Disciplined Concurrent Programming Using Tasks with Effects

Stephen Heumann and Vikram Adve
University of lllinois at Urbana-Champaign
{heumann1,vadve}@illinois.edu

Abstract

Concurrent programming has become ubiquitous, but
today’s widely-used concurrent programming models
provide few safety guarantees, making it easy to write
code with subtle errors. Models that do give strong guar-
antees often can only express a relatively limited class
of programs. We argue that a concurrent programming
model should offer strong safety guarantees, while still
providing the flexibility and performance needed to sup-
port the many ways that concurrency is used in complex,
interactive applications.

To achieve this, we propose a new programming
model based on tasks with effects. In this model, the
core unit of work is a dynamically-created task. The key
feature of our model is that each task has programmer-
specified, statically-checked effects, and a runtime sched-
uler is used to ensure that two tasks are run concurrently
only if their effects are non-interfering. Our model guar-
antees strong safety properties, including data race free-
dom and a form of atomicity. We describe this program-
ming model and its properties, and propose several re-
search questions related to it.

1 Motivation

Concurrent programming is ubiquitous. To exploit the
full capabilities of the multicore processors in today’s
desktops and even handheld devices, parallel program-
ming must be used. This will only become more true in
the future, as processor performance gains continue to
come largely from increased parallelism. Concurrency is
also used for reasons other than providing parallel perfor-
mance gains. In an interactive application, long-running
operations should be run concurrently with user inter-
face event processing in order to preserve responsive-
ness, whether or not the time-consuming operation is it-
self parallel. Some operations are also simply most natu-
rally expressed in terms of concurrent constructs such as
actors [4]] communicating asynchronously.

Today’s complex applications often combine these
forms of concurrency. In nearly any interactive appli-
cation that does time-consuming computations, it will
be desirable both to parallelize those computations if
possible and to run them concurrently with user inter-
face operations. A game, for example, may have high-
performance graphics and Al algorithms that are inter-
nally parallel, and may also run these operations and oth-
ers such as network communications concurrently with
each other and with user interface operations.

Unfortunately, concurrent programming introduces a
great deal of complexity and many opportunities for er-
rors. Subtle correctness challenges such as data races,
deadlocks, atomicity violations, and the unexpected be-
havior of memory models [2]] are a drag on productivity.
One major issue is that concurrent programs can have
nondeterministic behavior that varies from run to run de-
pending on the interleaving of operations, often leading
to bugs that only occasionally manifest themselves.

Today’s mainstream programming models do little to
address these problems. The most common approach to-
day is to use explicit threads and locks, which are low-
level, error prone, and difficult to reason about. They
provide no well-defined structure for the parallel control
flow and no guarantees about correctness properties.

Some systems support the more abstract notion of
tasks, including Intel’s Cilk [8]] and Threading Build-
ing Blocks (TBB) [14], Apple’s Grand Central Dispatch
and operation queues [6l, Microsoft’s Task Parallel Li-
brary in .NET [18]], the ForkJoinTask framework in
Java 7 [16l 22]], and the tasking operations in OpenMP
3.x [21]]. These systems provide more structured parallel
control and synchronization constructs, but they still do
not provide checked guarantees of strong safety proper-
ties, not even data-race freedom.

A few production languages such as Erlang are based
on the Actor model of concurrency [4]], which does not
support shared memory, and so eliminates errors such
as data races and atomicity violations. These languages



do not eliminate other concurrency errors, such as dead-
lock and unintentional nondeterminism. Moreover, a
model without shared mutable memory is not well suited
for many high performance algorithms that require fine-
grained updates to shared global state.

Some research systems have stronger safety proper-
ties, but the properties they provide are sometimes still
limited, and often come at a cost in expressivity and per-
formance. For example, SharC [5] uses a system of type
annotations along with static and dynamic checks to pro-
vide a guarantee of race freedom, but it does not provide
structured concurrency constructs, and it cannot provide
guarantees of stronger properties such as determinism.

Systems like Kendo [20] and CodeDet [7] use
execution-level techniques to provide a deterministic
execution order for a particular program and input,
but the deterministic execution order does not relate
in an obvious way to the structure of the program
code. Small changes to the code or to the input may
change the deterministic execution order in ways that the
programmer cannot easily predict, which limits the value
of the determinism property as a means of simplifying
reasoning about the program. Moreover, these models
have significant performance overheads, and they cannot
exploit any performance gains possible by allowing
portions of a program to execute non-deterministically.

A number of proposed models for safe parallel pro-
gramming include mechanisms to execute code specu-
latively and roll back execution if two pieces of code
executing concurrently perform conflicting accesses. A
wide variety of systems use such mechanisms, including
software transaction memory systems [12]], Galois [15]],
and Aida [17]. These systems can offer appealing pro-
gramming models, but there is generally a cost in per-
formance, both from the need to log and check infor-
mation about memory accesses, and from the possibil-
ity of discarded work due to rollbacks. Moreover, trans-
actional memory systems do not provide any particular
structure for the concurrency in a program, while Galois
and Aida impose parallelism structures that are not suit-
able for general, event-driven concurrent programming.

When designing a concurrent programming model, a
fundamental question is what safety guarantees it should
provide. The Deterministic Parallel Java (DPJ) lan-
guage [10] provided a strong set of guarantees that
greatly simplify reasoning about parallel programs writ-
ten in it, which can combine deterministic and nondeter-
ministic algorithms. DPJ guaranteed four properties: (a)
data race freedom; (b) strong atomicity [1]; (c) deadlock
freedom; (d) deterministic semantics with full sequential
equivalence for parallel computations that do not explic-
itly use nondeterministic parallel constructs. These guar-
antees are stronger than any other parallel programming
model we know of that supports both deterministic and

non-deterministic parallelism. We believe these proper-
ties are appropriate for future applications that combine
interactive and compute-intensive components.

Although DPJ provides strong guarantees, it is too re-
strictive to express the various forms of concurrency used
in complex interactive applications. Most critically, DPJ
is restricted to a fork-join parallelism structure, which
is not suited to the general, event-driven form of con-
currency required by the interactive aspects of these ap-
plications. DPJ may be able to express some individ-
ual parallel computations within these programs, but it
faces two restrictions here as well. First, it can only
express fork-join parallelism, and excludes cases like
pipelined computations or algorithms with more general
task graphs [3]. Second, DPIJ relies on a purely static
type system to enforce its correctness requirements, and
many algorithms cannot be checked with such a system,
e.g. graph-based algorithms. Also, DPJ’s support for
nondeterministic computations relies on a software trans-
actional memory system, which performs poorly due to
the cost of logging and rollbacks.

We seek to define a new programming model that can
provide most or all of the guarantees provided by DPJ,
but with the flexibility and expressiveness to support a
wide variety of concurrent programs including interac-
tive applications, and without the performance problems
of speculation and rollback. To satisfy these goals, we
propose a new programming model based on tasks with
effects. This model uses tasks similar to those of other
task-based systems, but requires the programmer to de-
clare the effects of each task. The run-time system then
schedules tasks so as to ensure that only tasks with non-
interfering effects can run concurrently. In combination
with a static phase that ensures the declared effects of
each task are sound, this can provide a guarantee that
the program is data-race free. It also guarantees that cer-
tain portions of tasks behave atomically and that our ef-
fect system does not give rise to deadlocks. Finally, our
model supports (but is not limited to) deterministic algo-
rithms, and can provide a static guarantee of determinism
for many algorithms when requested by the programmer.

2 Example

Figure [I] gives an example of how our task system
might be used in an image editing program. It shows
a class Image representing an image, with the pixel val-
ues held in two arrays, topHalf and bottomHalf. We
would like to support operations in parallel on these two
halves of the image. (We adopt this arrangement for sim-
plicity. In a more realistic code, it would be possible to
use finer-grained parallelism.) We also want to support a
variety of operations to read and manipulate the image,
which may be invoked as asynchronous tasks. This is



class Image {
region Top, Bottom;
final int[]<Top> topHalf;
final int[]<Bottom> bottomHalf;

// pixel values

Q@Task void increaseContrast() writes Top, Bottom {
SpawnedTaskFuture<Void, writes Top> f =

1
2
3
4
5
6
7
8 increasePixelContrast.spawn(topHalf);

9 increasePixelContrast (bottomHalf) ;

10 f.join(Q);

11

12

13 @Task private <region R> void

14 increasePixelContrast (int [J<R> pixels) writes R {
15 // modify values in pizels array

16 ¥

17}

Figure 1: Example computation.

writes GUIData

Gul \
executelater \ ‘
writes writes
Top, Bottom writes Bottom Top, Bottom
*increaseContrast ‘ increasePixelContrast(bottomHalf) \ \
spawn writes Top join
time increasePixelContrast(topHalf)

_—

Figure 2: Tasks in example computation.

useful, for example, when the user directs the program
to perform a lengthy operation that should not block the
user interface thread until it completes.

We show the task increaseContrast (lines
6-11), which can be executed to increase the con-
trast of the image. It relies on the separate method
increasePixelContrast (lines 13-16) to actually
update the pixel values in each array. This enables the
increaseContrast operation to work on the top and
bottom halves of the image in parallel, by spawning a
child task to work on the top half while the parent task
works on the bottom half.

Figure 2] shows the tasks created in this computation.
The GUI task executes the increaseContrast task in
response to user input. That task in turn spawns off an-
other child task so that the two halves of the image can
be processed in parallel, and then joins that child task
after it completes. Meanwhile, the GUI task continues
running and might execute additional tasks in response
to user input events. If those tasks have effects that do
not interfere with the increaseContrast computation,
they may run concurrently with it.

We will use this computation as a running example,
showing how the mechanisms in our system allow the
concurrency in the computation to be exploited while
guaranteeing strong safety properties including task iso-
lation and data race freedom. Note that the event-driven
form of concurrency used here cannot be expressed with
DPJ, which supports only fork-join parallelism struc-
tures.

3 Basic Programming Model

The core idea behind the tasks-with-effects approach is
to use compile-time checking to enforce the intra-thread
property that an effect summary is a superset of the run-
time reads and writes of a task, and run-time checking to
enforce the inter-thread property that no two tasks with
conflicting effects can execute concurrently. This allows
for flexible concurrency such as non-fork-join constructs
and arbitrary sharing patterns, because the system can
check for conflicts at run time instead of compile time.

In our programming model, a program execution con-
sists entirely of a set of tasks. A program is launched by
creating an initial task, and further tasks may be created
as it executes. Each task can optionally take arguments
and return a value at its completion, like a future. In our
implementation, we use the executeLater operation to
create a task, and the getValue operation to await the
completion of a task and get the value it returned, if any.

Effects are used to control the scheduling of tasks.
Each task has an effect specification, which is checked
at compile time to ensure that it accurately (conserva-
tively) reflects the task’s memory accesses. These effect
specifications of tasks are in turn used at run time by the
task scheduler, which will ensure that no two tasks with
interfering effects can run concurrently.

3.1 Effects and Regions

To perform effect-based scheduling of tasks, it must be
possible to characterize the effects of each task, and to
check whether the effects of two different tasks interfere
with each other. We focus on the effects of memory ac-
cesses, although effects could also be used to control ac-
cess to other types of resources. Each effect permits ei-
ther read or read/write access to a certain set of memory
locations. Intuitively, two effects interfere if they could
cover accesses to the same memory location and at least
one of those accesses could be a write. Two tasks can
only be run concurrently if their effects do not interfere,
which is the core property enforced by our scheduler.

In our prototype implementation, we use the effect
system originally developed for Deterministic Parallel
Java (DPJ) [9], an extended version of Java that uses
effect annotations. Based on those annotations, the
DPJ compiler can guarantee strong safety properties for
programs using fork-join parallelism constructs, as dis-
cussed in section |1} In this work, however, we use this
effect system in combination with our effect-based task
scheduling model, which can support a much broader
range of concurrent programs.

The DPJ effect system is based on a partitioning of
memory into regions. The programmer can declare the
names of regions, and each object field and array cell is



specified to be in a particular region. Nested hierarchies
of regions can be defined using region path lists (RPLs),
and a wildcard * can be used in RPLs to specify effects
covering a set of regions. The region system also in-
cludes region-parameterized types and a mechanism to
place each element of an array in its own region.

In Figure the cells of the arrays topHalf and
bottomHalf are defined as being in the regions Top and
Bottom, respectively. This potentially allows the two
halves of the image to be modified concurrently, since
their data is in different regions. (In a real program, we
could put each array cell in its own region. This would
allow for more fine-grained parallelism, e.g. at the level
of rows in the image. It would also be possible to place
the data for different Image objects in different regions,
potentially allowing them to be updated concurrently.)

With memory partitioned into regions, the effects of
any operation in the program can be specified in terms
of read and write effects on regions. Our system adopts
DPJ’s region-based type and effect system and requires
the programmer to declare the effects of each task and
method, which are statically checked as in DPJ. Unlike in
DPJ, however, the compiler generates code to keep track
of the effects of each task at run time. This information
is then used by the run-time scheduler to guarantee non-
interference of effect between concurrent tasks.

In our example code, the increaseContrast task is
declared with the effects writes Top, Bottom, mean-
ing it can read and write the pixel values in both halves of
the image. The increasePixelContrast task has are-
gion parameter R corresponding to the region containing
the cells of the array passed to it. Since its declared effect
is writes R, increasePixelContrast(topHalf)
has the effect writes Top.

3.2 Effect-Based Task Scheduling

The key property that our run-time task scheduler must
enforce is that two tasks with interfering effects will not
be run concurrently. To do this, the scheduler will have
to delay the execution of tasks that are created while an-
other task with interfering effects is already executing.

In Figure 2] the increaseContrast task with effects
writes Top, Bottom is run while the GUI task with
effect writes GUIData continues to execute. To de-
termine whether the new task may be run concurrently
with the already-executing task, the scheduler will check
if these two sets of effects interfere with each other. In
this case, the region GUIData is disjoint from Top and
Bottom, so the two tasks have non-interfering effects and
may be run concurrently.

If a third task is run with executeLater while
these two tasks are executing, its effects will be
checked against those of both existing tasks. Thus,

another task trying to access the image data in the
regions Top and Bottom would have to wait until the
increaseContrast task is done, but a task accessing
different regions might be able to run concurrently. (The
increasePixelContrast (topHalf) task is run with
the spawn operation, which uses effect transfer to avoid
the need for these run-time checks; see section[d.1])

Considerable variation is possible in the design of an
effect-aware task scheduler. Our initial prototype imple-
mentation uses a fairly simple approach based on a single
queue of tasks. In a higher-performance implementation,
the effect checking could be structured around regions,
so that tasks accessing entirely disjoint regions do not
need to be explicitly checked against each other. It may
also be helpful to have the scheduler enforce additional
properties related to fairness or task ordering, in addition
to the basic property of noninterference. We believe that
the design of an efficient effect-based scheduler will be
an important area of future work.

4 Effect Transfer

The model we have described so far envisions the effects
of each task remaining unchanged while it runs. How-
ever, it can be valuable to change the effects of tasks dur-
ing their lifetimes, and in particular to transfer effects
from one task to another. An implementation of effect
transfer should preserve the property that no two tasks
have interfering effects while they are executing concur-
rently. Effect transfer can be used, among other things,
to support a guarantee that certain computations are de-
terministic and to eliminate a class of deadlocks.

4.1 Effect Transfer on Task Creation and
Completion

Our implementation supports two types of effect trans-
fer. The first is useful for fork-join styles of parallelism.
It is a mechanism to transfer some of the effects of a par-
ent task to a newly-created child task, and later transfer
those effects back to the parent task when the child task
completes. We call these operations spawn and join.
A child task created with spawn may run immediately,
since “ownership” of its effects is transferred directly
from the parent to the child task, and thus no other tasks
with conflicting effects may be running concurrently.

In Figure these mechanisms are used to oper-
ate in parallel on the two halves of the image. We
use the spawn operation to create an instance of the
increasePixelContrast task with the argument
topHalf (line 8). This transfers the effect writes Top
directly from the parent increaseContrast task
to the new child task, which means the new task
can be enabled for execution immediately. The



parent task also continues executing concurrently,
with its remaining effect writes Bottom. It runs
increasePixelContrast (bottomHalf) as a method
within the same task, which is possible since it still
retains the effect writes Bottom.

After that computation finishes, the parent task joins
the future returned when the child task was spawned.
This join operation also transfers the child task’s effect
writes Top back to the parent task. After this, both
halves of the image will have been updated, so any other
task that waits for the increaseContrast task to finish
will know that the full operation is complete.

4.2 Effect Transfer when Waiting

The second kind of effect transfer we use in our system is
primarily intended to prevent deadlocks. It occurs when
one task uses a getValue or join operation to wait until
another task completes. We allow the waiting task’s ef-
fects to be transferred to the task it is waiting on, if nec-
essary in order for that task to execute. This effect trans-
fer is also applied recursively through a chain of waiting
tasks. The effects are automatically transferred back to
the original task before it resumes execution.

More specifically, there are three cases where this type
of transfer occurs. One is where a running task A calls
getValue or join to wait for another task B that has
not yet started. In this case, A transfers its effects to B,
which can allow B to execute even if B’s effects would
otherwise conflict with A’s effects.

Another case is when a running task A waits for a task
B that has already started. In this case, A’s effects are
transferred to B at the time that A waits on B. This trans-
fer is not necessary for B to start, but the effects may be
further transferred to other tasks that B waits on, which
might require that transfer in order to be able to execute.

Finally, if a task B that is not yet started has effects
transferred to it, it may in turn transfer those effects to
any running tasks whose effects conflict with B’s effects,
since B cannot execute until those tasks complete. This
is also not directly necessary to allow those tasks to exe-
cute, but the effects may be transferred on further.

Effects may be transferred through a chain of the three
types of links described above, although only the first
type of link can directly enable a task to begin executing
when it would otherwise be unable to. If a task that has
already had effects transferred to it does a waiting oper-
ation, the transferred effects as well as the waiting task’s
own effects will be transferred to the task it waits on.

When the effects of a task A that has already begun
to execute are transferred to some other task C that has
not, this reflects the fact that A has used a waiting opera-
tion (getValue or join) and will not be able to resume
execution until after task C has completed, because of

some chain of waiting or blocking relationships between
tasks. Therefore, in trying to schedule C, the task sched-
uler will disregard any effect conflict between A and C,
which might otherwise prevent C from running.

Note that this only has any direct effect (i.e. allowing
C to run when otherwise it could not) in cases that would
otherwise give rise to deadlock, since A cannot continue
until C finishes, and without effect transfer C would be
unable to start until A finishes. There are many possible
such cases, from a task simply waiting for another task
whose effects conflict with its own through other more
complex patterns involving several tasks.

In using our prototype implementation to develop an
application, we found several cases where this mecha-
nism would prevent cases that would otherwise deadlock.
These generally involved cases where there were multi-
ple types of tasks that could act on a single region, corre-
sponding to a data structure or logical component of the
program. One of these tasks might simply launch and
wait for another task operating on the same region, or it
might launch and wait for some task operating on a dif-
ferent region that “calls back” to another task operating
on the same region as the first task. In either of these
cases, effect transfer serves to prevent a deadlock.

In addition to preventing deadlocks, this mechanism
also allows for a programming paradigm similar to a syn-
chronized or atomic block in traditional programming
models. One task can launch a second task with a su-
perset of its effects, and then use a getValue operation
to wait for the second task. This transfers the first task’s
effects to the second task (allowing it to access the same
regions as the first task), and leaves the second task to
wait until it can acquire access to the regions covered by
its other effects, which would typically correspond to a
shared resource. The second task is thus similar to a syn-
chronized block holding the lock for the shared resource
in a traditional programming model, and it is also atomic
if there are no tasking operations inside it.

5 Safety Properties

Our model guarantees several strong safety properties:

Data race freedom: Our system guarantees data race
freedom, through a combination of statically checking
effect specifications and using a dynamic scheduler to
ensure that tasks with conflicting effects do not run con-
currently. Each task may only access memory regions as
specified by its declared effects, and this combined with
our effect-based task scheduler ensures that two accesses
to the same memory location cannot race with each other.

Atomicity: A task or portion of a task that does not cre-
ate or wait for any other tasks behaves atomically. It has
fixed effects that cover all the memory locations it can



access, and the scheduler will ensure that no other tasks
performing conflicting accesses run concurrently with it,
which ensures it is atomic. This atomicity property can
also be extended to portions of tasks that contain task
creation operations (but not waiting operations), in the
sense that the semantics are equivalent to those given by
creating the new tasks only at the end of the parent task
or the next waiting operation in it.

Atomicity cannot generally extend across waiting op-
erations, as our mechanism for effect transfer when wait-
ing may allow other tasks with conflicting effects to
run before the waiting operation completes. However, a
deterministic computation (discussed below) effectively
executes atomically, as it is semantically equivalent to a
sequential execution with no task-related operations.

Deadlock avoidance: We do not provide a guarantee of
deadlock freedom, but we do avoid all deadlocks related
to our effect system. That is, a program will not deadlock
because one task directly or indirectly waits on another
task whose effects conflict with its own. In such a case,
the effects of the waiting task will be transferred to the
task that it waits on, allowing it to run, as discussed in
section d.2] A set of tasks may circularly wait on each
other and deadlock (e.g. if A calls getValue to wait until
B completes, and B does the same for A), but since this
waiting is mediated by our runtime implementation, it is
possible to detect such a deadlock and report an error, if
desired. Fully guaranteeing deadlock freedom could be
a valuable contribution in future work.

Optional determinism: Programs or algorithms that
create and wait for tasks only using the spawn and join
operations described in section [4.1] behave deterministi-
cally. We allow tasks and methods to be annotated with a
@Deterministic annotation, which will cause the com-
piler to statically check this property. This feature allows
the system to give a guarantee of determinism for se-
lected algorithms, even if the full program they appear
in is not deterministic. Our support for guaranteed deter-
minism is discussed further in [|13]].

6 Research Questions

There are several key research questions raised by our
model of tasks with effects. These include the following:

How should effects be represented in source code?
Considerations in designing an effect system include
ease of use for the programmer, expressiveness to sup-
port various patterns of data access and sharing, and
run-time performance overheads. We have adopted the
region-based effect system from DPJ in our initial pro-
totype, but other effect systems are possible. Ownership
type systems, for example, express effects in terms of

objects [L1}[19]], which have somewhat more limited ex-
pressivity (at least in systems so far) but could perhaps
be easier to use. It might also be desirable to introduce
new types of effects focused on resources such as files,
database records, or other shared resources.

How should effects be represented and compared at
run time? As discussed in section various ap-
proaches to task scheduling are possible. We would like
to develop an effect-checking scheme based on the ac-
tual regions on which each task has effects, so that effect
checking would only require checks against other tasks
accessing the same regions. To design a system based on
these principles, we will also have to define suitable data
structures to represent effects. If we continue to use our
current hierarchical region system, perhaps a tree-like
structure accessed using hand-over-hand locking could
be appropriate. It may also be desirable to implement
fast special cases for simple, common patterns.

How can the tasks-with-effects model be extended
for heterogeneous and non-shared-memory systems?
Our work so far has focused on shared-memory multi-
core systems, but we believe our model can also be ap-
plied to other architectures. Most client systems today
include both a CPU and a programmable GPU, and fu-
ture systems may have even more diverse hardware. It
would be desirable to program these using a unified pro-
gramming model, and we believe the tasks-with-effects
model can be used for a wide range of different hardware
designs, including heterogeneous systems. One advan-
tage of our model is that explicit, region-based effects
provide a natural means for specifying the data move-
ment in non-shared-memory or non-coherent systems.

7 Summary

We have described a new programming model based on
tasks with effects, using statically-checked effect decla-
rations plus a run-time task scheduler that ensures tasks
with interfering effects are not run concurrently. Our
effect-based scheduling approach guarantees the absence
of data races and provides an atomicity property. Ef-
fect transfer between tasks is used to eliminate a class
of cases that would otherwise deadlock, and also to en-
sure certain algorithms are deterministic. We believe our
programming model is suitable for a wide range of con-
current and parallel programs, and that it offers numer-
ous opportunities for valuable ongoing research.

Acknowledgments

This work was funded by the Illinois-Intel Parallelism Center
at the University of Illinois at Urbana-Champaign. The Center
is sponsored by the Intel Corporation.



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

[20]

[21]

[22]

M. Abadi et al. Semantics of transactional memory and automatic
mutual exclusion. In POPL, 2008.

S. V. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Comp., Special Issue on Shared-Mem.
Multiproc., pages 6676, December 1996.

V. S. Adve and M. K. Vernon. Parallel program performance
prediction using deterministic task graph analysis. ACM Trans.
on Comp. Systs., 22(1):94-136, 2004.

G. Agha. Actors: A model of concurrent computation in dis-
tributed systems. MIT Press, Cambridge, MA, USA, 1986.

Z. Anderson et al. SharC: Checking data sharing strategies for
multithreaded c. PLDI, 2008.

Apple. Concurrency Programming Guide. http:
//developer.apple.com/library/mac/documentation/
General/Conceptual/ConcurrencyProgrammingGuide/,
Jan. 2011.

T. Bergan et al. CoreDet: A compiler and runtime system for
deterministic multithreaded execution. In ASPLOS, 2010.

R. D. Blumofe et al. Cilk: An efficient multithreaded runtime
system. In PPOPP, 1995.

R. L. Bocchino et al. A type and effect system for Deterministic
Parallel Java. In OOPSLA, 2009.

R. L. Bocchino et al. Safe nondeterminism in a deterministic-by-
default parallel language. In POPL, 2011.

C. Boyapati et al. Ownership types for safe programming: pre-
venting data races and deadlocks. In OOPSLA, 2002.

T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd
Edition (Synthesis Lectures on Computer Architecture). 2010.

S. Heumann and V. Adve. Tasks with effects: A model for disci-
plined concurrent programming. In WoDet, 2012.

Intel. Intel Thread Building Blocks Reference Man-
ual. http://software.intel.com/sites/products/
documentation/hpc/tbb/referencev2.pdf, Aug. 2011.

M. Kulkarni et al. Optimistic parallelism requires abstractions.
In PLDI, 2007.

D. Lea. A Java fork/join framework. In Proceedings of the ACM
2000 conference on Java Grande, 2000.

R. Lublinerman et al. Delegated isolation. In OOPSLA, 2011.

Microsoft. Task Parallel Library. http://msdn.microsoft.
com/en-us/library/dd460717 .aspx.

P. Miiller and A. Rudich. Ownership transfer in universe types.
In OOPSLA, 2007.

M. Olszewski et al. Kendo: Efficient deterministic multithreading
in software. In ASPLOS, 2009.

OpenMP Architecture Review Board. OpenMP Application
Program Interface, Version 3.1. http://www.openmp.org/
mp-documents/0OpenMP3.1.pdf, 2011.

Oracle. Java Platform, Standard Edition 7 API specification.
http://download.oracle.com/javase/7/docs/api/\


http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/
http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/
http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/
http://software.intel.com/sites/products/documentation/hpc/tbb/referencev2.pdf
http://software.intel.com/sites/products/documentation/hpc/tbb/referencev2.pdf
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://download.oracle.com/javase/7/docs/api/

	Motivation
	Example
	Basic Programming Model
	Effects and Regions
	Effect-Based Task Scheduling

	Effect Transfer
	Effect Transfer on Task Creation and Completion
	Effect Transfer when Waiting

	Safety Properties
	Research Questions
	Summary

