
DiscFace: Minimum Discrepancy Learning

for Deep Face Recognition

Insoo Kim1, Seungju Han1, Seong-Jin Park1, Ji-won Baek1, Jinwoo Shin2,
Jae-Joon Han1, and Changkyu Choi1

1 Samsung Advanced Institute of Technology (SAIT), South Korea
2 Korea Advanced Institute of Science and Technology (KAIST), South Korea

{insoo1.kim,sj75.han,sj210.park,jw0328.baek,jae-joon.han,
changkyu choi}@samsung.com, jinwoos@kaist.ac.kr,

Abstract. Softmax-based learning methods have shown state-of-the-art
performances on large-scale face recognition tasks. In this paper, we dis-
cover an important issue of softmax-based approaches: the sample fea-
tures around the corresponding class weight are similarly penalized in
the training phase even though their directions are different from each
other. This directional discrepancy, i.e., process discrepancy leads to per-
formance degradation at the evaluation phase. To mitigate the issue,
we propose a novel training scheme, called minimum discrepancy learn-
ing that enforces directions of intra-class sample features to be aligned
toward an optimal direction by using a single learnable basis. Further-
more, the single learnable basis facilitates disentangling the so-called
class-invariant vectors from sample features, such that they are effective
to train under class-imbalanced datasets.

1 Introduction

Recently, deep learning models have been utilized to extract robust and ac-
curate features with state-of-the-art performance for various computer vision
tasks. In particular, a multitude of efforts has been devoted to developing a
face recognition model that could handle unconstrained variations in large-scale
datasets, e.g., variations in pose, illumination, occlusion, facial expression, blur,
and low resolution. Convolutional neural networks (CNNs) have shown remark-
able face recognition performances by extracting discriminative features. Such
breakthroughs were achieved by adopting different effective loss functions tai-
lored for variation-robust face recognition [1–10].

In this paper, we are particularly interested in training on extreme class-
imbalanced datasets; the training set consists of an enormous number of classes,
with an extremely small number of data per class. In earlier years, deep metric
learning methods achieved promising results under the class-imbalanced datasets,
by learning face embeddings through local relationships in distances between
pairs (or triplets) of samples [1–3, 11]. Deep metric learning has the ability to di-
rectly capture more discriminative power by utilizing certain metric losses. How-
ever, their performance highly depends on sampling and mining strategies [12].
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Fig. 1. Conceptual visualization of process discrepancy. Geometric view of a scenario
having process discrepancy between (a) training phase and (b) evaluation phase. Ge-
ometric view of a scenario having no process discrepancy between (c) training phase
and (d) evaluation phase. Here, zi and zj are the normalized intra-class feature vectors,
and wy denotes the corresponding class weight. (a) and (c) incur the same score (cosθ)
during the training, but (b) and (d) produce the different scores (cos2θ 6= 1) at the
evaluation phase.

Metric learning models typically require time-consuming back-and-forth proce-
dures to train.

In recent years, softmax-based deep learning methods have been more widely
used in face recognition tasks. They are easy to train and have achieved state-of-
the-art performances in large-scale face recognition tasks. Softmax-based meth-
ods consider a classification loss in the training so that the learned features are
separable. In contrast to the classification task, learning large-margin discrimina-
tive features is essential for face recognition tasks, particularly under the open-set
protocol, which is a more realistic yet challenging face recognition protocol [6].
Many works have attempted to revise the softmax loss to obtain effective large-
margin discriminative features [5, 6, 13, 7, 8]. Such variants are able to directly
optimize the angles between features and the corresponding class weights in the
hypersphere manifold.

Nevertheless, our observation is that their evaluation performance can suffer
from discrepancy between training and evaluation processes under the open-set
protocol: the matching scores between sample features and a softmax class weight
are used during the training, while the matching scores are calculated between
different sample features (without the class weight) at the evaluation phase. This
difference leads to a directional discrepancy between sample features, as shown
in Fig.1. We refer to this issue as “process discrepancy”.

In this paper, we investigate the fundamental issue of process discrepancy
in softmax-based learning methods for face recognition tasks. In particular, we
first define displacement vectors which represent feature variations originated
from the corresponding class weights in order to address the directional dis-
crepancy between sample features. Then, we propose a new training scheme,
called minimum discrepancy learning that encourages the directional discrep-
ancy to be minimized by fitting all displacement vectors even with different
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classes to a single learnable representative vector as described in Fig.2. This
single representative vector (e.g., basis) facilitates not only aligning directions
of intra-class sample features toward an optimal direction but also disentangling
class-invariant displacement vectors from their sample features, such that they
are effective to train under the extreme class-imbalanced datasets.

In summary, the proposed scheme is specialized to mitigate process discrep-
ancy between the training and evaluation phase for providing better performance
at the evaluation phase. To the best of our knowledge, this is the first softmax-
based learning method for face recognition tasks addressing process discrepancy
issue, while previous methods focus on discriminative learning only. We demon-
strate the superiority of our method under various benchmarks that include a
large amount of hard positive examples, such as CPLFW [14], IJB-B [15], IJB-
C [16] and QMUL-SurvFace dataset [17]: our regularization method consistently
improves previous softmax-based training schemes such as Softmax, CosFace [7]
and ArcFace [8].

2 Related Works

Metric-based Learning. Metric-based learning methods [1–3] directly learn
discriminative features from the relationship between samples. The contrastive
loss [1] uses positive and negative pairs of samples to learn the relationship
between the two samples. The triplet loss [3] learns that the distance between
an anchor and a positive sample is smaller than the distance between an anchor
and a negative sample. Even though the metric-based learning is an intuitive way
to solve the verification problem, the main drawback of metric-based learning
resides on the difficulty of data sampling. It is hard to train all possible pairs or
triplets, and the performance highly depends on the mining strategies.

Softmax-based Learning. Many approaches have been studied for softmax-
based discriminative feature learning in various applications [18–25]. In face
recognition task, several approaches have discussed to make more discriminative
features based on softmax loss. Center loss [4] proposed a method to minimize
intra-class variance. This method computes the centroid of samples for each
class and minimizes the intra-class distances between feature vectors and their
corresponding centroids. Crystal loss [26] introduced a constraint to enforce the
norms of feature vectors to be a certain value. Ring loss [27] makes the norms
to be a trainable parameter and encourages the norm of feature vectors to be
optimally trained. NormFace [5] is a scheme to learn features on the hypersphere
manifold such that the discrimination between classes can be done by angles.
Sphereface [6] introduced a multiplicative angular margin loss to make features
more discriminative. In a similar way, the effectiveness of the angular margin was
demonstrated from CosFace [7] and ArcFace [8]. They used the angular margin
in different ways.
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𝒘𝒘𝒚𝒚 𝒘𝒘𝒚𝒚
(a)

𝒘𝒘𝒚𝒚 𝒘𝒘𝒚𝒚 
(b)

Fig. 2. A geometric view of process dis-
crepancy. Note that all features around
the class weight wy belong to the same
class. (a) All features produce the same
cosine similarity with the correspond-
ing class weight wy, while they are sep-
arately placed. (b) All features are in
similar positions with the same cosine
similarity around wy, which are forced
by the proposed scheme.

3 Minimum Discrepancy Learning

We explain process discrepancy issue of softmax-based learning schemes for face
recognition tasks in more detail in Section 3.1. In Section 3.2, we present the
proposed training scheme designed to minimize process discrepancy.

3.1 Discrepancy in Face Recognition Schemes

Consider a dataset D = {(x, y)}, which contains a sample (e.g., image) x and
its corresponding label (or class) y ∈ C = {1, 2, . . . , C}. We are interested in
finding a learnable model parameterized by {θ, w} that outputs a learned feature
ϕθ(x) and a classification score wT

k ϕθ(x) for each class k. This can be done by
minimizing the following softmax loss with respect to {θ, w}:

Lsoftmax(θ, w;D) = −
1

|D|

∑

(x,y)∈D

log
ew

T
y ϕθ(x)

∑
k∈C e

wT
k
ϕθ(x)

, (1)

where |D| is the number of samples. Note that the class weights not only con-
tribute to inter-class variations by the denominator term wT

k ϕθ(x) of (1), but
intra-class variations by the numerator term wT

y ϕθ(x) of (1). Once the model is
trained, the evaluation phase in face recognition takes two input images xi and
xj whose corresponding classes may not be in C. Then, the cosine similarity be-

tween normalized feature vectors, i.e., zi =
ϕθ(xi)

‖ϕθ(xi)‖2

, zj =
ϕθ(xj)

‖ϕθ(xj)‖2

, is measured

to identify whether they are in the same class or not.
As described in Fig.2 (a), the features around the corresponding class weight

wy lie on a hypersphere manifold. In the training phase, these features are able
to produce the same scores by wT

y ϕθ(x) of the softmax function (1) even though
their directions are different from each other. On the other hand, this directional
discrepancy is attributed to different displacement vectors (ϕθ(x) − wy) and
leads to an undesirable effect at the evaluation stage. Namely, the directional
relationship between features are important in the evaluation phase, but it is not
directly considered during the training. We call this issue, process discrepancy

that might not appear in deep metric-based learning because the underlying
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Fig. 3. Intra-class variations when con-
sidering two types of discrepancies: (a)
Directional displacement discrepancy and
(b) Radial displacement discrepancy.
Note that the directional and radial dis-
placement discrepancies cause the angle
difference between features.

functions in both the training and evaluation process are identical. However, as
aforementioned in Section 1, deep metric-based learning is not widely used due
to the performance sensitivity to sampling and mining methods. In fact, process
discrepancy comes from the different underlying functions in both the training
and evaluation process. Furthermore, process discrepancy directly influences the
evaluation performance, as described in Fig.1. This means that even a well-
trained model under the softmax loss could not ensure the high performance in
the evaluation phase (see Section 4.3 for more details).

3.2 Learning Discrepancy-Free Representations

Discrepancy loss. The main idea for minimizing process discrepancy is to
enforce the directions of intra-class features to be aligned in a single direction
from the perspective of their class weights as illustrated in Fig.2 (b). In essence,
process discrepancy occurs because wT

y zi ≈ wT
y zj for the training phase does not

guarantee zTi zj ≈ 1 for the evaluation phase. The proposed idea of directional
alignment can minimize the angle between zi and zj . To handle the variation of
each feature ϕθ(x), we first define the displacement vector ε as follows:

ε(x, y) =
ϕθ(x)

‖ϕθ(x)‖2
−

wy

‖wy‖2
, (2)

i.e., it is the difference vector between a feature ϕθ(x) and its class weight wy

as shown in Fig.3. Note that the feature vector ϕθ(x) is normalized in (2) be-
cause the evaluation phase calculates the angle difference between features by
using normalized features. As mentioned in Section 3.1, the directional discrep-
ancy between features (i.e., process discrepancy) is due to different intra-class
displacement vectors of their features, as shown in Fig.2 (a). Inspired by this
observation, we introduce an additional learnable representative vector ξ that
fits all displacement vectors, which is named here, deep displacement basis, in or-
der to minimize the discrepancy between displacement vectors of their features.
The discrepancy-free features and model parameters θ, w, ξ are jointly learned
by minimizing the following loss with the softmax loss (1):

Ldiscrepancy(θ, w, ξ;D) =
1

|D|

∑

(x,y)∈D

‖ε(x, y)− ξ‖2. (3)
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The above loss minimizes the directional intra-class discrepancy, such that the
training/evaluation process discrepancy can be mitigated. An additional advan-
tage of optimizing (3) is that the class information in the displacement vectors
is implicitly forced to be eliminated by fitting all of them to a single displace-
ment basis (regardless of their classes). In other words, it learns to disentangle
class-free variations (e.g., displacement vectors) from their features. Hence, ma-
nipulating displacement vectors has a negligible effect on inter-class separability,
while it helps to minimize process discrepancy.

In summary, we suggest to minimize the following loss:

Ltotal(θ, w, ξ;D) = Lsoftmax(θ, w;D) + λLdiscrepancy(θ, w, ξ;D), (4)

where λ > 0 is a hyper-parameter to balance both loss terms. In the above,
one can use Lsoftmax as any softmax-based loss for face recognition tasks, e.g.,
angular-margin losses [8, 7, 6, 13] for improving the performance further.

Directional vs. radial displacement discrepancy. We further remark that
process discrepancy can be decomposed into two types as described in Fig.3: di-
rectional displacement discrepancy and radial displacement discrepancy. The di-
rectional displacement discrepancy is the angle difference between displacement

vectors and is defined by ε(xi,yi)
‖ε(xi,yi)‖2

T ε(xj ,yj)
‖ε(xj ,yj)‖2

. Also, the radial displacement

discrepancy is the norm difference between displacement vectors and is defined
by |‖ε(xi, yi)‖2−‖ε(xj , yj)‖2|. As shown in Fig.3 (a) and (b), the directional dis-
placement discrepancy causes the angle difference (θ1) between features, while
the radial displacement discrepancy leads to another angle difference (θ2) be-
tween features as well. Namely, both discrepancies in the displacement domain
result in directional discrepancies (θ1 and θ2) between features, and should si-
multaneously be suppressed. Since the discrepancy loss (3) is defined by using a
non-normalized version of displacement vector ε(x, y) and basis ξ, it can penalize
both directional and radial displacement discrepancies.

Comparison to other methods. As mentioned in Section 3.1, most softmax-
based approaches may generate process discrepancy due to their limited ability
in softmax-based loss. Although softmax loss is able to maximize wT

y ϕθ(x), in
practice, some hard features are placed around their class weights as in Fig.2
(a) and it causes process discrepancy. On the other hand, our method at least
helps place these features directionally close to each other as in Fig.2 (b), which
is not explicitly done by previous works. For example, center loss [4] attempts
to minimize intra-class variations by introducing centroids, but process discrep-
ancy is not considered. This means that wT

y zi ≈ wT
y zj for the training phase

does not guarantee zTi zj ≈ 1 for the evaluation phase. Since intra-class features
are concentrated only on their centroids (not their class weights), this effect
may lead to diminishing inter-class separability as in Fig.4 (b). In contrast,
the proposed method introduces the class-free concept of the displacement vec-
tor, which enables to minimize directional intra-class variations without hurting
inter-class separability as in Fig.4 (c). Alternatively, adding metric losses such as
triplet loss [3] and contrastive loss [1] is one of ways to mitigate process discrep-
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Fig. 4. Toy examples on VGGFace2 dataset [28] for 4 classes: (a) CosFace [8], (b)
Center Loss [4], (c) Cos-DiscFace (ours). We use ResNet-18 [29] as a baseline network
architecture to learn 3 dimensional features. We replace the global average pooling of
ResNet-18 by a fully-connected layer. The colored point is a feature vector and the color
of points indicates the corresponding class. In figures, “+” indicates a class weight. The
first row visualizes the hypersphere manifold with 4 classes. The second row shows the
angle distribution of positive and negative pairs. We select 2 classes to generate their
angle distributions.

ancy. However, the performance may depend on sampling strategy. On the other
hand, our method is the one that minimizes process discrepancy without any
sampling method. As a result, our method overcomes the fundamental limita-
tion of softmax-based methods by suppressing process discrepancy and provides
performance improvement at the evaluation phase.

4 Analytical Study

4.1 Feature Visualization

We demonstrate a toy example to visualize the feature distributions on methods.
To observe intra-class compactness effectively, we choose VGGFace2 dataset [28]
which contains an average of 362.6 samples per class. The baselines such as
CosFace and Center Loss are performed and their results are illustrated in Fig.4
(a) and (b), respectively. As shown in Fig.4 (c) and (d), our method is conducted
to visualize the feature distribution when it uses a single basis and two bases,
respectively. The center loss minimizes intra-class variations as depicted in Fig.4
(b), which needs to be more compact. More importantly, Fig.4 (a) shows that
ArcFace causes many directions of variations. On the other hand, we observe that
the directions of variations are aligned in a single direction by our method. As
shown in Fig.4 (c), the position of the feature distribution per class is located to
the left side of the corresponding class weight. Moreover, we indeed observe that
the proposed method minimizes intra-class variations under preserving inter-
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(a) (b) (c)

Fig. 5. Visualization results under the extreme class-imbalanced dataset. (a) Cos-
Face [8] (b) Center Loss [4] (c) Cos-DiscFace (ours). Samples from three classes are
fed to every mini-batch while only a single sample for the remaining class is fed to a
mini-batch every two epochs. In figures, “+” indicates a class weight and the green
points are of the class with insufficient samples during the training.

class separability, as the angle distributions are shown in the second row of
Fig.4.

4.2 A Recognition Task under Extreme Class-Imbalanced Dataset

The enormous number of classes, and extreme scarcity of samples per class, i.e.,
extreme class-imbalanced dataset, makes it difficult to learn features robust to
unconstrained variations. Namely, samples for a certain class may appear quite
rarely in a mini-batch during the training phase. The proposed method enables
us to use all mini-batch samples (even the ones that belong to different classes)
as if they were intra-class samples due to class-invariant attributes of displace-
ment vectors. To prove this, we use the following trick to visualize intra-class
compactness under the extreme class-imbalanced dataset: a certain class appears
in a mini-batch only one (i.e., a single sample) every two epochs. By doing so,
the class samples become insufficient to produce intra-class compactness. The
remaining experimental setup follows that of the toy example described in Fig.4.
In this configuration, we run three methods: CosFace [8], Center Loss [4] and
Cos-DiscFace (ours).

The results are presented in Fig.5. Center loss produces intra-class compact-
ness only in three classes, while our method results in intra-class compactness
even in the class that appears rarely during the training. Further experiments
are conducted to demonstrate the effectiveness of our method under the extreme
class-imbalanced datasets as reported in Table 4.

4.3 Effects on Process Discrepancy

We also analyze process discrepancy via investigating the relationship between
classification and verification performance. Once process discrepancy is mini-
mized, the performance improvement in both classification and verification tasks
should be consistent. To show this, we use 90% of the CASIA-WebFace [30] as
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Fig. 6. Accuracy (%) on both classification and verification tasks. (a) CosFace [7], and
(b) Cos-DiscFace (Ours). This experiment aims to show the effect of process discrep-
ancy, by demonstrating the inconsistency of performance between classification and
verification tasks.

training samples, while 10% of the CASIA-WebFace are used for classification
evaluation. For verification evaluation, CFP-FP [31] is chosen. This experiment
follows the setup of CASIA-WebFace as described in Section 5.1. CosFace [7] is
chosen as a baseline in this analysis.

In particular, we investigate the trends of the relationship between classifica-
tion and verification performance along training goes. When the classification
performance is increased, our method consistently produces the improved verifi-
cation performance as shown in Fig.6 (b). In the case of the previous method, rel-
atively smaller improvement for verification performance is revealed, compared
with classification performance, as shown in Fig.6 (a). As aforementioned in Sec-
tion 3.1, higher classification performance does not guarantee higher verification
performance when process discrepancy occurs, as in Fig.6 (a). The experimental
results confirm that the proposed method (i.e., the discrepancy loss) serves as
making verification performance consistent with classification performance.

5 Experiments on Various Benchmark Datasets

5.1 Experimental Setup

Training datasets. To verify the robustness of the proposed method, train-
ing the models is performed using both small-scale and large-scale datasets.
As a small-scale training dataset, CASIA-WebFace dataset [30] is selected. The
CASIA-WebFace contains 0.49M face images collected from 10K subjects. For
a fair comparison with the state-of-the-art methods on a large-scale dataset,
MS1MV2 dataset is utilized. The MS1MV2 is a refined version of MS-Celeb-1M
dataset [8], and it comprises over 5.8M face images from 85K different identities.
For low-resolution surveillance face recognition task, we use QMUL-SurvFace
dataset [17]. The face images for QMUL-SurvFace are re-scaled to 112x112 by us-
ing bicubic interpolation while the other training datasets are cropped to 112x112
by MTCNN [32].
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Algorithm 1 The Pseudo-code of DiscFace on Pytorch

Require: Feature x, Class weight w, Displacement basis b, Label t
x = F.normalize(x)
w = F.normalize(w)
wbatch = w[t,:]
d = x - wbatch

bnorm = b.norm(p=2,dim=1)
bnorm = torch.clamp(bnorm, min=0, max=0.05)
y = F.linear(x,w)
Lsoftmax = F.cross entropy(y,t)
Ldiscrepancy = (d - F.normalize(b)*bnorm).norm(p=2,dim=1).mean()
Ltotal = Lsoftmax + λLdiscrepancy

Implementation details. As our network architectures, we use ResNet-34 [29]
for QMUL-SurvFace, LResNet50E-IR [8] for CASIA-WebFace and LResNet100E-
IR [8] for MS1MV2. The learning rate is initially set to 0.1 for all experiments. It
is then divided by 10 at the 100K, 160K and 220K iterations for the MS1MV2,
the 20K and 28K iterations for the CASIA-WebFace, and the 10K and 15K itera-
tions for the QMUL-SurvFace. The training is complete at the 360K-th iteration
for MS1MV2, the 32K-th iteration for the CASIA-WebFace, and 26K-th itera-
tion for QMUL-SurvFace. The batch size is set to 512 for the CASIA-WebFace
and MS1MV2, and 128 for the QMUL-SurvFace. The training is performed on 2
GPUs and the network architectures are optimized by using stochastic gradient
decent (SGD) algorithm.

Evaluation datasets and protocols. Our method is evaluated on several
benchmarks. As small-scale datasets, LFW [33], CPLFW [14], CALFW [34],
CFP-FP [31], and AgeDB-30 [35] are employed. CPLFW and CFP-FP contain
different pose variations. CALFW and AgeDB-30 include different age variations.
To evaluate the proposed method on large-scale test datasets, IJB-B [15], IJB-
C [16] and MegaFace dataset [36] with FaceScrub dataset [37] are utilized for
open-set face verification. To further verify that the proposed method is robust
to hard positive examples, we employ QMUL-SurvFace dataset [17]. All face
images are cropped or bicubic-interpolated to 112x112 to make them consistent
with the images from the training datasets. Cosine similarity between probe and
gallery features is used to measure whether the given features belong to the
same identity or not. Performance is assessed by calculating Accuracy and True

Acceptance Rate (TAR) with a fixed False Acceptance Rate (FAR).

Methods. As mentioned in Section 3.2, the proposed method could be com-
bined with any softmax-based method. Our method is applied to the stan-
dard softmax loss (1), which is referred to as Soft-DiscFace. We also apply
our method to the angular-margin softmax schemes, such as ArcFace [8] and
CosFace [7]. We refer to these models as Arc-DiscFace and Cos-DiscFace, re-
spectively. Similarly, the other losses such as center loss [4], contrastive loss
[1] and triplet loss [3] are combined with ArcFace, which are referred to as
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Methods
TAR(%)@FAR

Accuracy (%)
10% 1% 0.1%

DeepID2 [38] 60.0 28.2 13.4 76.1
FaceNet [3] 79.9 40.3 12.7 85.3

SphereFace [6] 63.6 34.1 15.6 77.5
Center Loss [4] 86.0 53.3 26.8 88.0

CosFace* 72.0 44.0 14.7 81.3
Cos-DiscFace (Ours)* 74.4 44.7 23.0 82.3

Softmax* 83.3 52.4 17.8 86.5
Soft-DiscFace (Ours)* 86.8 62.9 35.9 88.6

Table 1. Face Verification (%) on QMUL-SurvFace dataset. The hyperparameter
(λ = 1) of our method are used in the experiments. Note that “*” indicates our
implementations and the best results are indicated in bold.

Arc-CenterLoss, Arc-ContrastiveLoss and Arc-TripletLoss. The hyperparame-
ter of CosFace (m = 30, s = 0.25), ArcFace (m = 64, s = 0.5), Center Loss
(λ = 0.003, α = 0.5), Contrastive Loss, Triplet Loss (λ = 0.1,m = 0.3) and
ours (λ = 0.2) are used unless specified. To avoid the dependency on the initial
setting of the displacement basis, its norm value is constrained (or clipped) by
a certain upper bound (set by 0.05). To implement our method, we provide the
pytorch pseudo-code as described in Algorithm 1.

5.2 QMUL-SurvFace Dataset

QMUL-SurvFace dataset [17] has been recently released to verify the robust-
ness of low-resolution surveillance facial images. This dataset is drawn from
real surveillance videos, not synthesized by artificial down-sampling of high-
resolution images. The dataset is suitable to evaluate realistic performance since
it contains the wild environment characteristics such as low-resolution, mo-
tion blur, unconstrained poses, poor illumination and background clutters. The
QMUL-SurvFace consists of 463,507 facial images with 15,573 unique identities.
The positive and negative pairs in the evaluation set are 5,319 pairs, respectively.

According to [17], it is reported that the center loss produces the best perfor-
mance for the QMUL-SurvFace. Since the standard softmax loss is adopted to
the center loss, the standard softmax and CosFace [7] are chosen as baselines. The
experimental results are summarized in Table 1. The proposed method achieves
the best performance among all tested methods. Since the proposed method is
designed to effectively reduce process discrepancy (i.e., directional intra-class
variations), its effect can be significant on datasets mainly consisting of hard
positive pairs. In the sense, the results from the QMUL-SurvFace are the best
demonstration of the effectiveness of the proposed method, where Soft-DiscFace
improves TAR for FAR 10−3, from 17.8% to 35.9%, compared with softmax
loss only. Interestingly, we found that the standard softmax loss outperforms
the angular-margin based softmax loss in the experiments. We conjecture that
the margin penalty during the training show an undesirable effect on hard pos-
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Methods Dataset LFW CFP-FP AgeDB-30 CALFW CPLFW

FaceNet [3] 200M 99.65 - - - -
OE-CNNs [39] 1.7M 99.47 - - - -
Center Loss [4] 0.7M 99.28 - - - -

NormFace [5]

CASIA

99.19 - - - -
SphereFace [6] 99.42 - - - -
RegularFace [9] 99.33 - - - -
AMSoftmax [13] 99.28 94.77 - - -

PFE-AMSoftmax [40] 99.55 95.92 - - -
CosFace* 99.42 96.29 93.33 92.62 89.28

Cos-DiscFace (Ours)* 99.62 96.54 93.63 93.30 89.73

Ring Loss [27]

MS1M

99.52 - - - -
AdaptiveFace [41] 99.62 - - - -

CosFace [7] 99.73 - - - -
ArcFace [8] 99.82 98.37 98.15 95.45 92.08

Arc-DiscFace (Ours)* 99.83 98.54 98.35 96.15 93.37

Table 2. Face verification (%) on the LFW, CFP-FP, Age30-DB, CALFW, and
CPLFW. Note that “*” indicates our implementations and the best results are in-
dicated in bold. CosFace and ArcFace are selected as baselines in these implementa-
tions since they show the best performance on CASIA-WebFace and MS1M training
datasets, respectively.

itive examples such as low-resolution, motion blur and so on. The intra-class
compactness methods such as center loss and our method show a positive effect
on performance, compared with the result of the softmax loss. Moreover, our
method shows better performance, compared to center loss, since it exclusively
considers process discrepancy.

5.3 Comparison Results

Results on LFW, CFP-FP, Age30-DB, CALFW and CPLFW bench-

marks. In this experiment, we compare our method with state-of-the art meth-
ods. LFW [33] contains 13,233 face images collected from 5,749 different identi-
ties, forming 6,000 pairs of face images. Other face benchmarks such as AgeDB-
30 [35], CPLFW [14], CFP-FP [31] and CALFW [34] are also chosen to compare
with state-of-the-art methods. CPLFW contains 6,000 pairs in the profile-profile
configuration. CFP-FP contains 7,000 pairs in the frontal-profile configuration.
Note that CALFW and AgeDB-30 include age variations and generate 6,000
positive and negative pairs of face images. The experimental results trained
on MS1MV2 [42] are reported in Table 2. One can observe that the proposed
methods (Cos-DiscFace and Arc-DiscFace) provide improved performance over
the previous methods. Specifically, Arc-DiscFace improves the accuracy from
92.08% to 93.37% on CPLFW and 95.45% to 96.15% on CALFW (trained on
MS1M). Meanwhile, Cos-DiscFace improves the accuracy from 92.62% to 93.30%
on CALFW (trained on CASIA). These results indicate that further improve-
ment is achieved when the proposed method is combined with any softmax-based
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Methods Dataset CPLFW IJB-B IJB-C MF Id. MF Ver.

ArcFace*

MS1M

92.70 86.05 92.46 80.77 96.88
Arc-Center Loss* 92.77 86.36 92.34 80.38 96.98

Arc-Contrastive Loss* 92.92 88.16 93.52 80.44 96.98
Arc-Triplet Loss* 92.95 87.25 93.03 81.25 97.05

Arc-DiscFace (Ours)* 93.37 88.83 93.71 81.23 97.44

Table 3. Comparison results (%) on CPLFW, IJB-B, IJB-C and MegaFace. IJB-B
and IJB-C results are based on 1:1 verification for TAR at FAR 10−5. MF Id. and
MF Ver. indicate results on MegaFace Challenge 1 using FaceScrub as the probe set.
MF Id. refers to the rank-1 face identification accuracy with 1M distractors, and MF
Ver. refers to the face verification for TAR at FAR 10−6. Note that “*” indicates our
implementations and the best results are indicated in bold.

Method Dataset
TAR (%) @ FAR on IJB-C

10−1 10−2 10−3 10−4 10−5

ArcFace*
MS1M-LT

98.81 97.59 95.84 93.78 90.48
Arc-Center Loss* 98.87 97.62 96.07 93.79 90.68

Arc-DiscFace (Ours)* 98.89 97.87 96.57 94.82 92.42

Table 4. Comparison results (%) on IJB-C under the class-imbalanced dataset. IJB-C
results are based on 1:1 verification. We train with long-tailed MS1M (MS1M-LT [43])
that has 11.9 mean images per ID. Note that “*” indicates our implementations and
the best results are indicated in bold.

losses such as CosFace and ArcFace. Moreover, our method provides the consis-
tency of performance improvement under various training datasets.

Results on challenging benchmarks. The goal of this experiment is to verify
the robustness on more challenging benchmarks. MegaFace dataset [36] contains
1M images collected from 690K identities, which is mainly used as a gallery
set. The FaceScrub dataset [37] consists of 106,863 images collected from 530
individuals, as a probe set. The IJB-B dataset [15] contains 1,845 subjects with
21.8K still images and 55K frames from 7,011 videos. The IJB-C dataset [16]
is an extension of IJB-B, which contains 3,531 subjects with 31.3K still im-
ages and 117.5K frames from 11,779 videos. We choose CPLFW as a hard
small-scale benchmark. We train LResNet100E-IR [8] on a large-scale train-
ing dataset (MS1MV2). For contrastive and triplet loss, anchor, positive and
negative images are randomly sampled. The performance result is reported in
Table 3. Our method consistently improves the verification performance from
86.05% to 88.83% on IJB-B for TAR at FAR 10−5, 92.46% to 93.71% on IJB-C
for TAR at FAR 10−5, and 96.98% to 97.44% on MegaFace for TAR at FAR
10−6. We remark that discrepancy-free methods such as Arc-ContrastiveLoss,
Arc-TripletLoss produce performance improvement compared with their coun-
terparts (ArcFace) whereas Arc-CenterLoss seems not apparently to improve
performance probably due to process discrepancy. Although the discrepancy-free
methods improve performance on some benchmarks, there is still a performance
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Benchmarks λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

LFW 99.23 99.62 99.30 99.33 99.38 99.35
AGEDB-30 93.15 93.63 93.65 93.92 93.58 93.65
CFP-FP 96.44 96.54 96.71 96.71 96.59 96.50
CPLFW 89.10 89.73 90.32 89.82 89.78 89.23
CALFW 92.63 93.30 92.90 93.47 93.02 92.97

Table 5. Ablation study (%) on λ for Cos-DiscFace trained with CASIA-WebFace
dataset. Note that Cos-DiscFace with λ = 0.0 indicates CosFace. Our method is less
sensitive to the performance with respect to λ. The best results are indicated in bold.

gap between our method and the discrepancy-free methods. To further improve
performance for them, the elaborated sampling strategy should be investigated.
On the other hand, our method does not require such a back-and-forth procedure
while it provides better performance.

Results on class-imbalanced dataset. As discussed in Section 3.2, all dis-
placement vectors are imposed to be the displacement basis. This means that the
feature variation of minor class ideally becomes identical to that of major class.
Namely, the relative lack of variations for minor classes is alleviated by forcing all
variations to a single variation. To confirm the efficacy, we train on MS1M long-
tailed version (i.e., MS1M-LT [43]) and evaluate the performance on IJB-C. The
results are shown in Table 4. The results show the effectiveness of our method
on the class-imbalanced dataset, resulting in 90.48%@ArcFace, 90.68%@Arc-
CenterLoss and 92.42%@Arc-DiscFace for TAR at FAR 10−5. This explains the
superiority of the proposed method under the extreme class-imbalanced datasets.

5.4 Ablation Study on λ

We explore the hyperparameter λ in order to investigate performance sensitivity
across λ. We train Cos-DiscFace on CASIA-WebFace datasets with λ varying
from 0.0 to 1.0 with step 0.2. The results are presented in Table 5. Note that Cos-
DiscFace with λ = 0.0 indicates CosFace. One can observe that our method is
less sensitive across the range of the hyperparameter λ. In particular, the higher
performance improvement is achieved at λ = 0.4 and 0.6. In contrast, the greater
impact (λ = 1.0) of discrepancy loss may hinder softmax loss minimization, such
that the performance degradation is observed as shown in Table 5.

6 Conclusion

In this paper, we propose a new training loss to address the fundamental issue
of process discrepancy in softmax-based learning methods for face recognition
tasks. The proposed method is particularly effective for minimizing the intra-
class variations under the extreme class-imbalanced dataset. We demonstrate
its superiority on various benchmarks when it combines with existing softmax-
based losses. We think it would be interesting to apply our idea to other related
tasks such as speaker verification [44] and imbalanced classification [45].
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