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With the rapid development of information technology, massive data collection is 

relatively easier and cheaper than ever before. Thus, the efficient and safe exchange of 

information becomes the renewed focus of database management as a pervasive issue. 

The challenge we face today is to provide users with reliable and useful data while 

protecting the privacy of confidential information contained in the database.  

Our research concentrates on statistical databases, which usually store a large 

number of data records and are open to the public where users are allowed to ask only 

limited types of queries, such as Sum, Count and Mean. Responses for those queries are 

aggregate statistics that intends to prevent disclosing the identity of a unique record in the 

database. 

My dissertation aims to analyze these problems from a new perspective using 

Probably Approximately Correct (PAC) learning theory which attempts to discover the 

true function by learning from examples. Different from traditional methods from which 



xii 

database administrators apply security methods to protect the privacy of statistical 

databases, we regard the true database as the target concept that an adversary tries to 

discover using a limited number of queries, in the presence of some systematic 

perturbations of the true answer. We extend previous work and classify a new data 

perturbation method– the variable data perturbation which protects the database by 

adding random noises to the confidential field. This method uses a parametrically driven 

algorithm that can be viewed as generating random perturbations by some (unknown) 

discrete distribution with known parameters, such as the mean and standard deviation. 

The bounds we derive for this new method shows how much protection is necessary to 

prevent the adversary from discovering the database with high probability at small error. 

Put in PAC learning terms we derive bounds on the amount of error an adversary makes 

given a general perturbation scheme, number of queries and a confidence level.  
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CHAPTER 1 
INTRODUCTION 

1.1  Background 

Statistical organizations, such as U.S. Census Bureau, National Statistical Offices 

(NSOs), and Eurostat, collect large amounts of data every year by conducting different 

types of surveys from assorted individuals. Meanwhile, the data stored in the statistical 

databases (SDBs) are disseminated to the public in various forms, including microdata 

files, tabular data files or sequential queries to the online databases. The data are 

retrieved, summarized and analyzed by various database users, i.e., researchers, medical 

institutions or business companies. Among the published data, restrictions are established 

on the release of sensitive data in order to comply with the confidentiality agreements 

imposed by the sources or providers of the original information. Therefore, the protection 

of confidential information becomes a critical issue with serious economic and legal 

implications which in turn expands the scope and necessity of improved security in the 

database field. 

Statistical databases usually store large a number of data records and are open to 

the public where users are allowed to ask only limited types of queries, such as Sum, 

Count and Mean. Responses for those queries are aggregate statistics that aim to prevent 

disclosing the identity of a unique record in the database. 

With the rapid development of information technology, it becomes relatively easier 

and cheaper to obtain data than ever before. With the recent passage of The Personal 

Responsibility and Work Opportunity Act of 1996 (The Welfare Reform Act) (Fiengerg 
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2000) and Health Insurance Portability and Accountability Act of 1996 (HIPPA) in the 

United States, the protection of confidential information collected by statistical 

organizations has become a renewed focus of database management as a pervasive issue 

since the 70s and 80s. Those statistical organizations have the legal and ethical 

obligations to maintain the accuracy, integrity and privacy of the information contained 

in their databases.  

1.2 Motivation 

Traditional research on SDBs privacy, which is also called Statistical Disclosure 

Control (SDC), has been under way for over 30 years. SDC provides all types of security-

control methods. Among them, microaggregation, cell suppression and random data 

perturbation are some of the most promising SDC methods. Recently, Garfinkel et al. 

(2002) developed a new technique called CVC protection which designs a network 

algorithm to construct a series of camouflage vectors which hides the true confidential 

vector. This CVC technique provides interval answers to ad-hoc queries. All those SDC 

methods attempt to provide the SDB users with reliable and useful data (minimizing the 

information loss) while protecting the privacy of the confidential information in the 

database (minimizing the disclosure risk) as well.  

Probably Approximately Correct (PAC) learning theory is a framework for 

analyzing machine learning algorithms. It attempts to discover the true function by 

learning from examples which are randomly drawn from an unknown but fixed 

distribution. Given accuracy and confidence parameters, the PAC model bounds the error 

that the true function makes. 

Different from the traditional methods from which database administrators apply 

SDC methods to protect the privacy of SDBs, we approach the database security problem 
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from a new perspective, from which we assume that an adversary regards the true 

confidential data in the database as the target concept and tries to discover it within a 

limited number of queries by applying PAC learning theory.  

We describe how much protection is necessary to guarantee that the adversary 

cannot uncover the database’s confidential information with high probability. Put in PAC 

learning terms we derive bounds on the amount of error an adversary makes given a 

general perturbation scheme, number of queries and a confidence level.   

1.3 Research Problem 

Additive data perturbation includes some of the most popular database security 

methods. Inspired by the CVC technique, we classify a new method into this category–

the variable data perturbation which protects a database by adding random noises. 

Different from the fixed random data perturbation method, this method effectively 

generates random perturbations which have an unknown discrete distribution.  However, 

parameters, such as the mean and standard deviation, can be estimated. The variable data 

perturbation method is the focus of our research. 

We intend to derive a bound on the level of error that an adversary may make while 

compromising a database. We extend the previous work by Dinur and Nissim (2003), 

who found a bound for the fixed data perturbation method, and deploy the PAC learning 

theory to develop a new bound for the variable data perturbation.  

A threshold on the number of queries is developed from the error bound. With high 

probability, the adversary can disclose the database at small error if this certain number 

of queries is asked. Therefore, we may find out how much protection would be necessary 

to prevent the disclosure of the confidential information in a statistical database.  
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Our experiments indicate that a high level of protection may yield answers that are 

not useful whereas useful answers can lead to the compromise of a database.   

1.4 Contribution 

Two major contributions are expected from this research. First, we approach the 

database security problem from a new perspective instead of following the traditional 

research paths in this field. By applying PAC learning theory, we regard an adversary of 

the database as a learner who tries to discover the confidential information within a 

certain number of queries. We show that both SDC methods and PAC learning theory 

actually use the similar methodology for different purposes. We also derive a PAC-like 

bound on the sample size for the variable data perturbation method, within which the 

database can be compromised with a high probability at small error. Based on this result, 

we would find out if a security method can provide enough protection to the database.   

1.5 Organization of Dissertation 

The dissertation is organized into 8 parts. Chapter 2 provides an overview of the 

important concepts, methodologies and models in the fields of machine learning and PAC 

learning theory. In Chapter 3, we summarize database security-control methods in 

microdata files, tabular data files and the statistical database which is the emphasis of our 

efforts. We review the literature of performance measurements for the database 

protection methods in Chapter 4.  Following that, in Chapter 5 random data perturbation 

methods are reviewed and a new data perturbation method, variable-data perturbation, is 

defined and developed. Two papers that motivated our research are reviewed and 

explained. We propose our approach at the end of this chapter. In Chapter 6, we introduce 

our methodology and develop the research model. A bound on the sample size for the 

variable data perturbation method is derived, within which the confidential information 
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can be disclosed. In Chapter 7, experiments are designed and conducted to test our 

theoretical conclusions from previous chapters. Experimental results are summarized and 

analyzed at the end. Chapter 8 concludes our work and gives directions for future 

research. 
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CHAPTER 2 
STATISTICAL AND COMPUTATIONAL LEARNING THEORY 

In this chapter, we introduce Statistical and Computational Learning Theory, a 

formal mathematical model of learning. The overview focuses on the PAC model, the 

most commonly used theoretical framework in this area.  We then move to a brief review 

of statistical learning theory and its two important principles: empirical and structural 

minimization principles. Other well-known concepts and theorems are also investigated 

here. At the end of the chapter, we extend the basic PAC framework to more practical 

models, that is, learning with noise and query learning models. 

2.1 Introduction 

Since the 1960s, researchers have been diligently working on how to make 

computing machines learn.  Research has focused on both empirical and theoretical 

approaches. The area is now called machine learning in computer science but referred to 

as data mining, knowledge discovery, or pattern recognition in other disciplines.  

Machine learning is a mainstream of artificial intelligence. It aims to design learning 

algorithms that identify a target object automatically without human involvement.  In the 

machine learning area, it is very common to measure the quality of a learning algorithm 

based on its performance on a sample dataset.  It is therefore difficult to compare two 

algorithms strictly and rigorously if the criterion depends only on empirical results. 

Computational learning theory defines a formal mathematical model of learning, and it 

makes it possible to analyze the efficiency and complexity of learning algorithms at a 

theoretical level (Goldman 1991).  
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2.2 Machine Learning 

2.2.1 Introduction  

In this section we start our review with an introduction to important concepts in the 

machine learning field, such as hypotheses, training samples, instances, instance spaces, 

etc. This is followed by a demonstration of the basic machine learning model which is 

designed to generate an hypothesis that closely approximates the unknown target concept.  

See Natarajan (1991) for a complete introduction.  

2.2.2 Machine Learning Model 

Many machine learning algorithms are utilized to tackle classification problems 

which attempt to classify objects into particular classes.  Three types of classification 

problems includ binary classification–one with two classes; multi-class classification– 

handling a finite number of output categories; and regression whose output are real 

values (Cristianini and Shawe-Taylor 2000).  

Most machine learning methods learn from examples of the target concept. This is 

called supervised learning. The target concept (or target function) f  is an underlying 

function that maps data from the input space to the output space. The input space is also 

called an instance space, denoted as X , which is used to describe each instance 

nx X∈ ⊆ℜ . Here n  represents the dimensions or attributes of the input instance. The 

output space, denoted as Y , contains every possible output label y Y∈ . In the binary 

classification case, the target concept (or target function) ( )f x  classifies all instances 

x X∈  into negative and positive classes, illustrated as 0 and 1, { }0,1nX Y⊆ℜ → ⊆ . 

Let ( ) 1f x =  if x  belongs to a positive (true) class, and ( ) 0f x =  (false) otherwise. 
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Suppose a sample S  includes l  pairs of training examples, ( ) ( )( )1 1, , , ,l lS x y x y= L .  

Each ix  is an instance, and output iy  is ix ’s classification label.   

The learning algorithm inputs the training sample and outputs an hypothesis ( )h x  

from the set of all hypotheses under consideration which best approximates the target 

concept ( )f x  according to its criteria. An hypothesis space H  is a set of all possible 

hypotheses. The target concept is chosen from the concept space, f C∈ , which consists 

of a set of all possible concepts (functions). 

2.3 Probably Approximately Correct  Learning Model 

2.3.1 Introduction  

The PAC model proposed by Valiant in 1984 is considered the first formal 

theoretical framework to analyze machine learning algorithms, and it formally initiated 

the field of computational learning theory.  By learning from examples, the PAC model 

combines methods from complexity theory and probability theory, aimed at measuring 

the complexity of learning algorithms. The core idea is that the hypothesis generated 

from the learning algorithm approximates the target concept with a high probability at a 

small error in polynomial time and/or space.  

2.3.2 The Basic PAC Model Learning Binary Functions 

The PAC learning model quantifies the worst-case risk associated with learning a 

function. We discuss its details using binary functions as the learning domain. Suppose 

there is a training sample S  of size l . Every example is generated independently and 

identically from an unknown but fixed probability distribution D  over the instance space 

{ }0,1 nX ⊆ . Thus, the PAC model is also named a distribution-free model. Each instance 
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is an n -bits binary vector, { }0,1 nx X∈ ⊆ . The learning task is to choose a specific 

boolean function that approximates the target concept { } { }: 0,1 0,1nf → , f C∈ . The 

target concept f  is chosen from the concept space 2XC =  of all possible boolean 

functions. According to PAC requirements a learning algorithm must output an 

hypothesis h H∈  in polynomial time, where 2XH ⊆ . We hope that the target function 

f H∈  and hypothesis h  can approximate target function f  as accurately as possible.  If  

f H∉  then the classification errors are inevitable. 

Consider a concept space 2XC = , an hypothesis space 2XH ⊆ , and an unknown 

but fixed probability distribution D  over an instance space { }0,1 nX ⊆ , the error of an 

hypothesis, h H∈  with respect to a target concept f C∈ , is the probability that h  and 

f  disagree on the classification of an instance x X∈  drawn from D . This probability of 

error is denoted by a risk functional:  

( ) ( )( ) ( ) ( ){ }Pr , :DD
err h x f x h x f x= ≠  

To understand the error more intuitively, see Figure 2-1. The error probability is 

indicated by areas of I and II. Areas I and II in the figure show where ( )h x  disagrees 

with ( )f x  on the instances located in these places. We can think about them as Type I 

and Type II errors. Area III and IV contain those instances that ( )h x  and ( )f x  agree on 

their classification. 

The PAC model utilizes an accuracy parameter ε  and confidence parameter δ  to 

measure the quality of an hypothesis h . Given a sample S of size l , and a distribution D  
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from which all training examples are drawn, the PAC model strives to bound the 

probability that an hypothesis h  gives large error by δ  as in  

( ){ }Pr :l
D D sS error h ε δ> <  

where sh  means that the training set decides the selection of the hypothesis.  

 

Figure 2-1: Error Probability 

Definition: PAC Learnable. A concept class C  of boolean functions is PAC learnable 

if there exists a learning algorithm A , using an hypothesis space H , such that for every 

f C∈ , for every probability distribution D , for every 0 1 2ε< < , and for every 

0 1 2δ< < :  

(1) An hypothesis h H∈ , produced by algorithm A , can approximate the target 

function f  with high probability at least 1 δ− , such that ( )error h ε≤ .  

(2) The complexity of the learning algorithm A  is bounded by the size of target 

concept n , 1 ε  and 1 δ  in polynomial time. The sample complexity refers to the sample 

size within which the algorithm A  needs to output an hypothesis h . 

 I  III  II 

     Instance Space X 

( ) ( )h x f x≠  

( ) ( )h x f x=  
 IV 
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2.3.3 Finite Hypothesis Space  

An hypothesis space H  can be finite or infinite. If an hypothesis h  classifies all 

training examples correctly, it is called a consistent hypothesis. We will derive the main 

PAC result in multiple steps using well-known inequalities from probability theory. 

2.3.3.1  Finite consistent hypothesis space  

Assuming the hypothesis space H  is finite, if we choose an hypothesis h  with a 

risk greater than ε , the probability that it is consistent on a training sample S  of size l  is 

bounded as 

( ){ } ( )Pr : 1 ll l
D S h consistent and error h e εε ε −> ≤ − ≤ . 

To see this, observe that the probability that hypothesis 1h  classifies one input pair 

( )( )1 1,x f x  correctly is ( ) ( ){ } ( )1
1 1 1Pr 1h x f x ε= ≤ − .  Given l  examples, the probability 

1h  classifies ( )( ) ( )( )1 1, , , ,l lx f x x f xL  correctly is 

( ) ( )( ) ( ) ( )( ){ } ( )1 1 1Pr 1 ll
l l lh x f x h x f x ε= ∧ ∧ = ≤ −L  

because the sampling is i.i.d.  Thus, the probability of finding an hypothesis h  with error 

greater than ε  and consistent with the training set (of size l) is denoted by the union 

bound (i.e., the worst case) ( )1 lH ε− .  To see this latter step, first define iE  to represent 

the event that ih  is consistent. Then we know that 

{ } ( )
11

Pr Pr 1
H H

ll l
i i

ii

E E H ε
==

⎧ ⎫⎪ ⎪ ≤ ≤ −⎨ ⎬
⎪ ⎪⎩ ⎭

∑U . 

Finally, ( )1 l le εε −− ≤  is a commonly known simple algebraic inequality. 
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The idea behind the PAC bound is to bound this unlucky scenario (i.e., algorithm A 

finds a consistent hypothesis that happens to be one with error greater than ε ). The 

following result formalizes this. 

Blumer Bound (Blumer et al. 1987). ( )1 lH ε δ− ≤ . Thus, the sample complexity, l , 

for a consistent hypothesis h  over finite hypothesis space H , is bounded by  

1 1ln lnl H
ε δ
⎛ ⎞≥ +⎜ ⎟
⎝ ⎠

 

2.3.3.2  Finite inconsistent hypothesis space 

An hypothesis h  is called inconsistent if there exist misclassification errors 0sε >  

in the training sample. The sample complexity is therefore bounded by  

( )2
1 1ln ln

2 s

l H
δε ε

⎛ ⎞≥ +⎜ ⎟
⎝ ⎠−

  

and the error is bounded by 

1 1ln ln
2s H
l

ε ε
δ

⎛ ⎞≥ + +⎜ ⎟
⎝ ⎠

  

We can see from the above inequality that ε  is usually larger than error rate sε . 

Interested readers can see Goldman (1991) for further explanations.  

2.3.4 Infinite hypothesis space 

When H is finite we can use H  directly to bound the sample complexity. When H 

is infinite we need to utilize a different measure of capacity. One such measure is called 

the VC dimension, which was first proposed by Vapnik and Chervonenkis (1971).  

Definition: VC Dimension Definition. The VC dimension of an hypothesis space is the 

maximum number, d , of points of the instance space that can be separated into two 
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classes in all possible 2d  ways using functions in the hypothesis space. It measures the 

richness or capacity of H (i.e., the higher d is the richer the representation). Given H with 

a VC dimension d  and a consistent hypothesis h H∈  then the PAC error bound is 

(Cristianini and Shawe-Taylor 2000): 

2 2
2 2 2log logeld
l d

ε
δ

⎛ ⎞≤ +⎜ ⎟
⎝ ⎠

 

provided d l≤  and 2l ε> .    

2.4 Empirical Risk Minimization and Structural Risk Minimization 

2.4.1 Empirical Risk Minimization  

Given a VC dimension d  and an hypothesis h H∈  with a training error sε , the 

error rate ε  is bounded by 

4 2 42 ln lns
eld

l d
ε ε

δ
⎧ ⎫< + +⎨ ⎬
⎩ ⎭

 

Therefore, the empirical risk can be minimized directly by minimizing the number 

of misclassifications on the sample. This principle is called the Empirical Risk 

Minimization principle. 

2.4.2 Structural Risk Minimization  

As is well known, one disadvantage of the empirical risk minimization is the over-

fitting problem, that is, for small sample sizes, a small empirical risk does not guarantee a 

small overall risk. Statistical learning theory uses the structural risk minimization 

principle (SRM) (Schölkopf and Smola 2001, Vapnik 1998) to solve this problem. The 

SRM focuses on minimizing a bound on the risk functional.  

Minimizing a risk functional is formally developed as a goal of learning a function 

from examples by statistical learning theory (Vapnik 1998): 



14 

 

( ) ( )( ) ( ), ,R L z g z dF zα α= ∫  

over α∈Λ  where ( )L  is a loss function for misclassified points, ( ),g α•  is an instance 

of a collection of target functions parametrically defined by α∈Λ , and z is the training 

pair assumed to be drawn randomly and independently according to an unknown but 

fixed probability distribution ( )F z .  Since ( )F z  is unknown, an induction principle 

must be invoked.   

It has been shown that for any α∈Λ  with a probability at least 1− δ , the bound on 

a consistent hypothesis 

( ) ( ) ( ) ( )
( ) ( )

4, ,
1 1

2 , ,
empstruct

emp bound
struct

RR d l
R R R

R d l
αδ

α α α
δ

⎛ ⎞
⎜ ⎟≤ + + + ≡
⎜ ⎟
⎝ ⎠

 

holds where the structural risk ( )structR  depends on the sample size, l , the confidence 

level, δ , and the capacity, d , of the target function. The bound is tight, up to log factors, 

for some distributions (Cristianini and Shawe-Taylor 2000). When the loss function is the 

number of misclassifications, the exact form of ( )structR  is 

( ) ( )( ) ( )ln 2 1 ln 4
, , 4struct

d l d
R d l

l
δ

δ
+ −

=  

It is a common learning strategy to find consistent target functions that minimize a 

bound on the risk functional.  This strategy provides the best “worst case” solution, but it 

does not guarantee finding target functions that actually minimize the true risk functional.  

2.5 Learning with Noise 

2.5.1 Introduction 

The basic PAC model is also called the noise-free model since it assumes that the 

training set is error-free, meaning that the given training examples are correctly labeled 
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and not corrupted. In order to be more practical in the real world, the PAC algorithm has 

been extended to account for noisy inputs (defined below). Kearns (1993) initiated 

another well-studied model in the machine learning area, the Statistical Query model 

(SQ), which provides a framework for a noise-tolerant learning algorithm.  

2.5.2 Types of Noise 

Four types of noise are summarized in Sloan’s paper (Sloan 1995):  

(1)   Random Misclassification Noise (RMN) 

Random misclassification noise occurs when the learning algorithm, with 

probability η−1 , receives noiseless samples ( )yx,  from the oracle and, with probability 

η , receives noisy samples ( )yx,  (i.e., x  with an incorrect classification). Angluin and 

Laird (1988) first theoretically modeled PAC learning with RMN noise. Their model 

presented a benign form of misclassification noise. They concluded if the rate of 

misclassification is less than 1 2 , then the true concept can be learned by a polynomial 

algorithm. Within l  number of samples, the algorithm can find an hypothesis h  

minimizing the number of disagreements ( )σ,hF . Disagreements ( )σ,hF  denotes the 

number of times that some hypothesis h  disagrees with σ , where σ  is the training 

sample. Sample size l  is bounded by 

 
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
≥

δηε

H
l

b

2
ln

21
2
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provided 210 <<< bηη . 

Extensive studies can be found in Aslam and Decatur (1993), Blum et al. (1994), 

Bshouty et al. (2003), Decatur and Gennaro (1995), and Kearns (1993). 

(2)   Malicious Noise (MN) 
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Malicious noise occurs when the learning algorithm, with probability η−1 , gets 

the correct samples but with probability η  the oracle returns noisy data, which may be 

chosen by a powerful malicious adversary. No assumption is made about corrupted data, 

and the nature of the noise is also unknown. Valiant (1985) first simulated this situation 

of learning from MN. Kearns and Li (1993) further analyzed this worst-case model of 

noise and presented some general methods that any learning algorithm can apply to 

bound the error rate, and they showed that learning with noise problems are equivalent to 

standard combinatorial optimization problems. Additional work can be found in Bshouty 

(1998), Cesa-Bianchi et al. (1999), and Decatur (1996, 1997). 

(3)   Malicious Misclassification Noise (MMN) 

Malicious misclassification (labeling) noise is that where misclassification is the 

only possible noise. The adversary can choose only to change the label y of the sample 

pair ( )yx,  with probability η , while no assumption is made about y . Sloan (1988) 

extended Angluin and Laird’s (1988) result to this type of noise.  

(4)   Random Attribute Noise (RAN) 

Random attribute noise is as follows. Suppose the instance space is { }0,1 n . For 

every instance x  in a sample pair ( )yx, , its attribute ix , ni ≤≤1 , is flipped to ix  

independently and randomly with a fixed probability η . This kind of noise is called 

uniform attribute noise. In this case, the noise affects only the input instance, not the 

output label. Shackelford and Volper (1988) probed the RAN for the problem of k -DNF 

expressions. k -DNF is the disjunctions of terms, where each term is a conjunction of at 

most k-literals. Later Bshouty et al. (2003) defined a noisy distance measure for function 

classes, which they proved to be the best possible learning style in an attribute noise case. 
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They also indicated that a concept class C , is not learnable if this measure is small 

(compared with C  and attribution noise distribution D ).  

Goldman and Sloan (1995) developed a uniform attribute noise model for product 

random attribute noise, in which each attribute ix  is flipped with its own probability iη , 

ni ≤≤1 . They demonstrated that if the algorithm focuses only on minimizing the 

disagreements, this type of noise is nearly as harmful as malicious noise. They also 

proved that no algorithm can exist if the noise rate iη  ( ni ≤≤1 ) is unknown and the 

noise rate is higher than ε2  (ε  is the accuracy parameter in the PAC model). Decatur 

and Gennaro (1995) further proved that if each noise probability iη  (or an upper bound) 

is known, then a PAC algorithm may exist for the simple classification problem. 

2.5.3 Learning from Statistical Query  

The Statistical Query (SQ) model introduced by Kearns (1993) provides a general 

framework for an efficient PAC learning algorithm in the presence of classification noise. 

Kearns proved that if any function class can be learned efficiently by the SQ model, then 

it is also learnable in the PAC model, and those algorithms are called SQ-typed. In the 

SQ model, the learning algorithm sends predicates ( )α,x  to the SQ oracle and asks for 

the probabilities xP  that the predicate is correct. Instead of answering the exact 

probabilities, the oracle gives only probabilities xP̂  within the allowed approximation 

error α , which here indicates a tolerance for error, i.e., αα +≤≤− xxx PPP ˆ . 

The approach that the SQ model suggested to generate noise-tolerant algorithms is 

successful. A large number of noise-tolerant algorithms are formulated as SQ algorithms. 

Aslam and Decatur (1993) presented a general method to boost the accuracy of the weak 
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SQ learning algorithm. A later study by Blum et al. (1994) proved that a concept class 

can be weakly learned with at least ( )1
3dΩ  queries, and the upper bound for the number 

of queries is ( )O d . The SQ-dimension d  is defined as the number of “almost 

uncorrelated” concepts in the concept class. Jackson (2003) further improved the lower 

bound to ( )2nΩ  while learning the class of parity functions in an n-bit input space. 

However, the SQ model has its limitations. Blumer et al. (1989) proved that there 

exists a class that cannot be efficiently learned by SQ, but is actually efficiently learnable. 

Kearns (1993) showed that the SQ model cannot generate efficient algorithms for parity 

functions which can be learned in a noiseless data PAC model. Jackson (2003) later 

showed that noise-tolerant PAC algorithms developed from using the SQ model cannot 

guarantee to be optimally efficient.  

2.6 Learning with Queries 

Angluin (1988) initiated the area of Query learning. In the basic framework, the 

learner needs to identify an unknown concept f  from some finite or countable concept 

space C  of subsets of a universal set. The Learner is allowed to ask specific queries 

about the unknown concept f  to an oracle which responds according to the queries’ 

types. Angluin studied different kinds of queries, such as membership query, equivalence 

query, subset, and so forth. Different from a PAC model which requires only an 

approximation to the target concept, query learning is a non-statistical framework and the 

Learner must identify the target concept exactly. An efficient algorithm and lower bounds 

are described in Angluin’s research. Any efficient algorithm using equivalence queries in 

query learning can also be converted to satisfy the PAC criterion ( )( ) δε ≤≥herrorPr .  
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CHAPTER 3 
DATABASE SECURITY-CONTROL METHODS 

In this chapter, we will survey important concepts and techniques in the area of 

database security, such as compromise of a database, inference, disclosure risk, and 

disclosure control methods among other issues. According to the way that confidential 

data are released, we categorize the review of database security methods into three parts: 

microdata, tabular data, and sequential queries to databases. Our main efforts will 

concentrate on the security control of a special type of database – the statistical database 

(SDB), which accepts only limited types of queries sent by users. Basic SDB protection 

techniques in the literature are reviewed.  

3.1 A Survey of Database Security 

For many decades, computerized databases designed to store, manage, and retrieve 

information, have been implemented successfully and widely in many areas, such as 

businesses, government, research, and health care organizations. Statistical organizations 

intend to provide database users with the maximum amount of information with the least 

disclosure risk of sensitive and confidential data. With the rapid expansion of the 

Internet, both the general public and the research community have been much more 

attentive to the issues of the database security. In the following sections, we introduce 

basic concepts and techniques commonly applied in a general database. 

3.1.1 Introduction 

A database consists of multiple tables. Each table is constructed with rows and 

columns representing entities (or records) and attributes (fields), respectively. Some 
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attributes may store confidential information such as income, medical history, financial 

status, etc. Necessary security methods have been designed and applied to protect the 

privacy of specific data from outsiders or illegal users.  

Database security has its own terminology for research purposes. Therefore, first 

we would like to clarify certain important definitions and concepts. Those are repeatedly 

used in this research paper and may have varied implications under different 

circumstances.  

When talking about the confidentiality, privacy or security of a database, we refer 

to the disclosure risk of the confidential data. A compromise of the database occurs when 

the confidential information is disclosed to illegitimate users exactly, partially or 

inferentially. 

Based on the amount of compromised sensitive information, the disclosure can be 

classified into exact disclosure and partial disclosure (Denning et al. 1979, Beck 1980). 

Exact disclosure or exact inference refers to the situation that illegal users can infer the 

exact true confidential information by sending sequential queries to the database, while in 

the case of partial disclosure, the true confidential data can be inferred only to a certain 

level of accuracy.  

Inferential disclosure or statistical inference is another type of disclosure, which 

refers to the situation that an illegal user can infer the confidential data with a high 

probability by sending sequential queries to the database.  And the probability exceeds 

the threshold of disclosure predetermined by the database administrator. This is known as 

an inference problem, which also falls within our research focus. 
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There are mainly two types of disclosures in terms of the disclosure objects: 

identity disclosure and attribute disclosure. Identity disclosure occurs if the identity of a 

subject is linked to any particular disseminated data record (Spruill 1983). Attribute 

disclosure implies the users could learn the attribute value or estimated attribute value 

about the record (Duncan and Lambert 1989, Lambert 1993). Currently, most of the 

research focuses on identity disclosure. 

3.1.2 Database Security Techniques 

Database security concerns the privacy of confidential data stored in a database. 

Two fundamental tools are applied to prevent compromising a database (Duncan and 

Fienberg 1999): (1) restricting access and (2) restricting data. For example, a statistical 

office or U.S. Census Bureau disseminating data to the public may enforce administrative 

policies to limit users’ access to data. Normally the common method used is that the 

database administrator assigns IDs and passwords to different types of users to restrict the 

access at different security levels. For example, for a medical database, doctors could 

have full access to all kinds of information and researchers may only obtain the non-

confidential records. This security mechanism is addressed as the restricting access. 

When all users have the same level of access to the database, only transformed data are 

usually allowed to be released for the purpose of security. This protection approach 

which is in the data restriction category reduces disclosure risk. However, for some 

public databases only access control is not feasible and sufficient enough to prevent 

inferential disclosure. Thus both tools are complementary and may be used together. 

However, we prioritize our research in the second category – the data restriction 

approach.   
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Database privacy is also known as Statistical Disclosure Control or Statistical 

Disclosure Limitation (SDL). The SDC techniques, which are used to modify original 

confidential data before their release, try to balance the tradeoff between information loss 

(or data utility) and disclosure risk. Some measures evaluating the performance of SDC 

methods will be discussed in Chapter 4.  

Based on the way that data are released publicly, all responses from queries can be 

classified into three types: microdata files, tabular data files and statistical responses from 

sequential queries to databases (Más 2000). Most of the typical databases deal with all 

three dissemination formats. Our research focuses on a section of the third category – 

sequential queries to a statistical database (SDB), which differs from a regular database 

due to its limited querying interface. Normally only a few types of queries such as SUM, 

COUNT, Mean, and etc. can be operated in SDB.   

 The goal of applying disclosure control methods is to prevent users from inferring 

confidential data on the basis of those successive statistical queries. We briefly describe 

protection mechanisms for microdata and tabular data in the next two subsections, 3.1.3 

and 3.1.4. Security control techniques for the statistical database are discussed in detail in 

section 3.2.  

3.1.3 Microdata files  

Microdata are unaggregated or unsummarized original sample data containing 

every anomynized individual record (such as person, business company, etc.) in the file. 

Normally, microdata originally come from the responses of census surveys issued by the 

statistical organizations, such as the U.S. Census Bureau (see Figure 3-1 for an example) 

and include detailed information with many attributes (probably over 40), such as 

income, occupation, household composition, and etc. Those data are released in the form 
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of flat tables, where rows and columns represent records and attributes for each 

individual respondent, respectively. Microdata can usually be read, manipulated and 

analyzed by computers with statistical software. See Figure 3-1 for an example of 

microdata that are read into SPSS (Statistical Package for the Social Sciences). 

 

Figure 3-1: Microdata File That Has Been Read Into SPSS. 
 (Data source: Indiana University Bloomington Libraries, Data Services & Resources. 
http://www.indiana.edu/~libgpd/data/microdata/what.html) 

3.1.3.1 Protection Techniques for microdata files 

Before disseminating microdata files to the public, statistical organizations will 

apply SDC techniques either to distort or remove certain information from original data 

files, therefore protecting the anonymity of individual record.  

Two generic types of microdata protection methods are (Crises 2004a):  

(1)   Masking methods 

The basic idea of masking is to add errors to the elements of a dataset before the 

data are released. Masking methods have two categories: perturbative (see Crises 2004d 

for a survey) and non-perturbative (see Crises 2004c for a survey). 

The perturbative category modifies the original microdata before its release. It 

includes methods such as adding noise (Sullivan 1989 and Brand 2002, Domingo-Ferrer 

http://www.indiana.edu/~libgpd/data/microdata/what.html
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et al. 2004), rounding (Willenborg 1996 and 2000), microaggregation (Defays and 

Nanopoulos 1993, Anwar 1993, Mateo and Domingo 1999, Domingo and Mateo 2002, Li 

et al. 2002b, Hansen and Mukherjee 2003), data swapping (Dalenius and Reiss 1982, 

Reiss 1984, Feinberg 2000, and Fienberg and McIntyre 2004) and others. 

The non-perturbative category does not change data but it makes partial 

suppressions or reductions of details in the microdata set, and applies methods such as 

sampling, suppression, recoding, and others (DeWaal and Willenborg 1995, Willenborg 

1996 and 2000).  

The following two tables are simple illustrations of masking methods, i.e., data 

swapping, Additive noise and microaggregation. (Data source: Domingo-Ferrer and 

Torra 2003).  First the microaggregation method is used to group “Divorced” and 

“Widow” into one category – “Widow/er-or-divorced” in the field “Marital Status”; 

Secondly, values of record 3 and record 5 in the “Age” column are switched by applying 

data swapping techniques; finally, the value of record 4 in the “Age” attribute is 

perturbed  from “36” to “40” by adding noise of “4”. 

Table 3-1: Original Records 
Record Illness … Sex Marital Status Town Age 

1 Heart … M Married Barcelona 33 
2 Pregnancy … F Divorced Tarragona 40 
3 Pregnancy … F Married Barcelona 36 
4 Appendicitis … M Single Barcelona 36 
5 Fracture … M Single Barcelona 33 
6 Fracture … M Widow Barcelona 81 

 

Table 3-2: Masked Records 
Record Illness … Sex Marital status Town Age 

1 Heart … M Married Barcelona 33 
2 Pregnancy … F Widow/er-or-divorced Tarragona 40 
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Table 3-2. Continued. 
Record Illness … Sex Marital status Town Age 

3 Pregnancy … F Married Barcelona 33 
4 Appendicitis … M Single Barcelona 40 
5 Fracture … M Single Barcelona 36 
6 Fracture … M Widow/er-or-divorced Barcelona 81 

 
(2)   Synthetic data generation  

Liew et al. (1985) initially proposed this protection approach which first identifies 

the underlying density function with associated parameters for the confidential attribute, 

and then generates a protected dataset by randomly drawing from that estimated density 

function. Even though data generated from this method do not derive from original data, 

they preserve some statistical properties of the original distributions. However, the utility 

of those simulated data for the user has always been an issue. See (Crises 2004b) for an 

overview of this method. 

3.1.4 Tabular data files 

Another common way to release data is in the tabular data format (also called 

macrodata) obtained by aggregating microdata (Willenborg 2000). It is also called 

summary data, table data or compiled data. The numeric data are summarized into certain 

units or groups, such as geographic area, racial group, industries, age, or occupation. In 

terms of different processes of aggregation, published tables can be classified into several 

types, such as magnitude tables, frequency count tables, linked tables, etc.  

3.1.4.1  Protection techniques for tabular data 

Tabular data files collect data at a higher level of aggregation since they summarize 

individual atomic information. Therefore they provide higher security for database than 

microdata files. However, the disclosure risk has not been completely eliminated and 

intruders could still infer confidential data from an aggregated table (see Table 3-3 and 
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3.4 for an example). Protection techniques, such as cell suppression (Cox 1975, 1980, 

Malvestuto et al. 1991, Kelly et al. 1992, Chu 1997), table redesign, noise adding, 

rounding, or swapping among others, have to be adopted before the release. See Sullivan 

(1992), Willenborg (2000), Oganian (2002) for an overview.  

See Table 3-3 for an illustration of tabular data. It shows state level data for various 

types of food stores The Economic Division published the economic data by geography 

and standard industrial classification (SIC) codes. The “Value of Sales” field is 

considered as confidential data. Table 3-4 demonstrates how a cell suppression technique 

is applied to protect the confidential data. (Data source: U.S. Bureau of the Census 

Statistical Research Division, Sullivan 1992).   

Table 3-3: Original Table:  

SIC … Number of 
Establishments 

Value of 
Sales ($) 

54 All Food Stores … 347 200,900 
541 Grocery … 333 196,000 
542 Meat and Fish … 11 1,500 
543 Fruit Stores … 2 2,400 
544 Candy … 1 1,000 

 
Table 3-4: Published Table After Applying Cell Suppression 

SIC … Number of 
Establishments 

Value of 
Sales ($) 

54 All Food Stores … 347 200,900 
541 Grocery … 333 196,000 
542 Meat and Fish … 11 1,500 
543 Fruit Stores … 2 D 
544 Candy … 1 D 

 
Only one Candy store reported sales value for this state in Table 3-3. If the table is 

released as it is, any user would learn the exact sales value for this specific store. Also a 

sales value is listed for two Fruit stores in this state. Therefore by knowing its own sales 

figure, either of these two stores can infer the competitor’s sales volume. A disclosure 
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occurs under either situation. Thus, SDC methods have to be incorporated into the 

original table before its publication.  

Table 3-4 shows that the confidential data resulting in a compromise are suppressed 

and replaced by a “D” in the cells. The technique applied is called cell suppression, 

which is very commonly used by U.S Bureau Census currently. 

3.2 Statistical Database 

3.2.1 Introduction  

A statistical database (SDB) differs from a regular database due to its limited 

querying interface. Its users can retrieve only aggregate statistics of confidential 

attributes, that is, SUM, COUNT, and Mean, for a subset of records stored in the 

database. Those aggregate statistics are calculated from tables in databases. Tables could 

include microdata or tabular data. In other words, query responses in SDBs could be 

treated as views of microdata or tabular data tables. However, those views can only be 

summarized to answer limited types of queries and in the form of aggregate statistics they 

are computed according to each query. A SDB is compromised if the sensitive data is 

disclosed by answering a set of queries. Note that some of the protection methods used in 

SDBs are overlapped with those for microdata files and tabular data files. However, 

SDBs security methods emphasize on preventing a disclosure from responding sequential 

queries.  

Many government agencies, businesses, and research institutions normally collect 

and analyze aggregate data for their special purposes. For instance, medical researchers 

may need to know the total number of HIV-positive patients within a certain age range 

and gender. The users should not be allowed to link the sensitive information to any 

specific record in the SDB by asking sequential statistical queries. We illustrate how a 
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statistical database could possibly be compromised by the following example, and further 

explain the necessity of applying statistical disclosure control methods before data are 

released.  

3.2.2 An Example: The Compromise of Statistical Databases  

Adam and Wortmann (1989) described three basic types of authorized users for a 

statistical database: the non-statistical users accessing the database, sending queries and 

updating data; the researchers authorized to receive only aggregate statistics; and the 

snoopers, attackers or adversaries seeking to compromise the database. The purpose of 

database security is to provide researchers with useful information while preventing 

disclosure risk from attackers. 

For instance (example from Adam and Wortmann 1989, Garfinkel et al. 2002), a 

hospital’s database (see Table 3-5) providing aggregate statistics to the outsiders contains 

one confidential field, that is, HIV status which is denoted by “1” as positive and “0” as 

otherwise. Suppose a snooper knows that Cooper working for company D is a male under 

the age of 30, and attempts to find out whether or not Cooper is HIV-positive. Therefore, 

he types the following queries:  

Query 1: Sum = (Sex=M) & (Company=D) & (Age<30); 

Query 2: Sum = (Sex=M) & (Company=D) & (HIV=1) & (Age<30);  

The response to Query 1 is 1, and the response to Query 2 is 1. 

Neither of queries is a threat to the database privacy individually, however, when 

they are put together, the attacker who knows Cooper’s personal information can locate 

Cooper from Query 1’s answer and immediately infer that Cooper is HIV-positive from 

Query 2’s answer. Thus, the confidential data is disclosed. And we refer to this case as a 

compromise of a database.  
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From this example, we can tell that the snooper is able to infer the true confidential 

data through analyzing aggregate statistics by sending the sequential queries. Therefore 

security mechanisms have to be established prior to the data release. 

Table 3-5: A Hospital’s Database (data source: part from Garfinkel et al. 2002) 
Record Name Job Age Sex Company HIV 

1 Daniel Manager 27 F A 0 
2 Smith Trainee 42 M B 0 
3 Jane Manager 63 F C 0 
4 Mary Trainee 28 F B 1 
5 Selkirk Manager 57 M A 0 
6 Daphne Manager 55 F B 0 
7 Cooper Trainee 21 M D 1 
8 Nevins Trainee 32 M C 1 
9 Granville Manager 46 M C 0 
10 Remminger Trainee 36 M D 1 
11 Larson Manager 47 M B 1 
12 Barbara Trainee 38 F D 0 
13 Early Manager 64 M A 1 
14 Hodge Manager 35 M B 0 

 
3.2.3 Disclosure Control Methods for Statistical Databases 

Some basic security control methods for microdata and tabular data have been 

summarized in the previous sections. In this section, we will concentrate on the security 

control methods for statistical databases. Some methods used for microdata and tabular 

data may also be utilized here. Adam and Wortmann (1989) conducted a complete survey 

about security techniques for statistical databases (SDBs). They classified all security 

methods for SDBs into four categories: conceptual, query restriction, data perturbation, 

and output perturbation. In addition to that, Adam and Wortmann provided five criteria to 

evaluate the performance of security mechanisms. Our literature review will follow suit 

and discuss major security control methods in the following sections.  
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Figure 3-2: Three Approaches in Statistical Database Security. A) Query Restriction, B) 
Data Perturbation and C) Perturbed Responses. 
 

Figure 3-2 demonstrates three approaches: Query Restriction, Data Perturbation 

and Output Perturbation (Data source: Adam and Wortmann 1989). Figure 3-2A shows 

how Query Restriction method works. This technique either returns exact answers to the 

user or refuses to respond at all. Figure 3-2B introduces Data Perturbation method which 

creates a perturbed SDB from the original SDB to respond to all queries. The user can 

receive only perturbed responses. The output perturbation method is illustrated in Figure 

3-2C. Each query answer is modified before being sent back to the user.  
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3.2.3.1  Conceptual approach  

The Conceptual approach includes two basic models: the Conceptual and Lattice 

models. The Conceptual model, proposed by Chin and Ozsoyoglu (1981, 1982), 

addressed security issues at a Conceptual data model level where the users only access 

entities with common attributes and their statistics. The Lattice model developed by 

Denning (1983) and Denning and Schlorer (1983), retrieved data from SDBs in tabular 

form at different aggregation levels. Both methods provide a fundamental framework to 

understand and analyze SDBs’ security problems, but neither seems functional at the 

implementation level.  

3.2.3.2  Query restriction approach  

Based on the users’ query history, SDBs either provide the exact answer or decline 

the query (see Figure 3-2A).  The five major methods in this approach include:   

(1)   Query-set-size control (Hoffman and Miller 1970, Fellegi 1972, Schlorer 1975 

and 1980, Denning et al. 1979, Schwartz et al. 1979, Denning and Schlorer 1980, 

Friedman and Hoffman, 1980, Jonge 1983). This method allows the release of the data 

only if the query set size (number of records included in the query response) meets some 

specific conditions.  

(2)   Query-set-overlap control (Dobkin et al. 1979). This mechanism is based on 

query-set-size control and further explores the possible overlapped entities involved in 

successive queries. 

(3)   Auditing (Schlorer 1976, Hoffman 1977, Chin and Ozsoyoglu 1982, Chin et 

al. 1984, Brankovic et al. 1997, Malvestuto and Moscarini 1998, Kleinberg et al. 2000, Li 

et al. 2002a, Malvestuto and Mezzini 2003). This technique intends to keep query records 
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for each user, and before answering new queries, it checks whether or not the response 

can lead to a disclosure of the confidential data. 

(4)   Partitioning (Yu and Chin 1977, Chin and Ozsoyoglu 1979, 1981, Schlorer 

1983). This method groups all entities into a number of disjoint subsets. Queries are 

answered on the basis of those subsets instead of original data. 

(5)   Cell suppression (Cox 1975, 1980, Denning et al. 1982, Sande 1983, 

Malvestuto and Moscarini 1990, Kelly et al. 1992, Malvestuto 1993). The basic idea of 

the technique is to suppress all cells that may result in the compromise of SDBs. 

So far, some methods in this category have been proved either inefficient or 

infeasible.  For instance, a statistical database normally includes a large number of data 

records. Under this situation, a traditional auditing method would become impractical due 

to its requirement for large memory storage and strong computing power. Among those 

methods, the most promising method is the cell suppression technique, which has been 

implemented successfully by the US Census Bureau and widely adopted in the real 

world.  

3.2.3.3  Data Perturbation Approach  

In this approach, a dedicated perturbed database is constructed once and for all by 

altering the original database to answer users’ queries (see Figure 3-2B). According to 

Adam and Wortmann (1989), all methods fall into two categories:  

(1)   The probability distribution. This category treats SDB as a sample drawn from 

some distribution. The original SDB is replaced either by another sample coming from 

the same distribution, or by the distribution itself (Lefons et al. 1983). Techniques in this 

category include data swapping (Reiss 1984), multidimensional transformation of 
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attributes (Schlorer 1981), data distortion by probability distribution (Liew et al. 1985), 

and etc.  

(2)   Fixed data perturbation. This category includes some of the most successful 

database protection mechanisms. It can be achieved by either an additive or 

multiplicative technique (Muralidhar et al. 1999, 1995). An additive technique 

(Muralidhar et al. 1999) refers to adding noise to the confidential data. The multiplicative 

data perturbation (Muralidhar et al. 1995) protects the sensitive information by 

multiplying the original data with a random variable, which has mean of 1 and a 

prespecified variance. Our study focuses on the additive data perturbation, which are 

classified into two types of perturbation in our research: random data perturbation and 

variable data perturbation. We will introduce these two methods separately in Chapter 5. 

3.2.3.4  Output Perturbation Approach  

Output Perturbation is also named query-based perturbation. The response for each 

query is computed first from the original database, and then it is perturbed based on the 

answer of each query (see Figure 3-2C). Three methods are included in this approach: 

(1)   The Random-Sample Queries technique is proposed by Denning (1980). Later, 

Leiss (1982) suggested a variant of Denning’s method. The basic rationale is that the 

query response is calculated from a randomly selected sampled query set. This selected 

query set is chosen from the original query set by satisfying some specific conditions. 

However, an attacker may compromise the confidential information by repeating the 

same query and averaging the results. 
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(2)   Varying-Output Perturbation (Beck 1980) works for SUM, COUNT and 

Percentile queries. This method assigns a varying perturbation to the data that are used to 

compute the response statistic.  

(3)   Rounding includes three types of output perturbation: systematic rounding 

(Achugbue and Chin 1979), random rounding (Fellegi and Phillips 1974, Haq 1975, 

1977), and controlled rounding (Dalenius 1981). This technique calculates queries based 

on unbiased data, and then the answer is rounded up or down to the nearest multiple of a 

base number set by Database Administrators (DBAs). Query results do not change for the 

same query, therefore providing good protection in terms of averaging attacks.  

In this chapter we summarized different types of database security-control methods. 

For a specific database, one SDC method could be more effective and efficient than 

another.  Therefore, how to select the most suitable security method becomes a critical 

issue in the database privacy. We will review various performance measurements for 

SDC in the next chapter. 
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CHAPTER 4 
INFORMATION LOSS AND DISCLOSURE RISK 

Chapter 2 provided an overview of important SDC methods that are applied to 

protect the privacy of a database. However, since SDC methods reach their goals by 

transforming original data, users of the database would achieve only approximate results 

from a modified data. Therefore, a fundamental issue that every statistical organization 

has to address is how to protect confidential data maximally while providing database 

users with as much useful and accurate information as possible. In this chapter, we   

review the main performance measurements of SDC methods. These assessments are 

used to evaluate the information loss (used interchangeably with data utility) and 

disclosure risk of a database. These measures have become standard criteria for deciding 

on how to choose appropriate protection techniques for SDBs. 

4.1 Introduction 

All SDC methods attempt to optimize two conflicting goals: 

(1)   Maximizing data utility or minimizing information loss that legitimate data 

users can obtain.  

(2)   Minimizing the disclosure risk of the confidential information that data 

organizations take by publishing the data. 

Therefore the efforts to obtain greater protection usually result in reducing the 

quality of data that are released. So the database administrators always seek to solve the 

problem by optimizing tradeoffs between the information loss and disclosure risk. The 

definitions for information loss and disclosure risk are as follows: 
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Information Loss (IL) refers to the loss of the utility of data after being released. It 

measures the damage of the data quality for the legal users due to the application of SDC 

methods.  

Disclosure Risk (DR) refers to the risk of disclosure of confidential information in 

the database. It measures how dangerous it is for statistical organizations to publish 

modified data. 

The problem that statistical organizations always have to confront is how to choose 

an appropriate SDC method with suitable parameters from many potential protection 

mechanisms. And the selected mechanism should be able to minimize disclosure risk as 

well as information loss. One of the best solutions is to count on performance measures to 

evaluate the suitability of different SDC techniques to the database. Good designs for 

performance criteria quantifying information loss and disclosure risk are therefore 

desirable and necessary.  

4.2 Literature Review 

Designing good performance measures is a challenging task because different users 

collect data for different purposes and organizations define disclosure risk to different 

extents. So far, there are many performance assessment methods existing in the literature. 

Based on their properties, we divide those measurement techniques into five categories in 

our research: 

(1)   Information loss measures for some specific protection methods. 

This type of measurement assesses the difference of masked (modified) data from 

original data after applying a specific protection method. Refer to Willenborg and Waal 

(2000) and Oganian (2002) for example. If variances of the original microdata are critical 

for the user, then the information loss can be estimated as 
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( )( ) ( )( )ˆ ˆ
masked originalVar data Var dataθ θ  

where ( )ˆ
originaldataθ  is a consistent estimator of the original data, and ( )ˆ

maskeddataθ  

is the corresponding estimator of the modified data. We can tell from the above criterion 

that this measurement depends on a specific purpose of data use, such as mean, variances, 

etc.  

(2)   Generic information loss measures for different protection methods. 

A generic information loss measure, which is not limited to any particular data use, 

is designed to compare different protection methods. Two well-known general 

information loss measures are as follows:  

Shannon’s entropy, discussed in Kooiman et al. (1998) and Willenborg and Waal 

(2000), can be applied to any SDC technique to define and quantify information loss. 

This measurement models the masking process as noise added to the original dataset, 

which then is sent through a noisy channel. The receiver of the noisy data intends to 

reconstruct the probability distribution of the original data. The entropy of this 

probability distribution measures the uncertainty of the original data after masked data 

are released because of the transmission process. However an entropy-based 

measurement is not a very good criterion since it ignores the impact of covariances and 

means. Whether or not these two statistics can be preserved properly from the original 

data directly affects the validity and quality of the altered data. 

Another measurement by Domingo-Ferrer et al. (2001) and Oganian (2002) 

suggests that IL would be small if the original and masked data have similar analytical 

structure, but the disclosure risk would be higher in this case. This method compares 

statistics, such as mean square error, mean absolute error, and mean variation, which are 
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calculated from the difference of covariance matrix, coefficient matrix, correlation 

matrix, and etc. between the original data and modified data. 

(3)   Disclosure risk measures for specific protection methods. 

The disclosure risk also affects the quality of the SDC methods. Compared with IL 

measures, DR measures are more method-specific. The idea of assessing disclosure risk 

was initially proposed by Lambert (1993). Later, different DR measures were developed 

for SDC methods, i.e., for sampling methods by Chen and Keller-McNulty (1998), 

Samuel (1998), Skinner et al. (1994), and Truta et al. (2004), and for micro-aggregation 

masking methods by Jaro (1989), and Pagliuca and Seri (1998).   

(4)   Generic disclosure risk measures for different protection methods. 

The two main types of general DR measurements are applied to measure the quality 

of different protection methods for tabular data. The first measurement is called 

sensitivity rules, which is used to estimate DR prior to the publication of data tables. 

There are three methods: ( , )n k -dominance, %p -rule, and pq  rule (Felso et al. 2001, 

Holvast 1999, Luige and Meliskova 1999). Different from dominance rule, which is 

criticized for its failure to to reflect the disclosure risk properly, a new priori measure is 

proposed by Oganian (2002), who also introduced a posterior DR measure, which takes 

the modified data into account and operates after applying SDC methods.  

A new method based on Canonical Correlation Analysis was introduced by Sarathy 

and Muralidhar (2002) to evaluate the security level for different SDC methods. This 

methodology can also be used to select the appropriate inference control method. For 

more details, refer to Sarathy and Muralidhar (2002). 
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(5)   Generic performance measures that encompass disclosure risk and information 

loss for different protection methods. 

A sound SDC method should be able to achieve an optimal tradeoff between 

disclosure risk and information loss. Therefore a joint framework is desired to examine 

the tradeoffs and compare the performance of distinct SDC methods. Two popular 

performance measures in the literature are Score Construction and R-U confidentiality 

map. 

Score Construction, proposed by Domingo-Ferrer and Torra (2001), ranks different 

SDC methods, based on their scores obtained by averaging their information loss and 

disclosure risk measures.  For example (Crisis 2004e),  

' '
' ( , ) ( , )( , )

2
IL V V DR V VScore V V +

=   

Where V  is the original data, 'V  is the modified data. Information Loss (IL) and 

Disclosure Risk (DR) are information loss and disclosure risk measures. Refer to Crisis 

(2004e), Domingo-Ferrer et al. (2001), Sebé et al. (2002) and Yancey et al. (2002) for 

more examples.  

An R-U confidentiality map, first proposed by Duncan and Fienberg (1999), 

constructs a general analytical framework for information organization to trace the 

tradeoffs between disclosure risk and data utility. It was further developed by Duncan et 

al. (2001, 2004), and Gomatam et al. (2004). Trottini and Fienberg (2002) later illustrated 

two examples of R-U map in their paper. An application is given in Boyen et al. (2004). 

Database adminisstrators could decide the most appropriate SDC method from the R-U 

map by observing the influence of a particular method with the according parameter 
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choice. See the following figure (Data source: Trottini and Fienberg 2002) for an 

example. 

 

Figure 4-1: R-U Confidentiality Map, Univariate Case, 2 210, 5, 2n φ σ= = =  

0 1 2,M M and M , are represented by a diamond, a circle and a dashed line in the 

figure, and indicate three types of SDC methods: trivial microaggregation, 

microaggregation, and the combination of additive noise and microaggregation, 

respectively. The disclosure risk and data utility are functions determined by the data size 

n , known variance (prior belief) 2φ , known population variance 2σ , and the standard 

deviation r  of the noise added to the original data. The y-axis measures the disclosure 

risk while the x-axis estimates the data utility. For example, checking Figure 3-2, if the 

database administrators intend to have the disclosure risk below 0.5, we will see that the 

appropriate SDC method that satisfies this requirement is 2M , the mixed strategy of 

additive noise plus microaggregation method. From the x-axis, the corresponding data 

utility is shown as 2.65. The choice of r  can also affect the R-U map. If r  is large, then 

the mixed strategy 2M  is close to not release any data at all, as r  is chosen close to zero, 
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the 2M  is equivalent to the microaggregation method with some specific parameter. In 

Figure 4-1, 2.081r = . 

We do not differentiate the measurements for microdata and tabular data in the 

overview since our research focuses on statistical databases. All examples and methods 

previously mentioned are applied either to microdata or tabular data or both.  
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CHAPTER 5 
DATA PERTURBATION 

This chapter provides an introduction to additive data perturbation methods. Based 

on different ways of generating perturbative values, additive data perturbation methods 

are classified into three categories: random-data perturbation, fix-data perturbation and 

variable-data perturbation. The first category, random-data perturbation, with five types 

of perturbation methods, can be found in Kim 1986, Muralidhar et al. 1999, Sullivan 

1989, Tendick 1991, Tendick and Matloff 1994. Our proposed variable-data perturbation 

method is a new category that includes the interval protection technique given by Gopal 

et al. (1998, 2002) and Garfinkel et al. (2002).  In both random data perturbation and 

variable-data perturbation methods, a perturbed database is constructed by adding noise 

to the confidential data in the original database. All query responses are computed from 

the perturbed database. We will review an algorithm by Dinur and Nissim (2003) that 

finds a bound for the fixed-data perturbation. The noise is added to each query response. 

This bound can be applied to both data perturbation and output perturbation methods. 

Their work considers the tradeoff between privacy and usability of a statistical database. 

We end the chapter with the proposed approach to the database security problem. 

5.1 Introduction 

Our study focuses on additive noise perturbation methods, which are usually 

employed to protect confidential numerical data. Perturbation methods can guarantee the 

prevention of the exact disclosure by adding noise to sensitive data, however they are still 
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susceptible to partial disclosure and inferential disclosure. (See Chapter 3 for definitions 

of exact disclosure, partial disclosure and inferential disclosure.)  

Two types of additive perturbation methods are described in the following sections 

based on their different approaches of generating noise. An algorithm by Dinur and 

Nissim (2003) providing a theoretical basis for our study is also reviewed. Our proposed 

research approach is discussed at the end of this chapter. 

5.2 Random Data Perturbation 

5.2.1 Introduction 

Random Data Perturbation (RDP) is one of the most popular and practical data 

protection methods employed in statistical databases today. In order to effectively prevent 

statistical inference against a snooper, DBAs attempt to provide an appropriate level of 

security by distorting the sensitive data with random noise. The RDP method could 

assure adequate protection of confidential information while satisfying legitimate users’ 

needs for aggregate statistics of the database.   

5.2.2 Literature Review 

In the Random Data Perturbation (RDP) method, a perturbed database is created by 

adding random noise to the confidential numerical attribute(s). We discuss four types of 

RDP summarized by Crises (2004) and describe a general method for RDP given by 

Muralidhar et al. (1999).  

Before walking through different types of RDP methods, we first discuss the main 

disadvantage of the data perturbation methods. RDP methods may generate bias into 

statistical characteristics of databases, such as PERCENTILES, conditional SUMS, and 

COUNTS. Matloff (1986) initially introduced the concept of bias, which occurs when the 

responses to certain queries computed from a perturbed database may be different from 
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the responses computed from the original database. The four types of bias, A, B, C, and 

D, are defined and analyzed in the literature by Muralidhar et al. (1999). Type A bias 

occurs when a change in variance causes a change of summary measures of some 

perturbed attribute. Typed B bias applies when the perturbation distort the relationships 

between confidential attributes. Type C bias occurs when the perturbation changes the 

relationships between confidential and non-confidential attributes. Type D bias occurs 

when the underlying distribution of the perturbed database can not be determined because 

the original database or noise term has a non-multivariate normal distribution. Improved 

perturbation methods are designed to avoid bias (Matloff 1986, Tendick 1991, Tendick 

and Matloff 1994, Muralidhar et al. 1995). A creative method called General Additive 

Data Perturbation (GADP), proposed by Muralidhar (1999), deletes all these types of bias 

completely from additive perturbation methods. For more information about GADP, see 

Section 5.2. 

(1)   Masking by uncorrelated noise addition  

This method is also called the Simple Additive Data Perturbation method 

(Muralidhar et al. 1999). The vector of confidential fields, md , representing the thm  

attribute of the original database which contains n  records, is replaced by a vector my  by 

adding a noise term me : 

m m my d e= +  

where each element of me  is normally distributed and drawn from a random 

variable mπ ~ ( )20,
m

N πσ . Each noise term is generated independently of the others, such 

that ( ), 0i jCov π π =  for all i j≠ . The variances of mπ  are generally assumed 
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proportional to those of the original vector md , that is, if the variance of md  is 2
mσ , then 

2 2:
m mπσ ασ= . The distribution of mπ  and parameter α  are decided by the DBA. This 

perturbation method introduces Type A, B and C bias. 

(2)   Masking by correlated noise addition  

This method proposed by Kim (1986) and Tendick (1991) uses correlated noise to 

perturb the database. It is also called the Correlated-Noise Additive Data Perturbation 

method (CADP). The formulation of the method is: 

yV V Vπ= +  

where yV  is the covariance matrix from the perturbed data; Vπ  is the covariance 

matrix of the errors, that is,  π ~ ( )0,N Vπ , which is proportional to the covariance 

matrix of the original data, V , that is: 

V Vπ α=  

The CADP method generates Type A and Type C bias. 

(3)   Masking by noise addition and linear transformations 

In Kim (1986), Tendick and Matloff (1994), Crises (2004), and Muralidhar et al. 

(1999) masking by correlated noise addition was modified to use additional linear 

transformations to eliminate certain types of bias. Therefore, the sample covariance 

matrix of the masked data is an unbiased estimator for the covariance matrix of the 

original data. This method is also named the Bias-Corrected Correlated-Noise Additive 

Data Perturbation (BCADP) method and only results in Type C bias.  

(4)   Masking by noise addition and nonlinear transformation 
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Sullivan (1989) proposed a complex algorithm (not discussed here) combining 

simple additive noise with a nonlinear transformation. This masking method is applied to 

discrete attributes. 

Muralidhar et al. (1999) introduced a General Method for the Additive Data 

Perturbation (GADP) method, which is a further improvement on the previous RDP 

methods. Suppose the database U  has a set C  of confidential attributes and a set NC  of 

non-confidential attributes with n  records. A perturbed database P  which only alters the 

attributes in set C  is constructed on the basis of the original database U . The 

perturbation process keeps all statistical relationships, such as the mean values for C , 

and measures of the covariance and canonical correlation between C  and NC . Then 

each record in the set C  is generated from a multivariate normal distribution. This 

process is repeated for all records. The GADP method guarantees that the statistical 

properties between all attributes are the same before and after perturbation, therefore 

eliminating all types of bias. Thus, the GADP is called a bias-free RDP method. By 

comparing with other perturbation methods empirically, Muralidhar et al. suggested that 

the GADP method would provide the highest level of security and represents a general 

form of additive noise perturbation. 

5.3 Variable Data Perturbation 

5.3.1 CVC Interval Protection for Confidential Data 

Gopal, Goes, and Garfinkel (1998) initiated the idea of interval protection for 

confidential information in a database and introduced the concept of interval disclosure.  

They developed three techniques, which they called “Technique-LP”, “Technique-ELS, 

and Technique-RP”, for various query types. As a result, the query types that a user could 

ask are limited to SUM (COUNT), Mean, MIN, and MAX for numerical data. This 
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method was further studied in Gopal et al. (2000). Later, Gopal et al. (2002) formally 

proposed the Confidentiality via Camouflage (CVC) interval protection technique, which 

is designed to answer numerical ad hoc statistical queries to an online database. Garfinkel 

et al. (2002, 2004) further extended this technique.  

Garfinkel et al. (2002) explored the CVC technique for privacy protection of binary 

confidential data and answered only ad hoc COUNT queries (the same as SUM queries 

here). The extended technique is called Bin-CVC. Consider a database consisting of n  

records. The Bin-CVC technique introduces s  binary camouflage vectors, 

{ }1 2 1, ..., ,s sP P P P P−= , which are used to camouflage or hide the true confidential vector 

d , where sP d=  for s . Without loss of generality, they assumed the database contained 

only one binary confidential field. Each camouflage vector is denoted as 

( )1 ,...,j j j
nP p p= . When a user asks a query q , an interval answer ( ) ( ) ( ),I q l q u q⎡ ⎤= ⎣ ⎦  

will be returned as follows. The upper bound ( )u q  and lower bound ( )l q  of the interval 

are calculated from the maximum and minimum of all camouflage vectors in the specific 

set related to the query, that is, ( ) max j
ij P i q

u q p
∈ ∈

= ∑  and ( ) min j
ij P i q

l q p
∈

∈

= ∑ . The true 

answers are guaranteed to be inside the interval response, ( )i
i q

d I q
∈

∈∑ .  

Table 5-1: An Example Database (Data source: Garfinkel et al. 2002) 
Record Name Job Age Company HIV 
1 Jones Manager 27 A 0 
2 Smith Trainee 42 B 0 
3 Johnson Manager 63 C 0 
4 Andres Trainee 28 B 1 
5 Selkirk Manager 57 A 0 
6 Clark Manager 55 B 0 
7 Cooper Trainee 21 D 1 
8 Nevins Trainee 32 C 1 
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Table 5-1. Continued 
Record Name Job Age Company HIV 
9  Granville Manager 46 C 0 
10 Brady Trainee 36 D 1 
11 Larson Manager 47 B 1 
12 Remminger Trainee 28 D 0 
13 Early Manager 64 A 1 
14 Hodge Manager 35 B 0 

 
The HIV status field represents a binary confidential field with 14 records (see 

Table 5-1).  All query responses involving this sensitive field are computed from 

camouflage vectors generated by the Bin-CVC technique. Table 5-2 is an example of 

camouflage vectors for this database where vector 3P  is the true vector. 

Table 5-2: The Example Database with Camouflage Vector(Data source: Garfinkel et al. 
2002) 

Record P1 P2 P3 = d 
1 1 0 0 
2 0 1 0 
3 1 0 0 
4 0 0 1 
5 0 1 0 
6 1 0 0 
7 0 0 1 
8 0 0 1 
9 0 1 0 
10 0 0 1 
11 0 0 1 
12 1 0 0 
13 0 0 1 
14 0 1 0 

 
Camouflage vectors are generated from a complex network algorithm. The design 

of the network algorithm whose joint paths construct different camouflage vectors is a 

critical step in the success of the Bin-CVC model. The network represents all n  records 

in the confidential field with variables ( )1, , nx xL . All paths start from the source to the 

destination. The network is constructed using two parameters.  Parameter w  gives the 
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total number of paths, and parameter m  is the number of paths consisting only of true 

value edges. These determine the number of camouflage vectors 
w

s
m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. An illustration 

of the network construction of the example database (see Table 5-1) using three 

camouflage vectors (see Table 5-2) is shown in Figure 5-1. 

  

Figure 5-1: Network With ( ) ( ), 1,3m w =  (data source: Garfinkel et al. 2002) 

In the example database (Table 5-1), all 14 records in the confidential field are 

denoted by variables ( )1 14, ,x xL . Parameter 3w =  indicates 3 disjoint paths are 

constructed in the network and 1m =  implies that all those variables with true value 1 in 

the true confidential field are assigned to one of three paths. Variables representing other 

records with value zero are assigned as evenly as possible to the rest of two paths. The 

total number of camouflage vectors is 
3

3
1

s
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

. Every camouflage vector is the 

combination of choosing m  edges out of w  paths. So, in Figure 5-1, each camouflage 

vector selects one edge out of three paths with their true value records on the path. 

Compared with Table 5-2, camouflage vector 1P  has records 1, 3, 6, and 12 containing 

value one. The remaining records in 1P  are zero. In the corresponding network, 

accordingly there is one path including only variables ( )1 3 6 12, , ,x x x x .  
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Performance measurement 1 *CB p m w= − −  is employed to assess the quality of 

networks for a given database with different w  and m  values, where CB  stands for 

Column Balancing. The usefulness of each query answer is computed by the formula: 

( ) ( )( )( )100 1 /Z u q l q q= × − − .  q  denotes the cardinality of the query q  which is the 

number of records that are involved in that query. The closer to 1.0 Z  is, the better the 

query answer is. 

The ideal network that yields the tightest interval response has a small s  and every 

camouflage vector has the same number of ones as the true confidential field. That is, 

*jp p= , where jp  is the proportion of ones in jP , and *p  is the proportion of ones in 

sP d= . This ideal structure is called “perfect column balancing”. See Table 5-2 as an 

example.  Here 1 2 0.4p p= = , * 0.6p = . A good CB  “increases the probability of (a) 

better query answer”.  

Bin-CVC is a very promising methodology for the database privacy. However, 

instead of an exact answer, it responds to the query with an interval which reduces the 

data utility. We define the information loss of the CVC technique as the width of the 

interval, given by ( ) ( )qe u q l q= − . 

5.3.2 Variable-data Perturbation 

Inspired by the CVC technique, we propose a new data perturbation method - the 

variable-data perturbation. Different from random data perturbation whose random noise 

is drawn from a normal distribution ( )20,N σ , the variable-data perturbation method is 

defined as a data perturbation method which modifies the confidential information by 

adding discrete noise that is generated by a parametrically driven algorithm, such as w  
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and m  in the CVC interval protection method. The perturbed database is created once 

and for all. The algorithm can choose various parameters to produce different types of 

noise. We can view the output of the algorithm as if it were pulling values randomly from 

some distribution D  with known parameters, with a non-zero mean µ  and variance 2σ . 

The mean and variance are always finite. Each query answer is computed from the 

perturbed data.  

A discrete random data perturbation method builds a perturbed database from 

which all query responses are computed. Output perturbation method does not alter the 

database, but query answers are perturbed before they are returned to the user. Variable 

data perturbation method is a hybrid of data perturbation and output perturbation and 

generates noise for the confidential field. Perturbed answers for each query involving 

sensitive data are calculated only from the perturbed confidential vector. We treat the 

variable-data perturbation as a data perturbation method with query protection.  

Consider the Bin-CVC technique as an example of the variable-data perturbation 

method. The network algorithm creates camouflage vectors to disguise the true 

confidential vector once and for all. Each query answer is an interval which is computed 

from the camouflage vectors and assures the true answer is included. In a worst-case 

scenario, the noise or perturbation could be regarded as the difference between the lower 

bound and upper bound of the interval: ( ) ( )qe u q l q= − , where qe  are discrete random 

variable.  

We simulated the network algorithm on the example database (see Table 5-1) in 

Garfinkel et al. (2002) and computed the interval answers for all queries. Since the 

confidential vector in the database is a 14-bit binary string, the total number of queries 
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involving this binary vector is 142 . The following figures (Figure 5-2 A-D) show four 

different cases with parameters of the network algorithm at (1) 5w =  and 2m = ; (2) 

7w =  and 3m = ; (3) 8w =  and 5m = ; (4) 12w =  and 6m = . Among those networks, 

7w =  and 3m =  creates perfect column balancing and based on its frequencies of each 

noise value for all 142  queries, we obtain a noise distribution with mean 3.302µ =  and 

variance 2 1.379σ =  as shown in Figure 5-2B.  
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Figure 5-2: Discrete Distribution of Perturbations from the Bin-CVC Network Algorithm. 

A) 5w =  and 2m = , B) 7w =  and 3m = , C) 8w =  and 5m =  and  D) 
12w =  and 6m = . 

After the network is set up with parameters w  and m , the noise distribution D  is 

fixed, and its mean µ  and variances 2σ  are finite and known. Figure 5-2 showed this 

property. We intend to bound the noise qe  drawn from D  in terms of µ  and 2σ . We 
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will continue to discuss how to estimate the mean µ  and variances 2σ  in the next 

chapter. 

5.3.3 Discussion 

For Bin-CVC, there is a conflict between the two performance measures, CB  and 

Z -score. That is, a high Column Balancing value, which indicates a good protection for 

the whole database with some specific w  and m , could not guarantee good query 

answers (i.e., a high Z value). 

We claim that Interval disclosure or interval inference occurs when the maximum 

of the error of the snooper’s estimation about the true confidential value is less than the 

tolerance threshold predetermined by the DBA. Exact inference can be treated as a 

special case of interval inference and has an error value of 0. 

Gopal et al. (2002) state that the CVC technique could completely eliminate exact 

disclosure and interval inference. However, Muralidhar et al. (2004) have shown 

empirically that CVC technique is sometimes vulnerable to interval inference. By 

utilizing a simple deterministic procedure, the snooper can sometimes compromise the 

database by shrinking the interval answers into a smaller range within the predetermined 

threshold. Suppose the thi  query is answered by [ ]ii ul , . In their example, they show how 

a snooper could compute the midpoint of the interval ( ) 2/iii ulm += , the half-width of 

the interval, ( ) 2/iii luw −= , and then use these to build a new interval as 

( )ii wm ×± 5.0  which still includes the true value, but is narrower than the original 

interval and, hence, less than the threshold. See Table 5-3 for this example. 
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Table 5-3: An Example of Interval Disclosure (Data source: Muralidhar et al. 2004) 
Original Interval Intruder Interval 

Query True 
Value P1 P2 P3 Lower 

Limit 
Upper 
Limit 

Width 
of 

Original 
Interval 

(%) 

Lower 
Limit 

Upper 
Limit 

Width of 
Modified 
Interval 

(%) 

1 276.3 275.2 302.8 263.5 263.5 302.8 14.2 273.3 293.0 7.1 
2 35.4 36.2 32.7 36.3 32.7 36.2 10.2 33.6 35.4 5.1 
3 37.4 37.4 41.1 35.5 35.5 41.1 14.9 36.9 39.7 7.5 

… … … … … … … … … … … 

In Gopal et al. (2002), the interval protection requires that the interval length is at 

least 10% of the original value. In Table 5-3, the intruder’s intervals computed using the 

method provided by Muralidhar et al. (2004) are narrower than the threshold of 10%. 

Thus, the database is compromised in terms of the interval disclosure.  

However, the test given by Muralidhar et al. (2004) only examined the CVC 

interval protection empirically. For networks with different w  and m , this deterministic 

method may not apply.  

5.4 A Bound for The Fixed-data Perturbation (Theoretical Basis) 

Dinur and Nissim (2003) studied a theoretical tradeoff between privacy and 

usability of statistical databases (SDBs). They concluded that a minimum perturbation 

magnitude of ( )nΩ  is required for each query q  in order to maintain even weak 

privacy of the database. Otherwise, an adversary could reconstruct the statistical database 

using ( )2lgl n n=  (base 2 logarithm) queries with high probability in polynomial time. 

As expected, the SDB can be protected from disclosure if the perturbation value is 

bounded by ( )e o n> , however, then the data utility may be too low to be useful. Since 

Dinur and Nissim make no assumptions beyond assuming the additive error is fixed, their 
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results are valid both for data perturbation and output perturbation methods using fixed 

additive error. We review their results and methodology in the following sections.  

Dinur and Nissim (2003) modeled the confidential field in the database as an n -bit 

binary string ( ) { }1,..., 0,1 n
nd d ∈ . The true answer for a SUM query q , { }nq ,,1L⊆ , is 

computed as ii q
d

∈∑ . The perturbed answer for a query q  is ( )A q  obtained by adding a 

perturbation ( ) ii q
A q d e

∈
− ≤∑ , where ( )noe =  is the bound for the perturbation of 

each query.  

The authors developed a Linear Programming (LP) algorithm to generate the 

candidate confidential vector which is the vector that an adversary would use to 

compromise the database. See Table 5-4 for details of the LP algorithm.  

Table 5-4: LP Algorithm (Data source: Dinur and Nissim 2003). 

 [Query Phase] 

Let ( )2lgl n n= . For 1 j l≤ ≤  choose uniformly at random 

{ }1, ,jq n⊆ L , and set ( ).
jq ja q←Α%  

[Weeding Phase] 

Using and linear objective, solve the following linear program 

with unknowns 1c , …, nc : 

j jj
q i qi q

a e c a e
∈

− ≤ ≤ +∑% %  for 1 j l≤ ≤  

0 1ic≤ ≤   for 1 i n≤ ≤  

[Rounding Phase] 

Let ' 1ic =  if 1
2ic >  and ' 0ic =  otherwise.  

Output 'c . 
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Other vectors that are far away from the true confidential vector d  are weeded out 

by the algorithm. The output of the LP algorithm is the candidate vector that best 

estimates the confidential vector. 

The n -bit binary vector 'c  is obtained by rounding c , which is a vector of real 

numbers produced by the LP algorithm. Dinur and Nissim (2003) also introduced a 

vector c  obtained by rounding c  to the nearest integer multiple of 1
k

, where nk =  

represents a precision parameter, and 1 2 10, , ,..., ,1kK
k k k

−⎧ ⎫= ⎨ ⎬
⎩ ⎭

. Hence nc K∈ . They 

proved that ( ) 12 +≤−∑∈
edc

jqi ii .  

To prove that the candidate vector 'c  obtained from the algorithm is close to the 

true confidential field d , Dinur and Nissim (2003) introduced a Disqualifying Lemma, 

which proves that random queries 1,..., lq q  would weed out all vectors x X∈  where 

⎭
⎬
⎫

⎩
⎨
⎧

>⎥
⎦

⎤
⎢
⎣

⎡
≥−∈= ndxKxX iii

n ε
3
1Pr|      (1) 

The term 1Pr
3i ii

x d⎡ ⎤
− ≥⎢ ⎥

⎣ ⎦
 in Equation 1 represents the expected number of 

records that obey 
3
1

≥− ii dx , for 0>ε . Therefore, X  denotes the set of all vectors 

which are far away from the true vector d .  

The Disqualifying Lemma states that 

[ ]
Pr ( ) 2 1

R
i iq n i q

x d e ξ
⊆

∈

⎡ ⎤
− ≥ + >⎢ ⎥

⎢ ⎥⎣ ⎦
∑       (2) 
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The lemma proves that there exists a probability 0ξ >  such that a query q  

disqualifies x  if ( ) 2 1i i
i q

x d e
∈

− ≥ +∑ . x  will not be a valid LP solution if such a q  

exists. The lemma guarantees if x is far away from d , at least one of the l  queries 

lqq ,,1 L  would disqualify x with high probability.  

One missing piece is the relationship between inequalities (1) and (2) that relates ε  

to ξ . The proof of the disqualifying lemma establishes this link and it is possible to think 

of  ξ  as a function of ε : ( )ξ ε . We will discuss this further in Chapter 6. 

If l  queries lqq ,,1 L  are chosen independently and randomly, then for each Xx∈ , 

the probability that all l  queries do not disqualify x  is ( )1 lξ− .  

A conclusion derived from the Disqualifying Lemma is  

[ ]
[ ] ( ) ( ) ( )

,...
Pr , 1 1 1 1

i l R

n l
iq q n

x X i q disqualifies x n neg nξ
⊆

∀ ∈ ∃ ≥ − + − ≥ −  

 

[ ]
[ ] ( ) ( ) ( )

,...
1 Pr , 1 1

i l R

n l
iq q n

x X i q disqualifies x n neg nξ
⊆

− ∀ ∈ ∃ ≤ + − ≤  

Thus, the probability that none of the l  queries can disqualify Xx∈  is bounded by 

a very small number ( ) 0neg n > . 

Therefore, the Disqualifying Lemma guarantees ruling out all disqualifying vectors 

Xx∈  with high probability ( ( )1 neg n− ) and guarantees that the hamming distance 

between the final candidate vector 'c  and true vector d  is small, that is, ( ) ndcdist ε≤,' .  
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The number of queries that are required to weed out disqualified vectors is 

computed from the Disqualifying Lemma. That is, ( )2lgl n n= .  See Figure 5-3 for an 

illustration of relationships of , ',c c c  and d . 

 

Figure 5-3: Relationships of , ',c c c  and d . 

5.5 Proposed Approach 

Although SDC methods and machine learning have completely opposite research 

goals, similar methodologies are applied in both areas (Domingo-Ferrer and Torra 2003). 

The SDC methods attempt to modify the data intentionally before the public release. The 

data distortion should be sufficient enough to protect the privacy of the confidential data 

and small enough to minimize the information loss. ML seeks to learn from noisy 

examples and designs error-resilient algorithms to disclose true information (Angluin and 

Laird 1988, Goldman and Sloan 1995, Shackelford and Volper 1988, Sloan 1988, Valiant 

[ ]0,1 nc∈   
From LP 

{ }' 0,1 nc ∈       nc K∈   

' 1ic =  if 1 2ic >  

' 0ic =  otherwise

' 1ic =  if 1 2ic >  

' 0ic = otherwise

Rounding ic  to the nearest 

integer multiple of 1 k   

  { }0,1 nd∈  

( )',dist c d nε≤  ( ) 2 1i i
i q

c d e
∈

− ≤ +∑  
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1985). SDC methods protect the confidential data stored in a database with n  records and 

m  fields. ML learns the true function from l  examples, each of them having m  

attributes. Therefore, a common structure is used to express the information between 

SDL methods and ML. Although the two areas have different research purpose and often 

use different terminologies, the underlying methodologies are often the same. 

 In our research, we approach the database privacy problem from a machine 

learning perspective by applying PAC learning theory. We consider a scenario when a 

snooper uses a learning algorithm to discover the true confidential data protected by a 

SDC method. For example, Figure 5-4 demonstrates the connection between the 

methodologies employed in PAC learning theory and in the database protection approach 

in Dinur and Nissim (2003).  

Figure 5-4: Illustration of the Connection between the PAC Learning and Data 
Perturbation  

Figure 5-4 indicates that both approaches determine a training sample size l , 

necessary to accomplish the desired goal. The probability that a query disqualifies the 

Disqualifying Lemma:                                 

[ ]
( ) ( ) ( ) ( )( ) ( )

,...,
P r , 1 1

i l R

ln
iq q n

x X i err q d isqualifies x n neg nξ ε ξ ε
⊆

⎡ ⎤∀ ∈ ∃ > ≤ + − ≤⎣ ⎦
 

 

 

              

                       

( ){ } ( )Pr : 1 ll S h consistent and error h Hε ε δ> ≤ − ≤  

PAC learning:  

Random 
Samples 

with 
Size l  

 
Error 

 
Cardinality 

of 
Hypothesis 

 
Accuracy 
parameter 

 
Confidence 

level 
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x X∈  with probability greater than ( )ξ ε  is bounded by the union bound of X , high 

probability ( )ξ ε , and further bounded by a small probability ( )neg n . Those three 

parameters correspond to the cardinality of the hypothesis space H , the accuracy 

parameter ε , and the confidence level δ  in the PAC learning theory. They are shown in 

Figure 5-4 as matched terms even though different notation and terminologies are 

adopted. Therefore, we could conclude that both PAC learning theory and the 

Disqualifying Lemma address the problems by using the same methodology for different 

purposes. The same parameters are required to build up the models.  

From the perspective of PAC learning theory, we regard the true confidential field 

as the target concept that an adversary seeks to discover within a limited number of 

queries in the presence of some noise, such as random data perturbation or variable-data 

perturbation. In Chapter 6, we raise our research questions and extend Dinur and Nissim 

(2003)’s work by using PAC learning theory. We set up a model to describe how much 

protection is necessary to guarantee that the adversary cannot discover the database with 

high probability. Put in PAC learning terms, we derive bounds on the amount of error an 

adversary makes, given a general perturbation scheme, the number of queries, and a 

confidence level.  

Three types of data perturbation bounds are summarized as follows in terms of 

different error distributions.  

(1)   Perturbation with a General Bound Case: General PAC bound 

The error is randomly generated identically and independently from an unknown 

distribution D . So it is also called Perturbation with a Distribution-free Bound case. A 

general PAC bound is derived as: 
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1 1ln lnl H
ε δ
⎛ ⎞≥ +⎜ ⎟
⎝ ⎠

   

where l  is the number of queries needed to discover the binary confidential data, ε  

is the amount of error that an adversary may make to compromise the database and δ  is 

the confidence level. 2nH =  is the number of candidate confidential vectors in the 

hypothesis space H . Without specific information about the distribution of noise, the 

derivation of l  wholly depends on ε  and δ , so this bound is relatively loose.  

(2)   Perturbation with a Fixed-data Bound Case: Fixed data perturbation 

Dinur and Nissim (2003) derived a fixed-data bound ( )e o n=  for the 

perturbation added to query responses. A bound for the number of queries is also 

developed, denoted as:  

( )2lgl n n=  

which is sufficient to discover the true confidential vector in the database with a 

high probability at a small error.  

(3)   Perturbation with a Random Variable Bound Case: Variable data perturbation 

(Proposed research) 

We assume that random perturbations which are added to the query responses have 

an unknown discrete distribution.  The moments of the distribution, such as the mean and 

standard deviation, can be estimated. Variable-data perturbation belongs to this case. In 

the next chapter, we derive an error bound for this case by applying the PAC learning 

theory. This bound provides the minimum number of queries needed to discover the 

protected column with specified error and accuracy. 
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CHAPTER 6 
DISCLOSURE CONTROL BY APPLYING LEARNING THEORY  

In Chapter 2 and 3 we reviewed PAC learning theory and database security 

methods. In this chapter, we approach the database privacy problem using ideas from 

Probably Approximate Correct learning theory. Our research will delve into the additive 

noise perturbation masking method which is classified into three categories: random data 

perturbation, fixed data perturbation (reviewed in Chapter 5) and variable-data 

perturbation. Based on the work of Garfinkel et al. (2002) and Dinur and Nissim (2003), 

we raise our research questions and construct a theoretical model from the perspective of 

PAC learning theory. We attempt to derive an error bound for perturbations with a 

distribution specified by its first two moments and also develop a heuristic method to 

estimate the mean and standard deviation for the variable-data perturbation method. 

Dinur and Nissim (2003) studied the case of data perturbation bounded by a fixed number 

and provide a theoretical foundation for our research. 

6.1 Research Problems 

Our research focuses on the category of variable-data perturbation. Firstly, we 

intend to derive a bound on the level of error that an adversary may make, given the 

variable-data perturbation method. We extend the bound on the fixed-data perturbation 

proposed by Dinur and Nissim (2003) with an attempt to bound the perturbation of each 

query with a random variable qe  which has a discrete distribution with known 

parameters, such as the finite mean and variance. We need to develop a new 
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Disqualifying Lemma, analogous to Dinur and Nissim’s (2003), for the variable-data 

perturbation by deploying PAC learning theory. Like the Disqualifying Lemma in Dinur 

and Nissim (2003), our result bounds the probability that a query does not eliminate 

hypotheses that are far away from the true confidential answer.  Using this, we develop 

an error bound on the number of queries within which the database could be 

compromised with high probability.  

6.2 The PAC Model For the Fixed-data Perturbation 

We start our model by interpreting the results of Dinur and Nissim (2003) within 

the methodology of PAC learning theory. 

Suppose an adversary attempts to compromise the SDB by applying PAC learning 

theory. We define a Non-Private Database as follows: a database is non-private if a 

computationally-bound adversary can expose 1 ε−  fraction of the confidential data for 

0ε >  with probability 1 δ− , where 0δ > . We call 1 δ−  the confidence level. 

Consider a statistical database with n  records. Its confidential field is a binary 

string denoted as ( ) { }1,..., ' 0,1 n
nd d ∈ . See Table 5-1 for an example database.  In this 

table, “HIV” status is the column we represent. An hypothesis space 0H  contains n -bit 

binary vectors, each of which is an hypothesis { }0 0,1 nh H∈ =  and denotes a candidate 

vector for the confidential field of the database. The cardinality of the hypothesis space, 

or the number of hypothesis is 0 2nH = . The true confidential field is regarded as the 

target concept 0d H∈ . The online database receives a SUM (or COUNT) query 

{ }1,...,q n⊆  sent by the user and responds with a perturbed answer ( )A q  of the true 
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answer q ii q
a d

∈
=∑ . A perturbation is added to each query answer instead of every 

record and bounded by a fixed number ( )qe a A q≥ − .  

PAC Learning starts by random sampling. We take l  samples consisting of queries 

and their perturbed responses, 

( )( ) ( )( )( )1 1, , , ,l lS q A q q A q= L . 

Since ( )A q  is a perturbed answer, we will consider this learning from noisy data.   

Our learning algorithm is a linear program. As such, answers can be continuous and 

will be rounded.  Thus it is useful to define another hypothesis space [ ]2 0,1 nH = .   For 

analysis, a grid will prove useful.  Let the hypothesis space 1
nH K= , where 

1 2 10, , ,..., ,1nK
n n n

−⎧ ⎫= ⎨ ⎬
⎩ ⎭

. Note that 0 1 2H H H⊆ ⊆  where all containments are strict 

when 1n > .  

Let 1 2 1:h H H→  by rounding each component in 2H  to the nearest integer 

multiple of 1 n  (midpoints rounded down). Further, let ( )0 0: 1, 2ih H H i→ =  by 

rounding each component in iH  to the nearest of 0 and 1 (0.5 rounds down). Note that 

( )1h c c f= + , where 1 1, ,if i n
n

< = L .  

Given a sample S  and a fixed perturbation e , Dinur and Nissim (2003) gave a 

polynomial algorithm γ  that finds 2c H∈ , from which one can output ( )0h c . We 

represent this algorithm by ( )c Sγ← . As already discussed, the specific algorithm is a 

linear program (see Table 5-4).  
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See Figure 6-1 for an illustration of the relationships of 0 1 2 0 1, , , ,H H H h h  and d . 

 

Figure 6-1: Relationships 0 1 2 0 1, , , ,H H H h h  and d  in the Fixed-Data Perturbation.  

Let 0c H∈ , then the hamming distance between c  and d  is  

( ) { }
1

, :
n

i i i i
i

dist c d i c d c d
=

= ≠ = −∑ . 

Let 2x H∈ . 1Pr
3i i ix d ε⎡ ⎤− ≥ >⎢ ⎥⎣ ⎦

 means the probability of choosing { }1, ,i n∈ L  

randomly such that 1
3i ix d− ≥ .  That is, for this x  there are nε  expected records where 

1
3

− ≥i ix d .  Denote this by 1
3i i iE x d nε⎡ ⎤− ≥ >⎢ ⎥⎣ ⎦

 where 0ε >  arbitrarily. Ultimately, 

we wish to show how to choose a sample size l  so that ( )( )( )0 ,dist h S d nγ ε≤ .  

Lemma 1:  

If nx K∈  and 1
3i i iE x d nε⎡ ⎤− ≥ ≤⎢ ⎥⎣ ⎦

, then ( )( )0 ,dist h x d nε≤     

[ ]2 0,1 nH =  
From LP algorithm 

{ }0 0,1 nH =     1
nH K=  

( )0 2 0:h c H H→  ( )1 2 1:h c H H→  

( )0 1 0:h c H H→
 

     { }0,1 nd∈  

( )( )( )0 ,dist h S d nγ ε≤  ( )( )1 1 2ii
h c d e− < +∑
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Proof: 

First note that if 1
3i ix d− ≤  then ( )0

1 1 1
2 3 3ii

h x d− ≤ − < . Thus since no more than 

nε  i ’s, on average, have 1
3i ix d− ≥ , then no more than nε  records, on average, of 

( )0h x  can have ( )0
1
3ii

h x d− ≥ . The number 1
3

 in 1
3i ix d− ≤  guarantees that ix  round 

to the same number as id . 

End of Proof 

Let 1:
3

n
i i iT x K E x d nε⎧ ⎫⎡ ⎤= ∈ − ≥ >⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

.  From the point of view of the intruder, 

we want our sample to disqualify all points of T  with high probability ( )1 δ−  where 

( )0,1δ ∈  and is usually chosen so that ( )1 δ−  is large. For a sample of size l , generated 

independently and identically according to an unknown but fixed distribution D , the 

probability that an hypothesis c  is far away from the true target d  is measured by the 

risk functional 

( ) { } ( )1 1, , : 1 2i iD i q
err c D q n c d e

∈

⎛ ⎞
= − ⊆ − ≤ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑L

 

 { } ( )1, , : 1 2i i
i q

D q n c d e
∈

⎛ ⎞
= ⊆ − > +⎜ ⎟⎜ ⎟

⎝ ⎠
∑L  

where 1c H∈ .   

As we stated before (see Figure 6-1), the solution c  from the LP can be rounded 

either to a binary vector ( )0h c  or a vector ( )1
nh c K∈ . The probability that the distance 
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between the true vector d  and the rounded vector ( )1h c  is greater than 1
3

 is bounded by 

ε . Based on this condition, for any random query, the difference between the answers 

from these two vectors is bounded by a function of the perturbation, 2 1e + . So, we can 

see that e  and ε  are related and they describe the error from different perspectives. Then 

we use a probability ξ  which is a function of ε , denoted as ( )ξ ε , to bound the risk 

functional as  

( ) ( )
D

err c ξ ε>  

We intend to bound 

 ( )( )( ) ( )( )1:l

D
D S err h Sγ ξ ε>  

by 0δ > .  

Provided ( )e o n= , the Disqualifying Lemma of Dinur and Nissim (2003) proved 

( ) 0ξ ε > . Then, for ( ) ( )1κ ε ξ ε= −  

( )( )( ) ( )( ) ( ) ( )( ) ( ) ( )1: 1 1 1
ln nl l

D
D S err h S n nγ ξ ε ξ ε κ ε> ≤ + − = +   (6.1) 

where ( )1 nn K T+ = ≥  is the union bound over T , and therefore the worst-case 

scenario is bounded. 

The proof of the Disqualifying Lemma in Dinur and Nissim (2003) shows 

( ) ( )2 /8

(1) (2)

min 1 1 2 , 1
3

Te ακ ε
β

−

⎛ ⎞
⎜ ⎟

≤ − − −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
1442443 123

 

with 
500

T ε
≥ .  
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Recall that the Disqualify Lemma (Dinur and Nissim 2003) proves 

[ ]
Pr ( ) 2 1

R
i iq n i q

x d e ξ
⊆

∈

⎡ ⎤
− ≥ + >⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

In the proof, 1 2, , , nϖ ϖ ϖL  are defined as independent random variables such that 

i i ix dϖ = −  and 0iϖ =  both with probability 1
2

. Let 
1

n
ii

ϖ ϖ
=

=∑ . The authors 

approached the proof by dividing it into two cases based on the size of the expected value 

of ϖ , denoted as ( )E ϖ . Let 
500

T ε
≥  be a constant to be specified later in the proof. 

In the case of ( )E T nϖ ≥ , the probability satisfies 

[ ]

2 /8Pr ( ) 2 1 1 2
R

T
i iq n i q

x d e e−

⊆
∈

⎡ ⎤
− ≥ + ≥ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

In the second case of ( )E T nϖ < , the probability satisfies 

[ ]
Pr ( ) 2 1

3R
i iq n i q

x d e α
β⊆

∈

⎡ ⎤
− ≥ + ≥⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

The role of β   is discussed below.  (For the proof details, see the Appendix A of Dinur 

and Nissim 2003). 

From the result of Disqualifying Lemma, we choose ( )κ ε  to be the minimum of 

the probabilities from these two cases. So, in term (1), 
2 /8 / 40001 2 1 2 0Te e ε− −− = − < , so 

( )2 /81 1 2 1Te−− − > . In term (2), we know 
36
εα = , so 0

3 108
α ε
β β
= ≥  and 1 1

3
α
β

− < . 

Hence  
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( ) ( )2 /8

(1) (2)

min 1 1 2 , 1 1
3 3

Te α ακ ε
β β

−

⎛ ⎞
⎜ ⎟

≤ − − − = −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
1442443 123

 

Thus, 

( )
3
αξ ε
β

≥  

where we choose ( )
3
αξ ε
β

=  for the worst case. Dinur and Nissim choose β  large 

enough so that  

 ( ) 2

1
3 1 k

k
k e βα β

∞
−

=

> +∑  

(note the right side is decreasing in β ).  Simple manipulations show that 

 
2

2
2

1 1
k

k

ee
e

β
β

β

−∞
−

−
=

=
−∑  

After taking the partial derivative with respects to β  for the above formula we obtain  

 
( )

2
2 2

221 1

2
1

k k

k k

ee ke
e

β
β β

ββ

−∞ ∞
− −

−= =

∂
− = =

∂ −
∑ ∑  

Thus  

 ( )
( ) ( )

2 2 2
2 2

2 222 21

21
11 1

k

k

e e ek e e
ee e

β β β
β β

ββ β

− − −∞
− −

−− −=

−
+ = + =

−− −
∑  

Thus we need 

 ( ) 2

1

3 1 k

k
k e βα β

∞
−

=

> +∑ ( )
2

2
22

23
1

ee
e

β
β

β
β

−
−

−

−
=

−
 

Since 
36
εα = , we get 
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( )
2

2
22

23
36 1

ee
e

β
β

β

ε β
−

−

−

−
>

−
 

( )
2

2
22

2108
1

ee
e

β
β

β
ε β

−
−

−

−
>

−
 

Let / 2x e β−= .  Then 

( )2
2108
1

xx
x

ε β −
>

−
 

β  is decided by ε  (ε  is a pre-defined parameter). For 0 1ε< < , numerical calculations 

show we need 17β >  thus giving  0.0002x < .  Since  

 ( ) 1 1
3 108
α εκ ε
β β

≤ − = −  , 

if we plug  

 
( )2

2108
1

xx
x

ε β −
>

−
  

into  

 ( ) 1 1
3 108
α εκ ε
β β

≤ − = − , 

we get 

 ( )
( )2

21
1

xx
x

κ ε −
≤ −

−
  

where ( )
( )2

2
3 1

xx
x

αξ ε
β

−
= =

−
. 

Now back to the inequality (6.1), 

 ( )( )( ) ( )( ) ( ) ( )1: 1 nl l

D
D S err h S nγ ξ ε κ ε> ≤ +  
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       ( ) ( )( )1 1
lnn ξ ε= + − . 

If we bound the probability with the parameter 0δ > , we get  

( )( )( ) ( )( ) ( ) ( )( )1: 1 1
lnl

D
D S err h S nγ ξ ε ξ ε δ> ≤ + − ≤  

where 0δ >  is the confidence parameter. 

 Then take the base 2 logarithm (denoted as lg  in all the following formula) on 

both sides of the last two terms 

 ( ) ( )( )1 1
lnn ξ ε δ+ − ≤  

to get 

 ( ) ( )( )lg 1 1 lg
lnn ξ ε δ⎡ ⎤+ − ≤⎢ ⎥⎣ ⎦

 

Given a pre-defined parameterε , the minimum sample size is computed as 

 ( ) ( )
( )( )

lg lg 1
lg 1

n n
l

δ
ξ ε

− +
≥

−
        (6.2) 

where ( )
( )2

2
1

xx
x

ξ ε −
=

−
, and / 2x e β−=  with β  chosen large enough. l  is bounded by 

three parameters ,δ ε  and n . Since ( )ξ ε  is a very small number, if we apply it directly 

into formula (6.2), the resulting bound for the sample size l  is quite large, much more 

than ( )2logl n n=  from Dinur and Nissim (2003), even for a small n . See Table 6-1 for 

examples of two bounds on the sample size with different values of n  when 0.05δ = .  

Table 6-1 shows that by interpreting Dinur and Nissim (2003)’s Disqualifying 

Lemma, we get a PAC bound which is looser than the one derived in Dinur and Nissim 
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(2003), no matter what n  is. However this PAC bound is still much less than the total 

number of queries in a database, 2n , except the n  is very small, such as 10n = . 

Table 6-1: Bounds on the Sample Size with Different Values of n . 

n  ( )2logl n n=  
( ) ( )

( )( )
lg lg 1

lg 1
n n

l
δ

ξ ε
− +

≥
−

 2n  

10 111 373643 1024 

50 1,593 2,274,447 1.1259E+15 

100 4,415 5,191,750 1.2677E+30 

500 40,193 34,338,167 3.2734E+150 

1000 99,317 76,188,677 1.0715E+301 

5000 754,940 469,076,527 --- 

 In section 6.4, we will show how to replace ( )
( )2

2
1

xx
x

ξ ε −
=

−
 with a more 

practical number by using the bound in Dinur and Nissim (2003), therefore deriving a 

tighter bound for the variable-data perturbation case. 

6.3 The PAC Model For the Variable-data Perturbation 

In this section, we move to the case that an adversary tries to compromise a 

database in which the confidential data is modified by adding variable-data perturbation. 

In this method, each query q  is added with a perturbation created from a database 

protection algorithm. The perturbed response is ( )A q  while the true query answer is 

q ii q
a d

∈
=∑ .  

6.3.1 PAC Model Setup 

In the fixed-data perturbation case, a fixed number bounds the perturbation: 

( )qa A q e− ≤ . In the variable-data perturbation case, ( )q qa A q e− =  and we assume 
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that the perturbation qe  is a random variable with an unknown discrete distribution with 

known finite mean µ  and variance 2σ . Based on the knowledge of these parameters, we 

attempt to develop a bound on the error that an adversary makes. The bound will be 

expressed in terms of these parameters. A threshold on the number of queries, within 

which the database is compromised, can be derived from this error bound. 

Given S  and qe%  for each q S∈ , we develop a polynomial algorithm 2γ  that 

obtains an hypothesis 2c H∈  from which we can output ( )0h c . The algorithm, 

( )2c Sγ← , is a linear program:  

[ ]0,1 1i

n

ic i
Min c
∈ =
∑  

s.t. ( )
j

j

i j q
i q

c A q e
∈

− ≤∑ %  0, , 1, ,i n j l= =L L    

where 
jqe%  is the realization of the random variable qe  in the LP algorithm and is sampled 

from the perturbation distribution. Then the distance between ( )1h c  and the true vector 

d  is bounded by 

( )( ) ( )( ) ( )1 1i i i ii i
i q i q i q

h c d h c c c d
∈ ∈ ∈

− ≤ − + −∑ ∑ ∑  

  q

q
e

n
≤ +  

   1 qe≤ +  

where ( )1 i ii
h c c f= +  and 1

i
f

n
< . Recall that q  denotes the cardinality of the query q . 
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In the variable-data perturbation case, we need to develop a new Disqualifying 

Lemma which would disqualify all ( )1h c  which are far away from the true vector d . 

That is, for any 2x H∈ , query q  disqualifies x , if ( )( )1 1i qi
i q

h x d e
∈

− > +∑ .  

See Figure 6-2 for an illustration of the relationships of 0 1 2 0 1, , , ,H H H h h  and d . 

 
Figure 6-2: Relationships of 0 1 2 0 1, , , ,H H H h h  and d  in the Variable-Data Perturbation 

6.3.2 Disqualifying Lemma 2 

For a sample of size l  which is generated i.i.d according to an unknown but fixed 

discrete distribution D , the probability that an hypothesis ( )1h c  is far away from the true 

target d  is measured by the risk functional 

( )( ) { } ( )( )1 11 1, , : 1i qiD i q
err h c D q n h c d e

∈

⎛ ⎞
= − ⊆ − ≤ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑L  

[ ]2 0,1 nH =  

{ }0 0,1 nH =     1
nH K=  

( )0 2 0:h c H H→  ( )1 2 1:h c H H→  

( )0 1 0:h c H H→  

     { }0,1 nd∈  

( )( )( )0 2 ,dist h S d nγ ε≤  ( )( )1 1i qi
i q

h c d e
∈

− < +∑  
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 { } ( )( )11, , : 1i qi
i q

D q n h c d e
∈

⎛ ⎞
= ⊆ − > +⎜ ⎟⎜ ⎟

⎝ ⎠
∑L  

    ( )η ε>  

We intend to bound this error rate. As in section 6.2, we want  

( )( )( ) ( )( )1 2:l

D
D S err h Sγ η ε δ> ≤       (6.3) 

where ( )0,1δ ∈ .      

We now develop our Lemma 2, a disqualifying lemma, analogous to Dinur and 

Nissim’s Disqualifying Lemma.  Lemma 2 assumes that the mean and standard deviation 

of the distribution of qe  satisfies µ σ≥ , 2 nσ µ+ ≤  and nµ > . Practical reasons 

motivate these respective cases as we now discuss.   

(1)   if  µ σ≤ : 

Since the standard deviation measures how spread out the perturbations ( qe  values) 

can be, if µ σ≤ , many perturbations will be widely dispersed, meaning that the 

corresponding intervals offer little information. This can take many forms.  For example 

(see Figure 6-3), with a bimodal distribution some intervals will be tight and others very 

disperse.  The tight ones might provide an attacker the ability to easily disclose parts of 

the confidential information. The wide intervals may provide too little usable information 

to be meaningful for the user.  

(2)   if  2 nσ µ+ ≥ ,  there are four possible cases:  

a.  nµ σ≥ ≥  

In this case, most perturbations are clustered around a large mean. Although a large 

perturbation provides better protection of the database, it reduces the usability of the 



76 

 

query answers. The user gets very little information. For a demonstration of this case, see 

the following Figure 6-4. Consequently, a database security method is meaningless if it 

produces perturbations with a large mean and relatively small standard deviation.  

A Bimodel Distribution of Perturbations
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Figure 6-3: A Bimodal Distribution of Perturbations in the CVC Network while µ σ≤ . 

b. nµ σ≥ ≥  

Very high mean and standard deviation imply two situations: (1) all query 

responses are perturbed with big noises which are widely spread out in the high mean 

area. In this case, the user can not get any useful data from these query answers; and (2) 

many query answers have large perturbations while others provide users with very tight 

answers which can reveal the confidential data easily. Neither of above distributions is 

meaningful for our research. 

c. nσ µ≥ ≥  

 The same reason described in (1) is used here also. 
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Figure 6-4: A Distribution of Perturbations in the CVC Network with nµ σ≥ ≥ . 

 (3)   if  nµ >  holds: 

 A database usually includes a large number of records. Therefore, the mean of the 

perturbations is likely less than n  in most cases. If the mean nµ >  is true, then the 

security method likely offers little information to the users, no matter what the standard 

deviation is. See the discussion in (2) a, b and c for similar explanations. 

Lemma 2: 

Let [ ] { }0,1 , 0,1n nx d∈ ∈  and qe  be a random variable generated from a distribution 

with mean ( )qE eµ = < ∞  and variance 2σ < ∞  where µ σ≥ , 2 nσ µ+ ≤  and 

n<µ . If ( )1
1Pr
3i ii

h x d ε⎡ ⎤− ≥ >⎢ ⎥⎣ ⎦
, then there exists a constant ( ) 0η ε > , such that 

( )( ) ( )1[ ]
Pr 1i qiq R n i q

h x d e η ε
⊆

∈

⎡ ⎤
− > + >⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

where η  is a function of ε .  
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Disqualifying Lemma 2 Proof: 

Let 1( )i i iY h x d= −  be i.i.d. random variables. For any fixed [ ]nq∈ , let qm = , the 

cardinality of q. Without loss of generality, assume { }mq ,,1L= . Given a random 

variable qe ,  and constant 0,a n⎡ ⎤∈ ⎣ ⎦ , we have 

1 1 1
1 1 , 2 1 , 2

m m m

i q i q q i q q
i i i

P Y e P Y e e a P Y e e a
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
> + = > + ≤ + > + >⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

      
1

1 , 2
m

i q q
i

P Y e e a
=

⎛ ⎞
≥ > + ≤⎜ ⎟

⎝ ⎠
∑  

       ( )
1

1 | 2 2
m

i q q q
i

P Y e e a P e a
=

⎛ ⎞
= > + ≤ ≤⎜ ⎟

⎝ ⎠
∑      

       ( )( )
1

1 | 2 1 2
m

i q q q
i

P Y e e a P e a
=

⎛ ⎞
= > + ≤ − >⎜ ⎟

⎝ ⎠
∑         

According to Chebyshev's Inequality, since qe  is a random variable with 

( )qE eµ = < ∞ , and 2σ < ∞ , then   

( ) ( )
( )

2

22 2
2

q qP e a P e a
a
σµ µ
µ

> = − > − ≤
−

 

Then, we obtain 

( )

2

2
1 1

(1) (2)

1 1 | 2 1
2

m m

i q i q q
i i

P Y e P Y e e a
a
σ
µ= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟> + ≥ > + ≤ −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑
144442444431442443

  (6.4) 

Let the probability ( )η ε  be equal to the product of term (1) and term (2) in formula (6.4).  

Next, we continue our proof by solving two problems, respectively. 

(1)   Prove ( )η ε  is a positive number: 
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In all steps of Dinur and Nissim (2003)’ proof for their Disqualifying Lemma, term 

(1) , 

1
1 | 2

m

i q q
i

P Y e e a
=

⎛ ⎞
> + ≤⎜ ⎟

⎝ ⎠
∑  

can be substituted for  

1
1 2

m

i
i

P Y e
=

⎛ ⎞
> +⎜ ⎟

⎝ ⎠
∑  

provided 0,a n⎡ ⎤∈ ⎣ ⎦ .  To see this we have the following: 

1
1 | 2

m

i q q
i

P Y e e a
=

⎛ ⎞
> + ≤⎜ ⎟

⎝ ⎠
∑ ( )

2

0 1
1

a m

i q
j i

P Y j P e j
= =

⎛ ⎞
= > + =⎜ ⎟

⎝ ⎠
∑ ∑     

  ( )
2

1 1
1 2

m a

i q
i j

P Y e P e j
= =

⎛ ⎞
≥ > + =⎜ ⎟

⎝ ⎠
∑ ∑ . 

Since qE e n⎡ ⎤ ≤⎣ ⎦ , for any a n≥ , ( )
2

0
0

a

q
j

P e j
=

= >∑ . Now, Dinur and Nissim 

(2003) proved 
2 /8

1
1 2 1 2

m
T

i
i

P Y e e−

=

⎛ ⎞
> + ≥ −⎜ ⎟

⎝ ⎠
∑  for the appropriate choice of T . Rescaling 

T  in proportion to ( )
2

0

a

q
j

P e j
=

=∑  proves our point. Similarly for the second part of his 

proof the parameters α  and β  can be rescaled in proportion to ( )
2

0

a

q
j

P e j
=

=∑ .  This gives 

then that 

( )
2 /8

2
1

21 | 2 max 1 2 ,
3 3 1

m
T

i q q
i

xP Y e e a e x
x

α α
β β

−

=

⎛ ⎞ ⎛ ⎞ −
> + ≤ ≥ − = =⎜ ⎟ ⎜ ⎟

−⎝ ⎠⎝ ⎠
∑  

where / 2x e β−=  with β  chosen large enough as seen in Section 6.2.  Thus 
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( ) ( )

2

2 2
1

21 1
1 2

m

i q
i

xP Y e x
x a

σ
µ=

⎛ ⎞⎛ ⎞ − ⎜ ⎟> + ≥ −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∑ . 

So the probability ( )η ε  will be a positive number as long as term (2) is greater 

than 0. Thus we need to have 

( )

2

21 0
2a
σ
µ

− >
−

 

which is true when 0
2

a µ σ−
≤ ≤  and 

2
a nσ µ+

≤ ≤  provided µ σ≥  and 

2 nσ µ+ ≤ , respectively.  These latter two conditions are assumed in the Lemma 2.  

Thus, 

( )( )
( )

2

1 2[ ] 1
Pr 1 1 | 2 1

2

m

i q i q qiq R n i q i
h x d e P Y e e a

a
σ
µ⊆

∈ =

⎛ ⎞⎡ ⎤ ⎛ ⎞
⎜ ⎟− > + > > + < −⎢ ⎥ ⎜ ⎟⎜ ⎟−⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎝ ⎠

∑ ∑  (6.5) 

where parameter 0, ,
2 2

a nµ σ σ µ− +⎡ ⎤ ⎡ ⎤∈ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
U . 

 (2)   We now maximize the lower bound over a . 

In order to derive a tight bound, we seek to find the maximum value of (6.5) 

subject to 0, ,
2 2

a nµ σ σ µ− +⎡ ⎤ ⎡ ⎤∈ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
U .  So 

( )

2

2
1 1

1 max 1 | 2 1
2

m m

i q i q qai i
P Y e P Y e e a

a
σ
µ= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟> + ≥ > + ≤ −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

 
( )

2

2
1

1 | 2 max 1
2

m

i q q ai
P Y e e a

a
σ
µ=

⎛ ⎞⎛ ⎞
⎜ ⎟≥ > + ≤ −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∑  
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where the a  in the first term is any 0, ,
2 2

a nµ σ σ µ− +⎡ ⎤ ⎡ ⎤∈ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
U .  Using (for this 

term) ( )=o na  gives us  

 
( ) ( )

2

2 2
1

21 max 1
1 2

m

i q ai

xP Y e x
x a

σ
µ=

⎛ ⎞⎛ ⎞ − ⎜ ⎟> + ≥ −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∑ . 

Note that 

( )

2

21
2a
σ
µ

⎛ ⎞
⎜ ⎟−
⎜ ⎟−⎝ ⎠

 

is decreasing over 0,
2

µ σ−⎡ ⎤
⎢ ⎥⎣ ⎦

 and increasing over ,
2

nσ µ+⎡ ⎤
⎢ ⎥⎣ ⎦

 so  we merely need to 

compare 

 
2

21 σ
µ

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

to 

 
( )

2

21
2 n

σ

µ

⎛ ⎞
⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

. 

By assumption  nµ >  so the latter is maximal.  Thus 

( )
( ) ( )

2

2 2
1

21 1 0
1 2

m

i q
i

xP Y e x
x n

ση ε
µ=

⎛ ⎞
⎛ ⎞ − ⎜ ⎟> + ≥ ≡ − >⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟−⎝ ⎠
∑ . 

End of proof. 

Lemma 2 is a crucial step for our model. The successful proof provides a bound on 

the error ε  in terms of the mean and variances of qe . In the next section, we will continue 
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discussing these two parameters. Based on the results of Lemma 2, we are able to derive 

a bound for the number of queries, within which the adversary would be able to 

compromise the database protected by using the variable-data perturbation method with a 

high probability (1 δ− ).  

6.4 The Bound of the Sample Size for the Variable-data Perturbation Case 

In this section, based on the proof of Lemma 2, we develop the sampling bound for 

the variable-data perturbation case from two approaches. In the first approach, we use 

Dinur and Nissim (2003)’s result directly from their Disqualifying Lemma proof in our 

bound; the second approach applies instead their sample bound to obtain a tighter bound.  

6.4.1 The Bound Based On the Disqualifying Lemma Proof 

Recall that ( )( ) ( )1D
err h c η ε>  (see section 6.3), and we intend to bound 

( )( )( ) ( )( )1:l

D
D S err h Sγ η ε>  

by the confidence parameter 0δ > .  

We use a probability ( )χ ε  to bound  

( )( ) ( )1D
err h c η ε> .  

Then, 

( )( )( ) ( )( ) ( ) ( )1 2: 1 nl l

D
D S err h S nγ η ε χ ε> ≤ +  

where ( ) ( )1χ ε η ε= − .  Thus we get 

( )( )( ) ( )( ) ( ) ( )1 2: 1 nl l

D
D S err h S nγ η ε χ ε> ≤ +  
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  ( )
( ) ( )

2

2 2
21 1 1
1 2

l

n xn x
x n

σ

µ

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟≤ + − −⎜ ⎟⎜ ⎟− ⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

 

Bounding this with δ  gives 

( )( )( )( ) ( )
( ) ( )

2

1 2 2 2
2: 1 1 1
1 2

l

nl

D

xD S err h S n x
x n

σγ ε δ
µ

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟> ≤ + − − ≤⎜ ⎟⎜ ⎟− ⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

 

Then, we take base 2 logarithm on both of the latter two sides to obtain  

 
( ) ( )

( )
2

2 2
2lg 1 1 lg lg 1
1 2

xl x n n
x n

σ δ
µ

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟− − ≤ − +⎜ ⎟⎜ ⎟− ⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

 

The minimum sample size is thus 

 ( )

( ) ( )
2

2 2

lg lg 1

2lg 1 1
1 2

n n
l

xx
x n

δ

σ

µ

− +
≥

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟− ⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

.    

 Since 
( )2

2
1

xx
x
−

−
, where / 2x e β−= , is a very small number, the resulting bound is 

very loose (as was the similar bound under the Dinur and Nissim framework discussed 

earlier).  If n  is small, the sample size l  can be even greater than 2n , which is the total 

number of all possible queries. With larger n , l  becomes much smaller than 2n . 

However, l  is still a very large number. In order to reduce the sample size l , we need to 

find a more practical value instead of 
( )2

2
1

xx
x
−

−
.   
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6.4.2 The Bound based on the Sample Size 

Starting from Dinur and Nissim (2003), the sample size l  is bounded by 2lgn n  if 

the fixed perturbation is less than n .  Therefore, we have a sufficient bound for the 

fixed-data perturbation case (see section 6.2 for the details): 

( ) ( )

( )

2

2

lg lg 1
lg

2lg 1
1

n n
l n n

xx
x

δ − +
≥ ≥

⎛ ⎞−⎜ ⎟−
⎜ ⎟−⎝ ⎠

 

Consider the boundary case 

( ) ( )
( )( )

2 lg lg 1
lg

lg 1
n n

n n
δ

ξ ε
− +

=
−

. 

Then 

( )( ) ( ) ( )
2

lg lg 1
lg 1

lg
n n

n n
δ

ξ ε
− +

− =  

( )
( ) ( )

2
lg lg 1

lg1 2
n n

n n
δ

ξ ε
− +

= −  

Based on the above result for ( )ξ ε , we replaced  

( )2
2
1

xx
x
−

−
 

with 

( ) ( )
2

lg lg 1
lg1 2
n n

n n
δ − +

−  

This formula provides a better value than ( )ξ ε  while developing a tighter bound 

for the sample size in the variable-data perturbation case.  
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Since the reasoning used by Dinur and Nissim (2003) to arrive at 
2lgn n  remains 

unchanged for our case, so we can use 

 
( ) ( )

2
lg lg 1

lg1 2
n n

n n
δ − +

−  

in place of our ( )η ε .  This gives 
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from which we obtain 
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    (6.7) 

From formula (6.7) we can see that the sample size l  decreases when µ  and σ  

decrease.  

6.4.3 Discussion 

As we know from section 6.2, the larger the number of camouflage vectors s  is, 

the larger the response intervals are, which lead to the larger perturbation mean and 
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standard deviation. This result simply implies that sample size l  increases with an 

increase of s .  

Our experiments based on the three examples in Garfinkel et al. (2002) support 

these conclusions. The database has 14 records, 14n = . Three cases are considered in 

Table 6-2.  

Table 6-2: The Relationship among µ , σ , s  and l . 
   Network 

Variable 3w =  and 1m =  5w =  and 2m =  7w =  and 3m =  

s  3 10 35 
µ  2.0236 2.7760 3.3019 
σ  1.1150 1.1114 1.174 
l  213 217 223 

 
From Table 6-2, we can see that the sample size l  increases while µ , σ  and  s  

increase. These results of sample sizes are very close to the bound 2lgn n  from Dinur and 

Nissim (2003) and much less than 142 16,384= . 

6.5 Estimated the Mean and Standard Deviation 

In the previous section, we derived a bound on the sample size, which is the 

minimum number of queries required to disclose the binary confidential information in a 

database protected by the variable-data perturbation method. The bound (see formula 6.7) 

is decided by four parameters: the number of database records n , the confidence 

parameter δ , and the mean µ  and standard deviation σ  of the perturbation distribution. 

Among these four parameters, n  and δ  are known and predetermined. In this section, we 

will develop a method to identify the estimated mean and standard deviation of the 

perturbation distribution. 
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Perturbations’ mean µ  and standard deviation σ  are fixed in the Garfinkel et al. 

(2002) as soon as the algorithm design is finished, such as those networks for camouflage 

vectors in the CVC technique. However, the actual mean and standard deviation can be 

calculated only if all responses from 2n  queries are obtained, which is not practical in 

most situations. Instead of computing the true mean and standard deviation from 2n  

queries, our heuristic method intends to estimates these two values approximately, 

denoted as µ%  and σ% , by using the following random sampling method. 

Let  

i : index of query i  

iq : the thi  query 

iqe% : interval length of query iq  

iµ% : mean of perturbations using queries 1, , iL  

iσ% : standard deviation of perturbations using queries 1, , iL  

il : sample size computed from iµ%  and iσ%  using formula (6.7) 

Table 6-3 lists the heuristic steps for estimating the mean, standard deviation and the 

bound on the sample size. 

We use the network example in Garfinkel et al. (2002) to illustrate our heuristic. 

The basic setting for the network algorithm is: there are 14n =  database records, and 

parameters 3w =  and 1m = . The true mean and standard deviation computed from 142  

queries are 2.023µ =  and 1.115σ = , which give a sample size 213l =  from formula 

(6.7). Also see Table 5-2 and Figure 5-1 for all camouflage vectors and the CVC network 
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algorithm. Next, we show how the heuristic is applied to estimate µ%  and σ%  for the CVC 

technique example in Garfinkel et al. (2002).  

Table 6-3: Heuristic to Estimate the Mean µ% , Standard Deviationσ% , and the Bound l% . 
 

Heuristic: 
 
0.  for ( 1i = ; 30i ≤ ; i + + )  

        Generate query iq  and record its perturbation 
iqe% . 

1. Generate query iq  and record its perturbation 
iqe% . 

2. Compute iµ%  and iσ%  using 
1
, ,

iq qe e% %L . 

3. Compute il  from formula (6.7) using the estimated iµ%  

and iσ% . 

4. Increment i  and repeat step 1 to step 3 until ii l≥ . This 

il  is the final bound on the sample size, l% . iµ%  and iσ%  are 

final values for the estimated µ%  and σ% . 

 
For example, the intruder sends a random query iq  to the database, asking how 

many employees in Company B have positive HIV (see Table 5-1). The query responds 

an interval answer as [ ]1, 2  (see Table 5-2 for the set of camouflage vectors), from which 

the random perturbation is recorded as 2 1 1
iqe = − =% . Continue sending queries and 

recording perturbations. The mean and standard deviation are computed as 1 j

i
qj

i

e

i
µ ==

∑ %
%  

and 
( )2

1 j

i
q ij

i

e u

i
σ =

−
=
∑ % %

%  using 
1
, ,

iq qe e% %L  when the number of queries is more than 30, 
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which is considered a large enough or representative sample size in statistics. The bound 

on the sample size il  is also computed using the estimated iµ%  and iσ%  by formula (6.7). 

Keep updating the values of iµ% , iσ%  and il  while receiving new query responses. At the 

same time, i  and il  are compared. The intruder stops sending queries when ii l≥ .  

In Table 6-4, we simulate this heuristic by running programming language C++ and 

record the data for iµ% , iσ%  and il  while the number of queries increases until ii l≥ . 

Table 6-4: Summary of the Estimated iµ% , iσ%  and il  in the CVC Example Network. 
thi  Query iµ%  iσ%  il  

30 1.935 0.948 210 

50 2.118 0.983 211 

80 2.098 1.018 211 

110 2.099 1.036 212 

140 2.135 1.069 212 

170 2.140 1.085 213 

200 2.124 1.102 213 

212 2.118 1.105 213 
 

From our example, the sample size computed from the estimated µ%  and σ%  is the 

same as the true bound, 213l l= =% . Although µ%  and σ%  are not exactly equivalent to the 

true µ  and σ , they are close enough to get the same or very similar bound on the sample 

size. After computing the bound, we run the LP algorithm (specified in section 6.2) to 

discover the true confidential vector from l  perturbed answers.  

In this chapter, we build PAC models and derive the bounds for both the fixed data 

perturbation and the variable data perturbation methods. First, according to Dinur and 
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Nissim (2003)’s Disqualifying Lemma, we derive a PAC bound for the fixed data 

perturbation, which is  

( ) ( )
( )( )

lg lg 1
lg 1

n n
l

δ
ξ ε

− +
≥

−
 

This bound is much looser than the sampling bound 2lgn n  developed in Dinur and 

Nissim (2003). The second bound is derived from our Lemma 2 for the variable data 

perturbation, which is  

 
( )

( ) ( )
2

2 2

lg lg 1

2lg 1 1
1 2

n n
l

xx
x n

δ

σ

µ

− +
≥

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟− ⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

    

where / 2x e β−= . This bound is still not tight enough to be useful. Then we have the third 

bound  

( )
( ) ( )

( )
2

lg lg 1 2
lg

2

lg lg 1

lg 1 1 2 1
2

n n
n n

n n
l

n

δ

δ
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− +

− +
≥

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

  

This bound is very practical and can be applied in a real database. In the next chapter, we 

will design some experiments to test our bound under different situations. 
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CHAPTER 7 
EXPERIMENTAL DESIGN AND RESULTS 

In Chapter 6, we built the PAC model and derived an error bound from the new 

Disqualifying Lemma (Lemma 2) for the variable data perturbation method. The bound 

determines the number of queries necessary to compromise binary confidential data in a 

database. In this chapter, we create a simulated database with one binary confidential 

field which is protected by the variable data perturbation. All experiments are conducted 

to illustrate our results from the previous chapter. Computational results are analyzed and 

compared to examine how the perturbations’ mean, standard deviation and distribution 

affect the bound on sample size and the level of disclosure accuracy.   

7.1 Experimental Environment and Setup 

Experiments are designed to empirically illustrate the level of accuracy with which 

an adversary can compromise a database protected by the variable-data perturbation 

method within a specific number of queries derived from our new Disqualifying Lemma 

(Lemma 2).  

Due to the limited capacity of our testing software CPLEX 8.0 (ILOG), our 

experiments can only consider the bound in formula (6.7) because the sample size 

computed from formula (6.6) generates an LP that is too large to be solved. For the same 

reason, we have to relax the requirement that n  needs to be large enough for formula 

(6.7) to hold for a specified ε  and instead choose a relatively small n  for solving the LP 

problem. Thus, all bounds used in our tests are computed from formula (6.7).  This bound 

is sufficient for large enough n  so we are examining that would apply to more benign 
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distribution cases.  As we see, the cases investigated seem to show some efficacy even 

under the various cases studied here. 

In our tests, the simulated database has 100 records with one confidential binary 

field. For each query we sample a perturbation width qe%  and generate an interval answer 

by randomly splitting qe%  into two values, each of which is deducted from or added to the 

true query answer to construct the lower and upper bound. The heuristic in Table 6-3 

shows how to estimate the mean and standard deviation of the perturbations from which 

the bound on the sample size l  can be computed.  The LP discussed in Chapter 6 is 

applied by the adversary to output the candidate binary vector. The sample size is 

computed using (6.7): 

( )
( ) ( )

( )
2

lg lg 1 2
lg

2

lg lg 1

lg 1 1 2 1
2

n n
n n

n n
l

n

δ

δ

σ

µ

− +

− +
≥

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

where 100n = and 0.05δ =  in our experiments.  

Four types of discrete perturbation distributions for s, qe ~ ( )2,D µ σ , are 

considered in the experiments:  

(1) Uniform distribution 

(2)  Symmetric Distribution 

(3) Distribution with Positive Skewness (Skew to the right) 

(4) Distribution with Negative Skewness (Skew to the left) 

There are four cases with different means and standard deviations under each type of 

distribution. So, a total of 16 experiments are conducted. See Table 7-1 for the summary 

of four cases. 
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Table 7-1: Summary of Four cases with Different Means and Standard Deviations. 

Variables 
Cases 

µ  σ  

Case 1 high high 
Case 2 high low 
Case 3 low high 
Case 4 low low 

7.2 Data Generation 

During the experiments, we assume all perturbations are distributed within different 

intervals [ ],a b  under each of the four cases. Table 7-2 lists those four intervals.  

Table 7-2: The Intervals of [ ],a b  under the Four Cases. 
 

Variables
Cases 

a b 

Case 1: high µ , high σ  1 18 
Case 2: high µ , low σ  5 14 
Case 3: low µ , high σ  1 10 
Case 4: low µ , lowσ  3 7 

In each test, we use the inverse transform method to sample random perturbations 

from a given distribution. The LP algorithm takes those perturbation values of qe  as the 

inputs and then outputs a candidate binary vector. Then we can compute the errors, which 

record the difference between the candidate vector and the true confidential data. We 

define an error rate as the percentage of errors that are present in the total number of 

database records. The average error rate is computed by running each case 100 times to 

reduce possible bias. The mean and standard deviation of every perturbation distribution 

need to satisfy three requirements (assumptions discussed in section 6.3 for Lemma 2 
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proof): (1) ( ) 2 nµ σ+ < ; (2) µ σ> ; and (3) nµ < . In our tests, 10n = , and 

different means and standard deviations are summarized in Table 7-3. 

 The following part presents 16 distribution plots with different means, standard 

deviations and distribution types. All perturbations randomly generated from those 

distributions for the tests are shown in the Appendix. All experiments results are 

summarized in Table 7-3.  

1.   Uniform Distribution 

In this category, perturbations are randomly generated from the following given 

uniform distributions. Every perturbation value can be produced with the same 

probability. Four different distributions with different means and standard deviations are 

shown in Figure 7-1.  
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Figure 7-1: Plots of Four Uniform Distributions of Perturbations at Different Means and 
Standard Deviations. A) Case 1: high µ , high σ , B) Case 2: high µ , low σ , C) Case 3: 
low µ , high σ  and D) Case 4: low µ , low σ . 



95 

 

2.   Symmetric Distribution 

Perturbations are distributed symmetrically in the following four cases. Every 

distribution’s mean, median and mode are all equal.  The four given distributions used to 

generate random perturbations in our tests are shown in Figure 7-2.  
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Figure 7-2: Plots of Four Symmetric Distributions of Perturbations at Different Means 
and Standard Deviations. A) Case 1: high µ , high σ , B) Case 2: high µ , low σ , C) 
Case 3: low µ , high σ  and D) Case 4: low µ , low σ . 

3.   Distribution with Positive Skewness 

Positive skewness indicates that the distribution skews to the right and its mean is 

greater than the median. Most of the perturbations are less than the average. Random 

perturbations are generated from the following four given distributions with different 

means and standard deviations shown in Figure 7-3.  
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Figure 7-3: Plots of Four Distributions with Positive Skewness of Perturbations at 
Different Means and Standard Deviations. A) Case 1: high µ , high σ , B) Case 2: high 
µ , low σ , C) Case 3: low µ , high σ  and D) Case 4: low µ , low σ . 

4.   Distribution with Negative Skewness 

Negative skewness indicates the distribution skews to the left and its median is 

greater than the mean which is less than most of the values. Random perturbations are 

generated from the following four given distributions with different means and standard 

deviations shown in Figure 7-4.   

7.3 Experimental Results 

Experiments are conducted to disclose the confidential binary data in a simulated 

database. Four types of perturbation distributions, each of which has four cases, are 

considered. The LP algorithm outputs the candidate confidential vector at the end by 

running C++ and CPLEX. Our program, which simulates queries and their perturbations, 
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does not deal with the case where the same query should be modified by the same 

perturbation, since the probability that one query is chosen twice during one run is very 

small ( 100

1
2

). 
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Figure 7-4: Plots of Four Distributions with Positive Skewness of Perturbations at 
Different Means and Standard Deviations. A) Case 1: high µ , high σ , B) Case 2: high 
µ , low σ , C) Case 3: low µ , high σ  and D) Case 4: low µ , low σ . 
 
7.3.1 Experiment 1 

The bound on the sample size (from formula 6.7) and average error rate are 

computed. Table 7-3 lists the information about the mean and standard deviation, and 

also records computational results about the sample size and average error rate. 
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Table 7-3: Experiments Results on 16 tests with the Means, Standard Deviations, Sample 
Sizes and Average Error Rates. 

 
Figure 7-5 shows that case 1 can always be compromised more than the other three 

cases, no matter what type of distribution it has. Although the result seems 

counterintuitive at first sight, it does support one of our assumptions in section 6.3. A 

high mean and high standard deviation of a perturbation distribution indicate that many 

query responses have large perturbations which may perturb the true answer too much to 

be useful for the user, while other queries provide very tight answers which can reveal the 

                                 Variables 
 

Distributions and Cases 
µ  σ  ( ) 2µ σ+  l  Average  

Error Rate (%) 

Case 1 9.50 4.91 7.20 5715 12.12 

Case 2 9.50 2.60 6.05 4719 14.05 

Case 3 5.50 2.60 4.05 4569 13.29 
Uniform 

Case 4 5.50 0.87 3.18 4443 13.83 

Case 1 9.50 4.85 7.18 5678 12.28 

Case 2 9.50 1.96 5.73 4584 13.94 

Case 3 5.50 2.74 4.12 4587 13.71 
Symmetric 

Case 4 5.00 1.06 3.03 4438 13.84 

Case 1 8.36 4.74 6.56 5342 13.15 

Case 2 8.12 2.16 5.14 4574 14.26 

Case 3 4.22 2.53 3.37 4537 13.75 
Positive 

Skewness 

Case 4 4.51 1.13 2.82 4440 13.46 

Case 1 9.99 4.41 7.20 5536 12.70 

Case 2 9.99 2.47 6.23 4717 13.79 

Case 3 5.60 2.54 4.07 4564 12.83 
Negative 
Skewness 

Case 4 5.49 1.13 3.31 4443 13.49 
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confidential data easily. It explains why case 1 with a high mean and high standard 

deviation still can have a low error rate. 

Average Error Rates for 16 Tests
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Figure 7-5:  Plot of Average Error Rates (%) for 16 Tests. 

Among the four cases, case 2 is more difficult to disclose for any type of 

distribution. This is true because high mean and low standard deviation indicate that most 

of the perturbations are clustered around the high average mean value which provides 

good protection to the database, but the user may get little information from the query 

answers.  

An example similar to case 2 occurred in Garfinkel et al. (2002). The CVC 

technique designed three sample networks to construct the camouflage vectors for an 

example database (Table 5-1). Among those three networks, the one with the perfect 

column balancing, which provides the best protection to the database according to the 

paper, has a high perturbation mean 3.302µ =  which is close to 3.742n =  and low 

standard deviation 1.174σ = , similar to our case 2. Based on our experimental results, 

this network does protect the database well (recall that case 2 always has a high error 
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rate), however, most of the time, the user get little information from query answers 

protected by this security method. Figure 7-6 shows 61% of the perturbations are 

clustered around the mean, and the standard deviation is small. 

Probability of Histogram of Perturbations 
for the CVC Network with w=7 and m=3
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Figure 7-6: The Probability Histogram of Perturbation Distribution for the CVC Network 

Error rates of case 3 and case 4 are always between those of case 1 and case 2, and 

they offer the user more accurate data than case 2. Case 3 is supposed to have a lower 

error rate than case 1 because of its low mean and high standard deviation which indicate 

most of the query answers have small perturbations. However, a low mean and high 

standard also generate a smaller sample size which may explain why case 3 has a higher 

error rate than case 1 in our tests.  

Figure 7-7 records the bounds on the sample size for 16 tests. It shows that the 

bound increases with increases of the mean and standard deviation in all types of 

distributions. Dinur and Nissim (2003) gave the bound for the fixed data perturbation as 

2lgn n , which is 4,415 in our experiments. Most of our bounds are a little looser than this 

value.   
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Bounds on the Sample Size for 16 tests
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Figure 7-7: Plot of Bounds on the Sample Size for 16 Tests. 

7.3.2 Experiment 2 

Results in Experiment 1 are based on the sample sizes computed from different 

means and standard deviations in 16 cases. In order to reduce the bias because of the 

different sample sizes, we also computed the average error rates by using 6,000l =  for 

each case. Table 7-4 shows the average error rate for each case when the sample size is 

the same. All other variables comply with those in Table 7-3. 

Table 7-4: Experimental Results on the Average Error Rates with 6,000l =  for 16 Cases.  
Variables 

 µ  σ  
Average 

Error Rate (%) 
6,000l =  

Case 1 9.50 4.91 11.91 

Case 2 9.50 2.60 12.92 

Case 3 5.50 2.60 11.72 
Uniform 

Case 4 5.50 0.87 12.28 

 
 
 

Distributions 
and Cases 
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Table 7-4. Continued. 
Variables 

 µ  σ  
Average 

Error Rate (%) 
6,000l =  

Case 1 9.50 4.85 12.16 

Case 2 9.50 1.96 12.98 

Case 3 5.50 2.74 11.51 
Symmetric 

Case 4 5.00 1.06 12.21 

Case 1 8.36 4.74 12.11 

Case 2 8.12 2.16 12.52 

Case 3 4.22 2.53 11.35 

Positive 
Skewness 

Case 4 4.51 1.13 12.28 

Case 1 9.99 4.41 12.09 

Case 2 9.99 2.47 12.53 

Case 3 5.60 2.54 11.24 

Negative 
Skewness 

Case 4 5.49 1.13 12.25 

 
As we suspected case 3, with low mean and high standard deviation, becomes the 

most unsafe situation for the database security conflicting with the conclusions from 

Table 7-3. Figure 7-8 displays the results for 16 tests. 

In sum, experiment 1 suggests that case 1 is always worse than case 2 in terms of 

protecting the database. We can conclude from the test results from experiment 1 that a 

database may be compromised more easily if its perturbation distribution has a high mean 

and high standard deviation. A high mean and low standard deviation can best protect a 

database, but the query answer may be useless because of the large perturbations. Case 3, 

with low mean and high standard deviation, usually provides the user with the most 

Distributions 
and Cases 
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useful query responses. Experiment 2 shows that with the same sample sizes, a database 

with perturbations in case 3 is the easiest to be discovered. 

Average Error Rates with Same Sample Size 
l=6,000  for Each Case
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Figure 7-8:  Plot of Average Error Rates (%) for 16 tests with the Same Sample Size 

6,000l = . 

In general, we see that a high level of protection may yield answers that are not 

useful and useful answers compromise the database. The experimental results also 

support our observation from chapter 6 and show that with high probability, the binary 

confidential information in a database protected by the variable data perturbation can be 

disclosed at small error within a certain number of queries as suggested by Inequality 

(6.7).  
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CHAPTER 8 
CONCLUSION 

8.1 Overview and Contribution 

In this dissertation, we address the statistical database security problems from a 

new perspective by applying PAC learning theory. By learning from examples, the main 

idea of the PAC model is that the hypothesis generated from the learning algorithm 

approximates the target concept with a high probability at small error in polynomial time 

and/or space. By deploying the PAC learning theory, we regard the adversary of the 

database as a learner who tries to discover the confidential data within a certain number 

of queries. This new approach is different from the traditional methods in the literature. 

Instead of building models to protect the confidential information, we focus on how to 

compromise the database, therefore finding out how much protection is necessary to 

prevent the disclosure of sensitive information contained in a database.  

First, we review the SDC methods in the literature and focus our research on a new 

data perturbation method. Inspired by the CVC interval protection technique developed 

by Garfinkel et al. (2002), we define this new technique as the variable data perturbation 

method which can be viewed as modifying the confidential information by adding 

discrete noise qe .  Although the random perturbations have an unknown distribution from 

an intruder’s perspective, we can estimate the parameters, such as its mean and variance 

using a heuristic method detailed in Chapter 6.  

We also extend the work by Dinur and Nissim (2003). In their study, all queries 

have fixed perturbations e . No information is provided about the distribution of the 
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perturbations. They derived a bound on the sample size, within which the true 

confidential binary string should be discovered with high probability by running an LP 

algorithm. It is assumed that the fixed perturbations may happen on either side of the 

query responses while setting up constraints for the LP algorithm.  

In our paper, we interpret their results within the methodology of PAC learning 

theory and derive a bound for the fixed data perturbation method. Then, we develop the 

PAC bounds on the sample size from our Lemma 2 for the variable data perturbation 

method. Within the PAC number of queries, a database protected by the variable data 

perturbation can be compromised with a high probability at small error. Since the bound 

is decided by parameters, such as the mean and standard deviation, a heuristic method is 

also introduced to estimate these two values. 

To illustrate our results, we perform a number of numerical experiments conducted 

on a simulated database over four types of perturbation distributions with different means 

and standard deviations. The test results show that these databases can be compromised at 

fairly high levels and also show that the mean and standard deviation of the perturbation 

distribution are more important factors than the type of the distribution in terms of 

affecting the error rate and the sample size.  

8.2 Limitations 

There are three main limitations in our work on the database security problems.  

First, we only consider the case that the confidential data is perturbed by discrete 

random perturbations even though continuous noises can also be added to the database 

protected by the variable data perturbation method. Second, when deriving the bound, we 

assume that the confidential item is binary valued .  In general, a confidential field can 

contain many types of data, such as real numbers or categorical data. So, this assumption 
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may constrain the application of this bound. Last, the experiments are conducted on a 

simulated database rather than a real database. Moreover, the simulated database used in 

the experiments had a relatively small number of records (100) due to the limitations of 

our testing software.   

8.3 Directions for Future Research 

In future research, we can consider other types of confidential items such as real-

valued or categorical.  We may also examine other types of perturbations, such as real-

valued ones.  Even within Dinur and Nissim (2003) type of setting we might consider a 

case where their perturbation is fixed but initially drawn from some known distribution. 

A typical example for the variable data perturbation is the CVC technique 

developed by Garfinkel et al. (2002). We simulated their network algorithm with 

different parameters w  and m  on the example database in Garfinkel et al. (2002) and 

observed on a number of cases that, given a large-enough number of random queries, all 

camouflage vectors could be discovered by running the LP algorithm used in Chapter 6. 

Based on these experimental results, we conjecture that every camouflage vector in the 

Bin-CVC technique is an extreme point of a polyhedron formed by all the 2n  queries 

and, conversely, that all the extreme points are camouflage vectors. How this (if true) 

pertains to polytopes formed with a subset of the 2n  possible queries needs to be 

investigated.  We suspect that if the output from the LP algorithm is an integer vector, 

then it will be one of the extreme points, therefore, one of the camouflage vectors.  This 

is an important possible weakness of the CVC method since there are generally few 

camouflage vectors and one is the true vector of database values.  The discovery of the 

camouflage vectors reduces the intrusion problem to discovering which amoung a small 
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number of vectors, is the true vector.  Insider information on small number of query 

values could easily determine which is the true vector. 

Muralidhar et al. (2004) compromised CVC interval protection empirically by 

employing a simple deterministic procedure. They also claimed that if the CVC technique 

intends to prevent the interval disclosure, such as increasing the number of camouflage 

vectors, data utility has to be damaged substantially. Our future research will try to 

extend their work and propose a more general theoretical method to address the problem.  

Since choosing an appropriate security method depends greatly on how well it can 

balance the tradeoff between information loss and disclosure risk, our future task is to 

develop a general performance measurement which can be used to assess 

comprehensively the disclosure risk and information loss for the variable-data 

perturbation method, such as the measure for the interval protection. By applying this 

measure, we would be able to check the utility of the interval answer from the Bin-CVC 

technique and investigate whether CVC interval protection is practical or whether the 

quality of responses to queries outweighs the high level of protection for the database.  

We hope this evaluation scheme can become a guideline for selecting ideal security 

methods in SDBs under some specific situations. 
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APPENDIX A 
NOTATION TABLES 

Table A-1: Notations in Machine Learning and PAC Learning Theory. 
Notation Definition 

f  Target concept (or target function) 
x  Instance 
X  Instance space or Input space 
y  Output 
Y  Output space 
S  Sample 
l  Sample size 

n  Number of attributes or number of records 
in the database 

h  Hypothesis 

H  Hypothesis space  
 

H  Cardinality of H  
C  Concept space 
D  Probability distribution 
( )

D
err  Probability of error 
ε  Accuracy parameter 
δ  Confidence parameter 

iE  Event i  

sε  Training error 
d  VC dimension 
( )L  Loss function 
( )R α  Risk functional 
z  Observation pairs 

( ),g z α  Set of target functions with parameters 
α∈Λ  

( )F z  Unknown Probability distribution 
( )empR  Empirical risk 
( )structR  Structural risk 
( )boundR  Risk bound 
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Table A-2: Notations in Statistical Disclosure Control Methods 
Notation Definition 

µ  Mean 
2σ  Variance 

d  True confidential vector 
e  Perturbation vector 
π  Random variable with a normal distribution 
V  Covariance matrix 
τ  Number of camouflage vectors 
P  Set of camouflage vectors 

jP  thj  camouflage vector, 1, ,j k= L  

j
ip  

thi  element in thj  camouflage vector, 
1, ,i n= L  

q  Query 
( )u  Upper bound 
( )l  Lower bound 
( )I  Interval between ( )l  and ( )u  

w  Total number of paths in the network 
algorithm 

m  Number of paths consisting only of true 
value edges 

*p  Proportion of ones in the confidential vector 
jp  Proportion of ones in the thj  camouflage 

vector 
( )card q  Cardinality of query q  

qe  Perturbation vector generated from an 
algorithm 

( )a q  True query answer 

( )A q  Perturbed query answer 
k  Precision parameter 
K  Set of precision parameters 

( )dist  Hamming distance 
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APPENDIX B 
DATA GENERATED FOR THE UNIFORM DISTRIBUTION 

Table B-1: Case 1 with High Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 600 0.06 0.06 
2 600 0.06 0.11 
3 600 0.06 0.17 
4 600 0.06 0.22 
5 600 0.06 0.28 
6 600 0.06 0.33 
7 600 0.06 0.39 
8 600 0.06 0.44 
9 600 0.06 0.50 
10 600 0.06 0.56 
11 600 0.06 0.61 
12 600 0.06 0.67 
13 600 0.06 0.72 
14 600 0.06 0.78 
15 600 0.06 0.83 
16 600 0.06 0.89 
17 600 0.06 0.94 
18 600 0.06 1.00 

Total 10800 1.00   
 
Table B-2: Case 2 with High Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 1000 0.1 0.1 
6 1000 0.1 0.2 
7 1000 0.1 0.3 
8 1000 0.1 0.4 
9 1000 0.1 0.5 
10 1000 0.1 0.6 
11 1000 0.1 0.7 
12 1000 0.1 0.8 
13 1000 0.1 0.9 
14 1000 0.1 1 
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Table B-2. Continued 
Perturbation Frequency Probability CDF 

15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table B-3: Case 3 with Low Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 1000 0.1 0.1 
2 1000 0.1 0.2 
3 1000 0.1 0.3 
4 1000 0.1 0.4 
5 1000 0.1 0.5 
6 1000 0.1 0.6 
7 1000 0.1 0.7 
8 1000 0.1 0.8 
9 1000 0.1 0.9 
10 1000 0.1 1 
11 0 0  
12 0 0  
13 0 0  
14 0 0  
15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table B-4: Case 4 with Low Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 2000 0.2 0.2 
4 2000 0.2 0.4 
5 2000 0.2 0.6 
6 2000 0.2 0.8 
7 2000 0.2 1 
8 0 0  
9 0 0  
10 0 0  
11 0 0  
12 0 0  
13 0 0  
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Table B-4 Continued 
Perturbation Frequency Probability CDF 

15 0 0  
14 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
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APPENDIX C 
DATA GENERATED FOR THE SYMMETRIC DISTRIBUTION 

Table C-1: Case 1 with High Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 450 0.045 0.045 
2 460 0.046 0.091 
3 480 0.048 0.139 
4 520 0.052 0.191 
5 530 0.053 0.244 
6 570 0.057 0.301 
7 620 0.062 0.363 
8 670 0.067 0.43 
9 700 0.07 0.5 
10 700 0.07 0.57 
11 670 0.067 0.637 
12 620 0.062 0.699 
13 570 0.057 0.756 
14 530 0.053 0.809 
15 520 0.052 0.861 
16 480 0.048 0.909 
17 460 0.046 0.955 
18 450 0.045 1 

Total 10000 1  
 
Table C-2: Case 2 with High Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 200 0.02 0.02 
6 500 0.05 0.07 
7 900 0.09 0.16 
8 1300 0.13 0.29 
9 2100 0.21 0.5 
10 2100 0.21 0.71 
11 1300 0.13 0.84 
12 900 0.09 0.93 
13 500 0.05 0.98 
14 200 0.02 1 



114 

 

Table C-2 Continued 
Perturbation Frequency Probability CDF 

15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table C-3: Case 3 with Low Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 875 0.0875 0.0875 
2 905 0.0905 0.178 
3 970 0.097 0.275 
4 1050 0.105 0.38 
5 1200 0.12 0.5 
6 1200 0.12 0.62 
7 1050 0.105 0.725 
8 970 0.097 0.822 
9 905 0.0905 0.9125 
10 875 0.0875 1 
11 0 0  
12 0 0  
13 0 0  
14 0 0  
15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table C-4: Case 4 with Low Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 800 0.08 0.08 
4 2400 0.24 0.32 
5 3600 0.36 0.68 
6 2400 0.24 0.92 
7 800 0.08 1 
8 0 0  
9 0 0  
10 0 0  
11 0 0  
12 0 0  
13 0 0  
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Table C-4. Continued. 
Perturbation Frequency Probability CDF 

14 0 0  
14 0 0  
15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
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APPENDIX D 
DATA GENERATED FOR THE DISTRIBUTION WITH POSITIVE SKEWNESS 

Table D-1: Case 1 with High Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 500 0.05 0.05 
2 550 0.055 0.105 
3 600 0.06 0.165 
4 700 0.07 0.235 
5 800 0.08 0.315 
6 905 0.0905 0.4055 
7 950 0.095 0.5005 
8 755 0.0755 0.576 
9 600 0.06 0.636 
10 500 0.05 0.686 
11 470 0.047 0.733 
12 420 0.042 0.775 
13 400 0.04 0.815 
14 390 0.039 0.854 
15 380 0.038 0.892 
16 370 0.037 0.929 
17 360 0.036 0.965 
18 350 0.035 1 

Total 10000 1  
 
Table D-2: Case 2 with High Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 600 0.06 0.06 
6 1500 0.15 0.21 
7 3000 0.3 0.51 
8 1600 0.16 0.67 
9 900 0.09 0.76 
10 800 0.08 0.84 
11 600 0.06 0.9 
12 500 0.05 0.95 
13 300 0.03 0.98 
14 200 0.02 1 
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Table D-2. Continued. 
Perturbation Frequency Probability CDF 

15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table D-3: Case 3 with Low Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 1200 0.12 0.12 
2 1600 0.16 0.28 
3 2250 0.225 0.505 
4 1300 0.13 0.635 
5 900 0.09 0.725 
6 700 0.07 0.795 
7 600 0.06 0.855 
8 550 0.055 0.91 
9 500 0.05 0.96 
10 400 0.04 1 
11 0 0  
12 0 0  
13 0 0  
14 0 0  
15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table D-4: Case 4 with Low Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 2000 0.2 0.2 
4 3500 0.35 0.55 
5 2400 0.24 0.79 
6 1600 0.16 0.95 
7 500 0.05 1 
8 0 0  
9 0 0  
10 0 0  
11 0 0  
12 0 0  
13 0 0  
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Table D-4. Continued. 
Perturbation Frequency Probability CDF 

14 0 0  
15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
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APPENDIX E 
DATA GENERATED FOR THE DISTRIBUTION WITH NEGATIVE SKEWNESS 

Table E-1: Case 1 with High Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 320 0.032 0.032 
2 350 0.035 0.067 
3 380 0.038 0.105 
4 410 0.041 0.146 
5 450 0.045 0.191 
6 480 0.048 0.239 
7 520 0.052 0.291 
8 550 0.055 0.346 
9 600 0.06 0.406 
10 850 0.085 0.491 
11 1090 0.109 0.6 
12 850 0.085 0.685 
13 800 0.08 0.765 
14 700 0.07 0.835 
15 600 0.06 0.895 
16 500 0.05 0.945 
17 300 0.03 0.975 
18 250 0.025 1 

Total 10000 1  
 
Table E-2: Case 2 with High Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 550 0.055 0.055 
6 650 0.065 0.12 
7 750 0.075 0.195 
8 800 0.08 0.275 
9 950 0.095 0.37 
10 1500 0.15 0.52 
11 1800 0.18 0.7 
12 1400 0.14 0.84 
13 1000 0.1 0.94 
14 600 0.06 1 
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Table E-2. Continued. 
Perturbation Frequency Probability CDF 

15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table E-3: Case 3 with Low Mean and High Standard Deviation 
Perturbation Frequency Probability CDF 

1 700 0.07 0.07 
2 800 0.08 0.15 
3 900 0.09 0.24 
4 1000 0.1 0.34 
5 1100 0.11 0.45 
6 1400 0.14 0.59 
7 1700 0.17 0.76 
8 1000 0.1 0.86 
9 800 0.08 0.94 
10 600 0.06 1 
11 0 0  
12 0 0  
13 0 0  
14 0 0  
15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
 
Table E-4: Case 4 with Low Mean and Low Standard Deviation 
Perturbation Frequency Probability CDF 

1 0 0 0 
2 0 0 0 
3 500 0.05 0.05 
4 1600 0.16 0.21 
5 2400 0.24 0.45 
6 3500 0.35 0.8 
7 2000 0.2 1 
8 0 0  
9 0 0  
10 0 0  
11 0 0  
12 0 0  
13 0 0  
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Table E-4 Continued 
Perturbation Frequency Probability CDF 

14 0 0  
15 0 0  
16 0 0  
17 0 0  
18 0 0  

Total 10000 1  
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