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Preface

Without any hesitation we can claim that our civilization is largely
based on the capacity and effectiveness of our knowledge pertaining
to the natural phenomena collected under the name of electromag-
netism . Our effective knowledge on these phenomena, with which
we are familiar in fragments for nearly 2000 years, since the era of
Thales, goes back only one and a quarter centuries ago. The years
of 1873 and 1887 in the nineteenth century were two very important
milestones in the intellectual evolution, as well as in the technolog-
ical achievements of mankind. Indeed, the first one was the year in
which the electricity, magnetism , and optics , which had been con-
sidered to be different natural phenomena until then, were unified
under a common framework called the electromagnetism. To this end,
Maxwell wrote a system of partial differential equations in England
and claimed that those phenomena are all some particular aspects of
a unique phenomenon which satisfies his equations. The equations
introduced by Maxwell were not only what are reduced to the already
known equations written 40 years ago by Faraday in England and
50 years ago by Ampère in France, but also claimed that the phe-
nomenon in question consisted of a wave, which propagates with a
finite velocity. What is very interesting is that physicists and engineers
of those days were not familiar with such a kind of wave. To believe
in the existence of the wave in question, one had to wait 14 years to
witness the modest experiment carried out by Hertz in 1887 in Ger-
many. That experiment, which revealed the so-called electromagnetic
wave, showed also that energy transmission is possible through this
wave. That was the indicator of a new direction for the civilization
and thusly intensified the interest in the electromagnetic wave in both
theoretical and experimental domains. Within the three years just after
the Hertz experiment, the first radio receiver was realized by Branly
in Germany in 1890, and soon after this, many crucial applications in

ix
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communication, control, remote sensing, medicine, radio-astronomy,
space communication, heating, and so on, began to flow. Among them
we can mention, for example, the radio communication between two
sides of the Atlantic Ocean (in 1901), radar (in 1940), laser (in 1957),
tomography (in 1984), etc.

By considering new products of the actual technology, which per-
mit us to use extremely short waves whose frequencies increase day by
day, we can hope that electromagnetic waves will continue to be the
basis of new, even unexpected, applications. These applications will
require solutions of the Maxwell equations under new supplementary
relations (boundary conditions, edge conditions, tip conditions, etc).
Therefore, a thorough investigation of these supplementary relations is
very important from both theoretical and practical points of view. The
aim of this short monograph is to fulfill this job. I think (and hope)
that readers who are fond of the theory will find several enjoyable
points in the book. However, the meticulous colleagues will certainly
find many points to criticize. As a scientist who imagines science as
a continuously evolving struggle, I look forward with deep gratitude
to all constructive comments and critiques.

What seems also important to me is that by claiming the existence
of the electromagnetic wave before its experimental observation,
the theory of Maxwell epitomizes an example for the “theory before
experiment.” The electromagnetic wave is not the unique example
presented by the Maxwell equations in this sense. Indeed, by claiming
a nonuniversal time concept, they became also the main instigator
for the Special Theory of Relativity established by Einstein nearly 30
years later than the Maxwell’s Theory. The equations proposed by
Maxwell conceal inside themselves too many secrets of the nature:
reflected waves, refracted waves, creeping modes, whispering gallery
modes, edge-excited waves, tip-excited waves, shadow boundaries,
reflection boundaries, refraction boundaries, caustics, traveling waves,
standing waves, Cherenkov waves, trapped waves, boundary condi-
tions, edge conditions, tip conditions, space-time transformation under
uniform motions, Doppler effect, aberration, and so on. They permit
us to discover all these secretes as well as the interrelations among
them if we interrogate with appropriate mathematical tools. I believe
that the most effective tool for the investigation of the discontinuities
in natural phenomena of any kind is the concept of distribution. This
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concept, which was introduced by Schwartz in 1950 (three quarters
of a century later than the Maxwell equations) in France to the
contemporary mathematics, extended the meaning of the Maxwell
equations. If one assumes that the differential operations taking place
in the Maxwell equations are all in the sense of distributions, then
the discontinuities can be discussed pretty easily and rigorously. This
monograph adopts this approach. When the surfaces which carry
the discontinuities are in uniform motion, formulas of the Special
Theory of Relativity help to reveal behaviors of the discontinuities
by transforming the expressions pertinent to the surfaces at rest.

With their elegances and powers, the above-mentioned two the-
ories (i.e., the Theory of Electromagnetism—including the special
theory of relativity—and the Theory of Distributions) excite feelings
of admiration. For me, they are not a heap of spiritless mathematical
symbols but rather the self-consistent intellectual and fine-artistic pro-
ductions of human mind. Since the Theory of Distributions as well as
that of the Special Theory of Relativity are not thoroughly included
into the undergraduate curriculum, in order to offer a self-contained
book, the necessary (and sufficient) material which helps to clarify the
essentials of these theories, are also be included into the book.

It is a great pleasure for me to confess that the publication of
this monograph could not have been realized if sincere encourage-
ments and supports by certain colleagues had not existed. Among
them I mention especially Professor Tayfun Akgül (Istanbul Technical
University, Turkey), Professor Ross Stone (IEEE Antennas and Propa-
gation Society Publishing Board member), Professor Robert Mailloux
(IEEE Antennas and Propagation Society Press Liason Committee
Chair) and Professor Andreas C. Cangellaris (editor of the IEEE Press
Series on Electromagnetic Wave Theory). I am indebted to all of them
for their invaluable interests and supports.

I have also to thank Professor Alinur Büyükaksoy and Professor
Ali Alkumru (both from the Gebze Institute of Technology, Turkey) for
their several comments which helped me to improve the manuscript.

I express also my thanks to Taisuke Soda from the John Wiley and
Sons, Inc. for his warm interest and meticulous work which produced
a flawless publication, Lisa M. Van Horn of Wiley Production and
Rajalakshmi Gnanakumar of Laserwords, for their superior support
throughout the production process.
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Lastly, I would like to extend my thanks and everlasting gratitude
to TUBA (the Turkish Academy of Sciences) and Yeditepe University,
Istanbul for partial support of my works.

Heybeliada, Istanbul M. Mithat Idemen
March 2011



CHAPTER 1

Introduction

A man may imagine things that are false, but he
can only understand things that are true.

Isaac Newton

Almost all mathematical problems connected with the electro-
magnetic phenomena require solutions of the Maxwell differential
equations

curlH − ∂

∂ t
D = J, curlE + ∂

∂ t
B (1.1a,b)

divD = ρ, divB = 0 (1.1c,d)

under certain supplementary restrictions stipulated on certain surfaces.
In (1.1a–d) E, D, H, and B stand for the electric field, electric dis-
placement, magnetic field , and magnetic induction, respectively, while
ρ and J are the volume densities of the charges and currents. As to
the parameter t that appears in (1.1a,b), it is, as usual, the time. The
surfaces that bear the above-mentioned supplementary restrictions are
either the interfaces between bodies of different constitutive parame-
ters or surfaces that support surface charges and currents† or material
sheets that model very thin layers. The supplementary restrictions in

∗Michael White, Isaac Newton: The Last Sorcerer , Basic Books, New York, 1977, p. 5. See
also Sir Isaac Newton’s Theological Manuscripts , H. McLachlan (Ed.), Liverpool University
Press, Liverpool, 1950, p. 17.
†Line and point charges are also carried by certain appropriately defined surfaces.
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2 CHAPTER 1 Introduction

question are the relations that state the physically admissible discon-
tinuities that may occur on these surfaces. They consist, in general,
of the so-called boundary conditions that give the jump discontinu-
ities on the surfaces in questions. If the discontinuity surfaces also
involve sharp edges and/or sharp tips, then some components of the
field become infinitely large at some points. In this case, in addition to
the boundary conditions, one also has to know the physically admissi-
ble asymptotic behaviors of the field near those points because, as was
shown more than 60 years ago by Bouwkamp [1], one can construct
many solutions to the Maxwell equations under the given boundary
conditions. Of course some of these solutions are not acceptable from
physics point of view. Depending on the nature of the singular point,
the relations that state the asymptotic behaviors in question are called
the edge conditions or the tip conditions .

It is worthwhile to remark here that any relation written on a sur-
face cannot be treated as a boundary condition for the electromagnetic
field. In order to be so, it must also be compatible with the Maxwell
equations. The spectrum of the electromagnetic waves used in the
telecommunication is enlarging every day more and more toward very
short waves. Hence many types of roughness, which had been assumed
to be negligible in earlier investigations in order to reduce mathemat-
ical difficulties, became today unavoidable. In studies to be made in
forthcoming days, one will have to consider the effects of these types
of roughness on the propagation of waves. Therefore rigorous and
detailed investigations of the boundary, edge, and tip conditions for
various geometrical and physical structures are of crucial importance
from both pure scientific and technological applications points of view.
The aim of the present monograph is to study the discontinuities (i.e.,
singularities) in questions in their most general framework and discuss
the validity of some particular relations that are in use in current lit-
erature. Our fundamental basis will be the so-called distributions (or
generalized functions). In order to clarify the crucial role of this con-
cept in the present study, it will be useful to reexamine the derivation
of the classical boundary conditions in almost all textbooks.

On those days when the Electromagnetic Theory had been estab-
lished, one had a huge heap of scientific knowledge in theoretical
physics, especially in fluid mechanics. With this potential, the scien-
tists of that time (i.e., mathematicians, physicists, and engineers) had
formulated and solved many mathematical problems that could have
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interesting and important interpretations in terms of the electromag-
netic notions. First problems were those that needed to find the explicit
expressions of the fields created by various sources distributed in the
vacuum. They were very easy. Soon later, one had considered the prob-
lems connected with bodies having simple geometrical shapes such as
infinite planes, infinitely long cylinders, whole spheres, whole ellip-
soids, and so on. They were also rather easy and tractable with known
techniques provided that the boundary conditions to be satisfied on the
surfaces of the bodies were known beforehand. It was at this stage that
the struggles to reveal the discontinuities of the electromagnetic field
were started. The methods that seemed most propitious were what
are based on the applications of the Gauss–Ostrogradski and Stokes
theorems (see Smirnow [2, pp. 177, 197]). Although these applications
are repeated in almost all textbooks, we want to recapitulate them here
in order to clarify the philosophy of the method adopted in the present
study. To this end, consider, for example, (1.1c) and integrate it inside
a volume ϑ bounded by planar boundaries of very small areas (see
Fig. 1.1). Assume that D as well as its partial derivatives of the first
orders are all continuous inside ϑ except on a regular surface �S . To
avoid useless complexities, assume also that the field depends only on
two space coordinates. Then a careless application (without regarding
the validity conditions) of the Gauss–Ostrogradski theorem to∫

ϑ

divD dϑ =
∫
ϑ

ρ dϑ = Q (1.2a)

yields ∫
�S1 +�S2 +�S3 +�S4

D · n dS = Q . (1.2b)

Here Q stands for the total charge existing inside ϑ . If Q consists of
the surface charge distributed with density ρS on S , then by making

S
∆S

∆S1

∆S2

∆S3 ∆S4

n4

n2

n3

n1

n h

ϑ

Figure 1.1. A neighborhood of a surface of discontinuity.
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h → 0 in (1.2b) one gets∫
�S

[D (2)
n − D (1)

n ] dS =
∫

�S

ρS dS (1.2c)

or

D (2)
n − D (1)

n = ρS . (1.2d)

Here D (1)
n and D (2)

n show the values of the normal component of D
which are observed when one approaches S from lower and upper
sides, respectively.

Quite similarly, from (1.1a,b,d) one gets

B (2)
n − B (1)

n = 0, (1.2e)

n × E(2) − n × E(1) = 0, (1.2f)

n × H(2) − n × H(1) = JS . (1.2g)

The field JS appearing in (1.2g) is the density of the surface current
that flows on S .

The relations in (1.2.d–g) are the classical boundary conditions
that are satisfied on the interface between two regions filled with dif-
ferent materials. They are in use since the first days of the Theory to
find solutions of the electromagnetic problems, which are in complete
agreements with experiments. But the mathematical analysis made
to reveal them is obviously not legitimate. Indeed, in order for the
Gauss–Ostrogradski and Stokes theorems to be applicable, the fields
E, D, H, and B have to be continuous inside ϑ . But, as the results
themselves show, this is not the case. However, as we have already
stated, the results are correct from physics point of view . A few writers
who are familiar with this contrast warn readers by indicating that the
results to be obtained by this kind of faulty applications are assumed to
be acceptable for physics. D. S. Jones [3, p. 46] and S. A. Schelkunoff
[4] epitomize this group of meticulous scientists.∗ It goes without say-
ing that this assumption is nothing but an additional postulate to the
Maxwell equations. Regarding the swift developments in the contem-
porary technology, which create and use very different materials and
geometries, one can easily grasp that this approach cannot enable one

∗Schelkunoff characterizes this kind of an approach to be “a proof which is not a proof but a
swindle” (see Schelkunoff [4, Section 5]).
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to overcome the difficulties completely. Hence one has to contrive a
general and robust method.

One could also think that the difficulty in deriving (1.2d) resulted
from the derivatives existing in (1.1c); if one started from the integral
equation (Gauss’ law) ∮

S

D · n dS = Q , (1.3a)

which is equivalent to (1.1c), one would not have the same difficulty.
Indeed, in this case from (1.3a) one writes directly∫

�S1+�S2+�S3+�S4

D · n dS =
∫

�S

ρS dS , (1.3b)

which, after applications of the Gauss–Ostrogradski theorem to the
partial regions lying above and below the surface �S, yields (1.2d).
But this approach too, which at first glance seems to be propitious
to overcome the difficulty, has severe defects. For example, in the
case when S consists of a double sheet that carries only dipoles, the
right-hand side of (1.3b) becomes naught and claims D (2)

n − D (1)
n = 0,

which is not correct.∗ Furthermore, in cases of material sheets that
are represented, for example, by impedance or resistive or other more
general type of boundary conditions one cannot guess the right-hand
side of (1.3b).

To avoid the difficulties mentioned above, we propose to add the
following assumption to the Maxwell equations [5]:

Maxwell equations are valid in the whole of the four-dimensional

space in the sense of distribution.

The results of this assumption (or postulate) will be seen after
Chapter 2. Here we confine ourselves to make only the following
remarks that are of importance.

i. This assumption not only legitimizes the use of the Dirac delta
functions to represent surface (or line or point) charges and cur-
rents (i.e., ρ and J) but also claims that the field components E,

∗Correct expression is λ[D (2)
n − D1n ] = −div{(1/λ)ρ1n}. Here ρ1 stands for the density of the

dipole distribution while λ is a parameter depending on the curvature of S and n is the unit
normal vector to S [see Section 3.2.1, formula (3.19c)].
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D, H, and B are also distributions. In other words, the field com-
ponents themselves can contain singular terms concentrated on
certain surfaces.

ii. This assumption concerns not only the space coordinates and
boundary conditions but also the time parameter and initial val-
ues. That means that the field components can involve also
singular terms concentrated at certain isolated instants (such as
flash of lightning).

iii. In 1873, when Maxwell had established his theory, as well as
during the following 75 years, the concept of distribution did
not exist in the scientific literature. It appeared after 1950 first
in mathematics and then in physics and engineering sciences.
Hence, the claim that the Maxwell equations are valid in the
sense of distribution is in fact a new postulate added to the
Maxwell Theory.

The arrangement of the present monograph is as follows: In
Chapter 2 the concepts of distribution and derivatives in the sense of
distribution are explained. Grad, curl, and div operators as well as
distributions concentrated on a surface are discussed in some detail.
In Chapter 3 the Maxwell equations are reconsidered and discussed
in the framework of these new concepts. The so-called universal
boundary conditions are derived as a natural result. Chapter 4 is
devoted to an extensive analysis of the boundary conditions on a
material sheet at rest. The so-called impedance and resistive-type
particular conditions are discussed and their validity conditions are
derived. The case of moving boundaries is considered in Chapter 5.
In this chapter the connection with the Special Theory of Relativity
is also established whenever the motion is uniform. Chapter 6 is
devoted to the edge conditions on a wedge bounded by planar walls.
In this chapter, one shows also that the origin of the logarithmic-type
singularities is the confluence of two algebraic singularities. In
Chapter 7, one considers the tip singularities that occur at the apex of
a rotationally curved material cone. For this kind of geometry, also
the logarithmic singularities are derived as a result of confluence of
two algebraic singularities. In Chapter 8, one considers the temporal
discontinuities localized at certain times.



CHAPTER 2

Distributions and

Derivatives in the Sense

of Distribution

2.1 FUNCTIONS AND DISTRIBUTIONS

Even in the early days of the second half of the nineteenth century, one
had observed that the mathematics, especially the concepts of func-
tions and derivatives which had been established and maturated during
the eighteenth and nineteenth centuries and permitted us to investigate
various natural phenomena with deep insight, is not sufficient to grasp
certain singularities in natural phenomena. To overcome the difficul-
ties, one tried, from time to time, to introduce some concepts and to
derive some formulas that were not based on solid mathematical basis.
For example, Gustav Robert Kirchhoff,∗ a famous German physicist
of the nineteenth century, had tried to define a force that acts on a
very small area as follows [6]:

F =
(

µ√
π

)
e−µ2x2

(µ is a very large positive constant). (2.1)

∗G. R. Kirchhoff (Königsberg 1824–Berlin 1887).

Discontinuties in the Electromagnetic Field, First Edition. By M. Mithat Idemen.
 2011 the Institute of Electrical and Electronics Engineers, Inc.
Published 2011 by John Wiley & Sons, Inc.
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8 CHAPTER 2 Distributions and Derivatives in the Sense of Distribution

For the same purpose Paul Dirac,∗ a very celebrated English physi-
cist of the last century, had introduced his famous function† δ(x),
which had the following properties [7]:

δ(x) = 0 when x �= 0 (2.2a)

δ(x) = ∞ when x = 0 (2.2b)

such that
∞∫

−∞
δ(x) dx = 1. (2.2c)

By using this exotic δ-function, Dirac had obtained some results that
were adopted by physicists with enthusiasm. But the mathematicians
of those days were watching the progress with certain reserve because
they had known that the requirements stipulated by (2.2a)–(2.2c) were
not compatible with the classical definitions of function and integral
(in the Lebesgue sense).

Although it did not exist as a function in the proper sense of
function, in the first half of the last century δ(x) was extensively
used with its properties given in (2.2a–c) by physicists and engi-
neers to produce many interesting results that could all be interpreted
in an acceptable manner. This achievement encouraged mathemati-
cians of that time to establish a rigorous basis for the exotic δ(x),
which, from one perspective will ensure its adoption by mathemati-
cians without any reserve and, from the other perspective, will permit
one to interpret correctly the results obtained through it. This goal was
achieved by the famous French mathematician Laurent Schwartz‡ in
1950 [8]. The result was the introduction of some new entities and
concepts into the mathematics of the twentieth century. These new
entities are the so-called generalized functions , which involve also
all locally integrable functions. Considering previous uses of δ(x)

to represent charge distributions, localized on point sets or lines or
surfaces, these new entities were also referred to as the distribution
functions or, more simply, distributions . In this monograph we will

∗P. A. M. Dirac (Bristol 1902–Tallahassee 1984).
†The symbol δ had been used first by Kirchhoff and then later by Dirac (see Jones [3, p. 35]).
‡L. Schwartz (Paris 1915–2002). For this brilliant achievement he was honored by the Fields
Medal in 1950. This award, which has been established in 1936 and devoted only to
mathematics, is a counterpart of the Nobel Prize, which does not involve mathematics.



2.2 Test Functions. The Space C ∞
0 9

follow the founder of the theory and use this name—that is, distri-
bution . In what follows we will recapitulate some basic notions and
properties of distributions, which will constitute the main basis of our
investigation.

2.2 TEST FUNCTIONS. THE SPACE C ∞
0

Let D be the set of real-valued functions that depend on the real
variable x ∈ (−∞, ∞) such that beyond certain finite intervals they
are naught and have continuous derivatives of all orders for all x ∈
(−∞, ∞). As we will see later on, these functions will play a crucial
role in defining the distributions as well as their equalities, sums,
multiplications, sequences, series, limits, derivatives, and so on. Hence
the functions belonging to D are called the test functions . In what
follows we want to clarify first the set D and its ability in the goal
mentioned here.

To begin with, let us show that the set D is not empty. Indeed,
the classical example given by Schwartz is as follows:

ϕ(x , a) =
{

exp(−a2/(a2 − x 2)), x ∈ [−a, a]

0, |x | ≥ a.
(2.3)

The finite closed interval [−a, a], outside of which ϕ(x , a) ≡ 0,
is referred to as the support∗ of ϕ(x , a) and denoted by supp
{ϕ(x , a)} (see Fig. 2.1). A function having this property is called
a function of bounded support . The set of test functions with
support inside the interval (α, β) is also denoted by C ∞

0 (α, β), while
C0(α, β) shows the set of continuous functions with support inside
(α, β). Note that D = C ∞

0 (−∞, ∞). We will denote D by C ∞
0 for

short.
Starting from ϕ(x , a) given in (2.3), we can also define many other

test functions. Consider, for example, an arbitrary locally integrable†

function f (x) ∈ L1
0(α, β), which is identically naught beyond a certain

∗Generally, the support of a function f (x , y , . . .) is the closure of the set of points (x , y , . . .)
for which f (x , y , . . .) �= 0.
†If the integral of |f (x)| on every finite interval exists, then f (x ) is said to be locally integrable.
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Figure 2.1. The test function ϕ(x , a) and its support.

finite interval (α, β) and write

ϕ(x) = f (x) ∗ ϕ(x , a) (2.4a)

=
β∫

α

f (ξ)ϕ(x − ξ , a) dξ (2.4b)

=
a∫

−a

f (x − ξ)ϕ(ξ , a) dξ. (2.4c)

In (2.4a), * stands for the convolution. By considering the support
of f (x ), we can easily convince ourselves that f (x − ξ) ≡ 0 when
x >(β + a) or x < (α − a) if ξ ∈ (−a, a). Indeed, from f (x) ≡ 0
when x > β one gets f (x − ξ) ≡ 0 when x − ξ > β or x > β + ξ .
Hence f (x − ξ) ≡ 0 for all x > β + a. Similarly, f (x − ξ) ≡ 0 for
all x < α − a. Thus from (2.4c) one concludes

supp{ϕ(x)} ⊆ (α − a, β + a),

which claims that ϕ(x) defined by (2.4a) is a function of bounded
support (see Fig. 2.2). On the other hand, the expression in (2.4b)
can be differentiated as many times as desired because the range of
integration is finite and the integrand has continuous derivatives of all
orders. This shows that the function ϕ(x) is exactly a test function.
By replacing f (x ) in (2.4a) by different functions, one gets different
test functions. Two simple examples are shown in Fig. 2.2.


