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DISCO ANALYSIS: A NONPARAMETRIC EXTENSION OF
ANALYSIS OF VARIANCE

BY MARIA L. RIZZO AND GÁBOR J. SZÉKELY1

Bowling Green State University

In classical analysis of variance, dispersion is measured by considering
squared distances of sample elements from the sample mean. We consider
a measure of dispersion for univariate or multivariate response based on all
pairwise distances between-sample elements, and derive an analogous dis-
tance components (DISCO) decomposition for powers of distance in (0,2].
The ANOVA F statistic is obtained when the index (exponent) is 2. For each
index in (0,2), this decomposition determines a nonparametric test for the
multi-sample hypothesis of equal distributions that is statistically consistent
against general alternatives.

1. Introduction. In classical analysis of variance (ANOVA) and multivariate
analysis of variance (MANOVA), the K-sample hypothesis for equal means is

H0 :μ1 = · · · = μK(1.1)

vs H1 :μj �= μk, for some j �= k, where μ1, . . . ,μK are the means or mean vec-
tors of the K sampled populations. Inference requires that random error is nor-
mally distributed with mean zero and constant variance (see, e.g., Cochran and Cox
(1957), Scheffé (1953), Searle, Casella and McCulloch (1992), Hand and Taylor
(1987), or Mardia, Kent and Bibby (1979)).

Analysis of variance partitions the total variance of the observed response vari-
able into SST (sum of squared error due to treatments) and SSE (sum of within-
sample squared error). When the usual assumptions of normality and common
error variance hold, under the null hypothesis distributions are identical, and un-
der the alternative hypothesis distributions differ only in location (are identical
after translation). If distributions differ in location only, for a univariate response,
methods based on ranks such as the nonparametric Kruskal–Wallis test or Mood’s
median test can be applied to test the hypothesis of equal population medians (see,
e.g., Hollander and Wolfe (1999, Chapter 6)).

In case the assumptions of normality or common variance do not hold, one
could apply F statistics via a permutation test procedure (Efron and Tibshirani
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(1993, Chapter 15), Davison and Hinkley (1997, Chapter 4)). However, in prac-
tice, distributions with equal means may differ in other characteristics, while F

statistics test the hypothesis (1.1) of equal means.
We extend ANOVA and MANOVA to testing the more general hypothesis (1.2)

with the help of a decomposition for other exponents than squared distance.
For K independent random samples from distributions with cumulative distrib-

ution function (c.d.f.) F1, . . . ,FK respectively, the K-sample hypothesis for equal
distributions is

H0 :F1 = · · · = FK(1.2)

versus the composite alternative Fj �= Fk for some 1 ≤ j < k ≤ K . Here each of
the K random variables are assumed to take values in R

p for some integer p ≥ 1,
and the distributions Fj are unspecified.

We propose a new method, called distance components (DISCO), of measuring
the total dispersion of the samples, which admits a partition of the total dispersion
into components analogous to the variance components in ANOVA. The result-
ing distance components determine a test for the more general hypothesis (1.2)
of equal distributions. We introduce a measure of dispersion based on Euclidean
distances between all pairs of sample elements, for any power α of distances such
that α ∈ (0,2], hereafter called the index. The usual ANOVA decomposition of the
total squared error is obtained as the special case α = 2. For all other values of the
index 0 < α < 2, we obtain a decomposition such that the corresponding “F” sta-
tistic determines a test of the general hypothesis (1.2) that is statistically consistent
against general alternatives.

Akritas and Arnold (1994) proposed a general model for structured data where
the distribution of the response variable is modeled in terms of distributions. A hy-
pothesis of no treatment effect or no interaction effect is that the corresponding
distribution term in the model is identically zero. For an overview, see Brunner
and Puri (2001) and the references therein.

Other distance based approaches to testing (1.1) or (1.2) have been proposed
in recent literature by Gower and Krzanowski (1999) and Anderson (2001), with
applications in ecology, economics, and genetics (McArdle and Anderson (2001);
Excoffier, Smouse and Quattro (1992); Zapala and Schork (2006)). These methods
differ from our proposed approach in that they employ the squared distance (and
thus test a different hypothesis), a different way of decomposing the distances, or
a dissimilarity measure other than powers of Euclidean distances.

Our main results, the statistics for measuring distances between samples and the
method of partitioning the total dispersion, are introduced in Section 2. Properties
of these statistics and the proposed DISCO test for the general hypothesis (1.2)
are presented in Section 3, and DISCO decomposition for multi-factor models
follows in Section 4. Implementation, examples, and empirical results are covered
in Sections 5 and 6.



1036 M. L. RIZZO AND G. J. SZÉKELY

2. Distance components.

2.1. DISCO statistics. Define the empirical distance between distributions as
follows. For two samples A = {a1, . . . , an1} and B = {b1, . . . , bn2}, the dα-distance
between A and B is defined as

dα(A,B) = n1n2

n1 + n2
[2gα(A,B) − gα(A,A) − gα(B,B)],

where

gα(A,B) = 1

n1n2

n1∑
i=1

n2∑
m=1

‖ai − bm‖α(2.1)

is a version of the Gini mean distance statistic and ‖ · ‖ denotes the Euclidean
norm. The constant n1n2

n1+n2
is half the harmonic mean of the sample sizes.

In the special case α = 2, the d2-distance for a univariate response variable
measures variance, and there is an interesting relation between the d2-distances
and the ANOVA sum of squares for treatments. The details are explored below.

PROPOSITION 1. Let A = {a1, . . . , an1} and B = {b1, . . . , bn2} with means ā

and b̄ respectively. Then

d2(A,B) = 2SST = 2[n1(ā − c̄)2 + n2(b̄ − c̄)2],
where c̄ = (n1ā + n2b̄)/(n1 + n2).

The proof of Proposition 1 is given in the Appendix.
In the following, A1, . . . ,AK are p-dimensional samples with sizes n1, . . . , nK

respectively, and N = n1 + · · · + nK .
The K-sample dα-distance statistic that takes the role of ANOVA sum of

squares for treatments is the weighted sum of dispersion statistics. For the bal-
anced design with common sample size n, define the between-sample dispersion
as

Sα = Sα(A1,A2, . . . ,AK) = 1

K

∑
1≤j<k≤K

dα(Aj ,Ak).(2.2)

For unbalanced designs with sample sizes n1, n2, . . . , nK , for each pair of sam-
ples the factor 1/K = n/N in (2.2) is replaced by ñjk/N , where ñjk is the arith-
metic mean of nj and nk . Thus, for the general case the between-sample dispersion
is

Sα = Sα(A1,A2, . . . ,AK) = ∑
1≤j<k≤K

(
nj + nk

2N

)
dα(Aj ,Ak)

(2.3)

= ∑
1≤j<k≤K

{
njnk

2N

(
2gα(Aj ,Ak) − gα(Aj ,Aj ) − gα(Ak,Ak)

)}
.
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Note that if K = 2, p = 1, and α = 2, we have S2 = d2(A1,A2)/2 = SST.

It follows from Theorem 1 in the following section that for all 0 < α < 2 the
statistic Sα determines a statistically consistent test for equality of distributions.

First let us explore the relation between S2 and SST . A well-known U -statistic
is the sample variance S2. If x1, . . . , xn is a sample, then

1(n
2

) ∑
1≤i<m≤n

1

2
(xi − xm)2 = S2 = 1

n − 1

n∑
i=1

(xi − x̄)2.(2.4)

This example is given by Serfling (1980), page 173. Notice that if A1, . . . ,AK

have common sample size n, then (A.1) and (2.4) can be applied to compute

S2 = 1

K

∑
1≤j<k≤K

d2(Aj ,Ak) = K − 1(K
2

) ∑
1≤j<k≤K

1

2
n(ā·j − ā·k)2

=
K∑

j=1

n(ā·j − ā··)2 = SST.

In the case of arbitrary sample sizes, the same relation holds: S2 = SST . This iden-
tity is obtained as a corollary from the decomposition of total dispersion into the
between and within components, which follows in Section 2.2.

2.2. DISCO decomposition. Define the total dispersion of the observed re-
sponse by

Tα = Tα(A1, . . . ,AK) = N

2
gα(A,A),(2.5)

where A = ∑K
j=1 Aj is the pooled sample and gα is given by (2.1). Similarly,

define the within-sample dispersion statistic

Wα = Wα(A1, . . . ,AK) =
K∑

j=1

nj

2
gα(Aj ,Aj ).(2.6)

Then if 0 < α ≤ 2, we have the decomposition Tα = Sα + Wα , where both Sα and
Wα are nonnegative. Moreover, for 0 < α < 2, Sα = 0 if and only if A1 = · · · =
AK . For the proof, we need the following definition and theorem.

Suppose that X and X′ are independent and identically distributed (i.i.d.), and
Y and Y ′ are i.i.d., independent of X. If α is a constant such that E‖X‖α < ∞ and
E‖Y‖α < ∞, define the Eα-distance (energy distance) between the distributions
of X and Y as

Eα(X,Y ) = 2E‖X − Y‖α − E‖X − X′‖α − E‖Y − Y ′‖α.
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THEOREM 1. Suppose that X and X′ ∈ R
p are i.i.d. with distribution F , Y

and Y ′ ∈ R
p are i.i.d. with distribution G, and Y is independent of X. If 0 <

α ≤ 2 is a constant such that E‖X‖α < ∞ and E‖Y‖α < ∞, then the following
statements hold:

(i) Eα(X,Y ) ≥ 0.

(ii) If 0 < α < 2, then Eα(X,Y ) = 0 if and only if X
D= Y .

(iii) If α = 2, then Eα(X,Y ) = 0 if and only if E[X] = E[Y ].

PROOF. The proof for multivariate samples is given in Székely and Rizzo
(2005b). Here we present a more elementary proof for the univariate case.

First consider the case 0 < α < 2. Using the fact that |X − Y |α is a nonnegative
random variable, and making the substitution u = t1/α , we have

E|X − Y |α =
∫ ∞

0
P(|X − Y |α > t) dt =

∫ ∞
0

P(|X − Y | > t1/α) dt

=
∫ ∞

0
αuα−1P(|X − Y | > u)du

=
∫

R

α|u|α−1[P(X < u < Y) + P(Y < u < X)]du

=
∫

R

α|u|α−1[
F(u)

(
1 − G(u)

) + G(u)
(
1 − F(u)

)]
du.

Similarly,

E|X − X′|α =
∫

R

2α|u|α−1[
F(u)

(
1 − F(u)

)]
du,

E|Y − Y ′|α =
∫

R

2α|u|α−1[
G(u)

(
1 − G(u)

)]
du.

Thus,

2α

∫
R

|u|α−1(
F(u) − G(u)

)2
du(2.7)

= 2α

∫
R

|u|α−1[
F(u)

(
1 − G(u)

) + (
1 − F(u)

)
G(u)

− F(u)
(
1 − F(u)

) − G(u)
(
1 − G(u)

)]
du

= 2E|X − Y |α − E|X − X′|α − E|Y − Y ′|α = Eα(X,Y ).(2.8)

The integral (2.7) converges to a non-negative constant if |α − 1| < 1. Hence, (2.8)
is non-negative and finite for all 0 < α < 2. A necessary and sufficient condition

that (2.8) equals zero is that F = G a.e., and X
D= Y . This proves (i) and (ii) for the

case 0 < α < 2.
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Finally, for the case α = 2, we have

E2(X,Y ) = 2E|X − Y |2 − E|X − X′|2 − E|Y − Y ′|2
= 2(E[X] − E[Y ])2 ≥ 0,

with equality if and only if E[X] = E[Y ]. �

A consequence of Theorem 1 is that the empirical distance between samples is
always non-negative:

COROLLARY 1. For all p-dimensional samples A1, . . . ,AK , K ≥ 2, and
0 < α ≤ 2, the following statements hold:

(i) Sα(A1, . . . ,AK) ≥ 0.
(ii) If 0 < α < 2, then Sα(A1, . . . ,AK) = 0 if and only if A1 = · · · = AK .

(iii) S2(A1, . . . ,AK) = 0 if and only if A1, . . . ,AK have equal means.

PROOF. Let Aj = {a1, . . . , anj
} and Ak = {b1, . . . , bnk

}. Define i.i.d. random
variables X and X′ uniformly distributed on Aj , and define i.i.d. random variables
Y and Y ′ uniformly distributed on Ak . Then E‖X − Y‖α = gα(Aj ,Ak), E‖X −
X′‖α = gα(Aj ,Aj ), E‖Y − Y ′‖α = gα(Ak,Ak), and

n1n2

n1 + n2
Eα(X,Y ) = dα(Aj ,Ak).

Hence, for all 0 < α ≤ 2, Theorem 1(i) implies that Sα(Aj ,Ak) ≥ 0. If 0 < α < 2,

then by Theorem 1(ii) equality to zero holds if and only if X
D= Y (if and only if

Aj = Ak). This proves (i) and (ii) for the case K = 2, and the result for K ≥ 2
follows by induction. Statement (iii) follows from Theorem 1(iii). �

Our next theorem is the DISCO decomposition of total dispersion into between-
sample and within-sample components.

THEOREM 2. For all integers K ≥ 2, the total dispersion Tα (2.5) of K sam-
ples can be decomposed as

Tα(A1, . . . ,AK) = Sα(A1, . . . ,AK) + Wα(A1, . . . ,AK),

where Sα ≥ 0 and Wα ≥ 0 are the between-sample and within-sample measures of
dispersion given by (2.3) and (2.6), respectively.

PROOF. Let Gjk = njnkgα(Aj ,Ak), and gjk = gα(Aj ,Ak). First consider the
balanced design, with common sample size n. In this case (njnk)/(nj +nk) = n/2
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and Sα can be computed by (2.2), so that

Tα − Sα = N

2
g(A,A) − 1

K

∑
j<k

n

2
(2gjk − gjj − gkk)

= 1

2N

(∑
j

Gjj + ∑
j<k

2Gjk

)
− n

2K

∑
j<k

1

n2 (2Gjk − Gjj − Gkk)

= 1

2N

(∑
j

Gjj + ∑
j<k

(Gjj + Gkk)

)

= 1

2N

(∑
j

Gjj + (K − 1)
∑
j

Gjj

)

= K

2N

∑
j

n2gjj = 1

2n

∑
n2gjj = 1

2

∑
j

ngjj = Wα.

The proof for the general case is similar; the details are given in the Appendix. �

COROLLARY 2. If p = 1, then for all integers K ≥ 2 the between-sample
dispersion S2 for K samples is equal to SST, and the α = 2 decomposition of total
dispersion T2 = S2 + W2 is exactly the ANOVA decomposition of the total squared
error: SS(total) = SST + SSE.

PROOF. Applying (2.4) to the α = 2 Gini statistics shows that, for samples
A1, . . . ,AK ,

g2(Aj ,Aj ) = 2σ̂ 2
j ,

where σ̂ 2
j = n−1

j

∑nj

i=1(aij − ā.j )
2, j = 1, . . . ,K . The within-sample sum of

squares is
∑K

j=1 nj σ̂
2
j . Similarly, the total sum of squares is Nσ̂ 2 = N

2 g2(A,A).

Thus, W2(A1, . . . ,AK) = ∑K
j=1 nj σ̂

2
j = SSE, and T2(A1, . . . ,AK) = Nσ̂ 2 =

SS(total). Therefore, by the ANOVA decomposition SS(total) = SST + SSE and
Theorem 2, we have

S2(A1, . . . ,AK) = T2(A1, . . . ,AK) − W2(A1, . . . ,AK),

hence, S2 = SST and we obtain the one-way ANOVA decomposition of total sum
of squares. �

3. DISCO hypothesis tests. Assume that A1, . . . ,AK are independent ran-
dom samples of size n1, . . . , nK from the distributions of random variables
X1, . . . ,XK respectively.
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3.1. The DISCO Fα ratio for equal distributions. Analogous to the ANOVA
decomposition, under the null hypothesis of equal distributions, Sα and Wα are
both estimators of the same parameter E‖Xj − X′

j‖α , where X′
j and Xj are i.i.d.

The Gini mean gα(Aj ,Aj ) is a biased estimator of E‖Xj − X′
j‖α . An unbiased

estimator of E‖Xj −X′
j‖α is (nj /(nj − 1))gα(Aj ,Aj ). Under the null hypothesis

(1.2) we have

E[Sα] = 1

2N

∑
1≤j<k≤K

njnk

(
2ξ − nj − 1

nj

ξ − nk − 1

nk

ξ

)

= ξ

2N

∑
1≤j<k≤K

njnk

(
1

nj

+ 1

nk

)
= K − 1

2
ξ,

and

E[Wα] =
K∑

j=1

nj

2

(
nj − 1

nj

)
ξ = N − K

2
ξ,

where ξ = E‖Xj − X′
j‖α . Our proposed statistic for testing equality of distribu-

tions is

Dn,α = Fα = Sα/(K − 1)

Wα/(N − K)
.

Although in general Dn,α does not have an F distribution, Fα has similar proper-
ties as the ANOVA F statistic in the sense that Fα is non-negative and large values
of Fα support the alternative hypothesis. The details of the decomposition can be
summarized in a table similar to the familiar ANOVA tables. See, for example,
Tables 1 and 2.

3.2. Permutation test implementation. The DISCO test can be implemented
in a distribution free way by a permutation test approach. Permutation tests
are described in Efron and Tibshirani (1993) and Davison and Hinkley (1997).
The achieved significance level of a permutation test is exact.

Let ν = 1: N be the vector of sample indices of the pooled sample A = (yi),
and let π(ν) denote a permutation of the elements of ν. The statistic Fα(A;π) is
computed as Fα(yπ(i)). Under the null hypothesis (1.2) the statistics Fα(yi) and
Fα(yπ(i)) are identically distributed for every permutation π of ν.

Permutation test procedure.

i. Compute the observed test statistic Fα = Fα(A;ν).
ii. For each replicate, indexed r = 1, . . . ,R, generate a random permutation πr =

π(ν) and compute the statistic F
(r)
α = Fα(A;πr).
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iii. Compute the significance level (the empirical p-value) by

p̂ = 1 + #{F (r)
α ≥ Fα}

R + 1
= {1 + ∑R

r=1 I (F
(r)
α ≥ Fα)}

R + 1
,

where I (·) is the indicator function.

The formula for p̂ is given by Davison and Hinkley (1997, page 159), who state
that “As a practical matter, it is rarely possible or necessary to compute the per-
mutation P -value exactly” and “at least 99 and at most 999 random permutations
should suffice.”

3.3. Limit distribution. For all 0 < α < 2, under the null hypothesis of equal
distributions, dα(Aj ,Ak) converges in distribution to a quadratic form of centered
Gaussian random variables (see details in Székely and Rizzo (2005a, 2005b)).
Hence, under H0 the mean between-sample component Sα/(K − 1) of the Fα

ratio converges in distribution to a quadratic form of centered Gaussian random
variables. The mean within-sample component Wα/(N − K) converges in proba-
bility to a constant by the law of large numbers. Therefore, for all 0 < α < 2 by
Slutsky’s theorem under H0, the Fα ratio converges in distribution to a quadratic
form

Q =
∞∑
i=1

λiZ
2
i ,(3.1)

where Zi are independent standard normal variables and λi are positive constants.
The DISCO test rejects (1.2) if the test statistic Fα exceeds the upper percentile

of the null distribution of Fα corresponding to the significance level α0. Székely
and Bakirov (2003) proved that for quadratic forms (3.1) with E[Q] = 1,

P
(
Q ≥ (

�−1(1 − α0/2)
)2) ≤ α0,

for α0 ≤ 0.215, where �(·) is the standard normal c.d.f.

3.4. Consistency. The advantage of applying an index in (0,2) rather than
squared distances is that for exponents 0 < α < 2 all types of differences between
distributions are detected, and the test is statistically consistent.

THEOREM 3. If 0 < α < 2, the DISCO test of the hypothesis (1.2) is statisti-
cally consistent against all alternatives with finite second moments.

PROOF. Suppose that the null hypothesis is false. Then Fj �= Fk for some
(j, k). Let c > 0 be an arbitrary constant. We need to prove that

lim
N→∞P(Fα > c) = 1.
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Here N → ∞ is understood to mean that each nj → ∞ and

lim
n1,...,nK→∞

nj

n1 + · · · + nK

= pj , j = 1, . . . ,K,

where 0 < pj < 1 and
∑K

j=1 pj = 1. Then

P(Fα > c) ≥ P

(
nj + nk

2N
· dα(Aj ,Ak)

K − 1
· N − K

Wα

> c

)

= P

(
dα(Aj ,Ak) >

2cN(K − 1)Wα

(nj + nk)(N − K)

)
.

Statistical consistency of dα(Aj ,Ak) for 0 < α < 2 follows as a special case from
Székely and Bakirov (2003). There are constants c1 and c2 such that

lim
N→∞P(Fα > c) = lim

N→∞P

(
dα(Aj ,Ak) >

2c(K − 1)Wα

(p1 + p2)(N − K)

)

= lim
N→∞P

(
dα(Aj ,Ak) >

c1Wα

(N − K)

)

= lim
N→∞P

(
dα(Aj ,Ak) > c2

) = 1

by the statistical consistency of dα(Aj ,Ak). �

The corresponding F2 statistic does not determine a consistent test and does not
necessarily detect differences of scale or other characteristics.

REMARK 1. A DISCO test is applicable even when first moments do not
exist. For any distribution such that an ε-moment exists, for some ε > 0, we
can choose 0 < α < ε/2, which is sufficient for statistical consistency because
E‖X − Y‖2α < ∞.

4. The DISCO decomposition in the general case. Here we use the tradi-
tional formula notation from linear models. Let Y ∼ A specify a completely ran-
domized design on response Y by group variable (factor) A with a levels. If factor
B has b levels, and interaction A :B denotes the crossed factors A and B with
ab levels, then Y ∼ A + B is the corresponding two-factor additive model, and
Y ∼ A ∗ B = A + B + A :B is the two-way design with interaction.

Let S(A), W(A) denote the between and within components obtained by a de-
composition on factor A. In this section we omit the subscript α when the expres-
sion is applicable for 0 < α ≤ 2.
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4.1. The two-way DISCO decomposition. Applying the theorem for DISCO
decomposition to the model Y ∼ A + B , we have

T = S(A) + W(A) = S(B) + W(B),

and, therefore, we have a decomposition

T = S(A) + S(B) + W,

where W is given by

W = T − (
S(A) + S(B)

) = W(A) + W(B) − T .

It is easy to check that W ≥ 0, and that W has the form of a weighted Gini mean on
distances between pairs of observations in cells {Ai ∩ Bj }, 1 ≤ i ≤ a, 1 ≤ j ≤ b.

Similarly, we can also decompose total dispersion on factor A :B to obtain
T = S(A : B) + W(A : B). The between component S(A :B) contains the between
distances on factor A and the between distances on factor B . It can be shown that
S(A : B)−S(A)−S(B) ≥ 0 by a similar argument as in the proof of Corollary 1(i).
Hence, we can obtain the decomposition

T = S(A) + S(B) + S(AB) + W(A : B),(4.1)

where S(AB) = S(A : B) − S(A) − S(B).

4.2. The DISCO decomposition for general factorial designs. By induction, it
follows that for additive models with k ≥ 1 factors and no interactions, the total
dispersion can be decomposed as

T =
k∑

j=1

S(j) + W,

where W is given by

W =
k∑

j=1

W(j) − (k − 1)T ,(4.2)

W ≥ 0, and W has the form of a Gini mean on distances between observations.
[For simplicity we drop the factor label and use a number to identify the factor in
S(j) and W(j).]

For models with interaction terms, we proceed as in (4.1). For a factorial de-
sign on three factors (A,B,C), the highest order interaction is A :B :C. In the de-
composition T = S(A :B :C)+W(A :B :C), the between component S(A :B :C)

contains between distances for lower order terms. Define S(ABC) by

S(ABC) = S(A :B :C) − [S(A :B) + S(A :C) + S(B :C)]
+ [S(A) + S(B) + S(C)](4.3)

= S(A :B :C) − [S(AB) + S(AC) + S(BC) + S(A) + S(B) + S(C)],
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TABLE 1
DISCO analysis for three-factor model

Factor df Dispersion Fα

A a − 1 SA [SA/df (A)]/[W/f ]
B b − 1 SB [SB/df (B)]/[W/f ]
C c − 1 SC [SC/df (C)]/[W/f ]
AB (a − 1)(b − 1) SAB [SAB/df (AB)]/[W/f ]
AC (a − 1)(c − 1) SAC [SAC/df (AC)]/[W/f ]
BC (b − 1)(c − 1) SBC [SBC/df (BC)]/[W/f ]
ABC (a − 1)(b − 1)(c − 1) SABC [SABC/df (ABC)]/[W/f ]
Error f † W‡

Total N − 1 T

†In the balanced design f = abc(n − 1).
‡W = W(A : B : C).
SA = S(A), SAB = S(AB), etc.

where S(AB), S(AC), and S(BC) are defined as in (4.1). Then we obtain the
decomposition shown in Table 1.

Factorial designs on four or more factors are handled in a similar way, by obtain-
ing W from the decomposition on the highest order interaction term, and splitting
the between component into components corresponding to the terms in the model.

Degrees of freedom are determined by the combined constraints on sums of
distances, as in linear models. The Fα ratios for the j th term with aj levels in an
additive model are

Fα(j) = Sα(j)/(aj − 1)

W/df (W)
,

where df (W) equals residual degrees of freedom in the corresponding linear
model.

5. Implementation and examples. DISCO decomposition is easily imple-
mented by computing the Gini sums G from the distance matrix of the sample for
each of the cells in the model. Each of the components in the decomposition is a
function of these sums.

5.1. Calculation of test statistics. Consider the model Y ∼ A where factor A

has a levels, corresponding to samples A1,A2, . . . ,Aa . If D is the N ×N distance
matrix of the sample, let M be the N × a design matrix defined by

M = (Mij ) = (I {xi ∈ Aj }) =
{

1, xi ∈ Aj ;
0, otherwise.
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Then G = MT DM is the a × a matrix of Gini sums G(Ai,Aj ), and the within-
sample sums are along the diagonal of G . Thus, both T and W(A) are easily com-
puted from G , and S(A) = T − W(A).

REMARK 2. The design matrix M has no intercept column and has one col-
umn for each level of factor A, unlike the matrix used to fit a linear model in most
software packages. For a one-way layout the matrix M is easily obtained by soft-
ware; for example, the R model.matrix function returns the required matrix M for
the formula Y ∼ 0 + A (no intercept model).

It is clear from (4.1)–(4.3) and the example in Table 1 that all of the required dis-
tance components for any given model can be computed by expanding the model
formula to additive form and iteratively computing the decomposition on each
term.

The calculations for a multivariate response or general α differ only in the initial
step to compute the distance matrix D.

The DISCO test can be implemented as a permutation test, as outlined in Sec-
tion 3.2. We have implemented DISCO tests in the statistical computing software
R (R Development Core Team (2009)). The methods implemented in this paper
are available in the disco or energy package for R (Rizzo and Székely (2009)).

5.2. Application: decomposition of residuals. Suppose we consider the resid-
uals from a fitted linear model on a univariate response with one factor. Denote
the fitted model L. Regardless of whether the hypothesis of equal means is true or
false, the residuals do not reflect differences in means. If treatments differ in some
way other than the mean response, then the differences can be measured on the
residuals by distance components, 0 < α < 2. If we consider models of the type
proposed by Akritas and Arnold (1994), we could regard the linear portion L for
treatment effect as an “intercept” term. That is,

Fj (x) = L(x) + Rj(x),

a∑
j=1

Rj(x) = 0,

where Fj is the distribution function of xij , i = 1, . . . , nj . If all Rj(x) = 0, then
Fj = L for every j . One can test the hypothesis H0 : all Rj(x) = 0 by testing the
sample of residuals of L for equal distributions.

The following example illustrates our Theorems 1 and 2. Then DISCO decom-
position is applied to the residuals.

EXAMPLE 1 (Gravity data). The gravity data consist of 81 measurements in
a series of eight experiments conducted by the National Bureau of Standards in
Washington DC between May, 1934 and July, 1935, to estimate the acceleration
due to gravity at Washington. Each experiment consisted of replicated measure-
ments with a reversible pendulum expressed as deviations from 980 cm/sec2.
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FIG. 1. Gravity data and residual plots in Example 1 (sample sizes 8, 11, 9, 8, 8, 11, 13, and 13).

The data set (gravity) is discussed in Example 3.2 of Davison and Hinkley (1997)
and is available in the boot package for R (Canty and Ripley (2009)). Boxplots
of the data in Figure 1 reveal nonconstant variance of the measurements over the
series of experiments.

The decompositions by series for α = 1 and α = 2 are shown in Table 2. Note
that when index α = 2 is applied, the DISCO decomposition is exactly equal to the
ANOVA decomposition, also shown in Table 2. In fact, with our implementation
as random permutation test, the F2 test is actually a permutation test based on
the ANOVA F statistic. In this example 999 permutation replicates were used to
estimate the p-values.

Residual plots from the fitted linear model (ANOVA) are shown in Figure 1,
indicating that residuals have non-normal distribution and nonconstant variance.
When we decompose residuals by Series using DISCO (α = 1) as shown in Ta-
ble 3, the DISCO F1 statistic is significant (p-value < 0.05). We can conclude
that the residuals do not arise from a common error distribution. (The ANOVA F

statistic is zero on residuals.)

The next example illustrates decomposition of residuals for a multivariate re-
sponse.

EXAMPLE 2 (Iris data). Fisher’s (or Anderson’s) iris data set records four
measurements (sepal length and width, petal length and width) for 50 flowers from
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TABLE 2
Comparison of DISCO and ANOVA decompositions in Example 1

DISCO
Distance Components: index 1.00
Source Df Sum Dist Mean Dist F-ratio p-value
Between:
Series 7 100.62287 14.37470 2.781 0.001

Within 73 377.27836 5.16820

Distance Components: index 2.00
Source Df Sum Dist Mean Dist F-ratio p-value
Between:
Series 7 2818.62413 402.66059 3.568 0.002

Within 73 8239.37587 112.86816

ANOVA
Analysis of Variance Table
Response: Gravity

Df Sum Sq Mean Sq F value Pr(>F)
Series 7 2818.6 402.7 3.5675 0.002357 [0.002 by perm. test]
Residuals 73 8239.4 112.9

each of three species of iris. The species are iris setosa, versicolor, and virginica.
The data set is available in R (iris). The model is Y ∼ Species, where Y is a
four dimensional response corresponding to the four measurements of each iris.
The DISCO F1 and MANOVA Pillai–Bartlett F test, implemented as permutation
tests, each have p-value 0.001 based on 999 permutation replicates. The residuals
from the fitted linear model are a 150 × 4 data set.

Results of the multivariate analysis are shown in Table 4. From the DISCO
decomposition of the residuals and test for equality of distributions of residuals
(p-value < 0.04), it appears that there are differences due to Species that are not
explained by the linear component of the model.

5.3. Choosing the index α. Choice of a test or a parameter for a test is a diffi-
cult question. Consider the similar situation one has with the choice of Cramér–von

TABLE 3
Distance Components of ANOVA residuals in Example 1

Distance Components: index 1.00
Source Df Sum Dist Mean Dist F-ratio p-value
Between:
Series 7 56.66334 8.09476 1.566 0.046

Within 73 377.27836 5.16820
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TABLE 4
Analysis of iris data and residuals in Example 2

DISCO analysis of multivariate iris data:
Distance Components: index 1.00
Source Df Sum Dist Mean Dist F-ratio p-value
Between:
Species 2 119.23731 59.61865 124.597 0.001

Within 147 70.33848 0.47849

MANOVA analysis of multivariate iris data:
Df Pillai approx F num Df den Df Pr(>F)

Species 2 1.192 53.466 8 290 < 2.2e-16 ***
Residuals 147
[permutation test p = 0.001]

DISCO analysis of residuals of linear model for iris data:
Distance Components: index 1.00
Source Df Sum Dist Mean Dist F-ratio p-value
Between:
Species 2 1.69845 0.84923 1.775 0.039

Within 147 70.33848 0.47849

Mises tests, an infinite class of statistics that depend on the choice of weight func-
tion. For testing normality, for example, one can use the identity weight function
(Cramér–von Mises test) or weight function F(x)(1 − F(x)) (Anderson–Darling
test) and both are good tests with somewhat different properties. Here we have a
similar choice.

The simplest and most natural choice is α = 1 corresponding to Euclidean
distance. It is natural because it is at the center of our interval for α. Con-
sidering implementation for a univariate response, when α = 1 the Gini means
can be linearized, which reduces the computational complexity from O(N2) to
O(N log(N)).

For heavy-tailed distributions one may want to apply a small α, which could be
selected based on the data. As an example, consider the Pareto distribution with
density f (x) = kσ k/xk+1, x > σ . In this case E[X] exists only for k > 1 and
Var(X) is finite only for k > 2. Note that Xα has a Pareto distribution for α > 0.
If one is comparing claims data, which Pareto models tend to fit well, the tail
index k can be estimated by maximum likelihood to find a conservative choice of
α such that the second moments of Xα exist. Heavy-tailed stable distributions such
as Lévy distributions used in financial modeling suggest another situation where
α < 1 may be recommended.

6. Simulation results. In this section we present the results of Monte Carlo
studies to assess power of DISCO tests. In our simulations R = 199 replicates are
generated for each DISCO test decision.
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(a) (b)

FIG. 2. Monte Carlo results for Example 3: Empirical power of the DISCO and MANOVA tests
against a t(4) alternative, four groups with n = 30 per group, where (a) dimension p = 10 and
noncentrality parameter δ varies and (b) p varies and δ = 0.2. Standard error of power estimate is
at most 0.005.

Examples 3 and 4 compare DISCO with two parametric MANOVA tests based
on Pillai (1955) and Wilks (1932) statistics (see, e.g., Anderson (1984, Chapter 8)).
The Pillai–Bartlett test implemented in R is recommended by Hand and Taylor
(1987).

EXAMPLE 3. The multivariate response is generated in a four group balanced
design with common sample size n = 30. The marginal distributions are indepen-
dent with Student t (4) distributions. Sample 1 is noncentral t (4) with noncentrality
parameter δ. Samples 2–4 each have central t (4) distributions. The index applied
in the DISCO test is 1.0.

Results of several simulations are summarized in Figure 2(a) and (b) at signif-
icance level 0.10. In Figure 2(a) the noncentrality parameter is on the horizontal
axis and dimension is fixed at p = 10. In Figure 2(b) the dimension is on the hor-
izontal axis and δ = 0.2 is fixed. Each test achieves approximately the nominal
significance level of 10% under the null hypothesis [see Figure 2(a) at δ = 0].
Standard error of the estimate of power is at most 0.005, based on 10,000 tests.

Results displayed in Figure 2(a) and (b) suggest that the DISCO test is slightly
more powerful than MANOVA tests against this alternative when p = 10. As di-
mension increases, Figure 2(b) illustrates that the DISCO test is increasingly su-
perior relative to MANOVA tests.

The MANOVA tests apply a transformation to obtain an approximate F statistic.
Although the data is non-normal, the MANOVA test statistics appear to be robust
to non-normality in this example and exhibit good power when p = 10. This sim-
ulation suggests that the transformation may not be applicable for test decisions
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(a) (b)

FIG. 3. Monte Carlo results for Example 4: Empirical power of the DISCO and MANOVA tests
against a gamma(shape = 2, rate = 0.1) alternative, four groups with n = 30 per group, where
(a) dimension p = 10 and σ varies (b) p varies and σ = 0.4. Standard error of power estimate is at
most 0.005.

when dimension is large relative to number of observations. For comparison with
MANOVA tests, dimension is constrained by sample size. Note, however, that the
DISCO test is applicable in arbitrary dimension regardless of sample size.

EXAMPLE 4. In this example we again consider a balanced design with
four groups and n = 30 observations per group. Groups 2–4 have i.i.d. marginal
Gamma(shape = 2, rate = 0.1) distributions. Group 1 is also Gamma(shape = 2,
rate = 0.1), but with multiplicative errors distributed as Lognormal(μ = 0, σ ).
Thus, the natural logarithm of the group 1 response has an additive normally dis-
tributed error with mean 0 and variance σ 2. The index applied is 1.0.

Results for significance level 10% are summarized in Figures 3(a) and (b). Each
test achieves approximately the nominal significance level of 10% under the null
hypothesis [see Figure 3(a) at σ = 0]. Standard error of the estimate of power is at
most 0.005, based on 10,000 tests.

In Figure 3(a) the parameter σ is on the horizontal axis and dimension is fixed
at p = 10. Each test exhibits empirical power increasing with σ in Figure 3(a),
but the DISCO test is clearly more powerful than the MANOVA tests against this
alternative. In Figure 3(b) the dimension is on the horizontal axis and σ = 0.4 is
fixed. This simulation reveals increasingly superior power performance of DISCO
as dimension increases.

7. Summary. The distance components decomposition of total dispersion is
analogous to the classical decomposition of variance, but generalizes the decom-
position to a family of methods indexed by an exponent in (0,2]. The ANOVA
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and MANOVA methods are extended by choosing an index strictly less than 2, for
which we obtain a statistically consistent test of the general hypothesis of equal
distributions. DISCO tests can be applied in arbitrary dimension, which is not con-
strained by number of observations. The usual assumption of homogeneity of error
variance is not required for DISCO tests, and the distribution of errors need not be
specified except for the mild condition of finite variance. Moreover, the DISCO
permutation test implementation is nonparametric and does not depend on the dis-
tributions of the sampled populations.

APPENDIX A

A.1. Proof of Proposition 1. The total sum of squared distances can be de-
composed as

n2∑
m=1

n1∑
i=1

|ai − bm|2 =
n2∑

m=1

n1∑
i=1

|ai − ā + ā − bm|2

=
n2∑

m=1

[n1σ̂
2
1 + n1(ā − bm)2]

= n1n2σ̂
2
1 + n1

n2∑
m=1

(ā − b̄ + b̄ − bm)2

= n1n2[σ̂ 2
1 + σ̂ 2

2 + (ā − b̄)2],
where σ̂ 2

1 = (1/n1)
∑n1

i=1(ai − ā)2 and σ̂ 2
2 = (1/n2)

∑n2
i=1(bi − b̄)2. Similarly,

n1∑
m=1

n1∑
i=1

|ai − am|2 = 2n2
1σ̂

2
1 and

n2∑
m=1

n2∑
i=1

|bi − bm|2 = 2n2
2σ̂

2
2 ,

so that

d2(A,B) = n1n2

n1 + n2

[
2

n1n2
n1n2

(
σ̂ 2

1 + σ̂ 2
2 + (ā − b̄)2) − 1

n2
1

n2
1σ̂

2
1 − 1

n2
2

n2
2σ̂

2
2

]

(A.1)

= 2n1n2

n1 + n2
(ā − b̄)2.

The well-known identity

n1(ā − c̄)2 + n2(b̄ − c̄)2 = n1n2

n1 + n2
(ā − b̄)2(A.2)

follows from ā− c̄ = n2(ā− b̄)/(n1 +n2) and b̄− c̄ = n1(b̄− ā)/(n1 +n2). Hence,
d2(A,B) = 2n1(ā − c̄)2 + 2n2(b̄ − c̄)2 = 2SST .
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A.2. Proof of Theorem 2. One can obtain the DISCO decomposition by
directly computing the difference between the total and within-sample disper-
sion. Given p-dimensional samples A1, . . . ,AK with respective sample sizes
n1, . . . , nK and N = ∑

j nj , let gjk = gα(Aj ,Ak) given by (2.1) and Gjk =
njnkgjk , for j, k = 1, . . . ,K . Then for all 0 < α ≤ 2 and p ≥ 1,

Tα − Wα = N

2
g(A,A) − 1

2

∑
j

njgjj

= N

2

(∑
j<k

2

N2 Gjk + ∑
j

1

N2 Gjj

)
− 1

2

∑
j

1

nj

Gjj

= 1

2N

(∑
j<k

2Gjk + ∑
j

Gjj

)
− 1

2

∑
j

1

nj

Gjj

= 1

2N

(∑
j<k

njnk(2gjk − gjj − gkk) + ∑
j<k

njnk(gjj + gkk)

)

+ 1

2N

∑
j

n2
j gjj − 1

2

∑
j

njgjj

= ∑
j<k

nj + nk

2N

(
njnk

nj + nk

)
(2gjk − gjj − gkk) + 1

2N

∑
j<k

nk(njgjj )

+ 1

2N

∑
j<k

nj (nkgkk) + 1

2N

∑
j

n2
j gjj − 1

2

∑
j

njgjj .

After simplification we have

Tα − Wα = ∑
j<k

nj + nk

2N

(
njnk

nj + nk

)
(2gjk − gjj − gkk)

+ 1

2N

∑
k

∑
j

nk(njgjj ) − 1

2

∑
j

njgjj

= ∑
j<k

nj + nk

2N

(
njnk

nj + nk

)
(2gjk − gjj − gkk)

+ N

2N

∑
j

njgjj − 1

2

∑
j

njgjj

= ∑
j<k

nj + nk

2N

(
njnk

nj + nk

)
(2gjk − gjj − gkk) = Bα.
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