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Abstract. Variational methods are very popular for optic flow computation: They
yield dense flow fields and perform well if they are adapted such that they respect
discontinuities in the image sequence or the flow field. Unfortunately, this adap-
tation results in high computational complexity. In our paper we show that it is
possible to achieve real-time performance for these methods if bidirectional multi-
grid strategies are used. To this end, we study two prototypes: i) For the anisotropic
image-driven technique of Nagel and Enkelmann that results in a linear system
of equations we derive a regular full multigrid scheme. ii) For an isotropic flow-
driven approach with total variation (TV) regularisation that requires to solve a
nonlinear system of equations we develop a full multigrid strategy based on a
full approximation scheme (FAS). Experiments for sequences of size 160 × 120
demonstrate the excellent performance of the proposed numerical schemes. With
frame rates of 6 and 12 dense flow fields per second, respectively, both imple-
mentations outperform corresponding modified explicit schemes by two to three
orders of magnitude. Thus, for the first time ever, real-time performance can be
achieved for these high quality methods.

Keywords: computer vision, optical flow, differential techniques, variational meth-
ods, multigrid methods, partial differential equations.

1 Introduction

In computer vision, the estimation of motion information from image sequences is one of
the key problems. Typically, one is thereby interested in finding the displacement field
between two consecutive frames, the so-called optic flow. In this context, variational
methods play a very important role, since they allow for both a precise and dense esti-
mation of the results. Such techniques are based on the minimisation of a suitable energy
functional that consists of two terms: A data term that imposes temporal constancy on
certain image features, e.g. on the grey value, and a smoothness term that regularises the
often non-unique solution of the data term by an additional smoothness assumption.
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Let us consider some image sequence f(x, y, t), where (x, y) denotes the location
within a rectangular image domain Ω, and t ∈ [0, T ] denotes time. Then, the assumption
of a constant grey value over time can be formulated as

f(x + u, y + v, t + 1) − f(x, y, t) = 0. (1)

Performing a Taylor expansion and dropping all higher order terms one obtains its
linearised form, the so-called optic flow constraint (OFC)

fxu + fyv + ft = 0. (2)

Here, the function (u(x, y, t), v(x, y, t))� is the wanted displacement field and sub-
scripts denote partial derivatives. As classified in [33], there are basically three different
types of strategies to regularise the evidently non-unique solution of this data term:
Homogeneous regularisation that assumes overall smoothness and does not adapt to
semantically important image or flow structures [20], image-driven regularisation that
assumes piecewise smoothness and respects discontinuities in the image [1, 26] and flow-
driven regularisation that assumes piecewise smoothness and respects discontinuities in
the flow field; see e.g. [11, 29, 33]. Moreover, when considering image and flow-driven
regularisation, one can distinguish between isotropic and anisotropic smoothness terms.
While isotropic regularisers do not impose any smoothness at discontinuities, anisotropic
ones permit smoothing along the discontinuity but not across it.

Although recent developments [7, 9, 25] have shown that variational methods are
among the best techniques for computing the optic flow in terms of error measures [3],
they are often considered to be too slow for real-time applications. In particular the
computational costs for solving the resulting linear and nonlinear system of equations
by using standard iterative solvers are regarded as too high. In [8] we have already
demonstrated for variational methods with homogeneous regularisation that bidirec-
tional multigrid strategies [5, 6, 19, 31, 35] do allow for real-time performance. These
techniques that create a sophisticated hierarchy of equation systems with excellent er-
ror reduction properties belong to the fastest numerical schemes for solving linear or
nonlinear systems of equations. In this paper we show that by using such methods also
real-time performance for variational techniques with image- or flow-driven regulari-
sation becomes possible. One should note that in this case the development of suitable
multigrid strategies is much more difficult due to the anisotropy or nonlinearity of the
underlying regularisation strategies. To the best of our knowledge our paper is the first
one to report real-time performance for such variational optic flow methods on standard
hardware.

Paper Organisation. Our paper is organised as follows. In Section 2 we give a short
review on two variational techniques that serve as prototypes for image- and flow-driven
regularisation. Section 3 shows how these problems can be discretised, while efficient
bidirectional multigrid schemes for solving the resulting linear and nonlinear systems of
equations are proposed in Section 4. In Section 5 we present an experimental evaluation
that includes experiments with different real-world sequences as well as performance
benchmarks for both prototypes. A summary in Section 6 concludes this paper.

Related Work. In the literature on variational optic flow methods, coarse-to-fine strate-
gies are quite common to speed up the computation (see e.g. Anandan [2], Luettgen et
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al. [24]). They are based on a successive refinement of the problem whereby coarse grid
solutions serve as initial guesses on finer grids. However, from a numerical viewpoint
such unidirectional schemes are not the end of the road. They are clearly outperformed
by bidirectional multigrid methods that revisit coarser levels in order to obtain useful
correction steps. While there is at least some literature on these highly efficient schemes
for variational optic flow techniques with homogeneous and image-driven regularisation
(Glazer [18], Terzopoulos [30], Zini et a. [37], El Kalmoun and Rüde [13], Enkelmann
[15], Ghosal and Vaněk [17]), only the work of Borzi et al. [4] is known to the authors
where an optic flow problem was solved by means of a nonlinear bidirectional multigrid
scheme (FAS). Also for other tasks in image processing and computer vision multigrid
methods have been used successfully. In the context of photometric stereo and image
biniarisation Kimmel and Yavneh [22] developed an algebraic multigrid method, while
Chan et al. [10] researched geometric multigrid schemes for variational deconvolution
with TV regularisation. For TV denoising Vogel [32] proposed the use of a linear multi-
grid method within a nonlinear fixed-point iteration, while, very recently, Frohn-Schnauf
et al. [16] investigated a nonlinear multigrid scheme (FAS) for the same task.

2 Prototypes for Variational Methods

2.1 The Method of Nagel and Enkelmann

As prototype for the class of optic flow methods with image-driven regularisation we
consider the anisotropic technique of Nagel and Enkelmann [26]. Their method accounts
for the problem of discontinuities by smoothing only along a projection of the flow
gradient, namely its component orthogonal to the local image gradient.As a consequence,
flow fields are obtained that avoid smoothing across discontinuities in the image data.
The energy functional associated to this anisotropic form of regularisation is given by

E(u, v)=
∫

Ω

(
(fxu + fyv + ft)

2+ α(∇u�D(∇f)∇u + ∇v�D(∇f)∇v)
)

dxdy, (3)

where ∇ := (∂x, ∂y)� denotes the spatial gradient and D(∇f) is a projection matrix
perpendicular to ∇f that is defined as

D(∇f) =
1

|∇f | + 2ε2

(
f2

y + ε2 −fxfy

−fxfy f2
x + ε2

)
=:

(
a b
b c

)
. (4)

In this context ε serves as regularisation parameter that prevents the matrix D(∇f)
from getting singular. Following the calculus of variations [14], the minimisation of this
convex functional comes down to solving its Euler–Lagrange equations that are given by

0 = f2
x u + fxfy v + fxft − α LNEu, (5)

0 = fxfy u + f2
y v + fyft − α LNEv (6)

with the linear differential operator

LNEz(x, y) = div (D(∇f(x, y))∇z(x, y)) (7)

and reflecting Neumann boundary conditions.
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2.2 The TV-Based Regularisation Method

In contrast to image-driven regularisation methods, flow-driven techniques reduce smooth-
ing where edges in the flow field occur during computation. Our prototype for this class
of variational optic flow techniques is an isotropic method that penalises deviations from
the smoothness assumption with the L1 norm of the flow gradient magnitude. This cor-
responds to total variation regularisation [28] and can be related to statistically robust
error norms [21]. Thereby large deviations are penalised less severely than in the fre-
quently used quadratic setting (L2 norm). As a consequence, large gradient features such
as edges are better preserved. The energy functional for this approach is given by

E(u, v) =
∫

Ω

(
(fxu + fyv + ft)

2 + α
√

|∇u|2 + |∇v|2 + ε2
)

dxdy, (8)

where ε serves as small regularisation parameter. A related functional that approximates
TV regularisation is proposed in [34], while variational approaches for rotationally not
invariant versions of TV regularisation have been researched in [11, 12, 23]. At first
glance, the corresponding Euler-Lagrange equations that are given by

0 = f2
x u + fxfy v + fxft − α

2
LTV(u, v), (9)

0 = fxfy u + f2
y v + fyft − α

2
LTV(v, u) (10)

have a very similar structure than those in (5)-(6). However,

LTV(z(x, y), z̃(x, y)) = div (D(∇z(x, y),∇z̃(x, y)) ∇z(x, y)) (11)

is evidently a nonlinear differential operator in z and z̃, since

D(∇z, ∇z̃) =
1√|∇z|2 + |∇z̃|2 + ε2

I =:
(

a b
b c

)
, (12)

where I is the identity matrix, b = 0 and c = a. As we will see later, this nonlinearity
of the differential operator LTV has serious impact on the resulting discrete system of
equations and on the derived multigrid strategy.

3 Discretisation

3.1 General Discretisation Aspects

Let us now discuss a suitable discretisation for the Euler-Lagrange equations (5)-(6)
and (9)-(10). To this end we consider the unknown functions u(x, y, t) and v(x, y, t)
on a rectangular pixel grid with cell size h = (hx, hy)�, and we denote by uh

i,j the
approximation to u at some pixel i, j with i = 1,...,Nx and j = 1,...,Ny . Spatial deriva-
tives of the image data are approximated using a fourth-order approximation with the
stencil (1,−8, 0, 8,−1)/(12h), while temporal derivatives are computed with a simple
two-point stencil. In order to discretise the divergence expressions in the differential
operators LNE and LTV we propose the following finite difference approximations:
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Table 1. Discretisations of averaging and differential operators

One-sided averaging M±,h
x (zi,j) :=

zi±1,j+zi,j

2 (13)

M±,h
y (zi,j) :=

zi,j±1+zi,j

2 (14)

One-sided differences D±,h
x (zi,j) := ± zi±1,j−zi,j

hx
(15)

D±,h
y (zi,j) := ± zi,j±1−zi,j

hy
(16)

Central differences Dh
x (zi,j) :=

zi+1,j−zi−1,j

2hx
(17)

Dh
y (zi,j) :=

zi,j+1−zi,j−1
2hy

(18)

Squared differences D2,h
x (zi,j) := 1

2

(
D+,h

x (zi,j)
)2

+ 1
2

(
D−,h

x (zi,j)
)2

(19)

D2,h
y (zi,j) := 1

2

(
D+,h

y (zi,j)
)2

+ 1
2

(
D−,h

y (zi,j)
)2

(20)

Gradient magnitude
∣∣D2,h (zi,j)

∣∣ :=
√

D2,h
x (zi,j) + D2,h

y (zi,j) (21)

∂x ( a(x, y) ∂xz(x, y)) ≈ D−,h
x

(
M+,h

x (ai,j) D+,h
x (zi,j)

)
, (22)

∂x ( b(x, y) ∂yz(x, y)) ≈ Dh
x

(
bi,j Dh

y (zi,j)
)
, (23)

∂y ( b(x, y) ∂xz(x, y)) ≈ Dh
y

(
bi,j Dh

x (zi,j)
)
, (24)

∂y ( c(x, y) ∂yz(x, y)) ≈ D−,h
y

(
M+,h

y (ci,j) D+,h
y (zi,j)

)
, (25)

where the coefficients a, b and c are entries of the matrices D(∇f) and D(∇u, ∇v)
as shown in (4) and (12). Details on the required averaging and differential operators
within the approximations are given in Table 1.

3.2 The Method of Nagel and Enkelmann

We are now in the position to write down the discrete Euler-Lagrange equations for the
method of Nagel and Enkelmann. They are given by

0 = f2,h
x i,j uh

i,j + fh
x i,jf

h
y i,j vh

i,j + fh
x i,jf

h
t i,j − α Lh

NE i,j uh
i,j , (26)

0 = fh
x i,jf

h
y i,j uh

i,j + f2,h
y i,j vh

i,j + fh
y i,jf

h
t i,j − α Lh

NE i,j vh
i,j , (27)

for i = 1, .., Nx and j = 1, .., Ny , where Lh
NE i,j denotes the discrete version of the linear

operator LNE at some pixel i, j. These 2NxNy equations constitute a linear system for
the unknowns uh

i,j and vh
i,j . One should note that there are two different types of coupling

between the equations. The pointwise coupling between uh
i,j and vh

i,j in the data term
and the anisotropic neighbourhood coupling via the operator Lh

NE i,j in the smoothness
term (for uh

i,j and vh
i,j separately).
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3.3 The TV-Based Regularisation Method

Analogously, we discretise the Euler Lagrange equations for the TV-based regularisation
method. The obtained nonlinear system of equations then reads

0 = f2,h
x i,j uh

i,j + fh
x i,jf

h
y i,j vh

i,j + fh
x i,jf

h
t i,j − α

2
Lh

TV i,j(u
h
i,j , v

h
i,j) uh

i,j , (28)

0 = fh
x i,jf

h
y i,j uh

i,j + f2,h
y i,j vh

i,j + fh
y i,jf

h
t i,j − α

2
Lh

TV i,j(u
h
i,j , v

h
i,j) vh

i,j , (29)

for i = 1, .., Nx and j = 1, .., Ny . Here, the finite difference approximation of LTV(u, v)
and LTV(v, u) results in the product of a common nonlinear operator Lh

TV i,j(u
h
i,j , v

h
i,j)

and the pixel uh
i,j and vh

i,j , respectively. Evidently, this constitutes a third way of coupling.

4 Multigrid

4.1 Basic Concept

In general, the obtained linear and nonlinear systems of equations are solved by us-
ing non-hierarchical iterative schemes; e.g. variants of the Jacobi or the Gauß-Seidel
method [27, 36]. However, such techniques are not suitable for equation systems that
are only coupled via a small local neighbourhood: It may take thousands of iterations to
transport local information between unknowns that are not coupled directly. A Fourier
analysis of the error confirms this observation: While high frequency components (small
wavelength, local impact) are attenuated efficiently, lower frequency components (large
wavelength, global impact) remain almost un-dampened. In order to overcome this prob-
lem multigrid methods are based on a sophisticated strategy. They make use of correction
steps that compute the error (not a coarser version of the fine grid solution) on a coarser
grid. Thus, lower frequency components of the error reappear as higher ones and allow
for an efficient attenuation with standard iterative methods. In the following we explain
this strategy in detail for both the linear and the nonlinear case by the example of a basic
bidirectional two-grid cycle.

4.2 The Linear Two-Grid Cycle

For the sake of clarity, let us reformulate the linear equation system of the method of
Nagel and Enkelmann (26)-(27) as

Ahxh = fh. (30)

Here xh denotes the concatenated vector ((uh)�, (vh)�)�, Ah is a symmetric positive
definite matrix and fh stands for the right hand side.

I) Multigrid methods starts by performing several iterations with a basic iterative
solver. This is the so-called presmoothing relaxation step, where high frequency
components of the error are removed. If we denote the result after these iterations
by x̃h, the error is given by

eh = xh − x̃h. (31)
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II) Evidently, one is interested in finding eh in order to correct the approximated so-
lution x̃h. Although eh cannot be computed directly, the linearity of Ah allows its
computation via

Aheh = Ah(xh − x̃h) = Ahxh − Ahx̃h = fh − Ahx̃h = rh, (32)

where rh is called residual. Since high frequencies of the error have already been
removed, we can speed up the computation by solving this equation system at a
coarser resolution with grid cell size H = (Hx, Hy)� :

Aheh = rh → AHeH = rH. (33)

One should note that at this point, a transfer of the original equation system to a
coarser grid makes no sense: Unlike the error, the solution very probably contains
(desired) high frequency components. A restriction of these components would
severely deteriorate the approximative solution (aliasing).

III) After we have solved the residual equation system on the coarse grid with a method
of our choice, we transfer the solution back to the fine grid and correct our approx-
imation by the computed error

x̃h
new = x̃h + eh. (34)

IV) In general, the transfer of the computed correction from a coarse grid by means of
interpolation introduces some new high frequency components. To this end, a so-
called postsmoothing relaxation step is performed, where once again some iteration
of the basic iterative solver are applied.

4.3 The Nonlinear (FAS) Two-Grid Cycle

Also in this case, let us start with a reformulation of the nonlinear equation system
resulting from the TV-based regularisation method (28)-(29) as

Ah(xh) = fh (35)

where Ah(xh) is a nonlinear operator. The FAS strategy [5] works as follows:

I) We perform a presmoothing relaxation step with a nonlinear basic solver.
II) However, since Ah(xh) is a nonlinear operator, the way of deriving a suitable coarse

grid correction is significantly different from the linear case. The (implicit) relation
between the error and the residual is given by

Ah(x̃h + eh) − Ah(x̃h) = fh − Ah(x̃h) = rh. (36)

In order to compute the desired correction we transfer the following nonlinear equa-
tion system to the coarse grid

Ah(x̃h + eh) = rh + Ah(x̃h) → AH( x̃H + eH) = rH + AH(x̃H) . (37)

Here, frames visualise the additional terms compared to the linear case.
III) After we have solved the nonlinear residual equation system on the coarse grid, we

subtract x̃H from the solution in order to obtain eH. Its transfer to the fine grid then
allows to perform the correction step.

IV) We perform a postsmoothing relaxation step with a nonlinear basic solver.
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4.4 Advanced Multigrid Strategies

In order to increase the computational efficiency, the presented two-grid cycles are
generally applied in a hierarchical way. While V–cycles make one recursive call of a
two-grid cycle per level, faster converging W–cycles perform two. Nevertheless, multiple
of such advanced cycles are required to reach the desired accuracy. Refining the original
problem step by step (unidirectional coarse-to-fine approach) and solving the resulting
linear or nonlinear equation system at each level by using some bidirectional V– or W–
cycles, the multigrid strategy with the best performance is obtained: full multigrid [6].
For both the linear and nonlinear case we have developed such full multigrid schemes.
Let us now sketch some implementation details.

4.5 Implementation Details

For the method of Nagel and Enkelmann we implemented a full multigrid scheme with
four W–cycles per level each one based on one pre- and one postsmoothing iteration. In
order to overcome the problematic anisotropic coupling we made use of a Gauß-Seidel
method with alternating line relaxation (ALR) [35] as basic solver. For our second proto-
type, the TV-based regularisation method, we designed a FAS full multigrid scheme with
two W–cycles per level each one based on two pre- and two postsmoothing iterations.
In this case we embedded a Gauß-Seidel method with coupled point relaxation (CPR)
[8] and frozen coefficients [16]. In order to allow for a complete multigrid hierarchy
we thereby considered the use of non-dyadic intergrid transfer operators. As proposed
in [8] they were realised by constant interpolation and simple averaging. Coarser ver-
sions of the linear and nonlinear operators were created by a discretisation coarse grid
approximation (DCA) [35].

5 Experiments

In our first experiment we compare the efficiency of different numerical schemes for
the discussed prototypes (Nagel and Enkelmann with α = 1000 and ε = 10−2, TV-based

Table 2. Performance benchmark on a standard desktop computer with 3.06 GHz Pentium 4 CPU.
Run times refer to the computation of a single flow field from the 160 × 120 dancing sequence

(a) Linear : Image-driven anisotropic regularisation (Nagel-Enkelmann)

Solver Iterations Time [s] FPS [s−1] Speedup
Mod. Explicit Scheme (τ = 0.1666) 36558 47.053 0.021 1
Gauß-Seidel (ALR) 607 3.608 0.277 13
Full Multigrid 1 0.171 5.882 275

(b) Nonlinear : Flow-driven isotropic regularisation (TV)

Solver Iterations Time [s] FPS [s−1] Speedup
Mod. Explicit Scheme (τ = 0.0025) 10631 30.492 0.033 1
Gauß-Seidel (CPR) 2679 6.911 0.145 4
FAS - Full Multigrid 1 0.082 12.172 372
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Fig. 1. Left to right: dancing sequence, waving sequence, rotating thumb sequence. Top to
bottom: first frame, second frame, our CLG multigrid implementation from [8], our Nagel-
Enkelmann multigrid implementation, our TV-based regularisation FAS multigrid implemen-
tation. Brightness code: The magnitude of a flow vector is encoded by its brightness. Brigther
pixels stand for larger displacements. Color versions of the flow fields are available at
http://www.mia.uni-saarland.de/bruhn/scsp05/flowfields/
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regularisation method with α = 10 and ε = 10−2). Apart from our full multigrid schemes
we also implemented stand-alone versions of their basic solvers, namely the Gauß-
Seidel methods with alternating line relaxation (ALR) and the Gauß-Seidel method with
coupled point relaxation (CPR). Moreover, we considered a modified explicit scheme
[34] that allows for larger time step sizes τ than ordinary explicit schemes (e.g. than
gradient descent methods). For our evaluation we used a 160×120 real-world sequence
in which a person dances in front of the camera. The iterations were stopped when the
relative error erel := ‖x − x̃n‖2/‖x‖2 dropped below 10−2, where x denotes the correct
solution and x̃n stands for the computed result after n iterations/cycles.

Table 2 shows the excellent performance of the proposed numerical schemes. In
the linear case the presented full multigrid method outperforms the modified explicit
scheme by two to three orders of magnitude. By allowing for the computation of six
dense flow fields per second it is also more than one order of magnitude more efficient
than its underlying basic solver. In the nonlinear case, the obtained speedups are even
better. This time, the proposed FAS full multigrid method outperforms both the modified
explicit scheme and the underlying basic solver by two to three orders of magnitude.
Thereby, frame rates of twelve dense flow fields per second clearly show that also in this
case real-time performance is well within our computational reach.

In our second experiment we compare the quality of both methods to that of a
variational approach with homogeneous regularisation. To this end, we have computed
flow fields for three different real-world sequences: for the previously used Dancing
Sequence (complex motion), the Waving Sequence (translations and discontinuities)
and the Rotating Thumb Sequence (rotation). The depicted colour plots in Figure 1
make the qualitative progress in the field of real-time variational optic flow computation
explicit: One can easily see, that image- and flow-driven results are of much higher
quality, since the underlying methods allow for a preservation of motion boundaries
and discontinuities. Moreover, one can observe that the nonlinear flow-driven method
is able to overcome the problem of oversegmentation that lies in the nature of image-
driven techniques.

6 Summary and Conclusions

In this paper we have demonstrated that real-time optic flow computation on standard
hardware is possible for variational optic flow techniques with both image- and flow-
driven regularisation. This was accomplished by using highly efficient bidirectional full
multigrid methods that solved the resulting linear and nonlinear systems of equations at
different scales. In our experiments the proposed numerical schemes not only outper-
formed frequently used non-hierarchical solvers by two to three orders of magnitude,
they also allowed for a very accurate estimation of the results. This shows that high qual-
ity optic flow computation and real-time performance are not opposing worlds. They can
be combined if state-of-the-art numerical schemes are used. In our future work we plan
to investigate different parallelisation strategies for the presented methods. This would
allow us to process even larger sequences in real-time.
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