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Introduction. In this work we study a special class of solutions for the
dissipative wave equation in either a bounded or exterior region € with smooth
boundary dQ. The systems we study have the form

0w+ c@u, =0

(1.1) Z—Z @ oulm =0, =0
u(O) = f
u,(O) = fz .

The dissipation of energy in the system in (1.1) is a consequence of the require-
ments c(z) = 0 and y(x) = 0. We also assume that ¢ and v are smooth functions
and that ¢ vanishes near infinity, If one introduces the energy norm for the
Cauchy data f = (f,, f.) by

i = Lol + [+ [ omr,

then it follows in a standard fashion that the mappings T(#)f = (), w, ()
for ¢ =z 0 form a contraction semigroup in the energy norm with infinitesimal
generator A given by

0 1J

VAN

on a domain ©(4) given by the closure in the graph norm of the smooth func-

tions which satisfy of,/dn + vf2 + of, |sa = 0. We remark for future reference
that the adjoint semigroup, T*(f), has generator
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A% = [ 0 ~~1]
— A c

with domain ©(4*) the closure in the graph norm of the smooth functions
which satisfy 8f,/dn — vf2 + of; |sa = O.

The special class of solutions to (1.1) that we study has the property that
u(x, t) = 0forallt = T, . We call such solutions u(x, t) disappearing solutions.
We remark that for the systemsin (1.1) if f = (f,, /) is an initial state associated
with a disappearing solution so that T(¢)f = O fort = T, , then f = (f;, —f.)
is an initial state associated with T*(¢) so that T*#)f = 0fort = T, .

In the first section of this paper we give some examples which prove that
disappearing solutions exist for particular regions with special choices of the
parameters v, ¢, and o. One consequence of these examples is that the results
of Rauch and Taylor proved in {10] for energy-conserving boundary conditions
are false for general dissipative boundary conditions. Lax and Phillips in [5]
have developed a scattering theory for the above dissipative systems in exterior
regions. In a recent lecture (see [9]) Phillips posed the problem of determining
the controllability of these systems. This concept is defined in Section 4. Dis-
appearing solutions are intimately connected with this problem since it is a
fact that disappearing solutions exist in an exterior region if and only if the
system fails to be controllable. We formulate and prove this connection in
Section 4 by using the Paley-Weiner theorem for the Radon transform and
Holmgren'’s uniqueness theorem. When £ is a bounded region if disappearing
solutions exist, the spectral properties of the infinitesimal generator 4 are
pathological. In this case we prove in Section 5 that when disappearing solutions
exist even though 4 has compact resolvent ((8 — 4) ¥ is even Hilbert—Schmidt
for some 8 and integer K > 0), the span of the generalized eigenfunctions for 4
has an infinite dimensional orthogonal complement.

Our two main technical results appear in Section 3. They both have the
following theme: If v(z) ## 1 ¥V x ¢ 9Q, then disappearing solutions cannot
exist. The main ideas of the proof are a Holmgren-type argument adapted
to the mixed problems considered here. Technical difficulties in this straight-
forward approach appear because the backward problem is illposed in the sense
of energy estimates—this difficulty can be overcome under two restrictions,
either y(z) < 1 V z ¢ 99 or that 4Q, v, and o are real analytic and y(z) # 1 V
x & 3. The condition v(z) ¢ 1 V z £ 92 enters crucially as a consequence of the
following geometric fact: under these circumstances the direction of differentia-
tion 4/n + v(8/8f) is not tangent to the backward characteristic surface
emanating from 0Q. The examples in Seetion 2 show that the theorems proved
here are fairly sharp.

The author thanks Ralph Phillips for suggesting the proofs used in Section 4
in a private conversation.

Section 2. Examples of disappearing solutions. We begin by collecting
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a few simple examples which show that under various circumstances disappearing
solutions to the equations in (1.1) do exist.

Consider first the case of one space variable. If @ = {z | z < 1}, the boundary
conditions assume the form du/dx + v(6u/df) |.-. = 0 where v > 0. Suppose
additionally that the distance between supp c(z) and 2 = 1 is some positive
number, 7, . Then if we choose v = 1 and ¢ = 0 and let u(z, t) = f(x — )
where f £ C”, (1 — 7y, 1)), then (u(0), «,(0)) = {is an initial state such that
T@®) = 0fort = r, . Similarly, (u(0), —u,(0)) = fis an initial state for the
adjoint equation with T*(#)f = 0 for ¢ = #, . The same example works for
interior regions by placing another wall at x = 0 and assigning any energy
conserving boundary condition there. In particular if we choose ¢ = 0 and
the boundary condition —(du/dx) + 0u/dt |..o = 0 on this wall, a trivial
calculation shows that the action of T'(¢) (T*()) for any initial data is given
by D’Alemberts formula for the free-space wave equation. Thus, because of
Huygen’s principle, every initial state for this dissipative system vanishes
in a finite amount of time. In other words,

T@) =T*@) =0 for t= 1.

We can easily build similar examples in three space dimensions using incoming
and outgoing spherical waves. Choose £ to be the interior of the unit sphere
and let f be any smooth function which vanishes for all negative values and
in a neighborhood of the origin. If » = (2°, + 2% + 2%)"? and u(z, t) =
jr — /reC"R? Vi = 0, then u satisfies the wave equation in 2 and the
boundary condition, (3/dn + v(8/9t) + o)u |,,1-1 = 0 with the special choices
v = 1 and ¢ = 1. Thus, again we have initial states f and f such that T(#) =
T*()f = 0 fort = 1. We remark that the geometry of Q can be modified some-
what and the same type of example will work. The previous construction also
yields disappearing solutions for an annular region with the outer piece of the
boundary the unit sphere and the inner piece of the boundary smooth but
arbitrary.

For the exterior of the unit sphere we attempt to mimic the previous example
by taking incoming waves of the form u(x, ) = f(r -+ t)/r where { vanishes
for large positive values. Then u satisfies the wave equation and the boundary
conditions, (8/dn + v(8/9t) + o)u |sa = O with the choicesy = 1and ¢ = —1.
Since ¢ = —1 the energy form conserved by the associated system in (1.1)
fails to be positive definite. Nevertheless, since the energy form is positive
definite on a subspace with finite codimension, it seems reasonable that the
techniques of Lax and Phillips developed in {7} can be modified to handle
dissipative systems of this form. Since we prove in the next section that the
space of disappearing solutions if non-trivial is necessarily infinite dimensional,
the above example would yield disappearing solutions for these systems.

We remark again that a common feature is apparent in all examples of dis-
appearing solutions we have constructed. If one constructs the characteristic
surface emanating backwards in time from a portion of 42, then the principal
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part of the boundary condition geometrically represents a direction of dif-
ferentiation tangent ot this surface (i.e. vy = 1). The thcorems we prove in the
next sction indicate that this is not a coincidence.

Section 3. Conditions which guarantee the non-existence of disappearing
solutions. It is evident that disappearing solutions can.exist only when the
semigroup generated by T(¢) cannot be expanded into a group of operators—in
other words, the process determined by the system in (1.1) is irreversible.
Thus, the most straightforward circumstance where disappearing solutions
cannot exist is if T'(f) generates a group of operators. Since T'(f) is a group
of operators if and only if 7*(¢) is a group, it suffices to determine when the
following Cauchy problem is well-posed in the energy norm,

dT*(t)f
(3.1) dt

TO)}f = f.

We remark that the abstract Cauchy problem in (3.1) is equivalent to the
concrete mixed problem

— A*T*()f

Ou — clxyu, =0

(3.2)‘ (g% - yu, + au) o 0
u(0) = f
ut(O) = f,

where (f; , f2) has finite energy and v, ¢ = 0.

In one space dimension if v # 1, the problem in (3.2) is always well-posed.
(For v # 1, use the multiplier 4, — Fu, where 2v/(1 + ¥*) < 4 < 1 to derive
a variant of the standard energy estimate.) For higher space dimensions if one
checks the algebraic criterion for well-posedness of the mixed problem in (3.2)
according to the general theory developed by Kreiss, Sakamoto, et al., (see [11]),
one discovers the following: For v = 1 the problem is strongly ill-posed in
the sense that Hadamard-like counterexamples exist for the mixed problem;
for 0 = v < 1 the boundary conditions lie on the boundary of the Kreiss well-
posed problems. Thus, under the conditions 0 < y < 1, well-posedness in-the
energy norm is possible but requires a special detailed analysis. We plan to
examine these properties in a future paper but only a weaker form of well-
posedness is necessary for the applications to disappearing solutions. For
0 £ v < 1 the problems in (3.2) satisfy the weaker hypotheses developed
by R. Beals in [2] (see pp. 145-151 of [2]). Thus if Q is bounded and additionally
v, ¢, and dQ are infinitely differentiable, then the problem in (3.2) has a C”
solution for a particular family of Cauchy data of the form {(0, ¢;)}" ;.. where
¢, is C" and {¢;}";.. is dense in L*(Q). (In fact, ¥, ¢ N y; D(A*Y)). This
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weaker existence theorem suffices for the Holmgren type arguments given
below. When v > 1 and » > 1 the problems in (3.2) are ill-posed even in this
weaker sense; nevertheless, under appropriate analyticity hypotheses, we prove
that disappearing solutions cannot exist.

Suppose a disappearing solution exists; in other words that there exists
an f with finite energy such that T(#)f = 0 for ¢ = ¢, . Then it is trivial to verify
that the set defined by

H(t)) = {g| T(t)g = 0fort = to}

is a closed linear subspace under the energy norm. (H(,) = {¢ | T*()g = 0
for ¢ = &} can be defined similarly and has analogous properties.) Furthermore,
H(4,) is invariant under the action of T(r) for all = = 0. We remark for future
reference that if H(f,) is non-trivial, then H({,) is necessarily infinite dimen-
sional. For suppose H(f,) is finite dimensional. As a finite dimensional invariant
subspace of T'(t), H(t) necessarily contains a non-trivial eigenvector v, for
T(t) by the theory of semigroups acting on finite dimensional spaces. Thus,
there exists a A, with T'({)v, = €**'v, , and if we choose ¢ > t, we conclude v, = 0,
a contradiction. Let ¢ = 0 belong to C"y(3, 1) with ["_. ¢ = 1, and let ¢.(f) =
e o(t/e). Given g & H(t), let g.(t) = [“-w ¢.(r — )T(r)g dr. As constructed
g.(0) belongs to M~,., D(A") and a standard approximate identity argument
together with the strong continuity of T'(f) implies that ||g.(0) — ¢|le — O
as ¢ — 0. Furthermore, because H(%,) is a closed invariant subspace under
T(), g.(0) belongs to H(t,). Thus, to establish the statement that H(,) = {0},
it suffices to prove that

A DA™ N Hi) = {0).

=1
The fundamental lemma in our argument is the following:
Proposition 3.1. Assume 1) Qs bounded

1) 09, v, and o are real analytic

iii) v(x) # 1 Ve dQ

iv) supp c¢(x) M 0Q = <.

Then one can find a fixed number 8, > 0 and a set of real analytic functions {P.} sea
dense in L*(Q) such that the boundary-value problem

Ov — ¢z, =0
(3.3) v(t) = 0

v,(t) = da

av

57'?"’ — v, + ov Ianxm.nwu = 0
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has a C* solution v defined in the region [t, , t; + &) X Q. Furthermore, as a con-
sequence of this construction, v satisfies the compatibility conditions vlsax(,; = 0
and 6v/6n + leanx“,) = (.

We will now use Proposition 3.1 and the above remarks to prove
the following theorems. We will prove Proposition 3.1 afterwards.

Theorem 3.1. Assume that 0Q, v, and ¢ are C™ and that y(x) satisfies y(x) < 1,
Vx ¢ dQ. Then no disappearing solutions to the system in (1.1) can exist.

Theorem 3.2 Assume hypotheses ii)-iv) of Proposition 3.1. Then no dis-
appearing soluttons to the system in (1.1) can exist.

Remark. We omit the proof of Theorem 3.1 since it follows from the pre-
viously mentioned results of R. Beals in the same way that Theorem 3.2 follows
from Proposition 3.1. We have included Theorem 3.1 to indicate to the reader
that analyticity is only a technical assumption in Theorem 3.2,

Proof of Theorem 3.2. Let f be an initial state so that (uw, w,) = T(@#)f is a
disappearing solution, z.e. f ¢ H (t,) for some ¢, > 0. We must prove that f is zero.
Because the mixed problem defined in (1.1) has finite propagation speed,
we can assume that there exists a fixed numbr , > 0 so that vi = 0, supp
(TO) € @N {& | |z] £ r} and that T(f)f satisfies Dirichlet conditions on
the analytic surface, {z | [z = r,}. For notational convenience we will denote
QN (x| |z] < 7} by @ but assume € is bounded. Furthermore, by the above
remarks it suffices to assume T(£)f € Ny, D(A"), t = 0. Under these circum-
stances T(t)f belongs to C*([0, t,], D(A)) where D(A) is viewed as a Hilbert
space under the graph norm of A. (C™([0, t], H) denotes the space of m-times
continuously differentiable functions with values in the Hilbert space H.)
Standard elliptic estimates guarantee that the inclusion 7 : D(4) — H*(Q)
@ H'(Q) is continuous. Therefore, u(t) belongs to C([0, &)), H*(Q)). Choose
€ < 6, and let v be a C* solution from Proposition 3.1 with initial value ¢,
assigned on {; = {, — e Since the trace mapping of the Cauchy data is con-
tinuous from H*(Q) into H'*(3Q) @ H**(8Q) and vector-valued integration
commutes with bounded linear maps, Green’s formula is valid. Therefore,

to to —_— to i~
(3.4) f fAuﬁdxdt— f quvdxdt f [ (91‘1; - 92>dsdt
to—e vV to—e vYQ to—e YO0 an 6n
——j f (yud + vub,) ds di
to—e Y0
[ 4 ([ )
e 9 \ g T
= —f Yub
o

The last term vanishes because u(f,) = 0, while by construction v(t, — €)|sa = 0.

It

It

t
t:—e = O~
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Since u(t) belongs to the space C*([0, t,), D(A)), integration by parts is also
valid in the ¢-direction so that by (3.4) we obtain

0

I

f Oub —uOddadt
QX [to—e,to)

i

/u,ﬁ — ui, dz
v Q

to
to—¢€

= fut llo“‘e da dx.
2

Once again the integrals at t = ¢, vanish because T'(f,) = 0. Since the collection
{¢o} is dense in L*(Q), the above equation implies that u, |,,—. = 0 for any e
with 0 £ ¢ £ §, . Since u, belongs to C([0, t,], H'(Q)), u = — [*°,, u, dr vanishes
for t = t, — 8, . Thus, T(t)f actually vanishes in the shorter time, {, — &, .
Repeating this argument K times where K§, 2 ¢ , we conclude that T(0)f =
f = 0 as desired.

Proof of Proposition 3.1. We will prove Proposition 3.1 through a series
of lemmas.

Lemma 3.1. Given @ © R", a bounded domain with real analytic boundary 0L,
there exists a set of functions {¢.} with the following properties:

i) The collection {¢.} is dense in L*(R)

i) ¢u oo = 0 and (8/0n + )¢ [0 = O

i) There exists a fixed open set U with & © U and with each ¢, real analytic
on V.

Remark. The condition in ii) may seem ad hoc at the moment, but in fact
they are the natural compatibility conditions on the initial data necessary to
guarantee a C* solution for the boundary value problem in (3.3)

Proof. Choose A\, 50 that Im X\, ¢ 0 and consider the following Dirichlet
problem for the biharmonic operator in Q:

(AA - )\0)¢a == pa
(3'5) ¢a ‘BQ = O

<£E -+ 0'>¢a ’on = 0.

The biharmonic operator with boundary conditions (3.5) is a self-adjoint
operator on L*(Q) with dense domain consisting of the H*(Q) functions which
satisfy the boundary conditions. Thus, when Im A\, # 0 the resolvent R()\;)
exists and is a continuous map from L*(Q) to L*(Q) satisfying the estimate

(3.6) IRM)fl]ze < C [|f]lzs -
Choose {p.} to be the restrictions to @ of polynomials in R"—then {p.} is
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dense in L*(Q). We claim that the corresponding {¢,} from (3.5) satisfy all
the conditions of the lemma. Given ¢ e C%(Q), there exists polynomials, p; ,
such that ||p; — (AA — N)¥|lusy — 0 as j — «. Since R(\o)p; = ¢; and
R(\) (AA — N\)Y = ¢, the estimate in (3.6) implies ||¢; — ¥}|zs@ — 0. Since
C"o(Q) is dense in L*(Q), this proves condition i). Property ii) is immediate
from the construction of the ¢, . Since the system in (3.5), the {p,}, and 6@
are real analytic, it follows from a classical theorem of Morrey and Nirenberg
(see [8]) that ¢, is real analytic in Q and 8'¢./dn’ |50 is a real analytic function
on 4Q for any « and § = 0, 1, 2, 3. Consider the following initial value problem

(3.7 (AA — M)¥u = Pa

o . 9 .
a_n’f\ba lan=%7¢a laa » 7=0,1,2, 3.

Since 9Q is real analytic and non-characteristic for AA — A\, , we conclude
from the Cauchy-Kowalesky theorem that there exists a neighborhood
Vi(a) < 092 where . is defined. Actually, V(«) can be chosen independent
of a since the size of V(a) depends only on the region of convergence of both p,
and 3'y,/dn’ |, and these quantities are independent of e—call this fixed
region U. By the uniqueness of solutions to the equations in (3.7), V.lo = ¢.
so that ¢, extends ¢, to the fixed larger region 0 2 {. This verifies condition
iii) of the lemma.

First consider the case where ¢ = 0. Because the system in (3.3) is translation
invariant in time, we assume ¢, = 0. Consider the following initial value problem,

Ou., =0
ua |t=0 = O
(o) |¢=0 = Y, .

From Lemma 3.1 the region of analyticity of ¢, is U 2 & independent of o
so that as a consequence of the construction of the Cauchy-Kowaleski theorem,
there exists &, independent of & so that wu, is analytic in & X [0, §,). We will
impose a finite number of additional restrictions on §, . Express the solution
to the equations in (3.3) as v, = u, + w, where w, solves

O we =0
o _ .3 (s _.2
3.8) (573 mRrT °>w“ oo = fo = (an Yo T ">u°‘
Wa l£=0 = 0
(wa)t |¢=o = 0.

Consider the characteristic surface, C, , emanating forward in time from o2 X {0}
and choose §, so that this surface develops no caustic singularities in the time
interval [0, 8,}. Then a natural way to construet w, is to define w, in the “wedge”
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R between C, and a2 X [0, §,] as the solution to

O we =0
i) 0
(3.9 <5;L-752+0 Wea |on = fa
W ]c,,——-"-()

and to define w, in the region @ X [0, 8]\R by w. = 0. If one tries to patch
together these two solutions to construet a smooth C* solution, then the normal
derivatives to the surface Cy of w, up to the second order must necessarily
vanish. The surface C, is spanned by the bicharacteristic rays emenating from
32 X {0} and the jump in any normal derivative to C, satisfies a homogeneous
ordinary differential equation along the bicharacteristic curves (see [3] pp.
573-574). Thus, to construct a C* solution w, , it is sufficient to construct
w, so that the initial jump in the first and second normal derivatives of w,
at 92 X {0} is zero. Since 9/t is a transverse differentiation to C, , these condi-
tions on w, will be satisfied as long as f, from (3.8) satisfies

i)
(3.10) fa lanxw) =0 and 52]% Ianxw) = 0.

Since f, is determined from ¢, by the Cauchy-Kowaleski computation, one
easily verifies that f, satisfies the conditions in (3.10) precisely when ¢, satisfies
the conditions in ii) of Lemma 3.1. Thus, to complete the construction of
Proposition 3.1 in the case when ¢ = 0, what remains is to prove that the solu-
tions w, to the characteristic initial value problem in (3.9) are defined on a
fixed region R independent of f, as long as f. |s is analytic on the fixed region
32 X [0, &,]. Under these conditions on f. |50, G. F. Duff in [4] has solved this
classical problem.

Lemma 3.2. (Duff) Suppose f. |sa s analytic on 3Q X [0, &) independent
of a. Then under the hypotheses of Proposition 3.1 there exists a fixed region R
so that the boundary-value problem in (3.9) has a solution w, analytic in R.

For the sake of completeness we sketch the proof. After a change of dependent
and independent variables so that 42 X [0, ¢} corresponds to s; = 0 and so
that the surface s, = ¢ are translates ¢ units in time of the initial characteristic
surface C, , the problem in (3.9) has the form

bt
(681682+L81’82,y’6y wa'—o
wa lh’o = O
d d J .
(35; + L<81 y 25, Y, as, J@))wa In=0 = fa,

where f, is analytic in a region independent of « and all indicated differential
operators have analytic coefficients. (The condition v £ 1 allows one to solve
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for 9/8s, in the boundary condition above.) Assume @, has the form @, =
D aet (s, ¥)s™; ; then

n—1

da,
n 35, Z:IB,-a,-

and

n-—1
a, Ia;nO = Z Ciai + fnt.n .
i=1

Thus, a, is determined recursively from a; for j < » by integration of the
above equation, and a variant of the method of majorants establishes the
actual convergence of the power series. This completes the construction for
c=0.

When ¢ 5= 0, let ¢, solve the inhomogeneous free space problem

0 8. — c(@)@a) = c(@)(@a):
Vo It-O =0
(Da)t |t=0 = 0.

Since supp c(z) M 02 = & and the above equation has finite propagation
speed, there exists § < 6, so that supp 9, M 0Q = & — ¥, + v, is the solution
required in Proposition 3.1 for this case.

Section 4. An application to a problem in dissipative scattering theory.
Suppose @ is an exterior region in R”. In this section assume the number of
space dimensions n is odd and let D*, (D”,) denote the outgoing (incoming)
subspace of the Lax-—Phillips scattering theory (see [6]). Then the space Hg
of initial states decomposes into an orthogonal direct sum

Hy = D_P@Kﬂ@D+P

and the action of the semigroup T'(f) associated with the system in (1.1) is
as follows:

T)D™, & He
“.1) TWK, < K, ® D",

T®D*, € D, .
Here K, corresponds to the “black box’’ states associated with the perturbation
effects of ¢, 02, and v. Recently, R. S. Phillips (see [9])) posed the following
problems: It it possible for a ‘‘black box” state to remain undetected by the
scattering process?; determine the circumstances under which every initial

state in the black box has a component which escapes to infinity., In view
of the relations in (4.1), an undetected state is an f ¢ K, such that T'(¢)f satisfies

(4.2) T@®f L D, t20
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If no initial states with the property in (4.2) exist, the system will be called
controllable. It is evident that if a system is controllable, then every initial
state in the black box has a component which escapes to infinity.

We have the following partial answer to the above problem.

Theorem 4.1. Suppose Q, v, o, and c(x) satisfy the hypotheses of Theorem 3.1
or Theorem 3.2 and that Q\supp c(z) has only one component. Then the dissipative
system defined in (1.1) 4s conirollable.

This result is an immediate consequence of Theorem 3.1 or 3.2 and the
following two lemmas.

Lemma 4.1. Giwven any system of the form in (1.1) and an f e K, satisfying
T®f L D", vt = 0, then in fact T(t)f satisfies the condition

supp T(f S QN {z | f2] <o}, VvVEZO

Lemma 4.2. Suppose addilionally to the basic hypotheses in (1.1) that
supp ¢{x) M 02 = & and that Q\supp c(x) has only one component; tf supp T(@)f &
{z|]z] < p} MR VEZ 0, then T(t)f is a disappearing solution.

Proof of Lemma 4.1.  Since we can mollify in time and preserve the conditions
feK,, Tt L D*, vt 2 0, we will assume that T'(£)f belongs to C* ([0, =), Hz).
Consider ¢(z)T (t)f where ¢ e C*¢(2) and ¢ = 1 for |z| = p. It suffices to prove
that supp ¢T(6)f S @ N {z| |2| < p}. Since (1 — ¢)T(¥)f has compact support
inB, = {z||2| <p}, d -~ YT®)fe K, vt = 0. By assumption T(t)f satisfies
T@®)f L D*, vt = 0 so that we conclude from the invariance properties of
T(#) in (4.1) that

(4.3) yT@W)f L D*, and ¢T@f| D, vi = 0.
Denote ¢T(#)f by {», v,}, then v satisfies
(4.4) Ve — AV =g

where g is square integrable with supportin B, . (In fact, g = —wlAp — 2VwVp
where w is the first component of 7'(¢)f.) Furthermore, to prove that supp ¢ T'(t)
is contained in @ M B, , it is sufficient to prove that supp {v.} € @M B, ,
vt = 0. For under these circumstances, the first component w(t) of T'(t)f is
then independent of ¢ for ¢ = 0 and |z[ > p. Since Lax and Phillips in [5] have
proved that the local energy decays for an initial state, i.e.

NT®fllgns, >0 as t— o forany r >0,

this would imply that w(f) is zero in any annulus p < {z| < r and therefore
that w is identically zero for x| > p. To prove that v, has compact support,
we use the Paley-Weiner theorem for the Radon transform. Recall that the
Radon transform of the function pair {v, v,} with finite energy is the function
in L*(R X 8"7%) given by

®({v, v,}) = 8.7 V%85 — B,)
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where f(s, w) = (27)""V"? [,.4.. f(zx) ds. Furthermore, if m(s, w) = ®({v, v,})
and £(s, w) = R({0, ¢g}), then from the equation in (4.4) we get

(4.5) 8, + d)m(s, w, t) = £(s, Q, t).

Also recall that one can recover v, by the inversion formula, 8,0 = [gu-. 8" *,m-
(z-w, w) dw. In order to deduce that », has compact support, by the Paley—
Weiner theorem (see [6] pp. 113-114) it is necessary and sufficient that m(s, w)
belong to L*(R X 8*') and satisfy

i) m(s, w,8) =0 for |s| > p

(4.6) i) (Y.(w)s*, m(s, w)) = 0 where a is a non-negative integer and Y, is
any spherical harmonic of degree m > a + (1 — n)/2.

(Here {, ) denotes the inner product on L*(R X 8*°').) By the easy part of
this theorem, £(s, w) has both of these properties. Furthermore, the conditions
in (4.3) and the unitarity of the Radon transform guarantee that m(s, w, t) €
L*(R X 8"') and that m(s, w, {) = 0 for |s| > p. We verify that the argument
for the case ¢ = 0 is handled in the same way as the general case. To avoid
repetition we will only give the proof for the general case. Suppose Y,, is any
spherical harmonic with degrecm > a 4+ 1 + (1 — n)/2. Taking inner products
with the equation in (4.5) and integrating by parts, we obtain

(4.7) (*Y p(w), 9,m) = —{(s*"'Y . (w), d,m) + (s*"'Y (), £)
(@ + DY a(w), m) + Y (), £).

Since{ is the Radon transform of a function with compact support, (s**'Y ,.(w), £)
= 0 and by the induction hypotheses (s"Y.(w), m) = 0; thus we conclude
from (4.7) that

(4.8) (**'Y (@), a,m) = 0.

i

i

In [5] Lax and Phillips have proved the strong property that ||[P*T()j}] — O
as t — « where P* is the orthogonal projection on the complement of D¥,.
If f satisfies the condition in (4.2), then P*T()f = T{(¢)f. Thus, by applying
the Poincare inequality to ¢7'(¢)f and the unitarity of the Radon transform,
we obtain

Hm(s, w, Dlles@mxsa- = |{{v, 0. }|] = C||T®O

and we conclude that |Jm(s, @, || mxsn~1, — 0 as { — . Since { — m(s, , t)
is a smooth map from R* to L*(R X S*7%), aftcr integrating (4.8) from ¢, to ¢
and using the Sehwarz inequality we obtain

(™ Y olw), m(-, )] = K" Y (@), m(-, 1)

4.9)

L2(RX8"—13) -



WAVE EQUATION 1131

Letting ¢ tend to « in (4.9), the decay of M (-, t) implies that
(*'Y (), m(-, t)) =0 forany 4 =0
andm > a + 1 4+ (1 — n)/2 as required in condition ii) of (4.6).

Proof of Lemma 4.2. First consider the domain T formed by Q\T where
UV is an open set with smooth boundary enclosing supp c¢(z) and satisfying
T M o = . Since T has only one component and 9T is smooth, it is easy
to see that any point z ¢ T can be joined to a fixed z, with |z,| = p by a polygonal
path lying entirely in I' with total length less than some L, where L, is a fixed
number independent of xz ¢ T'. Since the number of space dimensions is odd,
by Holmgren’s theorem if « satisfies the wave equation and vanishes in |z| £ R,
and |{] < T, then in fact w vanishes in the larger region, || < R + T — |¢|.
Recall that by assumption supp u(z, t) is contained in @ N {z | |«] < p}, V¢ 2 0.
That u(z, £) vanishes on I' for £ > L, + 1 follows by applying Holmgren’s
theorem in small steps along the polygonal path connecting z to z, . Since
VM a2 = & and fort > L, + 1 u can be nonzero only on this set, w(x, t) =
u(x, t + Lo + 1) is a solution of the following interior mixed problem

(4.10) Ow+ e@)w, =0
Wl = w lai=p = 0.

But w omits a fixed open set near dQ V¢ = 0 for the system in (4.10) with
conservative boundary conditions, so that by a theorem of Rauch and Taylor
in [10], w must be zero so that u vanishes identically for ¢ = L, 4 1.

Section 5. On the completeness of generalized eigenfunctions for the interior
problem. When Q1is an exterior region, in the previous section we have explained
how the existence of disappearing solutions is pathological from the view-
point of dissipative scattering theory. Similarly, when Q is a bounded domain,
the existence of disappearing solutions results in pathological spectral properties
for the interior problem.

Recall that if A is a closed operator with compact resolvent acting on a
Hilbert space H, the generalized eigenfunciions of A are the solutions of
(A — N)"u = 0 for some A and integer N > 0. The span of 4, denoted Sp(4),
is the linear subspace obtained by taking the closure of finite linear combina-
tions of generalized eigenvectors. It is natural to expect the completeness
of the generalized eigenfunctions, 7.e. that Sp(4) = H. (This is the case for
many concrete elliptic boundary-value problems acting on L*(Q)—see [1].)
In contrast to this situation, when disappearing solutions exist for the adjoint
semigroup, i.e. H(t,) # {0} for some £, > 0, we have the following result.

Theorem 5.1. Suppose A is a closed maximal dissipative operator with compact
resolvent. Suppose H(t,) = {0} for some t, > 0. Then the generalized eigenfunctions
for A fail to be complete. More precisely, H(t,) < Sp(A)* and Sp(A)* is infinite
dimensional.
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Proof. Suppose f & H(t,) with {  0; then T*(t)f = 0 for ¢ = ¢, . From the
Laplace transform formula for the generator of a contraction semigroup for
Ren > 0.

5.1) m~AWV=fawwwm=[”awwwM

The extreme right-hand side of (5.1) is defined for all # as an entire function;
therefore (n — A*)™" is an entire vector-valued function. We claim that f is
orthogonal to Sp(4). Let D_";.; cie; be a linear combination of generalized
eigenvectors for A and let T be a finite closed curve enclosing the eigenvalues
corresponding to the e¢; . Consider the projection operator,

_ 1 AV
P—zm.fr(x A7 dh.

By construction, P(Z”,.,1 cie;) = Z”,»Hl ¢;e; . Furthermore, P* has the form

I N
(5.2) Ptvﬂﬁw AN dy

where T'is the closed curve of conjugate points to the curve I'. Because (n—A*)7'f
is an entire function, by Cauchy’s theorem

fr (n — A¥)Yfdn = 0.

Thus we obtain
<ZC;‘35 7f> = <P<Zciei af) = (Zciei >P*f> =0
i=1 i=1 im1

so that H(t,) < Sp(4)*. By our remarks in Section 3 if H(t,) {0}, then
this space is necessarily infinite dimensional. This completes the proof.

We have the following immediate corollary:

Corollary 5.1. Consider the concrele mized problems on bounded regions as-
sociated with the examples in Section 2. The infinitesimal generator of these systems
has compact resolvent, but the span of the generalized ergenfunctions has infinite
codimension.

Remark. The system in (1.1) have compact resolvent as a consequence of
standard elliptic estimates. Also we.-remind the reader that for these concrete
systems, T'(¢) has disappearing solutions if and only if 7*(f) does, so that the
hypotheses of Theorem 5.1 are satisfied.

The author has recently proved that the generalized eigenfunctions are
complete when € is a bounded region provided that v satisfies y(z) < 1 Vz ¢ 0Q.
"These results will appear in a forthcoming paper.
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