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Melanoma is a highly malignant skin cancer with high propensity to metastasize and

develop drug resistance, making it a difficult cancer to treat. Current therapies targeting

BRAF (V600) mutations are initially effective, but eventually tumors overcome drug

sensitivity and reoccur. This process is accomplished in part by reactivating alternate

signaling networks that reinstate melanoma proliferative and survival capacity, mostly

through reprogramming of receptor tyrosine kinase (RTK) signaling. Evidence indicates

that the discoidin domain receptors (DDRs), a set of RTKs that signal in response to

collagen, are part of the kinome network that confer drug resistance. We previously

reported that DDR1 is expressed in melanomas, where it can promote tumor malignancy

in mouse models of melanoma, and thus, DDR1 could be a promising target to

overcome drug resistance. In this review, we summarize the current knowledge on

DDRs in melanoma and their implication for therapy, with emphasis in resistance to

MAPK inhibitors.
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DDR1, A WORSE PROGNOSTIC BIOMARKER AND AN
EMERGING TARGET

Among the receptor families known to mediate the interaction of cells with collagen, the discoidin
domain receptors (DDRs) constitute a major class. The DDRs are RTKs which undergo activation
upon binding to collagens. There are two members in the DDR family, DDR1 and DDR2,
with DDR1 comprising 5 isoforms, two of which are inactive or truncated receptors. There is
only one DDR2 isoform. Structurally, full-length DDRs are multidomain type I transmembrane
glycoproteins, comprising an extracellular discoidin domain, a transmembrane region, and an
intracellular segment that includes a kinase domain [for structural details of DDRs see (1, 2)].
The reason for diversity in DDR1 isoforms is still unknown, but their structural differences may
be necessary to activate distinct signaling pathways. The ability of DDRs to recognize collagens as
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ligands places these receptors in a unique category among
the RTK family because the collagen family is comprised of
28 distinct members with different structural organizations,
biomechanical properties, and tissue distributions (3). To
recognize and respond to the various members of the collagen
superfamily under various conditions and in different tissue
locations, DDRs become versatile kinases, able to interact
with distinct collagen types and initiate the downstream
pathway in response to alterations on collagen properties in
diverse physiological and pathological conditions. DDRs undergo
receptor autophosphorylation in response to both fibril- and
network-forming collagens. For instance, DDR1 and DDR2
are activated by several fibrillar collagens, albeit with different
efficiencies. However, both receptors are efficiently activated by
the ubiquitous fibrillar collagen type I (2, 4–6). In contrast,
DDRs differentially respond to the network-forming collagen
IV and X, with DDR1 being activated by collagen IV while
DDR2 by collagen X (6). The ability of DDRs to recognize
distinct collagen types has significant implications in conditions
in which cells traffic through different tissue compartments.
In cancer, for instance, premalignant and fully malignant
carcinoma cells can express DDR1. Thus, as cells progress
from normalcy to malignancy and acquire the ability to invade
basement membranes (BM) and the underlying stromal matrix,
the expression of DDR1 may modulate cancer cell behavior
in response to both collagen IV and collagen I, possibly by
initiating ligand-specific signaling pathways. On the other hand,
DDR2, which is not usually expressed in epithelial cells, has
been shown to be induced during the process of epithelial-
to-mesenchymal transition (EMT), a molecular and cellular
program that has been associated with enhanced invasive capacity
(7, 8). Thus, DDR2 together with DDR1 may contribute to
the activation of signaling pathways associated with interactions
of carcinoma cells with both network-forming and fibrillar
collagens, as they traffic through various matrix compartments.
Although DDRs are implicated in normal organ development
and function (2), there is multiple evidence showing that DDRs
are critical players in cancer progression, regulating multiple
aspects of malignancy including cell proliferation, migration,
invasion, and drug resistance (9, 10). These effects of DDRs
on malignant cell behavior appear to be mediated mostly via
collagen-dependent receptor phosphorylation; however, evidence
has shown that DDRs can also elicit pro-malignant activities in a
kinase-independent manner (11, 12). In this regard, these studies
highlight the importance DDR–collagen interaction through the
discoidin domain, independent of kinase activity, in mediating
the functions of DDRs in cells. However, more data are needed
to establish a clear distinction between collagen-independent and
-dependent effects of DDRs in cancer progression. While there
is consensus on the pro-malignant effects of DDR2 in cancer,
this is not the case for DDR1. Indeed, evidence suggests that
DDR1 can elicit either tumor-promoting or -suppressing effects
on cancer in a context-dependent manner [reviewed in (13)],
possibly due to the fact that DDR1 plays a role in themaintenance
of normal epithelial integrity by regulating cell–BM and cell–
cell interactions (14–17). On the other hand, many studies
have shown that overexpression of DDR1 in several cancer

types correlates with disease progression (18–20). However, it
is important to note that expression analyses in tissue samples
are limited because a pro-malignant role for any gene cannot
be asserted without functional studies. Regardless, the emerging
picture for DDR1’s role in cancer progression is complex, likely
involving tumor-suppressive and/or promotive effects. In this
review, we will focus on DDR1 and melanoma, and its potential
role in promoting malignant features and as a potential target to
overcome drug resistance.

MELANOMA-TARGETED THERAPIES
AND RESISTANCE

Over the past few years, numerous therapies have emerged in
the management of advanced melanoma, which have profoundly
transformed the therapeutic landscape and prognosis of this
disease. Drug development has been driven by the unveiling
of the molecular characteristics of melanomas, which provided
new insights into the signaling networks that are operative in
this disease (21). The mitogen-activated protein kinase (MAPK)
pathway was found to be dysregulated in a significant proportion
of melanomas. This dysregulation is mostly caused by the fact
that the majority of melanomas harbor a mutation on the
serine–threonine kinase BRAF (V600), which is part of the
MAPK signaling pathway. Overall, over 90% of BRAFV600-
mutated melanomas harbor a BRAFV600E mutation, 6% a
BRAFV600R mutation, and 4% a BRAFV600E2, BRAFV600D,
or a BRAFV600K mutation (22), and therefore mutated BRAF
kinase became an attractive therapeutic target (23). As a result,
several inhibitors (vemurafenib, dabrafenib, and encorafenib)
were developed, which improved survival of melanoma patients
when compared to conventional chemotherapy (24–26).
Almost at the same time, inhibitors of MEK, a downstream
signaling kinase of the MAPK pathway, were developed. These
compounds (trametinib, cobimetinib, and binimetinib) also
exhibited significant activity in BRAFV600-mutant melanoma
(27, 28). Clinical trials evaluating the combination of BRAF
inhibitors (BRAFi) with MEK inhibitors (MEKi) demonstrated
significant clinical efficacy, as indicated by improved overall
survival (OS) and progression-free survival (PFS). These
promising results led to the approval of dabrafenib/trametinib
and vemurafenib/cobimetinib combinations for patients with
advanced, metastatic BRAFV600-mutant melanoma (29–31).

Despite these advances in melanoma treatment, acquired
resistance to MAPK-targeted therapy is almost inescapable (32),
and, as expected, resistance to BRAFi and MEKi was also found
in melanoma patients. The mechanisms of resistance to MAPK
inhibition are multiple and complex. In many cases, resistance
is caused by reactivation of the MAPK pathway (RAS mutation,
MEK and/or BRAF amplification, differential splicing leading to
truncated variants of BRAF, activation of MAPKK), activation
of the PI3K pathway through genetic alterations of PTEN,
overexpression and activation of PDGF, IGF1, or c-Met receptors,
or development of a pro-oncogenic tumor microenvironment
(33–36). Another mechanism of resistance involves the action of
ERBB3, a member of the EGF family of receptors, which is known

Frontiers in Oncology | www.frontiersin.org 2 September 2020 | Volume 10 | Article 1748

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Reger de Moura et al. DDR Inhibition in Melanoma

to be over-expressed in human melanoma. Evidence has shown
that BRAFi and MEKi therapeutic effects on BRAFV600-treated
tumors are decreased by enhanced ERBB3 signaling, suggesting
that ERBB3 is implicated in adaptive resistance to BRAF and
MEK inhibitors. These observation suggested that a combination
of ERBB2/EGFR inhibitor, which block NRG1/ERBB3 signaling,
with BRAF and MEK inhibitors could overcome resistance (37,
38). It is worth mentioning that, eventually, these multiple
and distinct mechanisms of resistance to MAPK inhibitors
result in ERK reactivation, demonstrating the extent to which
melanoma cells are addicted to ERK signaling for proliferation

and/or survival (36). Recently, characterization of tumor cell and
stromal/immune transcriptomic alterations in MAPKi-treated
melanomas provided insight into the responses elicited by these
inhibitors, even at early stages of treatment (39). Song et al.
showed that an immune-phenotypic transition due to MAPK-
targeted therapies could involve a loss of T-cell inflammation
leading to an anti-PD1 resistance in melanoma, even at early
stages of treatment. These studies suggested that several adaptive
responses in both the tumor (intrinsic) and the immune system
(extrinsic) are operative, which could offer new therapeutic
opportunities to overcome resistance. The studies of Yan

FIGURE 1 | DDR1 expression in melanoma samples as a function of expression and mutational status of BRAF (A,B) or NRAS (C,D). Transcript abundances were

quantified using RSEM (50) on a log2 scale. The red dashed lines indicate the typical cutoff for expressed genes [RSEM = log2(100)]: samples below the red lines are

assumed to have no or very low expression. Classification of melanoma subtypes into mutant BRAF, mutant RAS, mutant NF1, and triple-WT (wild-type) was

obtained from TCGA (51). (A) DDR1 expression for BRAF wild-type (left, blue) and mutated cases (right, red). (B) DDR1 versus BRAF expression for WT (blue) and

BRAF-mutated cases (red). 80% of the samples show co-expression of DDR1 and BRAF (upper-right quadrant). (C) DDR1 expression for NRAS wild-type (left, blue)

and mutated cases (right, red). (D) DDR1 versus NRAS expression for wild-type (blue) and cases with NRAS mutations (red). (E) DDR1 expression in melanoma

molecular subtypes (BRAF, NRAS, NF1 mutated, and triple WT). There is no significant difference in the median expression of DDR1 (p-value > 0.05, Wilcoxon

rank-sum test), but we note some outliers with low DDR1 expression in the NF1 mutant, RAS mutant, and triple WT cases (three left-most plots), while no outliers

with low expression are observed for the BRAF mutant subtype. N, normal; T, tumor.
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et al. also demonstrated that BRAF and MEK inhibitor-treated
patients, showing complete responses, have preexisting tumor
immunity transcriptomic signatures that are higher than those
expressed in patients with progressive disease, suggesting that
enriched immune infiltration improves response to BRAFi and
MEKi combination (40). These observations highlight the crucial
need for a better understanding of treatment effects on both
the tumor and its microenvironment but also for more effective
therapies aimed at overcoming or preventing drug resistance
in melanoma patients. Several alternative strategies, including
paradox breaker RAF inhibitors and ERK inhibitors, are currently
under investigation in the BRAFi + MEKi resistance setting (41,
42). In this context, the validation of new and promising targets
is the cornerstone of this challenge. Because DDRs are crucial
regulators of tumor cell behavior in response to their immediate
microenvironment and in light of our recent data on DDR1 in
melanoma (43), we propose that DDR1 targeting in melanomas
resistant to MAPK inhibitors is worth exploring.

DDR1 IN MELANOMA

Melanomas are derived from melanocytes, the melanin-
producing cells in the epidermis. Melanocytes are located
in the basal layer of the epidermis, making contact with the
BM (44). Previous evidence demonstrated a role for DDR1,
a major collagen IV receptor, in mediating the interaction of
melanocytes with the BM. Adhesion of melanocytes to collagen
IV, induced by overexpression of the matricellular protein CCN3,
was mediated by upregulation of DDR1 protein expression,
and silencing of DDR1 mRNA reduced CCN3-induced
adhesion to collagen IV (45). However, whether this adhesive
effect of DDR1 was mediated via its kinase activity was not
determined. Regardless, CCN3-mediated DDR1 upregulation
was proposed to play a major role in the adhesion of melanocytes
to the BM and in the maintenance of skin homeostasis (45).
While these in vitro studies suggested a role for DDR1 in
melanocytes in normal skin, our recent immunohistochemical
analyses in human skin sections demonstrated that DDR1
immunoreactivity was only detected in normal keratinocytes,
albeit at relatively low levels of expression (43). Moreover,
we found no detectable DDR1 expression in benign naevi in
all cell types. Analyses of skin samples harboring melanoma
showed a strong expression of DDR1 in the melanoma cells,
which was positively correlated with invasive depth and patient
survival. Our functional in vitro studies also showed a key
role for DDR1 in melanoma cell proliferation, migration,
invasion, and survival (43). Importantly, a pan-DDR inhibitor,
DDR1-IN-1 (46), with higher selectivity toward DDR1 than
to DDR2, decreased tumor growth in BRAF-mutated human
melanoma xenograft models (43). Because melanoma and
stromal cells also express DDR2, these preclinical studies with
DDR1-IN-1 suggest that DDR1, and possibly DDR2, constitutes
a potentially new target in melanoma (43). Based on these
results, we posit that DDRs are promising therapeutic targets in
BRAF-mutated melanomas.

To further examine the association between DDR1 and
melanoma, we analyzed a curated set of seven non-redundant
cutaneous melanoma cohorts from the cBioPortal site (47, 48).
Out of a total of 667 patients, 114 (10.6%) were identified as
harboring genetic alterations in DDR1. However, although the
mutational burden in melanoma is higher compared to other
types of cancers, no difference in survival was observed in patients
harboring mutated DDR1. Analyses of TCGA database samples
for DDR1 expression vs. BRAF mutational status showed DDR1
to be slightly upregulated in BRAF-mutated cancers (effect size
0.16, p = 0.00031; differential expression analysis of mutated vs.
wild-type cases using a linear model) and with a similar tendency,
but not statistically significant, between WT and mutated BRAF
melanoma samples (effect size 0.27, p = 0.061, Figure 1A).
However, we found that DDR1 and BRAF are co-expressed in
the majority of skinmelanoma samples (80%) regardless of BRAF
mutational status (Figure 1B). Analysis of the same database for
DDR1 expression vs. NRAS mutational status showed DDR1 to
be slightly downregulated in all NRAS-mutated cancers (effect
size −0.26, p = 0.00053) and with a similar tendency (effect
size −0.29, p = 0.065, Figure 1C). As with BRAF, DDR1 and
NRAS are co-expressed in almost all samples, regardless of
NRAS mutational status (Figure 1D). Although not statistically
significant, the analysis of the different skin melanoma subtypes
showed that DDR1 expression is always high for BRAF and NF1
mutants, while there are few outliers with low DDR1 expression
for RAS mutants and triple wild-type samples (Figure 1E).

CONCLUSION

The emerging evidence suggests that DDRs are part of the
signaling networks that contribute to melanoma progression.
However, more studies are warranted to dissect the molecular
mechanisms by which DDR-initiated signaling influences
melanoma cell behavior. Melanomas are also characterized
by a stroma rich in collagen (49), which constitutes a barrier
for invading tumor cells but may also actively promote
disease progression through DDR signaling. We posit that a
DDR/collagen axis may contribute to the resistant phenotype of
BRAF-mutated melanomas and therefore a rationale target to
restore therapeutic efficacy.
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