
Disciplining Orchestration and Conversation
in Service-Oriented Computing

Ivan Lanese
Computer Science Department

University of Bologna
Mura Anteo Zamboni, 7, 40127 Bologna, Italy

lanese@cs.unibo.it

Vasco T. Vasconcelos
CITI and Department of Informatics

University of Lisbon
Campo Grande, 1749–016 Lisbon, Portugal

vv@di.fc.ul.pt

Francisco Martins
CITI and Department of Informatics

University of Lisbon
Campo Grande, 1749–016 Lisbon, Portugal

fmartins@di.fc.ul.pt

António Ravara
SQIG at IT, and Dep. of Mathematics, IST,

Technical University of Lisbon
Av. Rovisco Pais 1, 1049–001 Lisbon, Portugal

aravara@ist.utl.pt

Abstract

We give a formal account of a calculus for modeling
service-based systems, suitable to describe both service
composition (orchestration) and the protocol that services
run when invoked (conversation). The calculus includes
primitives for defining and invoking services, for isolating
conversations between clients and servers, and for orches-
trating services.

The calculus is equipped with a reduction and a labeled
transition semantics related by an equivalence result. To
hint how the structuring mechanisms of the language can be
exploited for static analysis we present a simple type system
guaranteeing the compatibility between client and server
protocols, an application of bisimilarity to prove equiva-
lence among services, and we discuss deadlock-avoidance.

1 Introduction

Enterprise application integration, either to reuse legacy
code, or to combine third-party software modules, has long
been tackled by several middleware proposals, namely us-
ing message brokers or workflow management systems. As
the popularity of using the Web increased, traditional mid-
dleware was forced to provide integration across companies
over it. The technologies developed lay in the concept of
Web service: a way of exposing (to the Web) the function-
alities performed by internal systems and making them dis-
coverable and accessible through the Web [1]. Web ser-
vices emerged as the main paradigm to program applica-
tions on the Web. An important reason is that currently
available standards [2, 3, 7, 11] allow to easily orchestrate
different services (distributed and belonging to different or-

ganizations) to achieve required business goals, maximizing
interoperability.

While standards and programming tools are continu-
ously improving, the formal bases of Service Oriented
Computing (SOC) are still uncertain: there is an urgent
need for models and techniques allowing the development
of applications in a safe manner, while checking that sys-
tems provide the required functionalities. These techniques
should be able to deal with the different aspects of services
(seen in the abstract context of global computing [9]), in-
cluding their dynamic behavior.

Process calculi are an important tool to give precise se-
mantics to system specifications, and they come equipped
with a rich toolbox of analysis techniques (type systems,
bisimulations, . . .). Nevertheless, how to use process cal-
culi to model service oriented systems is not yet clear.
When defining a calculus for SOC, different aspects influ-
ence the choice of primitives and of their behavior, and a
careful trade-off between expressiveness and suitability to
analysis should be found. Our main concerns have been:

Expressiveness of the language: the calculus should be
able to express in a direct way the different kinds
of interactions that characterize SOC: invocations of
services, client-server conversations and interactions
among different client-server pairs. We use three dif-
ferent classes of operators to this end: services, ses-
sions, and streams. We show via examples that these
are enough to model various kinds of SOC scenar-
ios. We stress in particular the importance of the third
kind of interaction, which is the heart of orchestration.
Other constructs such as, e.g., tuple spaces or shared
memory would be as expressive as streams, but would
be difficult to analyze.

Expressiveness of the analysis: the elements to be ana-
lyzed should correspond to explicit elements in the cal-
culus. Concerning the classes above, service definition
is fundamental to speak about service availability. It
also allows easy extensions for service discovery based
on quality of service. Sessions instead allow to analyze
client-server compatibility and to study behavioral-
based service discovery. Other mechanisms, such as
BPEL correlation sets [2], would make these analyses
more complex, since they rely on runtime values for
determining the communication patterns.

Computability of the analysis: static analysis should be
decidable, possibly also efficient to compute. Thus the
allowed communication patterns should be constrained
whenever this does not destroy expressiveness. In our
calculus streams and sessions are static, and the dy-
namism is concentrated in service invocation. To stress
the effect of these considerations on the design deci-
sions, we give some “proof of concept” analyses to il-
lustrate how to exploit the features of the calculus.

This paper proposes SSCC (Stream-based Service Cen-
tered Calculus), a calculus for modeling service-based sys-
tems, inspired by SCC [4] and Orc [13, 16], and developed
with the above considerations in mind.

We introduced SSCC after having tried to use SCC and
failed. While proposing interesting concepts, like sessions,
and featuring services as first class entities, SCC looks not
fully adequate (at least as presented in [4]) for service com-
position. In fact the only way for a session to interact
with other client-server pairs is the return primitive, and
the functional style of invocation is not adequate for mod-
eling complex patterns of interactions such as van der Aalst
workflow patterns [20]. To overcome these problems we
introduced streams and we allowed non persistent service
invocations. This enhances the expressiveness of the calcu-
lus and makes it easier to program.

Another source of inspiration was Orc [16], a basic
programming model for orchestration of Web services.
Here a few coordination constructs are used to model the
most common patterns, and a satisfying expressiveness is
claimed by presenting a formalization of all van der Aalst
workflow patterns [8]. However, in order to model the more
challenging patterns, special sites (the basic computation
entity in Orc) are required, acting e.g. as semaphores. This
is a coordination concern, and in our opinion should be ad-
dressed within the language. Thus we introduced more ba-
sic mechanisms to tackle all the coordination concerns in-
side the calculus (most of Orc operators can be expressed
as macros in our model). Also, we introduced conversa-
tions, which are absent in Orc, to model service behavior
(Orc leaves this unspecified). It is thus not possible to de-
velop for Orc analysis techniques to ensure, e.g., deadlock
freedom, as this would require analyzing the behavior of the
sites involved.

Among the calculi, π-calculus (and its variants) has been

frequently used in SOC. However we claim that general pur-
pose concurrent calculi are not suitable for our aims, since
the different communication patterns are mixed, and most
of the interesting properties not reflected in the term. Thus
these calculi do not satisfy the requirements above. Differ-
ent proposals used types, e.g. session types [10, 12, 19, 22],
to solve this problem, but since they allow free π-calculus
communications the analysis is difficult. We consider our
proposal as some kind of tamed π-calculus, with a good
trade-off between expressiveness for SOC systems and suit-
ability to analyze SOC-related properties.

Other calculi tailored for SOC exist, and we briefly com-
pare with them.

Carbone et al. [6] aim at capturing the principles behind
Web service based business processes. A global description
of communication behavior needs to be complemented by
an “endpoint-based” description of each participant to the
protocol, a projection of the global scenario. We are at the
same abstraction level of the endpoint calculus, but this one
relies on shared memory and general communication mech-
anisms, making it more difficult to analyze.

Lapadula et al. introduce CŎWS [15], a process calcu-
lus for Web service orchestration. For isolating interactions
between partners, CŎWS uses message correlation, the ap-
proach of WS-BPEL [2]. Our approach based on sessions
is dual to this, and ensures more structured communication.

Busi et al. [5] propose SOCK, a process calculus in-
spired in Web services specifications. SOCK is composed
by different layers, taking care of particular aspects such
as service behavior, state, and interactions between differ-
ent sessions of the same service. SOCK also uses mes-
sage correlation to define client-server interactions. SOCK
is quite complex since it closely follows current standards in
SOC technologies, but we want to explore more in depth the
semantic issues of SOC without the additional complexity
needed to model industrial standards.

Proofs for the results presented herein, and an encoding
of van der Aalst workflow patterns [20], can be found in a
technical report [14].

2 A motivating example

We start with a simple process to deliver the price for a
given date at a given hotel.

(date) <query−the−hote l−db>. p r i ce

The parentheses in (date) indicate the reception of a value,
and an identifier alone, as in price, means publishing a
value. Hotel bologna may turn this conversation into a ser-
vice, by writing:

bologna ⇒ (date) <query−the−hote l−db>. p r i ce

A client is supposed to meet the expectations of the ser-
vice by providing a date and requesting a price:

bologna ⇐ 31Jul2007 . (p r i ce) <use−pr ice>

2

When the service provider (⇒) and the service client
(⇐) get together, by means, e.g., of parallel composition, a
conversation takes place, and values are exchanged in both
directions.

Now suppose that a broker comes to the market trying to
provide better deals for its clients. The broker asks prices
to three hotels that it knows of, waits for two results, and
publishes the best offer of the two. Calling the services for
a given date is as above:

bologna ⇐ date . (p r i ce1) . . . |
azores ⇐ date . (p r i ce2) . . . |
l i s b o n ⇐ date . (p r i ce3) . . .

In order to collect the prices, we introduce a stream con-
structor, playing the role of a service orchestrator. The var-
ious prices are fed into the stream; a different process reads
the stream. We write it as follows.

stream
bologna ⇐ date . (p r i ce1) . feed pr i ce1 |
azores ⇐ date . (p r i ce2) . feed pr i ce2 |
l i s b o n ⇐ date . (p r i ce3) . feed pr i ce3

as f in
f (x) . f (y). < publ ish−the−min−of−x−and−y>

To write price1 into a stream we use the syntax
feed price1. To read a value from stream f we use
f (x).<use−x>. Writing is an anonymous operation (feeds
to the nearest enclosing stream), whereas reading is named.
The above pattern is so common that we provide a spe-
cial syntax for it, inspired by Orc (the various abbreviations
used in this paper are summarized in Figure 7).

(c a l l bologna (date) |
c a l l azores (date) |
c a l l l i s b o n (date)) >2

x y > <publ ish−the−min−of−x−and−y>

To complete the example we rely on a min service, chain-
ing the first two answers, and publishing the result.

broker ⇒ (date) . (
(c a l l bologna (date) |

c a l l azores (date) |
c a l l l i s b o n (date)) >2

x y > c a l l min (x , y) >1 m > m)

Notice that a client interacts with the broker as if it was
interacting with a particular hotel. The downside is that the
client does not know which hotel offers the best price; we
leave it to the reader to adapt the example as required.

Further examples can be found in Section 4.

3 The SSCC calculus

This section presents the syntax and the operational se-
mantics of SSCC.

Processes are built using three kinds of identifiers: ser-
vice names ranged over by a, b, x, y, . . . , stream names
ranged over by f, g, . . . , and process variables ranged over

P,Q ::= Processes

P |Q Parallel composition
| (νa)P Name restriction
| 0 Terminated process
| X Process variable
| rec X.P Recursive process definition
| a ⇒ P Service definition
| a ⇐ P Service invocation
| v.P Value sending
| (x)P Value reception
| stream P as f inQ Stream
| feed v.P Feed the process’ stream
| f(x).P Read from a stream

u, v ::= Values

a Service name
| unit Unit value

Figure 1. The syntax of SSCC

by X, Y, The grammar in Figure 1 defines the syntax of
processes.

The first five cases of the grammar introduce standard
process calculi operators: parallel composition, restriction
(only for service names), the terminated process, and recur-
sion. We then have two constructs to build services: def-
inition (or provider) and invocation (or client). Both are
defined by their name a and protocol P . Service definition
and service invocation are symmetric (differently from [4]).
Service protocols are built using value sending and receiv-
ing, allowing bidirectional communication between clients
and servers. Finally there are the three constructs for service
orchestration, which constitute the main novelty of SSCC.
The stream construct declares a stream f for communica-
tion from P to Q. P can insert a value v into the stream
using feed v.P ′, and Q can read from there using f(x).Q′.
Notice that stream names cannot be communicated, thus
they model static channels.

Processes at runtime exploit an extended syntax: the in-
teraction of a service definition and a service invocation
produces an active session. Also, values in the stream are
stored together with the stream definition. We introduce
a fourth kind of identifier: session names, use r, s, . . . to
range over them, and use n, m, . . . to range over both ses-
sion and service names. The grammar in Figure 2 defines
the syntax of runtime processes.

We use r ./ P to denote both r C P and r B P , and
we assume that when multiple ./ appear in the same rule
they are instantiated in the same way, and that if ./ ap-
pears too then it denotes the opposite instantiation. The
constructor stream P as f inQ in Figure 1 is an abbrevia-

3

P,Q ::= Processes

. . . as in Figure 1
| r B P Server session
| r C P Client session
| (νr)P Session restriction
| stream P as f = ~v inQ Stream with values

Figure 2. The run-time syntax of SSCC

CJK ::= • | CJK|Q | P |CJK
| (νn)CJK | stream CJK as f = ~v inQ

| stream P as f = ~v in CJK | r ./ CJK
DJ, K ::= C′JK|C′′JK | stream C′JK as f = ~v in C′′JK

Figure 4. Active and double contexts

tion of stream P as f = 〈〉 inQ in Figure 2.
Streams can be considered either ordered or unordered.

An unordered stream is a multiset, while an ordered one
is a queue. In most cases the difference is not important.
We write w :: ~v for the stream obtained by adding w to ~v,
and ~v :: w for a stream from which w can be removed.
In the latter case ~v is what we get after removing w. The
semantics that we present can deal with both ordered and
unordered streams, by just changing the definition of ‘::’.

As for bindings, name x is bound in (x)P and in
f(x).P ; name n is bound in (νn)P ; stream f is bound in
stream P as f inQ with scope Q; and process variable X is
bound in rec X.P . All bound identifiers are α-convertible.
Notation fn(P) denotes the set of free (service or session)
names in P . Similarly, bn(P) is the set of bound names.
We require processes to have no free process variables.

SSCC exploits a standard structural congruence, simply
adding to that of the π-calculus axioms that deal with scope
extrusion for sessions and streams.

Definition 3.1 (Structural congruence) The rules in Fig-
ure 3, together with the commutative monoid rules for
(P, |,0), inductively define the structural congruence rela-
tion on processes.

Interactions can happen in different active contexts.
Since all our interactions are binary, we introduce also two-
holes contexts, which we call double contexts. The gram-
mar in Figure 4 generates active and double contexts. Ap-
plying a double context to two processes P1 and P2 pro-
duces the process obtained by replacing the first (in the pre-
fix visit of the syntax tree) hole • with P1 and the second
hole • with P2.

Definition 3.2 (Reduction semantics) The rules in Fig-
ure 5, together with symmetric rules of R-COMM and of

R-SYNC (swapping the processes in the two holes of DJ, K),
inductively define the reduction relation on processes.

Rule R-SYNC allows a service invocation and a service
definition to interact. This interaction produces a pair of
complementary sessions, distinguished by a fresh restricted
name r. Notice that both the service invocation and the ser-
vice definition disappear. Rule R-COMM allows commu-
nication between corresponding sessions. Then there are
the two rules dealing with streams: rule R-FEED puts a
value in the stream while rule R-READ takes a value from
the stream. Finally rule R-CONG allows reductions to hap-
pen inside arbitrary active contexts, and rule R-STR exploits
structural congruence.

The reduction semantics is intuitive, but one based on
a labeled transition system (LTS, for short) is more conve-
nient for some proofs and allows to exploit bisimulation-
based techniques.

Definition 3.3 (LTS semantics) The rules in Figure 6, to-
gether with symmetric versions of rules L-SESS-COM-
STREAM and L-SERV-COM-STREAM, inductively define the
labeled transition system on processes.

We highlight some aspects that may be less clear, ex-
plaining at the same time the labels used. We use µ as
metavariable for labels. Label ↑ v denotes the output of
value v. Dually, ↓ v is the input of value v. We use l v
to denote either ↑ v or ↓ v. Also, a ⇒ (r) and a ⇐ (r)
denote respectively the invocation and the reception of an
invocation of a service a. Here r is the name of the new
session to be created and it is bound. Also, ⇑ v denotes
the feeding of v to a stream, while f ⇓ v is the read of
value v from stream f . Notice that the value taken in in-
put in rules L-RECEIVE and L-READ is guessed: this is an
early semantics. When an input or an output label crosses
a session construct (rule L-SESS-VAL), we have to add to
the label its name and whether it is a server or client session
(for example ↓ v may become r C ↓v). Notice that we can
have two contexts causing interaction: parallel composition
and stream. The label denoting a conversation step in a free
session r is rτ , and a label τ is obtained only when r is re-
stricted (rule L-SESS-RES). Thus a τ action can be obtained
in four cases: a communication inside a restricted session,
a service invocation, a feed or a read from a stream. Fi-
nally, bound actions (a)µ are like the respective free coun-
terparts µ, but here a is extruded. There is no need to deal
explicitly with these actions since, if the interaction is in-
ternal to the system, structural congruence can be used to
broaden the scope of a.

We conclude this section with a theorem relating the re-
duction and the LTS semantics.

Theorem 3.1 (Correspondence theorem) For each P
and Q, P → Q if and only if P

τ−→ Q.

4

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r ./ (νa)P ≡ (νa)(r ./ P) (S-EXTR-PAR, S-EXTR-SESS)
stream (νa)P as f = ~v inQ ≡ (νa)(stream P as f = ~v inQ) if a /∈ fn(Q) ∪ Set(~v) (S-EXTR-STREAML)
stream P as f = ~v in (νa)Q ≡ (νa)(stream P as f = ~v inQ) if a /∈ fn(P) ∪ Set(~v) (S-EXTR-STREAMR)

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X] (S-SWAP, S-COLLECT, S-REC)

Figure 3. Structural congruence

DJ, K does not bind r or a r /∈ fn(P) ∪ fn(Q) ∪ fn(DJ, K)
DJa ⇒ P, a ⇐ QK → (νr)DJr B P, r C QK

(R-SYNC)

DJ, K, CJK, and C′JK do not bind r or v
CJK and C′JK do not contain sessions around the •

(νr)DJr ./ CJv.P K, r./C′J(x)QKK → (νr)DJr ./ CJP K, r./C′JQ[v/x]KK
(R-COMM)

CJK does not bind w • does not occur in the left part of a stream context
stream CJfeed w.P K as f = ~v inQ → stream CJP K as f = w : :~v inQ

(R-FEED)

CJK does not bind w or f

stream P as f = ~v : : w in CJf(x).QK → stream P as f = ~v in CJQ[w/x]K
(R-READ)

P → P ′

CJP K → CJP ′K
Q ≡ P → P ′ ≡ Q′

Q → Q′ (R-CONG, R-STR)

Figure 5. Reduction relation

call a(x1 ,..., xn) , a ⇐ x1...xn.(y) feed y

P >n x1 ... xn > Q , stream P as f in f (x1)... f (xn)Q

P > x > Q , stream P as f in rec X.f (x)(P | X)

a * ⇒ P , rec X. a ⇒ (P | X)

Figure 7. Derived constructs

4 Further examples

This section explores examples that highlight the versa-
tility of SSCC. We start by discussing a few macros (see
Figure 7) that speed up modeling and suggest how Orc can
be mapped in SSCC. The first one invokes an activity (a
service which gives back one result) and makes the result
available via a feed. The second macro models sequential
composition, with parameter passing. The third one more
closely models Orc sequential composition, since an in-
stance of Q is executed for each value received from P .
The last macro allows to define permanent services.

Example 4.1 (Fork-join) This example shows that named
streams can be handy. Fork-join is a pattern that spawns
two threads, and resumes computation after receiving a
value from each thread. In the example below, services a
and b are run in parallel; call a feeds the first result pro-
duced by the service into stream f , and similarly for call b

and stream g.

fo rk−and− j o i n ∗⇒ (a) (b) (
stream c a l l a as f in

stream c a l l b as g in
f (x) . g (y) . x . y)

The example is inspired by Orc [13, 16] where, but here we
do not kill service invocations a and b, instead let them run
to completion. Orc is not able to match our semantics: only
the where construct can read a single value from an expres-
sion, and that necessarily means terminating the evaluation
of the expression. We feel that termination should be dis-
tinct from normal orchestration.

It is difficult to model the same pattern in SCC too, since
the two clients should use return to make their results avail-
able, but the two values would be mixed. Auxiliary services
are required to match this semantics.

Example 4.2 (Memory cell) Even if a memory cell is not
a common scenario in SOC, stateful services are. Examples
abound in the literature, from data-structures to weblog up-
date [4]. Contrary to SCC [4], our language allows writ-
ing stateful services without exploiting service termination.
Inspired in the encoding of objects in the pi-calculus [18],
we set up a simple, ephemeral, service to produce a value:
buffer ⇒ v. Service get calls the buffer service to obtain
its value (thus consuming the service provider), replies the
value to the client, and replaces the buffer service.

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v)

5

v.P
↑v−→ P (x)P

↓v−→ P [v/x] feed v.P
⇑v−→ P f(x).P

f⇓v−−→ P [v/x]
(L-SEND, L-RECEIVE, L-FEED, L-READ)

r /∈ fn(P)

a ⇐ P
a⇐(r)−−−→ r C P

r /∈ fn(P)

a ⇒ P
a⇒(r)−−−→ r B P

(L-CALL, L-DEF)

P
µ−→ P ′ µ 6=⇑v bn(µ) ∩ (fn(Q) ∪ Set(~w)) = ∅

stream P as f = ~w inQ
µ−→ stream P ′ as f = ~w inQ

Q
µ−→ Q′ µ 6= f ⇓v bn(µ) ∩ (fn(P) ∪ Set(~w)) = ∅

stream P as f = ~w inQ
µ−→ stream P as f = ~w inQ′

(L-STREAM-PASS-P, L-STREAM-PASS-Q)

P
⇑v−→ P ′

stream P as f = ~w inQ
τ−→ stream P ′ as f = v : : ~w inQ

Q
f⇓v−−→ Q′

stream P as f = ~w : : v inQ
τ−→ stream P as f = ~w inQ′

(L-STREAM-FEED, L-STREAM-CONS)

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−→ P ′|Q
P

lv−→ P ′

r ./ P
r./lv−−−→ r ./ P ′

P
µ−→ P ′ µ 6=l v r /∈ bn(µ)

r ./ P
µ−→ r ./ P ′

(L-PAR, L-SESS-VAL, L-SESS-PASS)

P
r./↑v−−−→ P ′ Q

r./↓v−−−→ Q′

stream P as f = ~w inQ
rτ−→ stream P ′ as f = ~w inQ′

P
a⇒(r)−−−→ P ′ Q

a⇐(r)−−−→ Q′

stream P as f = ~w inQ
τ−→ (νr)stream P ′ as f = ~w inQ′

(L-SESS-COM-STREAM,L-SERV-COM-STREAM)

P
r./↑v−−−→ P ′ Q

r./↓v−−−→ Q′

P |Q rτ−→ P ′|Q′
P

a⇒(r)−−−→ P ′ Q
a⇐(r)−−−→ Q′

P |Q τ−→ (νr)(P ′|Q′)

P
µ−→ P ′, P ≡ Q, P ′ ≡ Q′

Q
µ−→ Q′

(L-SESS-COM-PAR, L-SERV-COM-PAR, L-STRUCT)

P
µ−→ P ′ n /∈ n(µ)

(νn)P
µ−→ (νn)P ′

P
rτ−→ P ′

(νr)P τ−→ (νr)P ′
P

µ−→ P ′ µ ∈ {↑a, r ./↑a,⇑a}

(νa)P
(a)µ−−−→ P ′

(L-RES,L-SESS-RES,L-EXTR)

Figure 6. Labeled transition system

Service set calls the buffer service (in order to consume it),
then gets the new value from the client and creates a buffer
with this value.

set ∗⇒ c a l l b u f f e r >1 > (w) (b u f f e r ⇒ w)

Finally, the cell service sets up three services—get, set, and
buffer—sends the first two to the client, and keeps buffer
locally with initial value 0.

c e l l ∗⇒ (ν bu f fe r , get , se t) . get . se t .
(b u f f e r ⇒ 0 |

get ∗⇒ c a l l b u f f e r >1 v >
(v | b u f f e r ⇒ v) |

set ∗⇒ c a l l b u f f e r >1 > (w) (b u f f e r ⇒ w))

Example 4.3 (Interleaved parallel routing) The work-
flow patterns of van der Aalst [20] provide a well-known
benchmark of orchestration scenarios. Even if these
are aimed at workflow languages (and thus, e.g., do not
consider conversations or dynamic creation of services), it
is interesting to look at them. All the patterns that do not
require killing ongoing computations can be implemented.
See [14] for a complete description.

In interleaved parallel routing workflow pattern, a set of
activities is executed in arbitrary order, and no two activi-
ties are executed at the same moment.

We assume that each service (a1 to an) signals termina-
tion by sending a value.

Contrary to Orc [8], SSCC is expressive enough to de-
scribe the pattern within the language. This requires a back-
ward communication w.r.t. the direction of the stream, and
shows that unidirectional streams are expressive enough. A
back service relays the values from the right to the left part
of a stream construct, where they are fed into the stream.

i n t e r l e a v e ⇒ (a1) . . . (an) (ν back) (
stream

back ∗⇒ (x) feed x
as l ock in

back ⇐ unit |
l ock () . a1 ⇐ (x) (back ⇐ unit) | . . . |
l ock () . an ⇐ (x) (back ⇐ unit))

Example 4.4 (Complex protocols) One of the main limi-
tations of other proposals, e.g. Orc, is that they allow just
very simple kinds of client-server interactions. We show
here how sessions can be used to overcome this limitation.

6

T ::= Types

Unit unit type
| [U] service type

U ::= Conversation types

?T.U input
| !T.U output
| end end of conversation
| X type variable
| rec X.U recursive type

Figure 8. The syntax of types

Let us consider an hotel booking: the client sends the
dates and the type of room to the hotel, the hotel answers
with the price (we skip many details of a real protocol for
space constraints), the client provides a credit card, the ho-
tel checks with the bank that the required amount of money
is available and sends to the client a confirmation. We show
for simplicity just the hotel server, and we suppose to have
a server for the bank and a server pricetable to compute the
price of the staying.

ho te l ⇒ (date) (room)
c a l l p r i c e t a b l e (date , room) >1 p r i ce >

p r i ce . (cc) c a l l bank (pr ice , cc) >1 a v a i l >
i f a v a i l then conf i rm else r e j e c t

The if-then-else construct can be defined as a macro in the
language (see [14]).

5 Protocol compatibility

We present a simple type system to ensure protocol com-
patibility between clients and servers, inspired by works on
session types [10, 12, 19, 22]. Notice that here we can deal
with many interacting services at the same time.

Definition 5.1 (Types) The grammar in Figure 8 defines
the syntax of types.

Types for values, T , are either Unit, which denotes the
only basic type1, and [U] is the type of a service (and of
a session) with protocol U . The protocol is always seen
from the server point of view. Types for streams are of the
form 〈T 〉 where T is the type of the values the stream car-
ries. Types for processes are of the form (U, T) where U is
the protocol followed by the process, and T is the type of
the values the process feeds into its stream.

The rec operator for types is a binder, giving rise, in the
standard way, to notions of bound and free variables and α-
equivalence. Similarly to processes, we do not distinguish

1To be possibly extended with, say, integers and strings.

?T.U ,!T.U !T.U ,?T.U end , end

X , X rec X.U , rec X.U

Figure 9. Complement of a protocol

between α-convertible types. Furthermore, we take an equi-
recursive view of types [17], not distinguishing between a
type rec X.U and its unfolding T [rec X.U/X]. We are in-
terested on contractive (not including subterms of the form
rec X.rec X1 . . . rec Xn.X) types only [17].

We need to find whether two protocols are complemen-
tary, thus we introduce the complement operation in Fig-
ure 9. Intuitively, if a client executes protocol U and a
server protocol U , the conversation between them can pro-
ceed without errors.

Typing judgments are as follows,

Γ ` P : (U, T) Processes

Γ ` v : T Values

where Γ is a map with entries a : T , r : T , f : 〈T 〉, and
X : (U, T). The rules in Figure 10 inductively define the
type system.

The type of a process abstracts its behavior: the first
component shows the protocol of the process while the
second component traces the type of the values fed to its
stream. Notice that the properties of internal sessions and
streams are guaranteed by the typing derivation and the typ-
ing assumption in Γ and they do not influence the type of the
process. For instance if the process is a session r B P , then
its protocol is end, but the protocol followed by P is traced
by an assumption r : [U] in Γ. When the complementary
session is found, the compatibility check is performed.

Our types force protocols to be sequential: we think that
this is a good programming style. Suppose for instance that
the protocol contains two parallel outputs: there should be
two inputs in the complementary protocol, and one can not
know which output is matched with each input. Either this
is not important (and one can sort the outputs in an arbi-
trary way) or it is, and in the last case errors could occur.
Also, parallel protocols are more complex to check for pro-
tocol compatibility. Notice that this does not forbid, e.g., to
have two concurrent service invocations, since sequentiality
is only enforced in protocols.

As an example we show the typing judgment for the pro-
tocol of the hotel service in Example 4.4.

t r ue : Bool , conf i rm : Flag , r e j e c t : Flag `
(date) (room) . . . r e j e c t :

([? Date .?Room . ! I n t .?CC. ! Flag . end] , T)

We have supposed to have types Bool, Int , Date, Room, CC,
and Flag to model domain specific data. Also, the hotel
service does not feed into its stream, hence the arbitrary
type T.

7

Γ, n : T ` n : T Γ, f : 〈T 〉 ` f : 〈T 〉 Γ ` unit : Unit (T-NAME, T-SNAME, T-UNIT)

Γ ` P : (U, T) Γ ` v : T ′

Γ ` v.P : (!T ′.U, T)
Γ, x : T ′ ` P : (U, T)
Γ ` (x)P : (?T ′.U, T)

(T-SEND, T-RECEIVE)

Γ ` P : (U, T) Γ ` a : [U]
Γ ` a ⇒ P : (end, T)

Γ ` P : (U, T) Γ ` a : [U]
Γ ` a ⇐ P : (end, T)

(T-DEF, T-CALL)

Γ ` P : (U, T) Γ ` r : [U]
Γ ` r B P : (end, T)

Γ ` P : (U, T) Γ ` r : [U]
Γ ` r C P : (end, T)

(T-SESS-S, T-SESS-C)

Γ ` P : (U, T) Γ ` v : T

Γ ` feed v.P : (U, T)
Γ, x : T ` P : (U, T ′) Γ ` f : 〈T 〉

Γ ` f(x).P : (U, T ′)
(T-FEED, T-READ)

Γ ` P : (U, T) Γ ` Q : (end, T)
Γ ` P |Q : (U, T)

Γ ` P : (end, T) Γ ` Q : (U, T)
Γ ` P |Q : (U, T)

(T-PAR-L, T-PAR-R)

Γ ` P : (U, T) Γ, f : 〈T 〉 ` Q : (end, T ′) w ∈ Set(~v) ⇒ Γ ` w : T

Γ ` stream P as f = ~v inQ : (U, T ′)
(T-STREAM-L)

Γ ` P : (end, T) Γ, f : 〈T 〉 ` Q : (U, T ′) w ∈ Set(~v) ⇒ Γ ` w : T

Γ ` stream P as f = ~v inQ : (U, T ′)
(T-STREAM-R)

Γ, X : (U, T) ` P : (U, T)
Γ ` rec X.P : (U, T)

Γ, n : ` P : (U, T)
Γ ` (νn)P : (U, T)

(T-REC, T-RES)

Γ, X : (U, T) ` X : (U, T) Γ ` 0 : (end, T) (T-VAR, T-NIL)

Figure 10. The type system

SSCC equipped with this type system is type safe.
As usual this result requires a progress property—subject
reduction—and a definition of erroneous processes.

Theorem 5.1 (Subject reduction) Let P be a process such
that Γ ` P : (U, T) and P → P ′. Then Γ ` P ′ : (U, T).

Typable processes are not errors, nor can generate errors.

Theorem 5.2 (Type Safety) Let P be a typable process.
Then P has no subterm of the following forms.

Protocol:
DJr ./ CJv.P K, r ./ C′Ju.QKK Two outputs
DJr ./ CJv.P K, r ./0K Output and 0
DJr ./ CJ(x)P K, r ./ C′J(y)QKK Two inputs
DJr ./ CJ(x)P K, r ./0K Input and 0

where in all the cases DJ, K does not bind r, and CJK
and C′JK do not contain sessions around the •.

Sequentiality:
DJv.P, u.QK Parallel outputs
DJ(x)P, u.QK Parallel input and output
DJv.P, (y)QK Parallel output and input
DJ(x)P, (y)QK Parallel inputs

where in all cases DJ, K does not contain sessions
around the •.

An example of a protocol failure is rBv.P |rC0, and this
cannot be typed since the two parallel components require
different assumptions for r (r : [!T.U ′] where T is the type
of v, and r : [end] respectively). Similarly a non-sequential

conversation is r B (v.P |u.Q), and this cannot be typed
since both v.P and u.Q have non end protocols, thus rules
for parallel composition can not be applied.

Techniques used for session types can be adapted to type
check SSCC processes [21].

6 Further analysis techniques

In this section we propose two “proof of concept” tech-
niques to further highlight the suitability of SSCC.

Service equivalence. Bisimilarity techniques are a com-
mon tool used in process calculi to obtain process equiva-
lences. We show here how weak bisimilarity can be used
to prove the equivalence between a service and a possible
refined implementation.

We write P ⇒ P ′ iff P
τ−→ τ−→ . . .

τ−→ P ′ and
P

µ⇒ P ′ iff P ⇒ µ−→ ⇒ P ′.

Definition 6.1 (Bisimilarity) A weak bisimulation is a re-
lation R such that P R Q implies:
if P

µ⇒ P ′∧bn(µ)∩ fn(Q) = ∅ then Q
µ⇒ Q′∧P ′ R Q′

and vice versa.
Weak bisimilarity is the maximal weak bisimulation.

Let us consider the simple service:

add2 ⇒ (n) n+2

A possible implementation of this service is:

8

(ν add1) (add1 ∗⇒ (n) n+1 |
add2 ⇒ (n) c a l l add1 (n) >1 m >

c a l l add1 (m) >1 o > o)

The two services add2 are weak bisimilar, thus the sec-
ond one is a correct implementation of the first.

Towards deadlock avoidance. One of the main aims of
this calculus is to allow the development of static analysis
techniques to ensure liveness properties, like, e.g., deadlock
freedom. Even if this is outside the scope of this paper, we
highlight the main ideas.

There are three possible causes of deadlock in the
language: non matched service definitions/invocations, non
matched value sends/receives, and read from empty stream.
These correspond respectively to service availability,
communication errors, and orchestration errors. The three
problems require different techniques: Section 5 shows
e.g. how to avoid communication errors. One has also to
check that there are no cyclic dependencies (e.g., a service
waiting for a value from a stream, which can be produced
only after the service execution has been completed). It is
not difficult to ensure the following result.

Let P be a process such that:

Service availability: all services are defined, persistent,
and at top level, i.e., P has the form (ν~a)(D|Q) where
D is a parallel composition of persistent service defi-
nitions for all the services occurring in D and Q;

Protocol compatibility: P is typable according to the type
system in Section 5;

Orchestration: for each subterm stream Q′ as f =
~v inQ′′ we have n + |~v| ≥ m where n is the num-
ber of feeds in Q′ feeding f (i.e., not in the left part of
other stream operators) and m is the number of reads
from f in Q′′. We additionally require that no read
operation is inside a recursive process.

For each computation P
µ1−→ . . .

µn−−→ P ′, if P ′ has not
the form (ν~a′)D where D is the same as above (in this case
the computation in Q is terminated), there are µ and P ′′

such that P ′ µ−→ P ′′.

The main idea here is to avoid each possibility of blocked
processes: all processes at top level can execute an action
unless they depend on some other process, but the condition
of service availability and directionality in stream commu-
nications guarantee that cyclic dependencies are avoided.
Note that this result strongly exploits the features of the
language, i.e., it would be very difficult to obtain it if un-
structured communications are added.

7 Conclusion and future work

SSCC is a typed language aiming at flexibly describing
services, conversations, and orchestration, with a restricted

set of constructors. The expressivity of the language is wit-
nessed by the simple implementation of all workflow pat-
terns in [20] (except for the ones that require process termi-
nation) available in [14] and by the examples in Sections 2
and 4. We have shown instead in Sections 5 and 6 how dif-
ferent analysis techniques can be applied to the calculus.

Future works will start from there. Some ideas include
analyzing the relationships between contextual equivalence
and bisimilarity and up-to techniques for bisimilarity, more
refined techniques for proving service availability (e.g., lin-
earity of service invocation and definition) and proofs of
deadlock freedom for large classes of protocols.

Another thread for future development concerns the de-
velopment of a compensation mechanism to recover from
failures, and its behavioral theory.

Acknowledgments. This work was partially supported
by the EU IST Global Computing project Sensoria (IST–
2005–016004). António Ravara and Vasco T. Vasconcelos
were partially supported by the Portuguese FCT, via project
SpaceTimeTypes, POSC/EIA/55582/2004. We thank L.
Caires, R. Bruni, D. Sangiorgi, and G. Zavattaro for valu-
able comments.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services—Concepts, Architectures and Applications.
Springer, 2003.

[2] T. Andrews et al. Business Process Execution Lan-
guage for Web Services. Version 1.1, 2003.

[3] T. Bellwood et al. UDDI Version 3.0, 2002.

[4] M. Boreale et al. SCC: a service centered calculus. In
Proceedings of WS-FM 2006, volume 4184 of LNCS,
pages 38–57. Springer, 2006.

[5] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Za-
vattaro. Sock: a calculus for service oriented com-
puting. In Proceedings of ICSOC’06, volume 4294 of
LNCS, pages 327–338. Springer, 2006.

[6] M. Carbone, K. Honda, N. Yoshida, and R. Milner.
Structured communication-centred programming for
web services. In Proceedings of ESOP’07, LNCS.
Springer, 2007.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. WSDL: Web Services Definition Language.
World Wide Web Consortium, 2004.

[8] W. R. Cook, S. Patwardhan, and J. Misra. Workflow
patterns in orc. In Proceedings of Coordination’06,
volume 4038 of LNCS, pages 82–96. Springer, 2006.

[9] FET-GC2 Workprogramme text. http://www.
cordis.lu/ist/fet/gc.htm.

9

[10] S. J. Gay and M. J. Hole. Subtyping for session types
in the pi calculus. Acta Informatica, 42(2–3):191–225,
2005.

[11] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
and H. F. Nielsen. Simple Object Access Protocol
(SOAP) 1.2. World Wide Web Consortium, 2003.

[12] K. Honda, V. T. Vasconcelos, and M. Kubo. Lan-
guage primitives and type disciplines for structured
communication-based programming. In Proceedings
of ESOP’98, volume 1381 of LNCS, pages 22–138.
Springer, 1998.

[13] D. Kitchin, W. R. Cook, and J. Misra. A language
for task orchestration and its semantic properties. In
Proceedings of Concur’06, pages 477–491, 2006.

[14] I. Lanese, V. T. Vasconcelos, F. Martins, and
A. Ravara. Disciplining orchestration and conversa-
tion in service-oriented computing. DI/FCUL TR 07–
3, Department of Informatics, Faculty of Sciences,
University of Lisbon, Mar. 2007.

[15] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus
for orchestration of web services. In Proceedings of
ESOP’07, LNCS. Springer, 2007.

[16] J. Misra and W. R. Cook. Computation orchestration:
A basis for wide-area computing. Journal of Software
and Systems Modeling, 2006. To appear.

[17] B. C. Pierce. Types and Programming Languages.
MIT Press, 2002.

[18] B. C. Pierce and D. N. Turner. Concurrent objects in a
process calculus. In Proceedings of TPPP’94, volume
907 of LNCS, pages 187–215. Springer, 1995.

[19] K. Takeuchi, K. Honda, and M. Kubo. An interaction-
based language and its typing system. In Proceedings
of PARLE’94, volume 817 of LNCS, pages 398–413.
Springer, 1994.

[20] W. van der Aalst, B. Hofstede, and A. Kiepuszewski.
Advanced workflow patterns. In Proceedings of
CoopIS’00, volume 1901 of LNCS, pages 18–29.
Springer, 2000.

[21] V. T. Vasconcelos, S. Gay, and A. Ravara. Typecheck-
ing a multithreaded functional language with session
types. Theor. Comput. Sci., 368(1–2):64–87, 2006.

[22] N. Yoshida and V. T. Vasconcelos. Language
primitives and type discipline for structured
communication-based programming revisited:
Two systems for higher-order session communication.
In Proceedings of IWSRT’06, ENTCS, 2006.

10

