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Abstract

During decades the study of networks has been divided between the efforts of social
scientists and natural scientists, two groups of scholars who often do not see eye to
eye. In this review I present an effort to mutually translate the work conducted by
scholars from both of these academic fronts hoping to continue to unify what has
become a diverging body of literature. I argue that social and natural scientists fail to
see eye to eye because they have diverging academic goals. Social scientists focus on
explaining how context specific social and economic mechanisms drive the structure of
networks and on how networks shape social and economic outcomes. By contrast,
natural scientists focus primarily on modeling network characteristics that are
independent of context, since their focus is to identify universal characteristics of
systems instead of context specific mechanisms. In the following pages I discuss the
differences between both of these literatures by summarizing the parallel theories
advanced to explain link formation and the applications used by scholars in each
field to justify their approach to network science. I conclude by providing an
outlook on how these literatures can be further unified.

Introduction: Born fragmented

“Science must, over the next 50 years, learn to deal with these problems of organized

complexity.”—Warren Weaver, 1948

How science evolves? And how is scientific progress tied to improvements in math-

ematics? In 1948 Warren Weaver, the director of the Rockefeller Foundation’s division

of natural sciences, published an essay hoping to answer these questions.

His now classic paper: Science and Complexity (Weaver 1948); explained the three

eras that according to him defined the history of science. These were the era of simplicity,

disorganized complexity, and organized complexity. In the eyes of Weaver what separated

these three eras was the development of mathematical tools allowing scholars to describe

systems of increasing complexity.

The first era, that of problems of simplicity, focused on systems that could be

described using trajectories and surfaces. These are the systems that could be modeled

using the calculus developed by Newton and Leibniz. Of course, there are many
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problems of simplicity that are mathematically complicated, but in the eyes of Weaver

these mathematical complications were not the same as complexity, since complexity

could only emerge in systems populated by many interacting components. These are

systems that evolve, adapt, and beget diversity in ways that cannot be well-described

using calculus, so for science to continue its progress, a new math needed to emerge.

That new math was statistics and probability, which allowed scholars to focus on a

new class of problems: problems of disorganized complexity. Problems of disorganized

complexity are problems that can be described using averages and distributions, and

that do not depend on the identity of the elements involved in a system, or their pre-

cise patterns of interactions. A classic example of a problem of disorganized complexity

is the statistical mechanics of Ludwig Boltzmann, James-Clerk Maxwell, and Willard

Gibbs, which focuses on the properties of gases. Here, each molecule inside a gas can

be considered to be the same. These problems also involve the mathematical reformu-

lation of Darwin’s theory evolution advanced by Karl Pearson, Sewall Wright, Jack

Haldane, and Ronald Fisher, which focus on the coarse patterns of that generate from

combining variation and selection. But the probability and statistics methods that helped

advanced our understanding of systems of disorganized complexity still had limitations,

as it could not account for the complex patterns begot in the intimacy of society and life.

So in the midst of the twentieth century Weaver saw the dawn of a new era: the era

of organized complexity. This was a new science focused on problems where the iden-

tity of the elements involved in a system, and their patterns of interactions, could no

longer be ignored. This involved the study of biological, social, and economic systems.

According to Weaver, to make progress in the era of organized complexity, a new math

needed to emerge.

Since Weaver published his seminal paper scholars have improved our understanding

of systems of organized complexity. Part of this progress involves the development of

the science of networks, which is a clear response to Weaver’s request. Networks are

mathematical objects that help us keep track of the identity of the elements involved in

a system and their patterns of interactions, making networks the ideal structures to de-

scribe problems of organized complexity. Of course, networks are no panacea, or repre-

sent a complete toolbox, but together with the tools of calculus, probability, and

statistics, they provide us with a more comprehensive toolbox that we can use to describe

systems of organized complexity and test hypothesis about how these work.

But the study of systems of organized complexity did not grow radially from Weaver’s

seminal paper, or from a single stream of literature. Instead, it grew in patches, in inde-

pendent and often unconnected parts of academia. Unlike other academic efforts,

which usually grow from a single academic source, the science of organized complexity

was born fragmented, with pioneers in many different fields. Soon after Weaver’s paper,

biologists like Francois Jacob (Jacob and Monod 1961), (Jacob et al. 1963) and Stuart

Kaufmann (Kauffman 1969), developed the idea of regulatory networks. Mathemati-

cians like Paul Erdos and Alfred Renyi, advanced graph theory (Erdős and Rényi 1960)

while Benoit Mandelbrot worked on Fractals (Mandelbrot and Van Ness 1968),

(Mandelbrot 1982). Economists like Thomas Schelling (Schelling 1960) and Wasily

Leontief (Leontief 1936), (Leontief 1936), respectively explored self-organization and

input-output networks. Sociologists, like Harrison White (Lorrain and White 1971) and

Mark Granovetter (Granovetter 1985), explored social networks, while psychologists like

Hidalgo Applied Network Science  (2016) 1:6 Page 2 of 19



Stanley Milgram (Travers and Milgram 1969) explored the now famous small world prob-

lem. The science of organized complexity emerged in the second half of the twentieth

century, just as Weaver predicted, but it emerged in parallel efforts that are not easy to

reconcile.

My goal in this paper is not to reconcile these streams of literature—that would be

too ambitious—but to create a narrative that translates the value of the research

conducted in one stream of literature to scholars from other streams. To achieve this

goal, however, I will need to make some coarse simplifications. For simplicity, I will divide

network science into two main streams, the streams advanced by social scientists, and pio-

neered by sociologists, political scientists, and economists—who of course, have important

differences among them—and the stream of literature advanced by the natural scientists,

which is dominated by scholars trained as physicists, computer scientists, mathematicians,

and biologists, from geneticists to ecologists. Certainly, there are important differences

within each of these groups and subgroups. In the context of the social sciences, economists

tend to focus more on the creation of formal models built on ideas of utility maximization

than sociologists, and are also, more obsessed with methods for causal identification than

sociologists, even though sociologists are no strangers to causal inference. Computer scien-

tists are also quite different from physicists, since they tend to focus more, for instance, on

the optimization of algorithms than on the universality of distributions. But nevertheless,

these within group differences can often be small compared to the differences observed

between groups, so I will nevertheless take a first pass at painting this picture using a thick

brush. I apologize to those that will take this simplification with outrage.

Also, some people may argue that the division between these sciences is no longer

present, since there has been an increase in multidisciplinary efforts that transcend trad-

itional boundaries. There are now, for instance, new degree programs on network science

that have hired scholars from multiple disciplines (Lazer et al. 2009). At the same time, we

should not overgeneralize from a few examples. These examples, while encouraging, may

not be representative of all academic departments, and could be in fact, seen as the emer-

gence of yet another group. So with the danger of oversimplifying I will focus on dividing

academia into a few coarse groups for two reasons. First, I will focus in these larger groups

because reviews that transcend the boundary between the social and natural sciences are

rare, but I believe them to be valuable. One such review is Borgatti et al. (2009), which com-

pares the network science of natural and social sciences arriving at a similar conclusion to

the one I arrived. Second, I believe these diverging bodies of literature are in desperate need

of mutual understanding, and to achieve that understanding, we need to help translate the

research goals and intentions of one group of researchers to the language of the other (or at

least, into a simple language that everyone can understand). Of course, the breadth of the ef-

fort implies that I am destined to fall short, and make a review that is both, narrow and in-

complete. Also, for those who are experts in a particular stream of literature, parts of this

review will seem dated, since I am not focusing on what is more recent, but on the historical

trajectories of the ideas advanced by scholars in each of these streams. For a comprehensive

summary of the literature advanced by a particular branch of the literature I recommend

readers to look at reviews that focus on more narrow subjects. The purpose of this review,

therefore, is not to summarize all of the streams of literature that discuss networks,1 but to

pick a few illustrative examples that can help translate the goals advanced by scholars work-

ing on different corners of what is a vast intellectual space. I hope this exercise is useful
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for the growing community of scholars working on networks, and also, that it contribute

to the educational efforts needed to establish the study of networks as a field.

Links and Link Formation

Links are the essence of networks. So I will start this review by comparing the mecha-

nisms used by natural and social scientists to explain link formation. Before I describe

these mechanisms, however, I will note that even the notion of what is considered a

link can be different for scholars in both streams of literature.

Social scientists’ idea of links—or ties—often incorporates information on the context

of social interactions and the type of support that flows through that interaction. For

instance, social scientists make strong differences between friendship ties, co-working

ties, and family ties, because different types of links provide different forms of support

and affect the dynamics of different aspects of society. Even more, among family ties,

social scientists will often differentiate between the ties connecting parents to their off-

spring and to each other, since these are relationships ruled by a different set of norms

and expectations. Also, in the context of the literature on social capital, social scientists

interpret ties as the embodiment of trust (Granovetter 1985), (Fukuyama 1995), (Coleman

1988). So in the social science literature, and in particular in the literature advanced by

sociologists and political scientists, links are not simply a recollection of instances of

communication, but social relationships that are meaningful only as long as the indi-

viduals involved in them trust and support each other in specific ways.

Natural scientists’ definition of links, however, has been more abstract and driven by

the availability of data. Their implicit definition of connections involves recorded acts

of communications that are independent of social context (i.e. a phone call or email), a

technological link (a URL in a webpage or a physical link in the internet), or collabor-

ation in a creative process (paper co-authorships or sharing credits in a movie). This

contrasts with the definitions preferred by social scientists, where the type of relation-

ships is considered important. For instance, a co-authorship link is not the same if it is

between two students, or between a student and his or her advisor. When connecting

the people that acted in the same movie, natural scientists do not differentiate between

people in leading or supporting roles. Moreover, when details on the nature of links are

included, they include quantitative rather than qualitative approaches (focused on

assigning numbers to links called weights (Barrat et al. 2004), rather than labels or

types). For instance, in the study of mobile phone networks, the frequency and length

of interactions has often been used as measures of link weight (Onnela et al. 2007),

(Hidalgo and Rodriguez-Sickert 1008), (Miritello et al. 2011). More recently, this lit-

erature stream has also begun to focus on multiplex networks, which are networks

where nodes have multiple connections among them (i.e. two cities connected by rail

and plane), even though the idea of multiplex networks had also been explored by the

social science literature (Wasserman and Faust 1994). Still, this has not brought the

study of networks by natural scientists closer to the literature advanced in the social

sciences, since the focus has been primarily on the generalization of network measures to

networks in which multiple links are available and on the mathematical implications for

robustness and fragility of networks with multiple links (Mucha et al. 2010), (Bianconi

2013), (Gómez et al. 2013), (Buldyrev et al. 2010).
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But the differences between the approaches followed by natural and social scientists

do not stop in their conceptualization of what links are, but extend to the link forma-

tion mechanisms that they usually use to explain the structure of networks.

Social scientists explain link formation through two families of mechanisms; one that

finds it roots in sociology and the other one in economics. The sociological approach

assumes that link formation is connected to the characteristics of individuals and their

context. Chief examples of the sociological approach include what I will call the big

three sociological link-formation hypotheses. These are: shared social foci, triadic

closure, and homophily.

The social foci hypothesis predicts that links are more likely to form among individuals

who, for example, are classmates, co-workers, or go to the same gym (they share a social

foci). The triadic closure hypothesis predicts that links are more likely to form among in-

dividuals that share “friends” or acquaintances. Finally, the homophily hypothesis predicts

that links are more likely to form among individuals who share social characteristics, such

as tastes, cultural background, or physical appearance (Lazarsfeld and Merton 1954),

(McPherson et al. 2001).

The link formation mechanisms favored by economists, on the other hand, favor stra-

tegic decisions making. Building on game theory scholars have built (Jackson and

Wolinsky 1996), (Jackson 2010) strategic games where self-interested individuals form

and severe links as they evaluate the cost and benefits of their interactions. These are

network formation mechanisms that are inspired in idea of equilibrium, which domi-

nates neoclassical economics since (Walras 1984) formalized it over a century ago. Yet,

strategic games look for equilibrium in the formation and dissolution of ties in the con-

text of the game theory advanced first by (Von Neumann et al. 2007), and later by

(Nash 1950).

The link formation mechanisms used by Natural scientists, however, are often not

based on strategic games, or dependent on social context, but instead, are based on

models that are agnostic about the characteristics of the individuals involved in the for-

mation of a link. For the most part, natural scientists model the evolution of networks

as stochastic processes that tie back the evolution of a network back to its structure.

A popular example of such a stochastic model is the idea of preferential attachment,

or cumulative advantage. Preferential attachment is the idea that connectivity begets

connectivity. More formally, it is the assumption that the probability that a node would

acquire a new link depends linearly in the number of nodes that are already connected

to it. Preferential attachment is an idea advanced originally by the statisticians John

Willis and Udny Yule in (Willis and Yule 1922), but has been rediscovered numerous

times during the twentieth century. Willis and Yule were looking to explain the scale-

free structure of the networks defined by biological taxonomies (that is, they wanted

to explain why some branches in the tree of life branch out much more than others).

Yule found that most genera had only one species, but that most species came from a

single genus. The explanation Yule gave was that the more species a genus has, the

more species it can eventually produce. Rediscoveries of this idea in the twentieth

century include the work of (Simon 1955) (who did cite Yule), (Merton 1968), (Price

1976) (who studied citation networks), and (Barabási and Albert 1999), who pub-

lished the modern reference for this model, which is now widely known as the

Barabasi-Albert model.
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This growth and preferential attachment model is a perfect example of a network

formation mechanism that ties the formation of links to the topology of the network,

rather than to individual characteristics of nodes. Preferential attachment, in its pure

stochastic interpretation, stands in stark contrast with the models of network formation

favored by social scientists because preferential attachment is agnostic about why

people connect to highly connected nodes, or hubs—it just assumes they do, and then,

leverages that assumption to explain a coarse property of the network (its degree distri-

bution). For many social scientists, however, preferential attachment would represent

an incomplete explanation of link formation since their main interest would be to

understand why people want to connect to hubs. Is it because they have a prestige bias

(Henrich 2015)? Are they searching for status? Economic gains? Popularity? Arbitrage

Opportunities? For a social scientist, even if all of these alternative hypotheses lead to

similar outcomes, separating among them is what it is relevant. In contrast, most nat-

ural scientists are happy with a preferential attachment type model since they often

consider differences in the reasons why nodes connect to hubs to be irrelevant, espe-

cially if these mechanisms do not introduce any changes in the coarse structure of the

resulting network. In the language of natural scientists these differences are symmetries

that give rise to the same universal mechanism: preferential attachment. In the eyes of

the social sciences, however, understanding which of all of these hypotheses drives the

formation of the network is what one needs to explore.

Another example of a link formation mechanism advanced by natural scientists and

that connects the formation of links directly to the topology of the network is the idea

duplication and divergence. In a duplication and divergence model, links are formed as

old nodes are duplicated together with a subset of their connections. Think of the bio-

logical interactions available to a duplicated protein. If the gene that encodes a protein

duplicates, then, the “twin” protein will initially connect to the same proteins than the

original protein. Yet over time, one of the two proteins can develop new interactions,

and also, lose some of the old interactions it had, since the interactions of a protein are

redundant with that of its “twin.” As a result, you get a model in which the network

grows as nodes are duplicated, and where links grow as these duplicated nodes evolve

the set of connections they have. This duplication and divergence models also lead to

preferential attachment, since nodes with more links are more likely to see one of their

neighbors duplicate.

Duplication and divergence models (Ispolatov et al. 2005), (Vázquez et al. 2002) have

been used with great success to explain the structure of biological networks (i.e. protein

interaction networks, or metabolic networks), including their heterogeneous degree

distribution, modularity (Sole and Fernandez 2003), (Solé and Valverde 2008), and

hierarchical structure (Ravasz et al. 2002). Duplication and divergence models, however,

are also agnostic about the non-topological characteristics of nodes, and therefore, repre-

sent another example of a link formation mechanism that ties the evolution of a network

back to its own topology.2

Juxtaposing the models of link formation advanced by social scientist and natural sci-

entists, however, helps us uncover some important differences between the approaches

followed by these two coarsely defined groups of scholars. The link formation mech-

anisms preferred by social scientists involve a sense of identity and strategy, since

they focus on who is connected to whom and why. By contrast, the link formation
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mechanisms preferred by natural scientists are more neutral, focusing on how con-

nections depend on the position that an individual occupies in a network, but not

on who that individual is, or on the strategic choices that pushed an individual to

make or cut a connection. As we will see next, these different approaches are justi-

fied by different scientific objectives. Stochastic approaches are good at explaining

features that are observed over a large variety of networks, what natural scientists

call universal features, such as the heterogeneous degree distributions of many net-

works (Albert and Barabási 2002) or their short average path lengths (Watts and

Strogatz 1998). When the goal is explaining similarities between networks observed

in different systems (from genetic interactions to the physical internet), then it

makes sense to use a model that is context agnostic, rather than specific. On the

contrary, if a person’s goal is to explain and interpret the structure of a narrowly de-

fined network in a specific context, then adopting a context agnostic model will be

inadequate, since those models provide answers that are too loosely specified to be

informative of the specific social processes driving the network.

In the next section, I continue to explain the differences between the theoretical ap-

proaches used to model networks by natural and social scientists by going deeper into

the applications used to justify the study of networks. This should help illuminate the

preferences for the link formation mechanisms that I have just described.

Applications of Networks

Consider the link formation mechanisms that are preferred by sociologists and that we

described above as the big three: These are homophily, shared foci, and triadic closure.

Why would social scientists prefer these link formation mechanisms to stochastic

models, such as Yule’s preferential attachment process (a.k.a the Barabasi-Albert model)?

The answer can be found by asking: what can these link formation mechanisms help

explain that Yule’s process cannot?

One example is the ethnic and cultural segregation of social networks (Ibarra 1992),

(Shrum et al. 1988), (Moody 2001), (Quillian and Campbell 2003), (Currarini et al.

2009). Segregation is a property that is connected to the structure of networks, but that

goes beyond it, since it involves the distribution of individual level characteristics, such

as the ethnic and cultural background of the individuals in that network. We can ex-

plain ethnic and cultural segregation, however, by invoking the big three network for-

mation mechanisms of sociology: shared foci, homophily, and triadic closure. Together,

these three mechanisms are expected to give rise to homogenous self-reinforcing

groups, like the segregated groups we observe in society. Of course, there is more to

segregation than what can be explained by these three mechanisms, but this simple ex-

ample should give you a hint about why they are a better starting point in this case.

As another example consider the labor market, as studied by economic sociologist ra-

ther than economists. Economist sociologists, such as Mark Granovetter, have shown

that most individuals get jobs from friends and acquaintances (Granovetter 1974). This

observation is relevant because it shows that labor markets are embedded in social

structure (Granovetter 1985) and hence, that the links formed by social mechanisms

constrain economic activity (social networks are the “pipes” that determine what eco-

nomic transactions are possible). This is an observation that also contrasts the theories
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advanced by new-institutional economists that see social structure as the equilibrium

of the institutions that are optimal for a given type of commercial interaction. Yet,

Granovetter’s empirical labor market results have been reproduced repeatedly and show

that social networks drive, on average, roughly half of the labor market (Putnam 2000),

(Schwartz 2013). Moreover, Granovetter and others have shown that the jobs assigned

through social interactions are primarily the high paid, high-skilled jobs, giving validity

to his embeddedness theory.

Now, to show how social theories can be combined to advance explanations of

complex social phenomenon, let’s put together the embeddedness of labor markets

and the dynamics of social segregation described above. Together these two mechanisms

imply that individuals from different ethnic groups will face different job opportunities (de

Souza Briggs 1998). This is another example of a relevant question that is connected to

the structure of networks, but that requires a nuanced description of both, the individuals

involved in a dyad and of how individual characteristics affect the process of dyad

formation.

Labor markets and segregation are two questions that interest social scientists and

that require an understanding of networks that goes beyond network topology. Yet, to

understand social scientists’ description of ties we need to dig deeper and include also

their interpretation of ties as the embodiment of trust.

Trust is a dimension of social networks that has been of paramount importance for

social scientists, but that has been mostly ignored by natural scientists. The importance

of trust in social network literature is well reflected in the literature on social capital.

This is a literature advanced by sociologists (Granovetter 1985), (Coleman 1988), (Burt

2001), (Burt 2005), political scientists (Fukuyama 1995), (Putnam 2000), and econo-

mists (Alesina and La Ferrara 2002).

Social networks and trust are intimately connected, since individuals are more likely

to trust those with whom they share social connections, interact frequently, and share

friends and acquaintances with (Granovetter 1985), (Burt 2001), (Burt 2005), (Coleman

1988). Yet, not all social connections embody trust. Trust, however, also helps us inter-

pret the emergence of triadic closure, since people connect to friends of friends because

they are more likely to trust them—you can think of the connection to the mutual

friend as a form of insurance (when people consider connections to be valuable). Going

back to our labor market discussion, trust can also be used to explain the role of social

networks in the labor market, since the willingness of people to hire friends of friends

could be seen as a reflection of the trust that flows indirectly through an open triad—or

of the insurance represented by the mutual friend. Of course, friends are also likely to

have similar skills, so homophily is expected to reinforce Granovetter’s labor market re-

sults. Finally, trust can also be used to explain the size of the firms that populate an

economy. As Francis Fukuyama argued in his book Trust (Fukuyama 1995), economies

where people are more likely to trust strangers will form larger social and professional

networks and will gravitate towards complex industries (such as aircraft manufactur-

ing).3 Finally it is worth noting that trust, through the theory of social capital, has been

connected with long-term economic growth—even though these results are based on

regressions using extremely sparse datasets. Nevertheless, the evidence suggests that

social capital and social institutions are significant predictors of economic growth, after

controlling for the effects of human capital and initial levels of income (Knack and
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Keefer 1997), (Knack 2002).4 So trust is a relevant dimension of social interactions that

has been connected to individual dyads, network formation, labor markets, and even

economic growth.

People studying trust have also been able to connect trust to other social institutions,

such as the family. In fact, societies where individuals rely more heavily on family links

are also societies where individuals are less likely to trust strangers, and consequently,

less likely to engage in political and civic participation (Fukuyama 1995), (Alesina and

Giuliano 2011). Moreover, some of the social and economic correlates of family rela-

tionships are known to survive in the families of immigrants, suggesting that the effect

of social institutions in the type of links that a society forms is long lasting (Alesina

and Giuliano 2010).5

So what are the applications that interest natural scientists? Natural scientists have

not focused primarily on trust, labor markets, or social segregation. Instead, they have

focused mainly on five things: (i) explaining the topology of networks in terms of sto-

chastic models, (ii) developing algorithms to quantitatively describe the topology of net-

works, from their degree distribution to their community structure, (iii) modeling the

spread of diseases and information on networks, (iv) using networks as a mean to

model large interconnected systems, by mapping connections among diseases, lan-

guage, or similar products, and (v) to study the implications of network structure for

game theoretical outcomes, not in the context of link formation, but primarily in the

context of the evolution of cooperation. Goals (iii) and (v) are shared among natural

scientists and social scientists, in part, because the puzzle of cooperation is one of long

tradition in both evolutionary biology (Dawkins 1976) and economics (Von Neumann

et al. 2007).

The first two goals of natural scientists, explaining network formation through sto-

chastic models and quantifying network structure are highly intertwined, since natural

scientists use the structural features of networks to validate the predictions of their sto-

chastic models. This has lead natural scientists to create a vast literature on the empir-

ical characterization of network structure which focuses on looking at a network’s

degree distributions (Barabási and Albert 1999), (Albert and Barabási 2002), (Krapivsky

and Redner 2001), its hierarchical structure (Trusina et al. 2004), (Ravasz et al. 2002),

(Clauset et al. 2008), community structure (Palla et al. 2005), (Ahn et al. 2010), (Girvan

and Newman 2002), (Blondel et al. 2008), (Fortunato 2010), and also, the likelihood of

hubs to connect to hubs. This last property is usually studied under the name of

degree-degree correlations (Newman 2002), but alternative ways of measuring this

property (which focus on clustering among hubs) have been rebranded, as the “rich-

club” phenomenon (Colizza et al. 2006a, b), or “fractal” networks (which are networks

in which hubs have a tendency to repeal each other) (Song et al. 2005), (Song et al.

2006). The tendency for hubs to connect to hubs, however, is an idea that is closely re-

lated to homophily, but in the hands of natural scientists shows their preference for

topological measures, since degree correlations study the tendency for links to form

among pairs of nodes characterized by a topological feature (their degree) instead of an

intrinsic property (such as their ethnic group, or gender), or and acquired property

(a node’s income, or social status).

But what questions can natural scientists answer with their context agnostic approaches?

Some questions that are popular among natural scientists are questions of percolation, in
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which the vulnerability of networks to the removal of nodes due to errors and attacks is

studied (Albert et al. 2000), (Cohen et al. 2002), (Achlioptas et al. 2009). Also, topological

approaches are popular in the link prediction literature, which is popular among computer

scientists and has applications for social media companies (which are trying to predict

new friendships, followers, or clicks on ads., all of which are new links) (Liben-Nowell

and Kleinberg 2007), (Clauset et al. 2008), (Lichtenwalter et al. 2010).

Yet the link prediction literature is a good example of a disconnection between the

literatures advanced by natural and social scientists. Even though all link prediction pa-

pers build heavily on measures of triadic closure (Liben-Nowell and Kleinberg 2007),

(Lichtenwalter et al. 2010), they often do not cite the social science literature on triadic

closure. Instead, they focus on comparing a repertoire of measures of open triads and

machine learning algorithms in search for the combination of features and algorithms

that maximize the accuracy of the predictions.

One place where natural scientists have been relatively successful at is at using the

idea of a network to map connections in non-social systems. This usually involve taking

a bi-partite network, like the network connecting diseases to genes (Goh et al. 2007),

countries to products (Hidalgo et al. 2007), or languages to people (Ronen et al. 2014),

and creating a projection to connect diseases that share genes, products that are

exported in tandem, or languages that are co-spoken. In the context of medicine and

biology these ideas are manifested in the new literature on network medicine, which is

based on the creation of networks connecting diseases that are caused by the same

genes (Goh et al. 2007), that share metabolic paths (Lee et al. 2008), or that affect the

same patients (Hidalgo et al. 2009) These disease networks are being used to identify

new disease genes, and uncover the biological significance of disease-associated muta-

tions (Barabási et al. 2011).

But there are also applications of networks that interest both natural and social scien-

tists. One of these is the spreading of epidemics and information. The basic question that

this literature tries to answer is where people get new information from (for instance,

about a job), or how diseases spread. Of course, the position that a person occupies in a

network should affect the information that is available to him or her, or the probability

that a person interacts with another individual that is carrying a disease.

In the context of the natural sciences this literature has emphasized the development

of mathematical models of disease contagions. Following the pioneering work of William

Kermack and Anderson McKendrick (Kermack and McKendrick 1927; Kermack and

McKendrick 1932; Kermack and McKendrick 1933), many scholars have explored the

consequences of incorporating networks structure explicitly in the process of epi-

demic spreading (Pastor-Satorras and Vespignani 2001), (Barrat et al. 2008), (Boguñá

and Pastor-Satorras 2002), (Colizza et al. 2006a), and also, of including other effects,

such as differential susceptibility—the fact that not all nodes are equally vulnerable to

a disease (Smilkov et al. 2014)—into these models. Social scientist, on the other hand,

have focused on what ties are more likely to bring in new information, which are pri-

marily weak ties (Granovetter 1973), and on why weak ties bring new information

(because they bridge structural holes (Burt 2001), (Burt 2005)).

In recent years, the studies of diffusion processes in networks have been expanded

to works that extends beyond the spreading of infectious diseases, or information

about jobs, and now include the spread of behaviors and health conditions, such as
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obesity and smoking (Christakis and Fowler 2007), (Christakis and Fowler 2008), the

diffusion of innovations (Rogers 2003), behaviors (Centola and Macy 2007) (Centola

2010), emotions (Kramer et al. 2014), and even the industrial structure of economies

(Hidalgo et al. 2007).

Finally, we have the literature connecting game theory and networks in the context

of the evolution of cooperation. The evolution of cooperation is a classic scientific

question since there are many situations where individuals have an incentive to cheat,

making the prevalence of cooperation a deep theoretical puzzle. The original attempts

to explain the emergence of cooperation in large populations focused on the role of

strategies involving punishment schemes and reciprocity (Axelrod and Hamilton 1981).

More recently, however, heterogeneous networks have been found to be effective pro-

moters of the evolution of cooperation, since there are advantages to being a cooper-

ator when you are a hub, and hubs tend to stabilize networks in equilibriums where

levels of cooperation are high (Ohtsuki et al. 2006), (Pacheco et al. 2006), (Lieberman

et al. 2005), (Santos and Pacheco 2005). These results, however, have also been chal-

lenged by human experiments finding no such effect (Gracia-Lázaro et al. 2012). The

study of cooperation in networks has also been performed in dynamic settings, where

individuals are allowed to cut ties (Wang et al. 2012), promoting cooperation, and are

faced with different levels of knowledge about the reputation of peers in their network

(Gallo and Yan 2015). Moreover, cooperating behavior has seen to spread when people

change the networks where they participate in (Fowler and Christakis 2010).

Building bridges

In the last sections I juxtaposed the literature of social scientists and natural scientists

working on networks, two groups of academics that often fail to see eye to eye. This

juxtaposition helped us illustrate important differences between the methodology and

questions explored by each of these groups of scholars. Scholars trained in the social

sciences focus on explaining social and economic phenomena, and are interested on how

networks affect the individuals and organizations forming these networks (demographics,

income, etc.). As the sociologist Linton Freeman remarked in The Development of Social

Network Analysis:

“The social network approach is grounded in the intuitive notion that the patterning

of social ties in which actors are embedded has important consequences for those

actors. Network analysts, then, seek to uncover various kinds of patterns. And they try

to determine the conditions under which those patterns arise and to discover their

consequences.” (Freeman 2004)

Natural scientists, on the other hand, are interested in identifying features that are

common to a wide variety of networks, and hence focus on the use of stochastic and

generative models that are agnostic about the properties of individuals, or their goals.

This pushes natural scientists to focus on what different networks have in common, in-

stead of what sets them apart. As Barabási explains in Linked (Barabasi 2014):

“The diversity of networks in business and the economy is mindboggling. There are

policy networks, ownership networks, collaboration networks, organizational networks,
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network marketing-you name it. It would be impossible to integrate these diverse

interactions into a single all-encompassing web. Yet no matter what organizational

level we look at, the same robust and universal laws that govern nature's webs seem

to greet us.”

Yet, despite their difference in focus, each literature has been able to make great ad-

vances. While social scientists have made great progress in questions that need to be

understood in a nuanced social context, like the role of trust on labor markets, natural

scientists have advanced the understanding of network questions that are not context

specific, and are governed by general constraints. But can these approaches learn from

each other?

Both of these approaches can benefit from each other, since natural scientists often

throw the baby with the bathwater when exploring social questions in absence of a well

defined social context, or by not considering the multiple hypotheses that a social con-

text can imply. On the other hand, social scientists often have problems seeing explana-

tions that are based on statistical properties or constraints that are independent of

context, since they have developed a strong taste for theories that are more teleological

than those advanced by natural scientists. So they can see mirages of mechanisms in

situations where an explanation based on constraints is enough.

And in this taste for teleology is where we find one of the great differences between

social scientists and natural scientists, since these differences bring each of these disci-

plines to a different interpretation of what they mean by answering the question:

“why?” Social scientists look for answers to why questions that involves the purposeful

action of actors, no matter whether those purposes are driven by self-interest (like in

the economics tradition), by a process of socialization (like in sociology), or whether

they developed in a struggle for power (like in political science). Natural scientists, on

the other hand, answer why questions by looking at the constraints that limit the be-

havior of the system. This is an approach that builds on the tradition of physics, since

the earth does not orbit the sun6 for a purpose, but because the law of gravity acts as a

constraint (metaphorically, as a tense rope) that shapes our planet’s elliptical motion.

By the same token, the reason why momentum is conserved in many physical systems

is because the Hamiltonian of these systems (the Hamiltonian being an advanced way

of representing the constraints of a dynamical system) does not depend on that sys-

tems’ position. Why questions do not always involve purpose, but it is important to

note when they do.

So can these literatures come together?

I think there are two ways in which they can. One is by creating teams that use the

diversity of skills found in scholars from different disciplines as an advantage. The other

one is to focus on topics that are of common interest to scholars from the social and

natural sciences, such as online social interactions.

So let’s look at the first of these two options. Scholars from the natural and social

sciences have a diversity of skills that when put together can be very powerful. Social

scientists are often great narrative theoreticians, and are great at framing arguments

and highlighting the social relevance of findings. Also, social scientists are trained to

think in terms of multiple chains of causations, so they are good at identifying potential

underlying assumptions and hypotheses. They also have a good toolbox of quantitative

Hidalgo Applied Network Science  (2016) 1:6 Page 12 of 19



techniques they can use to separate among multiple hypothesis, from simple multivariate

regressions, to matching methods, and instrumental variables. Natural scientists on the

other hand, are comparatively skilled in the development and implementation of new

algorithms and metrics, and are often better at the use of graphical statistical

methods, which in presence of the right renormalization techniques can help uncover

universal distributions. Also, natural scientists have a natural tendency to think of

statistical controls in terms of null models. In network science, these null models are

useful because they help discount patterns that are explained by simple structural fea-

tures, like a network’s degree distribution (Maslov and Sneppen 2002), (Vázquez et al.

2004), (Hidalgo and Hausmann 2009). Moreover, computer scientists tend to be good

at optimizing algorithms, which is something required for scaling research to large

datasets. So in principle, collaborations between social scientists and natural scientists

could result in high quality work because natural and social scientists have a larger

and more powerful toolbox when working together than in isolation.

In fact, there are quite a few examples of successful work involving collaborations

between natural and social scientists. These involve the work by the sociologist Matthew

Salganik, and the physicists Peter Dodds and Duncan Watts in market forces, (Salganik

and Watts 2008), or the work by the sociologist Brian Uzzi, the economist Benjamin

Jones, and the physicist Stephan Wuchty on knowledge production by teams (Wuchty

et al. 2007), (Jones et al. 2008). Other examples include the collaborations between the

physicist Cesar Hidalgo and the economist Ricardo Hausmann in economic complexity

and economic growth (Hidalgo et al. 2007), (Hidalgo and Hausmann 2009).

The other way in which these two literatures can come together is less methodological

and more topic-oriented. In fact, there are many topics that are of the interest of both nat-

ural and social scientists. Two that I mentioned previously are the diffusion of information

and contagious diseases, and the evolution of cooperation. Another topic, of more recent

appearance, is social media and its effects in society. In recent decades sociologists, like

Barry Wellman, have written extensively about how modern communication technologies

are affecting social structure. In the early 2000s Wellman (Wellman 2001) begun counter-

ing Robert Putnam’s claim that social capital was declining (Putnam 2000), and argued in-

stead that social capital was moving online (Wellman et al. 2001). More recently,

Wellman and Lee Rainie summarized this argument in the idea of networked individual-

ism, the idea that individuals are no longer bound to closely-knit groups, but are instead

nodes in sparser global networks (Rainie and Wellman 2012).

But natural scientists are also interested in online social networks, and they have

been good at developing scalable algorithms to help analyze large samples of these

networks. Their focus has been on identifying influential individuals in social media

(Cha et al. 2010), (Bakshy et al. 2011), verifying the veracity of information (Castillo

et al. 2011), and performing sentiment analysis (Bollen et al. 2011), (Go et al.), (Dodds

et al. 2011). So online social behavior could be a new opportunity for these literatures

to come together.

But beyond topics, and skills, there are still some important differences in the format

and style of publications that can limit cross-collaboration among scholars working on

different parts of the fragmented network literature.

One of these formal aspects is the enormous difference in the formats of publications

that are preferred and accepted in the natural and social sciences. Differences in format

Hidalgo Applied Network Science  (2016) 1:6 Page 13 of 19



may seem cosmetic, but due to the social (or antisocial) nature of peer-review,

differences in the expectations that academics have with respect to format can re-

sult in papers being quickly misunderstood, and rejected, by scholars trained in

different fields.

One important difference here is the role of an introduction in a paper. In the natural

sciences, especially in physics, introductions are considered boilerplate summaries of

previous research that are mostly irrelevant, since what makes or break a paper is the

results section. That is why in the natural science literature there are so many papers

that start with a variant of the generic sentence: “In recent years there has been much

interest in the study of networks.” In the social sciences, however, the introduction is es-

sential to the paper, since it is the place where scholars fully explains his or her contri-

bution in the context of what is known. These differences also translate into the length

of the papers. Natural science papers tend to be extremely short in length by social sci-

ence standards (usually less than 4000 words), and hence, economize language in their

introductions and literature reviews (If this was a natural science paper, it would have

ended more than 4000 words ago). Often, natural scientists cite literature in one or two

short paragraphs, instead of dedicating a multipage section detailing the contributions

of other scientists. Social scientists on the other hand, write extensive literature reviews

in which many of the papers cited are described in multiple paragraphs. Social science

papers put substantial effort on discussing the previous literature before presenting any

of their own work, and are often rejected if they fail to provide a good review of the lit-

erature. Unfortunately, these styles are incompatible. Write a natural science introduc-

tion for a social science audience and your paper will be rejected before the reviewer

sees the results section. Write a social science introduction for a natural science audi-

ence and you will be scoffed away for being “unnecessarily verbose.”

Another formal difference involves the use of graphical statistical methods (Hidalgo

et al. 2010) and multivariate statistics. The first ones are preferred by natural scientists

and often avoided by social scientists, while the reverse is true for multivariate statistics.

These differences, however, are also misinterpreted as shortcomings since social scien-

tists often think of graphical statistical methods as “non-serious,” since they are limited

in their ability to control for co-founding factors, while natural scientists find that the

use of tables, instead of graphical representation of results, occludes information about

functional forms, which natural scientists consider important.

In this paper I provide a brief and incomplete review of what is a large and fragmen-

ted literature on network science. Hopefully, the juxtaposition presented here helps ex-

plain the value of the approaches followed by academics in both of these streams of

literature and helps stimulate further discussion in the study of systems of organized

complexity.

Endnotes
1For instance, in this review I will not include the life sciences among the natural sci-

ences even though they have done extensive work on biological networks. My decision

not to include the work of biologists in this review is to simplify the scope. Also, I will

not discuss financial networks, or graph theory. For the most part, I will be discussing

work involving social networks (networks where nodes are people), as these networks

have been of the interest of both social scientists and natural scientists.
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2Certainly, saying that natural science approaches focus only on link formation mech-

anisms that tie back to topological features is a tad unfair. After all, this is more a mat-

ter of emphasis than an absolute claim. In fact, in the natural science literature there

are approaches to link formation that do focus on the non-topological characteristics of

nodes. A good example here is the introduction of the idea of a node’s fitness (Bianconi

and Barabási 2001a)(Bianconi and Barabási 2001b). A node’s fitness is an exogenous

parameter that models the attractiveness of linking to a node, and that was introduced

to destroy the strong correlation between a node’s age and connectivity that is implied

in a model based purely on growth and preferential attachment (Adamic et al. 2000).

The treatment of fitness in the natural science literature, however, has been mostly ab-

stract. Fitness has a distribution and a value, but not a unique or even narrow interpret-

ation in terms of a social or economic characteristic. Moreover, little effort has been

made to link fitness to one of its many possible interpretations. In high-school friend-

ship networks, is fitness a reflection of the physical beauty of a student or its sport

prowess? In networks of commercial interactions, is fitness a reflection of the quality of

service, or the marketing muscle of a firm? These questions are here to illustrate the

contrast between the interests of natural and social scientists, since these questions

would be more of the interest of social scientists than of natural scientists. The latter

would be mostly content with assuming that differences in fitness affect the evolution

of network structure, while the former would want to know why some individuals are

more attractive than others, even if these reasons do not change the overall structure

of the network.
3Here it is worth noting that there are important cases where these large efforts in

socialization emerge as a consequence of state intervention, like the aircraft industry in

Brazil, or in France, as described by Fukuyama. In any case, the spontaneous emergence

of large networks in societies endowed with trust tends to be a more successful and

rapid form of economic development than the one that is forced by state interventions,

which have a low success rate.
4It is worth noting that these empirical results hinge on small sample sizes, since data

on trust is available for a few countries over relatively short time periods.
5At the individual level, low trust is associated with traumatic experiences, belonging

to a group that historically felt discriminated against, being economically unsuccessful

in terms of income and education, and living in a racially mixed community or one that

is unequal in terms of income and education (Bianconi and Barabási 2001).
6or more precisely, the center of mass between the earth and the sun.
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