unless some conscious 
                                                
48 That is, comparing the results of Figure 8 with those of Figure 7 which corresponds to a ‘short run’ experiment. 



‘restrictions’ or ‘regulations’ are imposed by the government in addition to climate change 

policy. For example, it is clear that the nuclear energy target is far from being achievable without 

any efforts at restoring the capacities of this technology to the pre-Fukushima level. Similarly 

with renewable technologies: although under the CRESH approach, hydro and renewable 

technologies can do well (CRESHQ) but this is under the implicit assumption that (generating) 

capacities can always and easily follow production levels. Without explicitly allowing for this 

important issue of capacity expansion, all of the approaches (including CRESHQL) would seem 

to indicate that a  reliance on just (short run) production costs alone will not be able to achieve 

any target (whether for nuclear, or for hydro and renewable).49 Therefore, the issue of energy 

targeting’ must be considered in the context of an issue of  capacity expansion and investment 

rather than being regarded only as a matter of short run production (i.e. ‘running’) costs alone. 

Figures 9-12 show what the (implicit)50 capacities of various technologies would look like, if the 

technologies are to compete under the impact of a climate change policy without any additional 

‘energy targeting’ policies imposed. Under a ‘traditional’ CRESHV approach (Figure 9), only 

capacities for fossil fuel technologies seem to expand, but if a quantity-preserving restriction is 

imposed (CRESHQ), capacities for hydro and other renewable technologies would also increase 

(Figure 10). The picture is different with respect to the new approach: only the capacity for coal 

technologies would expand under the PC assumption (Figure 11), and only with the IC 

assumption that capacity for gas technology will also expand. At first sight, the results seem to 

be counter-intuitive because production levels of coal technology has decreased rather than 

increased (Figure 8). But on closer examination, the results can be explained by the fact that the 

load factor for coal technology has always been ‘low to medium’ pre-Fukushima accidents (it 

was around 0.68 in 2007 with ‘optimal level’ being estimated to be around 0.56 – see Table 3). 

Since the Fukushima accidents, however, its load factor has increased significantly, to around 0.8 

in 2013, perhaps as a way of replacing lost electricity production levels from nuclear technology 

by electricity production from coal. Therefore, with the imposition of climate change policy 
                                                
49 Note that CRESH relies on price (or cost of production) to allocate outputs between technologies, and these costs 
are primarily short run marginal cost, because the cost of capital (‘fixed costs’) is considered only in the context of 
investment, i.e. capacity expansion. Similarly, our approach looks at the issue of ‘optimal’ load factors, but in the 
short run, only differences between running costs of different technologies determine the relative levels of load 
factors. Only for consideration of investment that marginal capital (or capacity costs are taken into account.  
50 A CRESH approach does not explicitly consider the issue of ‘capacity’ (or ‘load factor’) therefore, for comparison 
with the new approach, we assume that changes in load factor and changes in demand (i.e. production) levels imply 
certain changes in capacity level.  



which makes the running costs of coal technology increase quite significantly relative to other 

technologies, the ‘optimal’ level of the load factor for coal technology will be decreasing rather 

than increasing relative to other technologies. Therefore, despite production level being 

decreased relative to other technologies, capacities would expand to allow for load factor of coal 

technology to recover to its pre-Fukushima levels (i.e. around 2/3 the value in 2013) if there was 

no climate policy, and in fact because of climate policy the ‘optimal’ level of this load factor has 

even decreased further, therefore, capacity must expand relative to other technologies. 

Figures 13-15 show what the capacities for various technologies would look like if an energy 

targeting policy is imposed, in addition to the climate change policy. To be consistent with the 

energy (electricity production) targets (as seen in Figure 8) not only will production levels from 

nuclear and other renewable technologies need to increase to increase their market shares, but 

also their generation capacities. Because renewable technologies such as wind, solar, and even 

hydro electricity, typically have very low load factors as compared to those of fossil fuel 

technologies (see Table 3), their capacities need to increase even more than their production 

levels if they are to replace the outputs of fossil fuels, hence the sharp rise in capacities of these 

renewable technologies. 

Finally, Figure 16 shows the ‘cost’ of implementing the Post-Kyoto climate change policy in 

Japan, with and without an accompanying energy-targeting policy according to the different 

approaches. It seems that the predictions by the CRESH approach would vary greatly depending 

on the particular restriction (V or Q) imposed in the approach, with the Q-restriction resulting in 

much higher value predictions than are the V-option results. Using the new approach suggested 

in this paper, however, the model predictions would tend to fall roughly half-way between the 

two levels predicted by the CRESH approach. All these predictions, however, would come closer 

together if the assumption of an energy target policy is also imposed. This is because with a fixed 

set of energy targets (i.e. a fixed set of market shares for all the technologies) the cost of 

eventually achieving these targets are almost determinable, and hence there is little room for 

variations between the different approaches. 

 

  



 

 

Figure 8 

Effects of climate change policy without an accompanying energy target policy: 
(1) 2013: actual market shares in 2013; (2) CRESH: predicted market shares for different 
electricity generating technologies in Japan in 2030 under the impact of climate change policy 
without an accompanying energy targeting policy using the CRESH (technology bundle) 
approach with value-preserving (V), or quantity-preserving (Q) and load factor (L) restrictions 
imposed; (3) PC, IC: similarly, but using the new approach with the assumption of ‘perfect 
competition’ and ‘imperfect competition’ in the electricity market respectively; (4) 2030-target: 
market shares in 2030 if an accompanying energy targeting policy is also imposed. 



 
Figure 9 

Capacity expansion under the impact of climate change policy (without energy targeting) 
according to a ‘technology bundle’ (CRESH) approach with ‘value-preserving’ (V) restriction 

imposed. 
. 
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Figure 10 

Capacity expansion under the impact of climate change policy (without energy targeting) 
according to a ‘technology bundle’ (CRESH) approach with ‘quantity-preserving’ (Q) restriction 

imposed. 
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Figure 11 

Capacity expansion under the impact of climate change policy (without energy targeting) 
consistent with the new approach under the assumption of perfect competition (PC). 

 
 
 
 

 

Figure 12 

Capacity expansion under the impact of climate change policy (without energy targeting) 
consistent with the new approach under the assumption of imperfect competition (IC). 
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Figure 13 

Capacity expansion under the impact of climate change policy with energy targeting according to 
a ‘technology bundle’ approach with ‘quantity-preserving’ (CRESHQ) restriction imposed 
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Figure 14 

Capacity expansion under the impact of climate change policy with energy targeting consistent 
with the new approach under the assumption of perfect competition (PC). 

 



 

 

Figure 15 

Capacity expansion under the impact of climate change policy with energy targeting consistent 
with the new approach under the assumption of imperfect competition (IC). 

 

 

Figure 16 

Effects of climate change policy without an accompanying energy target policy:  
Cumulative carbon tax level to achieve the Post-Kyoto CO2 emission reduction target in Japan 

according to the different approaches. 
 
 

 
 



Conclusion 
In this paper we have shown a new way for disaggregating the electricity sector in a CGE model 

to take account of different technologies used in the sector and for explaining how outputs from 

these technologies can ‘compete’ to provide total supply for the sector as a whole. The approach 

adopted here provides an alternative way to explain how technologies compete. This competition 

depends not only on technological factors (such as availability and load factors of different 

generating capacities) but also economic factors (such as scale economies and lumpiness of 

capital, relativities between long run capital (or capacity) costs and short term marginal running 

costs). Up to now, a ‘conventional’ approach in a top-down model is to use an ‘aggregate 

production function’ (such as CRESH) or possibly a ‘probabilistic market share function’ (such 

as LOGIT) to explain how this competition occurs by treating the outputs from different 

technologies as though imperfect substitutes. Such an explanation lacks the realism of an actual 

electricity market because it ignores crucial characteristics, not only of the supply side (such as 

capacity and load factor constraints) but also of the demand side (such as variation in the 

different categories of demand which makes up a total ‘load duration curve’ in the electricity 

market). A ‘bottom-up’ model for the sector can take into account certain features of the supply 

side such as capacity constraints, or of the demand side, such as different types of load, but 

instead of explaining how competition can result in different levels of these supply capacities 

themselves, it often assumes that these levels are given exogenously of the model. The new 

approach adopted in this paper is an advancement over this approach because it seeks to 

‘endogenise’, not only the decision on production levels (in the short run), but also of the 

capacity planning in the long run. It uses the framework of a top-down CGE model where both 

types of these decisions can be taken into account in a consistent and interrelated fashion, but 

also introducing into such framework the factors that are up to now considered only in partial 

equilibrium bottom-models, namely technological factors.   

Using the theoretical framework as explained above, the paper then showed how such a 

framework can be implemented in a practical CGE model to be used to analyse the impacts of 

climate change and energy polices on the electricity sector, using the case of the Japanese 

electricity sector as an example.  



Appendix  

Technology bundle approach: To compare the new approach adopted in this paper with a 

’standard’ approach used in many CGE models which is called the ‘technology bundle’ 

approach, this approach is also implemented in our model (as a third option alongside with the 

PC and IC options described in the paper). Under this approach, all outputs from different 

technologies are assumed to be imperfectly substitutable and therefore can be treated as though 

‘inputs’ into a CRESH production function. This function ‘produces’ the final output for the 

electricity sector. A CRESH production function (Hanoch, 1971) can be described as: 


j

jjiii pWpqq ][ *          (A.1) 

where (qi) is the percentage change in quantity of technology i and (pi) is the percentage change 

in its price; ( *
iW ) is the modified value51 share of input i which is related to the ordinary value 

share ( 
j

jjiii QPQPW / ) via the relationship: )/( *
; 

j
jjii WWW  (see Dixon et al. (1982), p. 

86 for more details); ( i ) are the CRESH elasticities of substitution. These substitution 

elasticities can be shown to be related to the own- and cross-price elasticities of demand for the 

outputs from technologies if we derive these elasticities from equation (A.2) 52 
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For n CRESH parameters to be calibrated, there are only [(n2/2)-(n/2)-1] independent 

observation points53 in equations (A.2)-(A.3) which can be used. Therefore, if n>2, there would 

be more observation points than there are parameters to be calibrated and the system of equations 

in (A.2)-(A.3) is therefore ‘over-identified’. If n=2, however, the system is exactly identified. 

This means we can use equations (A.2)-(A.3) to identify the CRESH parameters for any selected 

                                                
51 To be distinguished from the quantity share used in equation (17) of section 2.2 to describe Cournot competition 
between members of the L-group.  
52 Note that 1* iW  and  

i iW 1*  this means that since 0i for i therefore 0ii and 0ij for ., ji  
53 Since the (n2) values of the own and cross-price elasticities in equations (A.2)-(A.3) are subject to (one) 
homogeneity constraint and [n(n-1)/2] symmetry constraints there are only n2-[n(n-1)/2]-1= [(n2/2)-(n/2)-1] degrees 
of freedom or observational points left for use in the calibration of the n CRESH parameters. 



pair of technologies if the values of their own and cross price elasticities of demand are known. 

For fossil fuel based technologies, first, we define three ‘composite’ technologies as CES 

combinations of CCS and non-CCS technologies: Coatec=CES(ElyCoa, CoaCCS), Oiltec= 

CES(ElyOil, OilCCS), and Gactec=CES(ElyGas, GasCCS).54 Next, we assume that the own- and 

cross-price elasticities of demand for these composite technologies are known and are as given in 

Table A.1, From this information, we then estimate the CRESH parameters for different pairwise 

combinations of these technologies. It can be seen from Table A1 that the estimated CRESH 

parameter for each individual technology is fairly independent of the pairwise combinations of 

technologies being chosen, hence we can take the ‘average’ of these estimations as the final 

values of the CRESH parameters for each technology. 

For non-fossil based technologies, we do not have information on their empirical price 

elasticities of demand but we have some information on their price elasticities of supply. For 

example, an empirical study by Johnson (2011) for the case of the US found that price elasticities 

of supply for renewable electricity technologies to be about 2.7. For hydro-electricity it can be 

assumed that price elasticity of supply for this technology is about 0.5, reflecting the fact that the 

growth of this technology is subject to severe resource constraint, especially in the case of Japan. 

For nuclear technology, price elasticity of supply can be set to a zero or very low value if 

government policy is to restrict the return (and growth) of nuclear electricity in Japan, otherwise, 

it can be set to a high value such as 2. In other words, price elasticities of supply for different 

technologies can be estimated empirically, or assumed to be restricted to a certain range of 

values to reflect either policy or resource constraints. These elasticities are given in Table A.2. 

From the price elasticities of supply, we can assume that the CRESH elasticities of substitution 

(for non-fossil fuel technologies) are also close to these price elasticities of supply. This can be 

explained as follows. From equation (A.1), we can re-write this equation as: 

][ iii ppqq              (A.4) 

                                                
54 The values of these CES elasticities for combining the CCS and non-CCS technologies are assumed to be 5, 5, 
and 10 respectively for Coatec, Oiltec, and Gastec, following from Arora and Cai (2015) who also use similar 
composite technologies. 



where the term 
j

jj pW ]*  is now replaced by a single variable p  which reflects the general shift 

in the supply curve of all technologies in the electricity market.55 The gap ][ ipp therefore must 

represent a movement along a technology-specific supply curve i such that this can induce a 

change in the supply from this technology by an amount of ][ ii pp . The CRESH parameter 

i is seen to act as a price elasticity of supply for technology i. Therefore the former can be 

assumed to be close to the value of the latter (in cases where cross-price effects are assumed to 

be relatively small). As a result, for the case of non-fossil fuel based technologies, it can be 

assumed that CRESH elasticities of substitution are simply be given by the price elasticity of 

supply.56 

                                                
55 This can be due, for example, to a change in factor price inputs which affects all technologies equally. 
56 Conversely, for the case of fossil fuel based technologies, the price elasticities of supply assumed for these 
technologies must also be consistent with the CRESH elasticities of substitution, therefore they are assumed as given 
in Table A.2). 



Table A.1: Price elasticity of demand for fossil fuel based technologies and their corresponding 

CRESH elasticities of substitution 

Technology Own- and cross-price elasticities 
of demand(*) 

( ii , ij ) 

Estimated CRESH parameter 
based on pair-wise consideration 
of the price elasticities of demand 

( i ) 

Average 
CRESH 

parameter 
using 

pairwise 
estimations 

based on 
price 

elasticities 
of demand  

( i ) 

CRESH 
parameter 
based on 

price 
elasticity of 

supply 
( i ) 

Coatec -.46 .03 .22 .603  .604 .60  
Oiltec .12 -.48 .18 .505 .503  .50  
Gastec .42 .08 -1.12  1.744 1.761 1.75  
ElyNu        0 – 2 (#) 
ElyHyd        .5 
ElyWon        2.7 
ElySol        2.7 
ElyBio        2.7 
ElyWas        2.7 
ElyOth        2.7 

(*) Based on Arora and Cai (2015) Table 1; (#) reflecting different policy options. 



Table A.2: Price elasticity of supply for different electricity 
generation technologies 

Technology Price elasticity of 
supply 

ElyCoa .6 
ElyOil .5 
ElyGas 1.75 
ElyNu 0 - 2 
ElyHyd .5 
ElyWon 2.7 
ElySol 2.7 
ElyBio 2.7 
ElyWas 2.7 
ElyOth 2.7 
CoaCCS .6 
OilCCS .5 
GasCCS 1.75 

For renewable technologies, the values are based on 
an empirical study by Johnson (2011); for fossil fuel 
technologies, the values are assumed to be equal to the 
CRESH parameters (Table A.1); for the rest of the 
technologies, the values are assumed to reflect either 
resource and/or policy constraints. 
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