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Abstract— In this paper we present a powerful distributed
framework for finding similar trajectories in a smartphone
network, without disclosing the traces of participating users.
Our framework, coined SmartTrace, exploits opportunistic and
participatory sensing in order to quickly answer queries of the
form: “Report the users that move more similar to Q, where
Q is some query trace.” SmartTrace, relies on an in-situ data
storage model, where geo-location data is recorded locally on
smartphones for both performance and data-disclosure reasons.
SmartTrace then deploys an efficient top-K query processing
algorithm that exploits distributed trajectory similarity measures,
resilient to spatial and temporal noise, in order to derive the most
relevant answers to Q quickly and efficiently. We assess our ideas
with realistic and real workloads from Microsoft Research Asia
and other sources. Our study reveals that SmartTrace computes
the desired results with 74% less energy consumption and 13%
faster than its centralized and decentralized counterparts. Our
experimental results also confirm our analytical study.

I. INTRODUCTION

The widespread deployment of smartphone devices featur-

ing geo-location (e.g., AGPS, Cell tower and WLAN position-

ing) and other sensing capabilities (e.g., proximity, ambient

light, accelerometer, camera, microphone, etc.) along with

Internet connectivity through WLAN, WCDMA/UMTS(3G),

HSPA(3.5G) and LTE/WiMAX(4G) networks, have brought

a revolution in location-oriented mobile applications and ser-

vices. IMS Research and Comscore reported over 225M smart-

phone sales in February 2010 (i.e., RIM, Apple, Microsoft,

Google and Palm) and according to the Focal Point Group,

handheld smart devices (including mobile phones and PDAs)

could number 1 billion in 2010. We define a Smartphone

Network as “a set of smartphone devices that communicate

in an unobtrusive manner, without explicit user interactions,

in order to realize a collaborative or social task.”

There is already a proliferation of innovative applications

founded on smartphone networks. One example is opportunis-

tic and participatory sensing [14], [3], [10], where applications

can task mobile nodes in a given region to provide information

about their vicinity using their sensing capabilities. Another

example is road traffic delay estimation [33] using WiFi

beams collected by smartphone devices rather than invok-

ing expensive GPS acquisition. On the social side, Google

Latitude1 enables users to track the places they and their

social network have visited. The given service already reports

over 3M enrolled users and over 1M active users, despite

the controversial privacy concerns. Similarly, mobile social

networking applications like Foursquare, Gowalla and Loopt

enjoy enormous success in the Smartphone community and

academic efforts in this direction are also underway [31].

In this paper, we present a powerful distributed trajectory

similarity search framework, coined SmartTrace, which can

be utilized as a middleware service to a smartphone stack in

order to promptly answer queries of the form: “Report the

users 2 that move more similar to Q, where Q is some query

trace. The notion of similarity captures the trajectories that

differ only slightly, in the whole sequence, from the query Q.

In particular, our framework is suitable for intelligent trans-

portation systems [39], [33], social networking applications

for smartphones [31], [40], habitant monitoring systems [25]

and others.

An indicative query supported by our framework might be:

“Find whether there is a cycling route from the Metropolitan

Museum of Art in Manhattan, through central park to the

Juilliard School”), or “Find which Zebras moved more closely

to Zebra named Abby before it got injured” [25]. There are

already centralized trajectory search services such as Geo-

Life3, GPS-Waypoints4, ShareMyRoutes5, and their academic

counterparts [22], to perform this kind of querying. However,

these services store user’s trajectories on a centralized or

cloud-like infrastructure. On the other hand, the techniques

proposed in this work are decentralized and maintain the

data in-situ (i.e., on the smartphone that generated the data).

When a query emerges, we collect a set of scores from

participating nodes (as opposed to collecting their location

continuously) and derive the answer intelligently based on

these scores only without ever unveiling the target trajectories

to the query processor. While this cannot take advantage of

global knowledge structures available in a centralized setting

1Google Latitude, 03/2011, http://www.google.com/latitude
2We shall use the terms User, Object and Smartphone interchangeably
3GeoLife, 03/2011, http://research.microsoft.com/en-us/projects/geolife/
4GPS Waypoints, 03/2011, http://www.gps-waypoints.net
5ShareMyRoutes.com, 03/2011, http://www.sharemyroutes.com/



(e.g., catalogs, indexes, etc.), our setting has the following

important advantages:

i. Smartphones have expensive communication mediums,

thus by continuously transferring massive amounts of

data to the query processor can both deplete the precious

smartphone battery faster, increase user-perceived delays

(as shown in Section II-B and [28]), but can also quickly

degrade the network health (e.g., consider the overload

of AT&T’s cellular infrastructure in 2009 by I-Phone

users accessing data services6.)

ii. Continuously disclosing user positional data to a cen-

tral entity might compromise user privacy in serious

ways (e.g., Latitude associates the user’s location with

a Google account and shares that info with selected

friends.) This creates services that have been criticized

seriously in recent years7. Finally, continuous data col-

lection might not be possible as several regions are still

solely relying on 2G networks and many of them do not

have WiFi coverage either, thus are disconnected from

the Internet for extended periods of time.

In the proposed SmartTrace framework, the tuples of each

target trajectory Ai, are compared with the points of Q within

some temporal and spatial window. SmartTrace, circumvents

expensive and massive similarity executions by running an

inexpensive linear-time (i.e., O(|Ai|)-time) computation on the

smartphones in a pre-processing step. It then uses an iterative

top-K processing algorithm in order to iteratively identify the

K most similar trajectories to Q, without ever pulling the tar-

get trajectories to the centralized query processor. We validate

our algorithm both analytically and empirically, showing that

it offers many desirable properties that have not been studied

previously. Our contributions are summarized as following:

• We propose an innovative framework for disclosure-free

query processing in Smartphone Networks founded on

in-situ data storage and the SmartTrace algorithm.

• We provide a theoretical analysis of our framework, using

a new energy and time complexity model we define

for smartphone networks. Our analysis shows that our

algorithm provides high response time with low energy

consumption without ever unveiling the complete trajec-

tories to the query processor.

• We confirm our analytical study with extensive experi-

mentation on both realistic and real datasets and the utility

of our system using a prototype system in Android.

The remainder of the paper is organized as follows: Sec-

tion II provides our system model and formulates the problem.

Section III provides the related work of our studied problem,

Section IV presents the SmartTrace framework and Section V

a detailed performance analysis of our framework. Section VI,

presents our experimental methodology and experimental re-

sults, while Section VII concludes the paper.

6“Customers Angered as iPhones Overload AT&T”, Jenna Wortham, The
New York Times (online), Sept. 2nd, 2009.

7“Google Apologizes for Buzz Privacy”, David Coursey, PC World Busi-
ness Center (online), Feb. 15th, 2010.
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Fig. 1. Left: The system architecture of the SmartTrace Query Processing
Framework; Right: Demonstration of the SmartTrace framework we have
developed for Android-based smartphones [12].

II. PROBLEM FORMULATION

In this section we provide the notation used throughout the

paper. Specifically, we formalize our system model and also

show why such a model is representative for a smartphone

network using data we profiled on a real device.

A. System Model

Let {A1, A2, ..., Am} denote a set of m smartphone users

moving in the xy-plane (see Figure 1 left). At each discrete

time instance, object Ai (∀i ≤ m) generates a spatio-temporal

record Aij = (tij , xij , yij), where tij denotes Ai’s temporal

dimension and xij , yij Ai’s two spatial dimensions. Conse-

quently, a trajectory can be thought as a continuous sequence

of l such records, i.e., Ai = (Ai1, Ai2, · · · , Ail) (l also denoted

as |Ai|). Here the complete trace of a trajectory Ai is stored in

its entirety locally on a smartphone (e.g., on flash memory).

A smartphone is a battery-operated device, thus has limited

computational resources and also networking operations are

expensive in terms of energy, due to MAC-layer collisions and

re-transmissions. Additionally, the link is asymmetric with the

uplink being much slower than the downlink (typically one

order of magnitude).

Now let us consider an arbitrary snapshot similarity query

Q = (Q1, Q2, · · · , Qf ), where f << l (f also denoted as

|Q|), which aims to uncover the K most relevant trajectories

to Q, for a user-defined constant K. Q might either be initiated

by a smartphone and propagated towards the querying node

QN , or might be initiated at QN . Finding the similarity

between Q and Ai (i ≤ m), calls for specialized similarity

measures that can operate under spatial and temporal noise.

For instance, if either of the trajectories moves earlier in time

or features some slight deviation in its spatial movement,

then the measure must still yield high levels of similarity.

Although we shall explain these similarity measures more

precisely in the next section, let us for the moment assume

that there is some function FullM(Q,Ai), which performs

the trajectory comparison between Q and Ai accurately, but

at a high computational cost. FullM(Q,Ai) returns a score

in the range [0..1] (where 1 denotes highest similarity). In

a smartphone network setup, FullM(Q,Ai) can either be

conducted in a centralized fashion (i.e., after transferring all



TABLE I

ENERGY PROFILING OUR HTC HERO SMARTPHONE: COMPUTATION AND

NETWORK TRANSFER ARE EXPENSIVE IN TERMS OF ENERGY AND TIME.

Basic Operation on Smartphone Power
(mW = mJ/s)

CPU Idle (OS running) 175 mW
CPU Busy (Processing) 369 mW
WiFi Idle (Connected) 38 mW

WiFi Busy (Uplink 123Kbps, -58dBm) 600 mW
LCD Brightness (economy mode) 300 mW

Function (len(Ai) = 100K 18-bytes points) Time

Transmit(Ai, server) (from Smartphone) 117 seconds
FullM(Q,Ai) (on Smartphone) 111 seconds

m trajectories to QN ), or in a decentralized fashion (i.e., after

having each smartphone conducting FullM(Q,Ai) locally

and then identifying the desired result). As we will show

in our analytical and experimental analysis, the Centralized

approach performs really bad in terms of energy and response

time but also comes at a higher privacy risk, as the users need

to share their complete trajectory with QN . The Decentralized

approach on the other hand, performs also extremely bad in

terms of energy consumption as it invokes expensive trajec-

tory comparison metrics on all smartphone participants. The

SmartTrace approach we propose in this work performs well

both with respect to response time and energy, but also does

so without ever revealing the complete user trajectories to QN
(i.e., it only returns the matched subsequence of length |Q|,
where |Q| << l.)

B. Quantifying the System Model

In this subsection we present a set of real measurements we

obtained from our prototype system implemented for Android

smartphones. We use these measurements to explain why our

system model captures precisely the intrinsic characteristics

of a smartphone network. Using our system model, we will

be able to analytically explain our convergence and perfor-

mance properties. Our experimental platform is an Android-

based HTC Hero 2.1 smartphone equipped with 802.11b/g

and a Qualcomm MSM 7200A 528 MHz processor. For the

evaluations that follow, we use the actual software components

of our SmartTrace application implemented in JAVA [12] (see

Figure 1 right), but also benchmarking tools like 3gtest [1]

and PowerTutor [29].

To motivate these measurements, let us first consider the

GeoLife [39], [40] dataset by Microsoft Research Asia. The

dataset captures outdoor movements of 165 people at varying

granularities. In particular, 95% of the dataset refers to a

granularity of 1 sample every 2-5 seconds or every 5-10

meters. The average trajectory length in GeoLife is over 191K

data points per user (largest: 2M data points) having respective

sizes of 11,7MB (largest: 111 MB). Notice that by sampling

a GPS sensor every 2 seconds for one year, and assuming

no failures or downtimes on the smartphone, would yield

over 15M points, occupying more than 270MB of storage.

Multiplying these numbers by the thousands or millions of

users enrolled to the services under discussion should quickly

provide an insight into the incurred bandwidth and energy

costs, shall we decided to collect them at QN. Now let each

smartphone user hold one of these large trajectories of length

l (denoted as Ai, i ≤ m). The objective is to find the K users

moving more similarly to Q, where |Q| << l. For instance, Q
might look for “friends that traveled from Greenwich Village,

in lower Manhattan, through Little Italy and finally to the

Financial district during 8:00-9:00”. In the provided scenario,

the temporal length of Q is much smaller (i.e., 1 hour) than

the temporal length of the target trajectories Ai in our setting

(i.e., 2 years). Also, Q is expressed at a coarser granularity

than the fine-grain spatial points captured in each Ai.

For the centralized approach, which mandates the transfer of

all trajectories to QN prior to query execution, we isolated the

cost of uploading a GPS trajectory of 100,000 data points from

the smartphone to a TCP socket server over 802.11b with an

uplink of 123kbps (as measured by [1]). The given operation

took us 117 seconds (i.e., almost 2 minutes!), draining over

70 Joules of precious energy. Furthermore, the centralized

approach requires that each user shares its complete trajectory

with the query processor, which might be unacceptable from

a privacy stand-point. For the decentralized approach, which

mandates the comparison of Q against Ai on every smartphone

participating in the query resolution, we isolated the time

and energy cost for computing FullM(Q,Ai) on a single

smartphone unit. This operation took us 111 seconds (again

almost 2 minutes!) and amounted to over 41 Joules of energy.

This happens as the trajectory similarity functions we use

(i.e., LCSS presented in Section IV-B) are computationally

expensive (i.e., O(δ · l), where δ is the temporal window in

which we conduct the search and l the length of the trajectory.)

Notice that both aforementioned costs are accounted for each

device participating in a query, thus the aggregated costs are

much higher. Table I summarizes our findings.

Consequently, we make the following observations: i) The

asymmetric download/uplink bandwidth in these environments

severely hampers the massive upload of data to a server,

even under trajectory compression techniques; and ii) Local

processing is an expensive operation with respect to energy

consumption and must be avoided whenever possible.

III. RELATED WORK

In this section we provide related research work for both

spatio-temporal query processing and distributed top-K query

processing, both of which lie at the foundation of SmartTrace.

Spatio-temporal queries have been an intense area of re-

search over the years [2], with the development of efficient

access methods [21], [35], [26], [36] and similarity measures,

such as Dynamic Time Warping (DTW) [6], the Longest

Common Subsequence (LCSS) [13], variants of Lp-norms

such as Edit Distance with Real Penalty (ERP) [23] and

Edit Distance on Real Sequences (EDR) [24]. These metrics

have been proposed for predictive [32], historical [35] and

complex spatio-temporal queries [18]. All these techniques,

as well as the frameworks for spatio-temporal queries [5],



[34], [20], work in a completely centralized setting. The same

applies to online trajectory searching services such as GeoLife,

GPS-Waypoints, Sharemyroutes and their academic counter-

parts [22], which assume that user trajectories are aggregated

and stored on a centralized or cloud-like infrastructure. Notice

that for a centralized setting, the problem definition is consid-

erably different, than the decentralized scenario we consider

in this work, as the query processor maintains all trajectories

locally and global-knowledge statistics can be maintained in

local catalogs. Additionally, in a centralized setting the query

processor can utilize spatial or spatio-temporal trajectory index

structures, such as the R-trees (e.g., utilized in [22] and [16]),

STR-trees or TB-Trees [30], in order to speed up the retrieval

answers. On the other hand, in a decentralized setting none of

these comes at no additional cost.

In our previous work in [37], we have already paved the way

towards trajectory processing techniques in a distributed man-

ner (i.e., without percolating each and every user geolocation

to a central authority). However those were both agnostic in

terms of energy and time constraints that arise in a smartphone

network but also in respect to the trajectory trace disclosure

issues (i.e., they assumed that the query processor can arbi-

trarily access the distributed trajectories). More importantly,

our previous work assumed that trajectories where vertically

fragmented across n distributed sites (i.e., each distributed site

holds subsequences of one or more trajectories), while this

work focuses on the horizontally fragmented case (i.e., each

smartphone holds the complete trajectory locally.)

Top-K queries have been studied in a variety of contexts in-

cluding middleware systems [15], web accessible databases [8]

and stream processors [4]. An excellent survey for relational

database environments appears in [19]. It has been shown in

numerous studies [9], [8], [38], that top-K query processing

is meaningful only if the predicate K refers to a small subset

of the complete answer set (e.g., up-to 1%). For larger values

of K, the query optimizer can choose to retrieve the complete

answer set. The wave of centralized top-K query processing

algorithms was succeeded by their distributed counterparts,

namely the TPUT [9] algorithm and the TJA [38] algorithm.

In all these scenarios, the queries refer to exact scores while

we focus on upper bound scores that appear in the scoring

table. While upper bound algorithms have also been studied

in [17], those had completely different assumptions and relied

on a centralized computing model.

The distributed top-K query processing problem with prob-

abilistic guarantees, rather than exact scores, was studied in

KLEE [27] yet the answers were again approximate. The

problem of continually providing approximate top-K answers

in a client-server setting was also studied in [4]. In all cases the

results are approximate and continuous over a single attribute,

thus operate over individual attributes (columns), while our

approach is exact and operates horizontally over rows.

IV. THE SMARTTRACE FRAMEWORK

In this section we start out with the description of the

SmartTrace framework presented in this work. We shall then

formally prove its correctness and also provide a rigorous

formal analysis of its performance and convergence properties.

A. Outline of Operation

First note that the similarity query Q is initiated by some

querying node QN (or alternatively at some smartphone that

propagates its Q towards QN ). QN then disseminates Q to

all active smartphone users in a pre-specified spatial boundary.

Upon receiving Q, each candidate smartphone executes locally

an inexpensive linear-time matching function. QN then col-

lects these scores and puts together a vector of upper bounds

UB = (ub1, · · · , ubm). We will refer to the UB-vector con-

structed on QN as METADATA and to the actual trajectories

stored locally on each smartphone as DATA. Obviously, DATA

is orders of magnitudes larger than METADATA, thus DATA

needs to stay on the smartphone during query resolution. Our

objective is to intelligently exploit the METADATA scores in

order to identify the K highest ranked answers without pulling

DATA to QN .

B. The SmartTrace Algorithm

The SmartTrace algorithm is a novel iterative algorithm for

retrieving the K most similar trajectories to a query trajectory

Q. Our proposed scheme performs well both with respect

to response time and energy, but also does so without ever

revealing the complete target trajectories to QN (i.e., it only

returns the matched subsequence, if any.) Additionally, the

identity of a user is not revealed (we use the notion of a screen

name), unless the user user decides to do so.

Description: In step 1 of the SmartTrace algorithm (see

Algorithm 1), QN instructs all m nodes to invoke the

computation of the linear-time upper-bounding function

LCSS(MBEQ, Ai) (i ≤ m). In that way it circumvents

the massive deployment of the expensive similarity function

LCSS(Q,Ai) [37], presented next, which performs local

stretching in both time and space to overcome the temporal

and spatial distortions in trajectories. In particular, each node

compares its local trajectory Ai to a bounding envelope of the

query, i.e.,

LCSS(MBEQ, Ai) =

|Ai|
∑

j=1

{

1 if Ai[j] within envelope
0 otherwise

In step 2, QN retrieves all these upper bounds and adds

them in descending order to a local METADATA vector. By

doing this, QN obtains a quick summary of the trajectories

similar to Q.

Steps 3 to 5 are executed iteratively until convergence. In

particular, during step 3, QN adds the identities of the objects

with the λ+1 highest upper bounds to a set named S. These

objects provide the first line of candidates for the answer set,

as these objects have the highest LCSS(MBEQ, Ai) value.

The given objects will be analyzed more carefully in the next

step of the algorithm in order to determine the correct top-K

set. Please notice that the objects in the S-set, do not again

define the final top-K result. In particular, it is absolutely

possible that some arbitrary object in the S-set with a high



Algorithm 1 : The SmartTrace Algorithm

Input: Query Trajectory Q, m Target Trajectories, Result

Cardinality K (K << m), Iteration Step Increment λ.

Output: K trajectories most similar to Q.

At the query node QN:

1) Upper Bound (UB) Computation: Instruct each of the

m smartphones to invoke a computation of the linear-

time LCSS(MBEQ, Ai) (i ≤ m).

2) Collection of UB: Receive the UBs of all m trajectories

participating in the query and add those scores to the

METADATA vector stored on QN . Let METADATA be

sorted in descending order based on the UB scores.

3) Identify Candidates: Find the λ + 1 (λ ≥ K) highest

UBs in METADATA, and add the identities to an empty

set S (denoted as the candidate set). If an element has

already been added to S, during a previous iteration do

not add it again.

4) Full Computation: Ask each element in the S-set to

compute LCSS(Q,Ai), in a decentralized manner, and

then send back the next λ full similarity scores.

5) Termination Condition: If the (λ+1)-th UB is smaller

than the K-th largest full match then stop; else goto step

3 in order to identify the next λ candidates.

6) Ship Matching: If the termination condition has been

met, ship the respective matches to QN , based on some

local trace disclosure policy.

LCSS(MBEQ, Ai) score has a low full score LCSS(Q,Ai).
Consequently, the algorithm can still not converge.

The λ parameter, mentioned previously, expresses an

application-specific confidence in the METADATA bounds. In

particular, when the METADATA vector contains tight bounds,

then λ might be set to a small value. So this parameter defines

how aggressively some application wants to determine the top-

K results. It will be proven next that SmartTrace will not

perform more than O(m/λ) iterations in the worst case.

In step 4, QN asks each smartphone in the S-set, to compute

the full scores (if a smartphone has been contacted in a

previous iteration we do not contact it again). In particular,

we ask each smartphone to locally compute FullM(Q,Ai),
where Ai is stored locally, and only transmit the value of

FullM(Q,Ai) towards QN (i.e., the decentralized way).

Alternatively, we could have also fetched the trajectories of the

S-set to the sink and then compute FullM(Q,Ai) ∀Ai ∈ S
(i.e., the centralized way), however this would violate both

the trace disclosure factor and also degrade the response time

of the algorithm to a level comparable to the centralized

algorithm. Notice that the fourth step of the algorithm applies

only to the elements in the S-set, as opposed to all m elements

so this is really much cheaper in terms of energy consumed

on the smartphone as |S| << m.

In our case, FullM(Q,Ai) is the LCSS similarity, which

has been extensively used in many 1-D sequence problems,

such as string matching. The 2-dimensional adaptation of

LCSS using the L∞

8 is defined as following:

Definition: Given integers δ and ǫ, the Longest Common Sub-

Sequence similarity LCSSδ,ǫ(A,B) between two sequences A

and B is defined as:

LCSSδ,ǫ(A,B) =



































0, if A or B is empty

1+ LCSSδ,ǫ(Tail(A),Tail(B))

if |ax:l1 − bx:l2 | < ǫ and

|ay:l1 − by:l2 | < ǫ and |l1 − l2| < δ

max(LCSSδ,ǫ(Tail(A),B),LCSSδ,ǫ(A,Tail(B)))

otherwise

where δ and ǫ are application-specific parameters that allow

flexible matching in the time (e.g., if we have two identical

trajectories, but the first one moves earlier in time) and the

space (e.g., we have two identical trajectories but the first

has some slight deviation in its spatial movement) domain,

respectively. LCSS deals with both aforementioned limitations

of the Lp-Norm family of distances, because these cases are

simply dropped from the matching.

In step 5, we determine whether the algorithm has reached

a termination condition. In particular, we check if the (λ+1)-

th highest UB is smaller than the K-th highest full matching

value. If this is the case, then we can safely terminate the

execution of the algorithm being sure that the correct top-K

has been identified. If this condition does not hold (i.e., when

the UB of an object X is larger than the K-th highest full

matching value Y ), then we are enforced to perform another

iteration as the answer is not deterministic (i.e., either X or Y
can be the K-th answer). Consequently, we increase the step

increment λ so that it identifies the next λ candidates in the

next round.

In the final step, which occurs only once at the very end, we

might ship each matched subsequence Amatch
i (|Amatch

i | <<
|Ai|) to QN , which can then return it to the user. Notice,

that identified nodes si (i ≤ K) might choose not to share

the matching or share it based on some local trace disclosure

profile [11], in order to preserve k-anonymity and other higher

anonymity schemes. In any case, neither QN nor the querying

user will ever see the complete trajectory of participating users.

Example: Consider the example scenario of Figure 2. Assume

that Q aims to find the top-2 trajectories (K = 2). Initially,

QN sends Q to all nodes. Each object then computes an

upper bound of its trajectory with respect to Q and sends

this value to QN. Subsequently, QN proceeds by determining

the trajectories with the highest λ + 1 METADATA entries,

i.e., {A4, A2, A0}, and adds the λ trajectories to the S-set,

i.e. S = {A4, A2} (steps 2-3). In step 4, QN asks the

smartphones in S to compute the full matching of Q to Ai

(Ai ∈ S) without unveiling their Ai. The full matching scores,

which are transmitted to QN , are: FullM(Q,A4) = 23
and FullM(Q,A2) = 22. Since the (λ + 1)-th highest UB

(A0, 25) is larger than the K-th highest full match (A2, 22),

8We could also use L1 or L2 for the recursion step.



A4,30

A2,27

A0,25

A3,20

A9,18

A7,12

....

id,lb
id,ub

A4,23

A2,22

A0,16

A3,18

DATAMETADATA

Q

A0

A3

A9

A7

A4

A2
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LCSS(Q,Ai)

λ

λ

λ

....

UpperM = 
LCSS(MBEQ ,Ai)

Fig. 2. Example Execution of the SmartTrace Algorithm.

the termination condition is not satisfied in the fifth step.

Therefore, the second iteration of the SmartTrace algorithm

is initiated to compute the next λ, (λ = 2), full matching

scores: FullM(Q,A0) = 16, FullM(Q,A3) = 18. Now the

termination has been satisfied because the new (λ+1)-th (i.e.,

2λ+ 1) highest UB (A9, 18) is smaller than the K-th highest

full match (A2, 22). Finally we tentatively might return the

top-2 matched subsequences of trajectories with the highest

full matches to the user (i.e., {(Amatch
4

, 23), (Amatch
2

, 22)}).

Even if we return these subsequences to the querying node, it

is important to mention that these are not the complete trajec-

tories A4 or A2, but only the subsequences that correspond to

the matching (e.g., one route out of their two year history log,

given that the owner has agreed to release them.)

Theorem 1 (Correctness) The SmartTrace algorithm always

returns the most similar objects to the query trajectory Q.

Proof: Let A denote some arbitrary object returned as an

answer by the SmartTrace algorithm (A ∈ Result), and B
some arbitrary object that is not among the returned results

(B /∈ Result). We want to show that FullM(Q,B) ≤
FullM(Q,A) always holds. Assume that FullM(Q,B) >
FullM(Q,A). We will show that such an assumption leads

to a contradiction. In our analysis, we cover the two possible

cases: i) B is not in the set of candidate objects (denoted as

S-set) during the third step; and ii) B becomes part of the

S-set during some arbitrary iteration of the algorithm in the

third step. We will show that both cases yield a contradiction.

Case 1 (A ∈ S and B /∈ S): Since B /∈ S, then UB(Q,B) <
FullM(Q,X), where X is the K-th highest object in the array

FullM , by the termination condition of the algorithm (Step 5).

Thus, FullM(Q,B) ≤ UB(Q,B) < FullM(Q,X) < ... <
FullM(Q,A), because object A is in the final Result. Hence,

it holds that FullM(Q,B) < FullM(Q,A), a contradiction.

Case 2 (A ∈ S and B ∈ S): Since both objects A and B are

now part of S, the full scores of A and B are known, by step 4

of the algorithm. By the initial assumption we know that only

object A belongs to the final Result. Thus, FullM(Q,B) ≤
FullM(Q,A), a contradiction �

Theorem 2 (SmartTrace λ-Convergence) Algorithm Smart-

Trace performs O(m/λ) iterations in the worst case.

Proof: To prove the statement of the theorem we assume that

all the Upper Bound values in METADATA are bigger than

the K-th highest full matching value (i.e., the K-th highest

value in FullM ). In this case, the termination condition, in

step 5, is satisfied at the very end. Consequently, SmartTrace

performs O(m/λ) iterations in the worse case �

V. PERFORMANCE ANALYSIS

In this section we analytically derive the performance of the

SmartTrace algorithm with respect to Time and Energy.

Cost Model: Let m smartphone users {s1, · · · , sm} partic-

ipate in the execution of query Q, initiated at QN . Let the

maximum length among all trajectories be denoted as l and

|Q| << l, as explained earlier. All smartphones are connected

to QN for the complete duration of Q’s execution through

some pre-established connection (e.g., persistent TCP socket).

We are interested in deriving analytically the Time (T ) and

Energy (E) costs for resolving Q. T is defined as the length

of time it takes for Q to be sent to the m users plus the length

of time it takes for the final top-K result to be received at

QN (i.e., the user-perceived latency for resolving Q, formally

T = MAXm
i=1

(Ti) as the smartphones operate in parallel). On

the other hand, E is defined as the total energy cost incurred

on smartphones9 for answering Q (i.e., the client-perceived

energy consumption, formally E =
∑m

i=1
(Ei)). Looking at

the equations from a different perspective, we notice that

the total time a smartphone spends on a query, as opposed

to T , is naturally captured by E , which is equivalent to∑m
i=1

(Poweri ×Ti), where Power is measured in Watts (i.e.,

Volts × Amperes).

Notice that in our cost analysis we deliberately do not focus

on the Messaging and Bandwidth costs, because measuring

these in isolation will not expose the relevant complexities of

a smartphone network environment, as explained in Section I.

For instance, a protocol with a high message complexity

might transmit many small-size messages, thus consuming

very little bandwidth. For ease of exposition, our analysis

should use the notation {E|T }CPU , {E|T }TX and {E|T }RX ,

to denote the energy or time cost for processing, transmitting

and receiving one trajectory point (TX and RX also capture

the incurred processing costs during communication and are

approximately equivalent). We will ignore any other irrelevant

energy consumption costs, such as LCD and Bluetooth.

Theorem 3 (Centralized Performance): The Centralized

algorithm has an Energy and Time complexity of O(m·l·ETX)
and O(l · T TX), respectively.

Proof (direct): In this one phase algorithm the m nodes simply

send their local trajectory, of maximum length l, to QN .

Consequently, each si requires l · ETX
i units of energy, thus

the energy complexity is O(m · l · ETX). The time complexity

9QN is assumed to have no energy constraints.



is defined as MAXm
i=1

(l · T TX
i ) ∈ O(l · T TX), as the m

smartphones transmit their trajectories to QN in parallel �

Theorem 4 (Decentralized Performance): The Decentralized

algorithm has an Energy and Time complexity of O(m · δ · l ·
ECPU ) and O(δ · l · T CPU ), respectively.

Proof (direct): In this two phase algorithm the m nodes first

receive Q, which costs m · |Q| · ERX energy (|Q| << l).
Then, the m nodes spend m · δ(|Q|+ l) · ECPU computations,

as LCSS(Q,Ai) can be computed in O(δ · (|Q| + |Ai|)).
Finally, each of the m nodes transmits back a single scalar

value (i.e., m · ETX ). In the second phase, QN instructs the

K (K << m) highest ranked nodes to return their complete

trajectory. This costs K · ERX for the notification and another

K · l · ETX for the answer. By adding up the above values

in an asymptotic manner, yields a total energy complexity of

O(m · δ · l · ECPU ). The time complexity for the decentralized

case is defined, somehow higher than the centralized case, as

MAXm
i=1

(δ ·l ·T CPU
i ) ∈ O(δ ·l ·T CPU ), as the nodes conduct

their computation and transmission to QN in parallel �

Theorem 5 (SmartTrace Performance): The SmartTrace

algorithm has an Energy and Time complexity of O(m · δ ·

l · ECPU ) and O(m·δ·l·TCPU

λ
), respectively.

Proof (direct): In the first (1) step, each of the m nodes

receives Q, which costs m · |Q| · ERX (|Q| << l) energy.

Then each si invokes the linear-time LCSS(MBEQ, Ai)
(i ≤ m) computation, which costs m · |Q| · ECPU , as

LCSS(MBEQ, Ai) can be computed in O(min(l, |Q|)) and

|Q| << l. Finally, each of the m nodes transmits back a single

scalar value (i.e., m · ETX ). The second and third steps of

the algorithm have no smartphone-side incurred costs. Steps

4 and 5 are executed in m/λ iterations in the worse case. In

each of the iterations, we have the following costs: In step

4, the λ identified nodes execute the LCSS(Q,Ai) (i ≤ m)

computation and that costs λ·δ·(|Q|+l)·ECPU , as LCSS has a

time complexity of O(δ ·(l1+l2)) Yet, this cost is accrued only

on a few nodes (i.e., λ << m). When this operation completes,

a single scalar value is shipped from each of the λ nodes to

QN costing λ · ETX . Step 5 has again no smartphone-side

incurred energy cost as it takes place on QN . Also step 6 is

computed only once at the very end and costs λ·|Q|·ETX . By

adding up all aforementioned values in an asymptotic manner

yields an energy complexity of O(m ·δ · l · ECPU ), as all other

factors are small order and can thus be eliminated.

Similarly to the above analysis, the time complexity of

SmartTrace is defined as O(m·δ·l·TCPU

λ
), as we are now

only waiting for the slowest node during the computation of

LCSS(Q,Ai) and we conduct this m/λ times �

VI. EXPERIMENTAL EVALUATION

In this section we present an extensive experimental eval-

uation of the SmartTrace algorithm. Our experiments are

conducted in trace-driven experimental mode as this allows

us to scale the experiments to large real-world settings (as we

lacked a large number of smartphone units). We also present

the components of our prototype system [12], implemented for

Android-based smart-phone devices and used in Section II-B

for quantifying our system model.

A. Methodology

Datasets and Queries: We use the following two datasets:

i) Oldenburg [7]: This realistic dataset includes 2,000 car

trajectories moving in the city of Oldenburg [7]. The average

length of each trajectory is 11, 731± 7, 193 points, while the

maximum trajectory length is 42,500 points. Each query for

the above dataset is derived by adding interpolated peaks of

Gaussian noise to a segment of a randomly selected trajectory

in the dataset. This created variations in the shape of the

queries compared to the original trajectories. Our queries have

an average size of 100 spatio-temporal points. Our results are

averaged over 10 queries.

ii) GeoLife [39], [40]: This real dataset, by Microsoft Research

Asia, includes 1,100 trajectories of a human moving in the

city of Beijing over a life span of two years (2007-2009).

The average length of each trajectory is 190, 110 ± 126, 590
points, while the maximum trajectory length is 699,600 points.

Notice that 95% of the GeoLife dataset refers to a granularity

of 1 sample every 2-5 seconds or every 5-10 meters. Our

queries are randomly sampled from the dataset and have an

average size of 500 spatio-temporal points. Our results are

again averaged over 10 runs.

Algorithms and Metrics: We compare the SmartTrace (ST ),

Decentralized (D) and Centralized (C) algorithms, under a

variety of settings using the datasets described earlier. Our

cost metrics are: Time (T ) and Energy (E), as documented in

Section V, for varying m, K and λ parameters. Whenever we

test one parameter, the complementary parameters are fixed

to the following values: m to 2,000 and 1,100, respectively

for the Oldenburg and the GeoLife datasets, K to 2 and λ
to 30. The reader is encouraged to lookup the performance

values under different settings for these parameters from the

rest series (which are complementary to each other). The δ and

ǫ parameters are kept constant for each dataset as those are

application specific (i.e., they attempt to capture a reasonable

scenario given the underlying temporal and spatial coordinates

in the dataset). Varying δ and ǫ should not affect our execution

scenario in any sense, as this would simply vary the matching

granularity in all algorithms.

Network and Energy Model: Our communication protocol

is associated with a 45 byte header (including node identifier,

session identifier and other application specific parameters). In

our setting, a spatio-temporal DATA point (18 bytes) consists

of a timestamp that occupies 8 bytes, two 4-byte fields for the

GPS coordinates and another 2 bytes for direction. In reality

this overhead might be even higher (e.g., GeoLife trajectories

include elevation, speed, heading direction and accuracy).

However, we omit these additional attributes as they are not

necessary for computing the basic edition of our algorithm

that relies only on (t, x, y). Had we used them should have

boosted the competitive advantage of ST over C and D even
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Fig. 3. Series 1: Varying the Number of Trajectories (m). Time and Energy results for the Oldenburg and GeoLife datasets.

more. The METADATA comprise only a single 4-byte real field

per node for the UB or FullM matching value. QN runs on

a single host that connects to the m smartphones using an

802.11b network link that has a TCP downlink of 1022kbps

and a TCP uplink of 123kbps, a 237ms TCP handshake latency

and application handshake latency of 493ms (as measured

with [1]). Our energy profile has been derived by running

SmartTrace instances using PowerTutor [29] (the results are

summarized in Table I).

B. Series 1: Varying the Number of Trajectories (m)

In the first experimental series we investigate the perfor-

mance and scalability of our approach with respect to m.

Figure 3 presents our Time (T , left) and Energy (E , right)

results for the Oldenburg (top) and GeoLife (bottom) datasets,

respectively.

Analysis of Response Time (T ): The plots in the left column

show that both the ST and D algorithms consume one order

of magnitude less T than the C algorithm. In particular, for

Oldenburg, we observe the following time values: ST = 35±5
seconds, D = 38±7 seconds and C = 810±6 seconds; while

for GeoLife, we observe the time values of ST = 644 ± 87,

D = 769 ± 2 and C = 8, 015 ± 3, 804 seconds, respectively.

The above results are attributed to the fact that ST and D rely

mainly on local processing, i.e., O(m·δ·l·TCPU

λ
) and O(δ · l ·

T CPU )), while C relies on transmission O(l · T TX).
An interesting observation that arises here is that although

the asymptotic time complexity of D looks better than the

respective time complexity of ST (i.e., ST = m/λ · D),

our experiments unveil that ST is faster than D for the

two datasets, by 3 seconds and 125 seconds, respectively. By

carefully analyzing our traces we found that this is attributed to

the variable length of trajectories in our datasets. In particular,

D is always condemned to process the longest trajectory

in its computation, while ST will process these very long

traces only if they belong to the top-K result. By analyzing

our executions, we found that the processed trajectories by

ST are on average only 11, 500 and 188, 000 points, for

Oldenburg and GeoLife respectively, compared 42, 500 and

699, 600 respectively, processed by D.

One final observation is that the T cost for C increases

linearly with increasing m (notice that the y-axis of the plot

is in log-scale). This is attributed to the fact that as we upload

more trajectories to QN , the given server needs to spend more

processing to compute the LCSS similarities. Notice that this

cost was not accounted for in our analytical model and time

cost (i.e., TC ∈ O(l·T TX)), as the server could have computed

the m arriving trajectories in parallel (i.e., on a processing

cluster). Nevertheless, in our experiments this cost shows up

as we execute QN on a single workstation.

Analysis of Energy Consumption (E): While somebody

might claim that the competitive advantage of ST over D, with

respect to T , is not that great (i.e., 8% and 17%, respectively),

the right column of Figure 3, shows that there is a 67% and

81% percent E-competitive advantage of ST over D and C,

respectively. In particular, we observe the following energy

values per smartphone: ST = 0, 93J , D = 4, 15J , and

C = 7, 27J , for the Oldenburg dataset; and ST = 25J ,

D = 74J , and C = 130J for the GeoLife dataset. For ease of

exposition, these plots refer the cost-per-smartphone while our

analytical E bounds are accounting all m smartphone units.
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Fig. 4. Series 2 (left): Varying the Cardinality of the Answer-set (K); Prototype Implementation (right): Screenshots of the SmartTrace GUI in Android.

Additionally, we observe that the C algorithm spends all

its energy on network operations, i.e., O(m · l · ETX), while

ST and D spend the bulk of their energy on smartphone-side

processing operations, i.e., O(m · δ · l · ECPU ) and O(m · δ ·
l · ECPU ), respectively. In fact, the networking costs for these

algorithms are as small as 2.59mJ and 2.29mJ per query

(this is why they don’t show up in the plots). The above result,

confirms that the network overhead of the ST algorithm is not

high, as it transmits smaller size packages as opposed to the

large and monolithic packages used by C.

C. Series 2: Varying the Cardinality of the Answer-set (K)

In the second experimental series, we investigate the per-

formance and scalability of our approach with respect to

K. For brevity, we will only present the results for the

GeoLife dataset, but the respective Oldenburg results look very

similar. We will additionally not cover the observations already

discussed previously.

Figure 4 (left, middle), shows that the performance of all

three algorithms is independent of K for both the T and E
results. This result is confirmed by our analytical study where

we have shown that all three algorithms are independent of

K (see Theorem 3, 4 and 5). In particular, the E-complexity

of ST is O(m · δ · l · ECPU ), while the T -complexity of

ST is O(m·δ·l·TCPU

λ
). Notice that these results hold as long

as K is smaller than m (i.e., K << m). If K was larger,

then we should certainly expect an increase in both T and

E . Yet, top-K queries are not designated for these types of

workloads, as explained in Section III. Also these workloads

are not useful in our setting as a user would be overwhelmed

with many less relevant answers. For this experiment K refers

to approximately 1% of m.

D. Series 3: Varying the Iteration Step Increment (λ)

In the last experimental series, we study how the iteration

step increment λ affects the convergence of the SmartTrace

algorithm. In particular, we observe the number of iterations

our algorithm takes for different values of λ and for different

sizes of trajectories (m).

Figure 5 (left and middle) shows our result for the Olden-

burg and GeoLife datasets, respectively. The first observation

is that the more aggressive λ gets, the quicker the ST
algorithm converges. In particular, we observed that the two

datasets feature an average number of iterations equal to 7.6

and 9.4, respectively. Additionally, we also observe that the

number of iterations grows almost linearly by increasing m.

Both aforementioned observations are explained by the result

of Theorem 2, where we showed that ST requires O(m/λ)

iterations in the worse case. Interestingly, we mention that this

worse case has not happened in any of our experiments, but

setting this parameter optimally through some learning phase

will be a subject of future research.

Figure 5 (right) shows the T -complexity of the ST algo-

rithm, for the same executions described above (we again omit

the results from Oldenburg for brevity, as they look similar).

The given plot validates that ST is inversely proportional to λ,

(i.e., Theorem 5 showed that TST ∈ O(m·δ·l·TCPU

λ
).) Notice

that in the given experiment λ is ranging between 1% - 5%
of m, which is larger than the K value we used in this study

(i.e., up-to 1%). Had we been more aggressive would certainly

improve the response time but would have also consumed more

energy. Although setting λ in an optimal manner would require

some additional structures, configuring it to approximately 5%
of m worked great for the tests we have conducted.

E. Prototype Evaluation

We have developed a prototype system that realizes the

SmartTrace framework (see Figure 4, right) [12]. Our client-

side software is developed around the Google Map API and its

installation package (i.e., APK) has a size of 510KB. Our code

is written in JAVA and consists of approximately 4,500 lines-

of-code (LOC). In particular, our server-code uses ≈ 1,500

LOC and runs over JDK 6 and Ubuntu Linux, our smartphone-

code uses ≈ 2,500 LOC plus ≈ 250 lines of XML elements

that go the Manifest file (settings) and the user interface XML

descriptions. In the future we plan to take the computationally-

and IO-intensive tasks outside the VM by implementing them

in native (C) code using the newly released Android NDK.

The SmartTrace GUI allows a user to query other devices

by example, plot and iterate through the responses using a

variety of presentation functions as well as to configure a

wide range of parameters such as δ, K, etc. The absence of

a large smartphone testbed, did not allow us to focus on the

performance characteristics of the SmartTrace framework in

real environments. We are however in the process of setting

up a testbed of 50 smartphones that will allow us to address

this aspect in the future.
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VII. CONCLUSION

This paper presents a powerful spatio-temporal similarity

search framework, coined SmartTrace, which enables dis-

tributed trajectory search queries over in-situ data. We have

assessed our ideas with realistic and real workloads. Our study

reveals that SmartTrace computes the desired results with 74%

less energy consumption and 13% faster than its fully central-

ized and fully decentralized counterparts. Our experimental

results also confirm our extensive analytical study. In the future

we plan to deploy SmartTrace over an infrastructure of 50

smartphone devices we are currently setting up and also plan

to extend our study in indoor spaces.
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