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Abstrat

This paper proposes an analytial formulation of disomfort in mass

transit and disusses its miro-eonomi properties. The formula we in-

trodue re�ets real situations faed by the passengers, it has nie mathe-

matial properties and it is easy to ompute. The disomfort formulation

is used to analyze optimal sheduling and priing of transit in a dynami

model.

Keywords: publi transport, ongestion disomfort, timetable shedule delay

ost

JEL: R40 ; R41 ; R49

1 Introdution

The quality of mass transit and in partiular rowding has beome a severe

problem in several metropolitan areas in developing ountries, but also in Eu-

ropean ountries. In Paris and London it is hard to get into the metro or loal

ommuter trains in urban areas at peak times. As a onsequene, passengers
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may hange their departure time, their route or mode in order to avoid exes-

sive ongestion. These hanges are ostly, the transit authority has di�ulties

to assoiate a money value to those osts.

Many metropolitan areas have adopted a seond best low prie poliy to

attrat ar users into publi transportation. This poliy an be justi�ed (f.

Parry and Small, 2009; Proost and Van Dender, 2008), but the neessary a-

paity deisions alling upon publi revenues have not always been adopted and

this resulted in severe ongestion in mass transit. In this paper, we fous on the

haraterization of ongestion in mass transit.

Note that there are very few studies of ongestion in mass transit while

there are many studies of ongestion in private transportation. This may be

understood in the US where the use of publi transport is typially low exept

in some ities like New York and Boston. But this is more di�ult to understand

for European ities where the fration of ommuters an exeed 50% in the peak

period.

There is a long tradition in dealing with road ongestion. The so-alled

BPR formula - Bureau of Publi Roads - is now the standard in the literature.

But the miro-eonomi theory of mass transit has not dealt frequently with

rowding and riding omfort. There are only a few exeptions in the literature.

Among those let us mention the pioneering ontribution of Kraus (1991), where

a distintion is made between the value of time for standing and for seated

passengers. Kraus and Yoshida (2002) fous on the ongestion on the rail plat-

form where passengers may have to wait for several trains before they an enter.

Several papers have integrated ongestion in publi transport in a multi-modal

model but treat this important issue in a simpli�ed way. Huang (2000) has om-

fort osts linearly inreasing in the number of users and Rouwendal and Verhoef

(2004) have rowding as an inreasing funtion of oupany ratio. Many em-

pirial studies on�rmed the importane of disomfort onditions in rail (see

Wardman and Whelan (2011)). Vuhi (2005), provides a major ontribution

to the reent theory of transit but does not expliitly deal with rowding in

urban transit. Jara-Díaz and Gshwender (2005) o�ers an informal disussion

of rowding. Initial papers dealing with rail (and bus) transport were mainly

onerned by the optimal servie frequeny and vehile apaity (f. Mohring,

1972; Jansson, 1980; Rietveld et al., 2001). An approah of ongestion in publi

transportation based on multi-prize ontests, has been proposed reently by de

Palma and Soumyanetra (2012).

The value of time (VOT) in mass transit depends on riding onditions. There

are mainly three di�erent situations a passenger may fae:

• A seat is available, and in that ase the value of time an be assumed to

be independent of the number of passengers in the vehile.

• The passenger has to stand but the vehile is not rowded. In that ase

the VOT will be higher but again onstant.

• The passenger has to stand and there are too many passengers in the

vehile. In that ase the VOT, or the riding onditions, would depend on
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the number of passengers.

Similar situations were onsidered in Lam et al. (1999), where they distinguish

between three disrete situations in their empirial analysis. The development

of tratable miro-eonomi theory that inludes riding omfort and rowding

in mass transit ould bene�t from a mathematial expression re�eting these

alternative omfort situations. Our paper deals only with the stylized ase of a

homogeneous population that wants to make a �xed number of trips between an

origin and a destination but an be generalized to the ase of variable demand for

trips, to the ase of a network and to the ase of a heterogeneous population. It

o�ers also new options to plan and better optimize the apaity of mass transit.

To the best of our knowledge, publi transportation ongestion is not modeled

in ommerial software whih desribes publi and private transportation. The

funtional form we propose may help to remedy this situation. It is simple,

tratable and an be explained intuitively.

In the next setion we propose the disomfort funtion and analyze its prop-

erties. In Setion 3, we use our formulation to analyze the properties of user

equilibrium and optimal sheduling and priing in a dynami mass transit model

for the ase of a uniform desired arrival time. In Setion 4, the disomfort for-

mulation is used to analyze the sheduling in the ase of a randomly distributed

desired arrival time. In Setion 5, we disuss possible generalizations.

2 De�ning disomfort funtions in mass transit

Time ost in publi transit depends on riding onditions. The most omfortable

situation is when a passenger has a seat. Not having a seat is not enjoyable but

aeptable when there is no rowding and the trip is not too long. Disomfort

beomes partiularly important when too many passengers have to stand.

Most important notation and assumed numerial values are provided in Ta-

ble 1. Let ns
denote the number of seats in the vehile and let nx

denote the

standing apaity. The standing apaity is sometimes de�ned by the manu-

faturer of the bus or by the regulating authority. But it is often exeeded at

peak times. Vuhi (2005) distinguishes between �ve situations that range from

�independent standing, easy irulation� when passenger density is less than

one by one meter square to �rashes loads, possible injuries fored movements�

when there are 6.7 passengers per meter square (f. Vuhi, 2005, Table 1.2,

page 12). Of ourse these standards vary when some passengers are arrying

some luggages or strollers. We assume that the standing apaity still allows

passengers to travel in omfortable onditions. What matters here is not how

it is de�ned but that the disomfort of standing is inreasing with the number

of passengers. So, the total seating and omfortable standing apaity of the

vehile is ns + nx
. We de�ne user osts for a given standard trip that takes a

given time. The user ost of the nth passenger, is given by

C(n) =

{
α0 if n ≤ ns

α1 + b ec(n−ns
−nx)

if n > ns,
(1)
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Figure 1: In-vehile average ost for the passengers (based on values in Table 1).

where b and c are positive parameters that re�et how rowding impats time

ost. The user ost for those who an sit is α0. The user ost for the passenger

that have to stand is given by the seond line in (1). It is equal to α1, where

α0 < α1, unless n > nx + ns
(the vehile is rowded) and then it inreases

strongly. The total ost orresponding to (1) is

TC(n) =

{
nα0 if n ≤ ns

ns α0 +
(
α1 + b ec(n−ns

−nx)
)
(n− ns) if n > ns.

(2)

The average ost is AC(n) = TC(n)/n, and the marginal soial ost is obtained

by di�erentiation of (2) with respet to n, i.e. SC(n) = d TC(n)/d n, exept at
point n = ns

where it is not de�ned. These funtions are illustrated on Figure 1.

Notie that both C(n) and SC(n) are disontinuous at point ns
, and de�ned

using a onditional statement. In pratie a ontinuous formulation is generally

preferred, whenever possible. In Appendix A, we disuss possible issues on how

to approximate Eq. 1 with a smooth funtion.

1

For n < ns+nx
and a positive value of parameter c the term with exponential

is very small and an be negleted. As the number of passengers inreases and

beomes higher than the �apaity� of the vehile (ns + nx
), rowding inreases

and this is aptured in the exponential term.

If there are less than ns
passengers then they all have a seat and the marginal

passenger ontributes to total travel ost by α0. If the number of passengers

is between ns
and nx

, the marginal soial ost is almost onstant and equal to

α1. For more than nx
passengers the marginal soial ost inreases re�eting

rowding and the di�ulty to get into the vehile. Notie that user ost is not

the same for all passengers: those who have a seat have lower travel ost.

1

Instead of the term exp(c (n−ns
−nx)) in Eq. 1 one ould use exp(c max(n−ns

−nx, 0)).
Appendix B shows that both formulations lead to similar impats.
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Parameter Comment Illustrative value

α0 VOT with seat 6 ($/hour)

α1 VOT without seat 9 ($/hour)

β Early arrival penalty 5 ($/hour)

γ Late arrival penalty 12 ($/hour)

ns
Number of seats 20 (seat)

nx
Standing apaity (legal) 30 (passenger)

ns + nx
Vehile apaity (legal) 50 (passenger)

b, c Disomfort parameters (0.3, 0.3)

ti Departure time of train i �

T Travel time 0.25 (hour)

Table 1: Parameter values.

3 User equilibrium, sheduling and optimal pri-

ing with idential desired arrival time

In this setion we explore optimal sheduling and priing in a simple dynami

model where some users want to travel via mass transit from one origin to a

given destination. We study �rst the simpler ase of idential desired arrival

times.

The objetive is to illustrate how rowding in rail or bus system forms in

peak hours. On the side of passengers, we assume a group of N individuals who

have the same desired arrival time window (t, t), and who inur a shedule delay

ost whenever they arrive too early (before time t) or too late (after time t) at
their destination. Let t denote the atual arrival time of a given passenger. We

onsider the following penalty funtion:

f(t) =





(t− t)β if t < t

0 if t < t < t

(t− t) γ if t > t,

(3)

where β and γ are the shedule delay parameters, respetively, for early and

late arrival. It is usually assumed that β < γ, i.e. the penalty of an early

arrival is lower than the penalty of a late arrival. When the travel speed in

the rail system is onstant, we an assume without loss of generality that the

arrival times are also the departure times of the train. As in Kraus and Yoshida

(2002), we assume suessive departures of the train at times ti = t+ δ i, where
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i = . . . ,−2,−1, 0, 1, 2, . . . , and δ is the tehnial time interval between two

departures. Denote by ni the number of passengers that selet the train at

time ti. We take a simple on�guration where all passengers take the train in

the same (single) station and have the same destination. We disuss the user

equilibrium, the system optimum and the optimal priing ase.

3.1 User equilibrium

At a user equilibrium, eah passenger's objetive is to minimize his own travel

ost plus shedule delay ost, alled generalized user ost. If there is no rowding

(unlimited apaity) then the best solution for all passengers is to take a train

that departs in time interval (t, t). With rowding, eah passenger will trade o�

the shedule delay ost with disomfort ost to selet the best departure time.

At equilibrium no passenger will have an inentive to hange his departure time.

The individuals will not take into aount their external osts, so that the user

equilibrium may di�er from the system optimum. The total in-vehile ost in

train i is TC(ni), and the average ost is TC(ni)/ni, where ni the loading of

train i. Taking into aount the shedule delay ost, the generalized user ost in

train i is C(ni)+f(ti). At equilibrium no passenger has an inentive to swith to

another train and this obtains when generalized user osts are equalized among

all trains. Formally, we have

C(ni) + f(ti) = c,

where c is the generalized user ost in all the trains.

2

3.2 System optimum

The optimum distribution of users over trains minimizes total transport ost,

i.e.

∑
i (TC(ni) + f(ti)ni), where ni represents the number of users of the

train leaving at time ti. Travel ost onsidered here is based on the MAS ost

funtion given in (1) that represents the disomfort osts as a funtion of arrival

order. Total number of users is �xed and we have

∑k
i=1 ni = N . The optimal

oupany rate in eah train is determined so that total osts are minimized.

We an formulate this problem as an unonstrained minimization program if

we substitute for nk =
∑k−1

i=1 ni. If the optimum solution is an interior solution

where ni > ns
, we an use �rst-order ondition for a given train i (where

i = 1, . . . , k − 1), that is

SC(ni) + f(ti) = SC(nk) + f(tk).

2

If there are k trains, i = 1 . . . k, we have a system of k+1 nonlinear equations: k equations,

one for eah train stating C(ni) + f(ti) = c, plus the ondition that eah user hooses only

one train n1 + · · · + nk = N . The unknowns are the train loadings ni and the generalized

travel ost c. To �nd a solution to this problem, it su�es to solve the �rst k equations by

onsidering c as a parameter, and then �nd the value of c that yields the ondition on the

total number of users. The solution is learly unique.
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This ondition implies that, at the optimum, the marginal ost of a new pas-

senger in-vehile i is equal to the marginal soial gain obtained from removing

the same user from vehile k. The optimality onditions form a set of n − 1
non-linear equations that an be solved numerially. We illustrate the user

equilibrium and the system optimum in Table 2 using again the parameters of

Table 1. Remember that in-vehile travel ost is C(n) · T , where T is the travel

time, here equal to 15 minutes. In the same table we also illustrate the solution

where the users are distributed uniformly over the trains (one third of the total

population in eah train).

The di�erene between the user equilibrium and the system optimum is the

suboptimal alloation of users over vehiles. The system optimum is to load

the trains arriving too early or on time more or less like the trains arriving too

late and the oupany rate is not too di�erent from uniform (ompare �rst

and third lines in Table 2). There are two fores in play: disomfort in the

vehile and shedule delay ost. The optimal solution reahes the best trade o�

between these two fores. The redution of shedule delay ost made possible

by loading more passengers on the �rst trains is limited by the rowding it will

indue. Sine early delay ost is smaller than late delay ost in the example of

Table 3 (�rst line) there are more passengers in the �rst train than in the third

one.

Consider now the user equilibrium. Users will make e�orts to improve their

omfort and will try to minimize the user ost also by piking the wrong train.

They disregard the extra in-vehile omfort osts they generate for the other

users. This leads to too full trains that arrive too early and just in time. In

the example of Table 2 (line 2) there is more rowding in the �rst and seond

train and muh less passengers in the third one. This suboptimal distribution

of passengers over the trains leads to a muh higher total travel ost.

Comparing the uniform distribution of passengers over trains (third line)

with the system optimum tells us that, in our example, the ine�ient alloation

over trains is less important in terms of e�ieny than the e�orts of the users

to improve their in-vehile omfort. In this ase, the travel ost in equilibrium

is higher by more than 35% than the ost obtained with the optimal loadings

of the trains. The travel ost in the uniform distribution is higher only by less

than 3%.

Notie however that the uniform distribution will not be as good as in this

illustration if the total population were smaller and apaity not fully used. In

that ase it is natural to lower ost by putting more passengers in the middle

train sine shedule delay ost is redued but rowding is not inreased. A

similar point is disussed below in Setion 4.2 below.

3

3.3 Optimal priing

The soure of ine�ieny is the ine�ient alloation of passengers over the

di�erent trains. This requires a di�erentiation of the harges for the di�erent

3

The interested reader may hek the Mathematia notebook aompanying this paper

that we make available from http://perso.univ-lille3.fr/~mkilani/odes/
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Train loadings Average osts

1 2 3 C SD Total

−30 mins on time +30 mins ($/day/passenger)

System Optimum 53.5 55.1 41.4 2.08 1.70 3.78

User Equilibrium 61.5 63.3 25.3 3.75 1.36 5.11

Uniform 50.0 50.0 50.0 1.99 1.89 3.88

Table 2: Train loading and user osts under three alternatives (parameters from

Table 1). Abbreviations: �C� stands for rowding, and �SD� for shedule delay.

Travel time is 15 minutes.

trains so that the system optimum ondition is satis�ed

C(ni) + f(ti) = C(nk) + f(tk), i = 1 . . . , k − 1.

In order to internalize the rowding externalities we need to harge more the

trains with more rowding or alternatively those trains with the best arrival

times.

4 User equilibrium, sheduling and optimal pri-

ing with randomly distributed desired arrival

times

We turn now to the more general ase where passengers di�er in their desired

arrival time. We onsider a uniform distribution as it allows to derive analytial

expressions. We start by studying the passenger hoie faing two departure

times tA and tB both loated in time interval (0, 1) and tA < tB. Next we

optimize the departure times for multiple trains, and disuss priing alternatives.

In order to simplify mathematial expressions, we assume that the travel time

is set equal to one.

4.1 User equilibrium and system optimum with 2 trains

Consider the hoie between two trains. Train A leaves at tA ∈ (0, 1), while train
B leaves at tB where tA < tB < 1. Assume that travel times are normalized to

zero (onstant travel speed), and that the desired arrival times are ontinuously

distributed in (0, 1), with density ρ. We �rst ompute the equilibrium average

user osts for any tA, tB. In a seond step we optimize the departure times. For
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an equilibrium it is neessary that the last entrant is indi�erent between the

two trains. Denote the departure time of the user indi�erent between the two

trains A and B by t∗. The most interesting ase is where t∗ ∈ (tA, tB). The

number of users of train A is ρ t∗. The generalized ost of user t∗ is:

CG
A = C (nA) + β (t∗ − tA)

= C (ρ t∗) + β (t∗ − tA) .

Similarly, the generalized ost for using train B, is

CG
B = C (nB) + γ (tB − t∗)

= C (ρ (1− t∗)) + γ (tB − t∗) .

The indi�erene ondition for a user equilibrium reads:

C (ρt∗) + β (t∗ − tA) = C (ρ (1− t∗)) + γ (tB − t∗) (4)

or, (β + γ) t∗ = γtB + βtA + C (ρ (1− t∗))− C (ρt∗) .

The form of C(n) preludes a general analytial solution but we an inspet

its properties numerially, as illustrated in Figure 2(a). The ase of a small

small enough ρ (when all passengers have a seat and inur the same travel ost)

an be omputed expliitly, sine then C (ρ t∗) → α0 and C (ρ (1− t∗)) → α0.

Therefore, in this ase, equation (4) redues to:

β (t∗ − tA) = γ (tB − t∗)

t∗ =
γtB + βtA
(β + γ)

.

For γ > β, we have t∗ < 1/2. The reason is that transit users prefer to be one

minute too early rather than one minute too late. γ > β is the usual assumption

and is empirially sound. This is the solution when ongestion (rowding) does

not matter (ρ = 0). As the density parameter ρ inreases there will be more

and more passengers in train B. We hek from (4) that

dnA

dρ
< 0, if

γtB + βtA
(β + γ)

> 0.5,

and at the limit we have limρ→1 t̂
∗ = 0.5, where t̂∗ denotes desired arrival time

with rowding for the passenger indi�erent between train A and train B. As

expeted, the e�et of rowding is to equalize the number of users in eah train.

This statement also means that an inrease of total demand for mass transit

will derease the number of users of train A if train A transports already more

than 50% of total demand.

In Figure 2(a) the two urves orrespond to the number of users in train A,

under equilibrium and optimal regimes. When, the number of users is small (by

omparison to the vehile apaity) external osts are small and the equilibrium

outome is optimal. As the number of users inreases, the omfort dereases,
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Figure 2: Comparison of optimum and equilibrium when tA = 0.2 and tB = 0.8
and other parameters from Table 1.

still, train A remains overused sine eah user onsiders his own ost, not the

external rowding ost imposed on the other passengers. As the number of

users ontinues to inrease, rowding beomes the main onern and passengers

are almost equally split between the two trains, both at equilibrium and at the

optimum. This �gure, however, hides a partiular detail. From the fat that

equilibrium loadings onverge to optimum, one may onlude that priing is no

longer required in this ase, or more preisely that optimum priing of train A

is pA → 0, as ρ gets larger. This is a false onlusion. Indeed, optimum priing

is inreasing in ρ as shown in Figure 2(b). The reason is that as the number of

passengers inreases, rowding inreases strongly. Even if the di�erene in the

two quantities is small, it still indues an inreasing di�erential in ost. At the

same time, one must be areful in the pratial impliation of this �theoretial

result�. Indeed, in pratie the number of passengers is integer, so when two

quantities are lose it means that they are equal, and indeed no priing is needed

to adjust quantities. In the next setion we study optimal departure times and

show that with optimized departure times and uniformly distributed arrival

times, prie di�erentiation over time is again not needed.

4.2 Optimal departure times for k trains

For an early study of optimal time tables see de Palma and Lindsey (2001).

We treat the ase of a single train. Total number of users is �xed and so is

the rowding disomfort and it plays no role in the optimization omputation.

The total shedule delay ost is:

∫ tA

0
γ(tA − t)g(t)dt+

∫ 1

tA
β(t− tA)g(t)dt. The

minimum ost is obtained at departure time tA that satis�es

β ·N early = γ ·N late, (5)
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where N early =
∫ 1

tA
g(t)dt, where N late =

∫ tA

0 g(t)dt, denotes the number of

passengers that arrive after their desired arrival time. When g(t) is uniform

over (0, 1), we get a simple solution: γ tA = β (1− tA). Solving this equation

for tA we �nd that the train should depart at time β/(β + γ). With k trains,

the same optimal solution applies in eah subinterval. The �rst order ondition

for a maximum gives the optimal departure time ti (for i = 1 . . . k), that is

tunifi =
1

k

[
β

β + γ
+ (i− 1)

]
. (6)

The main result is that when users only di�er in their preferred arrival time

and the distribution of preferred arrival times is uniform, rowding does not

modify the optimal departure times. Notie however that when the distribution

of desired arrival times is not uniform, this result no longer holds.

For the sake of omparison, onsider this alternative nonuniform distribution

of desired arrival times.

h(t) =





4 ρ t if 0 ≤ t ≤ 1/2,

4 ρ (1− t) if 1/2 < t ≤ 1,

0 elsewhere.

(7)

Notie that

∫ 1

0 g(t)dt = ρ, so we have the same number of users as in the ase of

a uniform distribution. With distribution h(t), most users have desired arrival

time near 1/2. With only one train, Eq. (5) still applies, sine there will be ρ
passengers in the train independently of its departure time. Using this ondition

and the �rst order ondition leads to

th1 =
β

β +
√
β(2γ − β)

,

and we hek that for β < γ, T g ∈ (0, 1/2).
With two trains and more, we an no longer use ondition (5). Instead, total

user ost should be minimized with respet to departure times of the two trains.

Let SD(tA, tB) denote total shedule delay ost for all users when the departure

times of the two trains are at tA and tB, respetively. The optimal departure

times minimize total ost TC(nA) + TC(nB) + SD(tA, tB), where nA and nB

denote the number of passengers in the �rst and seond train, respetively.

Notie that these train loadings depend on departure times tA and tB. Indeed,
for any given tA and tB one has to �nd the user who is indi�erent between the

two trains in order to ompute nA and nB. A solution to this problem annot

be derived analytially, given the nonlinear expression of C(n), but may be

solved using a numerial proedure. For a numerial illustration,

4

omputing the

solution with distribution h(t) de�ned above and parameter values in Table 1,

we �nd the solution values given in the seond olumn in Table 3. Users are

almost split equally between the two trains (t = .499) and we hek, as expeted,

that tunif1 < th1 < th2 < tunif2 .

4

The omputational details are given in the Mathematia notebook. See footnote

3

.
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Optimizing over tA and tB with

same fares (pA = pB) optimized pA and pB = 0

Average ost 8.68 7.61

tA 0.276 0.256

tB 0.587 0.558

t 0.499 0.472

% arriving late 31.38 29

pA � 1.439

Table 3: Optimizing over departure times and fares.

4.3 Optimal priing for k trains

We know that optimal priing depends in priniple on the departure times as

they determine the levels of ongestion and the external ongestion osts. In a

few ases, pries do not matter. When there is only one train, ongestion level is

�xed and pries do not matter as long as total demand is �xed. More generally,

for any set of departure times, optimal pries are always equal to the marginal

external ongestion osts. When total demand is �xed only the di�erenes in

marginal external ongestion osts of the di�erent trains matters. Also, with

a uniform distribution of desired arrival times there is no need for priing to

deentralize the optimum. Indeed, in this ase, departure times are given by

Eq. 6 and there are ρ/n passengers in eah train. One an hek that users with

desired arrival time at i/n are indi�erent between train i − 1 and train i. So,

the private deision leads to the optimal hoie.

Then, to disuss the ase of nonuniform distribution of arrival times, we

onsider the ase of two trains. Desired departure times distribution is g(t)
over (0, 1). Total passenger ost has two parts: shedule delay ost and in-

vehile ost whih depend on the loadings. Let NA and NB denote passengers

in trains A and B, respetively. Let the fares5 in the two trains be pA and pB,

respetively, and let the train loadings be determined by NA = ρ
∫ t̃

0 g(t)dt and

NB = ρ
∫ 1

t̃
g(t)dt, where t ∈ (0, 1). The soial planner an hoose t̃ by setting

fares pA and pB onveniently. Given t̃, the departure times of the two trains

an be determined on the basis of ondition 5, respetively applied on (0, t̃) and

5

When demand is not elasti, only one train need to be pried, with a value that may be

positive or negative. So in this disussion one may assume that pA = 0 and only onsider

fares on train B.
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(t̃, 1). Now let

t̃∗ = argmax
t̃
S̃D(t̃),

where S̃D(t̃) is total shedule delay ost for all passengers (in the two trains)

where fares are set to make passenger t̃ indi�erent between the two trains and

where the departure times are based on ondition 5 as explained above. So, t̃∗

indiates the train loadings that yield the minimum total shedule delay ost.

Fares pA and pB obtained under this solution would be optimal fares when

rowding in the vehiles is not onsidered.

Crowding is minimized when all the passengers are equally split between the

two trains. If we start from the situation where only shedule delay ost matters

and inrease progressively the importane of rowding, the marginal passenger

moves from t̃ to the median passenger t (we have
∫ t

0
g(t)dt =

∫ 1

t
g(t)dt = 1/2).

A numerial illustration is given in the last olumn of Table 3. Comparing

with the situation where the optimization of pries is not possible we see that

departures times are slightly advaned. There are more passengers in the seond

train, and this allows more passengers to arrive earlier. Average user ost is (of

ourse) smaller when pries are optimized.

6

5 Conlusion

This paper has developed an analytial expression for the disomfort in mass

transit. Our expression distinguishes between passengers with a seat and those

who have to stand. For those who have to stand, the disomfort will depend

on the number of standing passengers ompared to the apaity of the vehile.

This formulation helps to derive optimal timetables and optimal user harges.

The model presented in this paper is very simple and many improvements an

be envisaged. In partiular, we have omitted the waiting time and the fat

that when a train arrives, heavily ongestion, only a fration of passengers

are able to enter. The remaining passengers have to wait for the next train,

inurring an extra waiting time. For empirial appliations, the parameters

of the model should be estimated in order to derive a ongestion funtion for

publi transportation, omparable to the BPR funtion widely used for private

transportation.
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A Approximation of the MAS formula

A drawbak of the MAS formula disussed in this paper is that it is not ontin-

uous at point ns
. Also, the onditional statement in de�nition (1) may lead to a

ompliations in the pratial implementation of the MAS formula. Whenever

possible a smooth funtion is preferred. A ontinuous alternative may be ob-

tained by replaing the original funtion by a good approximation. We disuss

here how one an onstrut a funtion ψ that approximates the user ost given

in Eq. (1).

There are several approximation proedures and tehniques available. These

are generally simple to apply to unidimensional funtions. We use two standard

tehniques, a simple Chebyshev interpolating polynomials and a sophistiated

implementation in Mathematia.

7

Both of these solutions are illustrated on

Figure 3.

For Chebyshev polynomials, we have used the standard proedure as given

in Algorithm 6.2 in Judd (1998). Let us denote this approximation funtion by

ψc
. The result shown in Fig. 3(a) withm = 150 (number of interpolation points)

and n = 50 (polynomial degrees). The approximation quality remains poor, due

mainly to the disontinuity at ns
. Inreasing further the number of interpolation

points does not improve the quality of the approximation. Inreasing the degree

of the interpolating algorithm leads to an instability in the output funtion and

makes the omputation muh more ompliate. The quality of this approxima-

tion is not good, and there are two problems. For some values of n, partiularly
around ns

, the values it generates aren't lose to those of C(n). This an be

on�rmed by measuring the error approximation

∫ 60

0 |C(n) − ψc(n)|dn. The

seond problem is that an equation of the form ψc(n) = A, where A is positive

number may have more than one solution (depending on the values of A). This
ours beause the approximation here does not preserve the monotoniity of

C(n). De�nitely ψc
is not a good hoie for the approximation of C(n).

The sophistiated approximation is denoted ψl
. Fig. 3(b) shows both C and

ψl
. In this ase we obtain a better approximation. In partiular, The error

between the approximation and the original funtion is small. It is lear that

ψs(n) �ts the original funtion C(n) muh better than ψc
. This observation

may be on�rmed by omputing the error measure

∫ 60

0 |C(n)− ψs(n)|dn.

7

The latter uses divided di�erenes to onstrut Lagrange or Hermite interpolating poly-

nomials.
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(a) Chebyshev polynomials.
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(b) ψ(n) formulation or interpolation.

Figure 3: Approximation of user ost funtion.

The expliit formula is atually a quiet long expression that an be handled

by omputers but not really useful for diret analytial usage. We an, however,

provide a relatively simple formula that is omparable with respet to the error

generated to the seond approximation provided above. Indeed using the same

notation as above, the funtion given by

ψMAS(n) = α0 +
α1 − α0

1 + ea(ns
−n)

+ b ec (n−ns
−nx)

(8)

is a good approximation for the user ost as de�ned by Eq. 1. It is omparable

to the funtion ψs(n) de�ned above but has the merit of being very simple and

avoids all onditional expressions. Apart, the problem of multiple solutions (as

disussed for the ase of ψs
) it ould be used for pratial purposes.

B Comparison with max funtion

The formulation in Eq. 1 uses the exponential form to take into aount the

fat that loadings below ns + nx
does not generate rowding. One may won-

der whether we an replae the term b exp(c (n − ns − nx)) by the simpler

b exp(c max(n−ns −nx), 0). Figure 4 shows that both expressions give similar

urves for user ost and average ost (the dashed urve is the one using the max
funtion).
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Figure 4: Comparison with initial formulation (bold urves) and max formula-

tion (dashed urves) .

17



Copyright © 2013 @ the author(s). Discussion papers are in draft form. This discussion paper 

is distributed for purposes of comment and discussion only. It may not be reproduced without 

permission of the copyright holder. Copies of working papers are available from the author. 

 

 




