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Abstract

Objective: The sliding motion of the liver during respiration violates the homogeneous motion 

smoothness assumption in conventional non-rigid image registration and commonly results in 

compromised registration accuracy. This paper presents a novel approach, registration with 3D 

active contour motion segmentation (RAMS), to improve registration accuracy with discontinuity-

aware motion regularization.

Methods: A Markov random field-based discrete optimization with dense displacement sampling 

and self-similarity context metric is used for registration, while a graph cuts-based 3D active 

contour approach is applied to segment the sliding interface. In the first registration pass, a mask-

free L1 regularization on an image-derived minimum spanning tree is performed to allow motion 

discontinuity. Based on the motion field estimates, a coarse segmentation finds the motion 

boundaries. Next, based on MR signal intensity, a fine segmentation aligns the motion boundaries 

with anatomical boundaries. In the second registration pass, smoothness constraints across the 
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segmented sliding interface are removed by masked regularization on a minimum spanning forest 

and masked interpolation of the motion field.

Results: For in vivo breath-hold abdominal MRI data, the motion masks calculated by RAMS 

are highly consistent with manual segmentations in terms of Dice similarity and bidirectional local 

distance measure. These automatically obtained masks are shown to substantially improve 

registration accuracy for both the proposed discrete registration as well as conventional continuous 

non-rigid algorithms.

Conclusion/Significance: The presented results demonstrated the feasibility of automated 

segmentation of the respiratory sliding motion interface in liver MR images and the effectiveness 

of using the derived motion masks to preserve motion discontinuity.

Keywords

Active contour; Liver; magnetic resonance imaging (MRI); motion segmentation; nonrigid 

registration

I. INTRODUCTION

RSPIRATORY motion registration of liver magnetic resonance imaging (MRI) data is 

needed for many clinical applications, such as hepatic perfusion analysis using dynamic 

contrast enhanced MRI (DCE-MRI) [1], longitudinal hepatic disease and treatment 

monitoring [2], image guided liver therapy and surgery [3], and atlas-based liver 

segmentation [4].

Non-rigid motion registration of medical images has been of great interest for the past three 

decades [5–7] but it still remains challenging because it is an ill-posed, nonconvex 

optimization problem with several million degrees-of-freedom. This is typically overcome 

by regularizing the motion field. In general, various spatial smoothness constraints are 

enforced to avoid physically implausible motion fields and undesirable local minima [7]. For 

abdominal image registration, respiration results in a superior-inferior sliding motion of the 

organs – such as the liver – against the inward-outward moving abdominal wall and the 

stationary spine. The resulting discontinuities in the motion field prevent conventional 

algorithms that use homogeneous smoothness regularization from finding an accurate 

motion field [8].

In recent years, regularization for discontinuous motion fields has been proposed for lung 

computed tomography (CT) registration using publicly available reference datasets such as 

EMPIRE10 Challenge [8] or DIR-Lab [9–11] for validation. For liver MR images, 

discontinuity preserving registration has gained attention recently, but no reference dataset 

for validating registration accuracy is publicly available [12–14].

The algorithms that have been proposed for discontinuity preserving respiratory motion 

registration can be generally classified into two main categories: mask-free and mask-based. 

In the first category, conventional homogeneous smoothness constraints in continuous 

optimization-based registration were replaced by various locally adaptive regularization 

approaches, such as direction-dependent regularization [15], piecewise-diffeomorphic 
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registration [16], anisotropic diffusion regularization [17], bilateral filtering [18], SLIC 

Demons [19], total variation (TV) regularization [20], and eXtended Free-Form Deformation 

(XFFD) [21].

Recently, Markov random field (MRF)-based discrete optimization [22] has attracted 

increasing interest. Traditional continuous optimization is more susceptible to local minima, 

particularly in respiratory motion registration where the motion magnitude can be large 

compared to the typical scale of image features. In contrast, global minima can be achieved 

using discrete optimization with dense displacement sampling (DEEDS) [23]. In DEEDS, a 

relaxed graph structure – an image-derived minimum spanning tree (MST) – is used to 

represent the underlying anatomical connectivity and only the MST edges are included in 

the regularization. The adoption of an MST graph has two important advantages: first, it 

greatly reduces the time for solving the MRF problem; second, it allows sliding motion at 

lung surfaces by removing most motion smoothness constraints between nodes with large 

intensity differences, such as those between the chest wall and the lung. As evaluated in 

[24], among six registration tools, DEEDS yielded the best registration performance for 

atlas-based segmentation of 13 abdominal organs in CT scans.

Nevertheless, registration accuracy remains compromised without using explicit motion 

masks in the regularization. With prior knowledge of where the motion discontinuity occurs, 

smoothness constraints across the boundary can be avoided. As reported on the DIR-Lab 

website (http://www.dir-lab.com), most of the top-ranking algorithms use prior lung 

segmentations. To cope with large motion, prior lung segmentation has been combined with 

DEEDS to restrict MST-based MRF regularization on key points only inside the lung 

volume [25].

Because manual segmentation is time consuming and requires anatomical expertise, 

considerable effort has been spent on developing automatic motion mask extraction, either 

by image-based segmentation before registration or by joint registration and segmentation. 

In lung CT images, the high contrast between the air-filled lungs and the chest wall leads to 

the successful application of image-based segmentation [26], [27]. However, in abdominal 

CT and MR images, due to the low contrast between adjacent organs and the abdominal 

wall, automated image-based segmentation remains challenging. Recently, model-based 

methods incorporating liver shape prior knowledge have been investigated to obtain accurate 

and robust segmentation, but mostly focused on abdominal CT images. Wang et al. proposed 

a shape-intensity prior level set combining probabilistic atlas and probability map 

constraints in [28], Shi et al. proposed a hierarchical local region-based sparse shape 

composition model in [29] and a low-rank plus sparse decomposition-based shape model in 

[30], all for automated liver segmentation in CT scans. Manual intervention was usually 

needed to achieve the desired precision for liver segmentation on CT and MR [31].

Joint registration and segmentation techniques aim to solve these two problems together. For 

lung CT registration, Preston et al. presented a piece-wise diffeomorphic deformation model 

with automatic sliding boundary computation [32]. Jud et al. introduced a regularity 

criterion which incorporated local directional statistics-based motion segmentation [33]. 

Swierczynski et al. developed a level-set approach, which merged a classic Chan-Vese 
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segmentation with the active dense displacement field estimation [34]. However, image-

based prior segmentation is satisfactory for lung CT, and joint segmentation and registration 

did not achieve improved registration accuracy compared to the state-of-the-art, as reported 

in [34].

For liver MR registration, Kiriyanthan et al. proposed a combination model [12] of optical 

flow based registration [35] and convex segmentation [36]. A Primal-Dual approach [37] 

was introduced to solve both motion segmentation and registration using pure TV-L1 

regularization [13]. Nevertheless, for optimal performance, incorporation of manually 

annotated corresponding landmarks was necessary [14]. This avoided unreliable motion 

fields, especially for large motion.

For MRF-based registration framework, Mahapatra et al. proposed to integrate segmentation 

by combining registration and segmentation labels into both the regularization and data 

terms [38]. Gass et al. formulated simultaneous segmentation and multiresolution nonrigid 

atlas registration as an MRF-based maximum a-posteriori problem [39]. However, due to 

computational complexity, the total label space was limited, and is thus not applicable to 

large nonrigid motion registration.

In this work, we present a novel approach for liver MR images: registration with 3D active 

contour motion segmentation (RAMS). In contrast to previous studies [12–14], motion 

registration and segmentation are optimized alternatingly in a pure discrete optimization 

framework with just two registration passes and one embedded segmentation process (Fig. 

1). The DEEDS [23] algorithm using the self-similarity context (SSC) similarity metric [40] 

and a graph cuts based 3D active contour (GCBAC) [41] approach are adapted for liver MR 

registration and sliding motion interface segmentation, respectively. First, mask-free L1 

regularization on an image-derived MST is performed to obtained motion fields that allow 

for motion discontinuity. Next, segmentation is performed in two stages: 1) based on the 

motion fields, a coarse segmentation finds motion boundaries, and 2) based on the MR 

signal intensity, this segmentation is refined by aligning motion boundaries with anatomical 

boundaries. In a second registration pass, smoothness constraints across boundaries are 

removed by masked regularization on a minimum spanning forest (MSF) and masked 

motion field interpolation. The proposed RAMS approach was validated on in vivo liver 

MRI data and additionally evaluated using a public liver CT dataset.

II. METHODS

A. MRF-based Registration Using DEEDS-SSC-L1

As shown in Fig. 1, It denotes the fixed target image and Is denotes the moving source image 

for registration. Following DEEDS, first order 3D (trilinear) B-spline meshes are used to 

model the motion fields, and MRF-based discrete optimization is used to search the motion 

vector (MV) of each control node (abbreviated as node below). It is divided into non-

overlapping identical-sized 3D patches centered on the nodes. Voxel-wise MVs are 

generated from node MVs using B-spline interpolation. A graph G is defined using the 

nodes as vertices with edges connecting each node to its 26 immediate 3D neighbors. This 
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graph model is chosen to improve the performance of the graph cuts-based segmentation in 

RAMS. A set of all possible discretized 3D MV candidates are assigned to each vertex.

The optimization of node MVs is formulated as:

u* = argmin
u

p
,  p ∈ �

E u = argmin
u

p
,  p ∈ � p ∈ �

D It, Is, rp, up

data term

+α∑
p, q ∈ �

R up, uq, rp, rq

regularization term

(1)

where � is the set of nodes, rp the position of node p, up the node’s MV, � the set of 

neighboring node pairs, and α is a weighting parameter. The data and regularization terms 

are constructed as follows.

1) Data Similarity Using SSC—To handle possible intensity changes between target 

and source, the SSC data similarity metric [40] is used, which has robust performance in 

object shape matching with respect to changes in color, texture, edges, and other 

photometric properties [42], [43]. SSC builds on the modality independent neighborhood 

descriptor (MIND) multi-modal similarity metric [44] by refining the neighborhood layout 

to improve matching robustness, and is efficiently quantized to a 60-bits coded 12-element 

vector descriptor for each voxel [40]. To enable an MV search at subvoxel precision, 

quantized SSC descriptor images Qt and Qs are precomputed at a higher spatial resolution 

after upsampling of It and Is, respectively.

For each node p, the data term in (1) is defined as

D It, Is, rp, up =
1

ℛ rp r ∈ ℛ r
p

bitcount Qt r ⊕ Qs r + up (2)

where ⊕ denotes bit-wise exclusive OR operation, bitcount counts the number of nonzero 

bits, and ℛ r
p

 is a random subset of voxel coordinates within the patch at node p.

2) Fast L1 Regularization on an Image-derived MST—To allow motion 

discontinuity, L1 regularization [20], [45], is used:

R up, uq, rp, rq = up − uq 1
/ rp − rq 2

. (3)

Edge weights W p, q  are defined as the gradient between patches:
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W p, q =
r ∈ � r

p

It r − It r − rp + rq

2
/ rp − rq 2 (4)

where � r
p

 is the set of voxel coordinates within the patch at node p. From the graph G, a 

subgraph is extracted connecting all vertices of G but with minimum total edge weight 

∑
p, q

W p, q . This is the minimum spanning tree (MST) of G and is extracted using Prim’s 

algorithm [46]. By simplifying the graph to an MST, the global optimum of (1) can be found 

efficiently using message passing [23]. For each node p, given the MV u
q
 of its parent node 

q, the energy E′ of the optimal MV u
p
 is found using min-sum message passing [45]:

E′ p, q = min
u

p

D It, Is, rp, up +αR up, uq, rp, rq + ∑
c
E′ c, p (5)

where c represents the child nodes of p. In a first pass, E′ p, q  is calculated for all possible 

u
q
, from leaf nodes to its tree root. Once the tree root is reached, the optimal u

p
 is selected 

for each node p in a second pass, traversing from the tree root to the leaf nodes.

For each tree edge, the message passing of (5) naively requires O( ℒ 2) calculations, where 

ℒ is the label search space. A lower envelope computation-based min-convolution method 

[45] with O( ℒ ) cost is employed for fast L1 regularization in RAMS.

3) Inverse Consistent Symmetric Mapping—Enforcing inverse consistency as an 

additional regularization has been shown to improve registration accuracy [23], [25], [40], 

[47]. By swapping the role of target and source, a backward motion field v r , which 

spatially aligns It  r + v r  with Is r , is solved using the same MRF-based approach 

described above. Then the consistency between u r  and v r  is enforced by the following 

fixed point scheme [40] for several iterations:

u
n + 1

r = 0.5 u
n

r − v
n

r + u
n

r , (6a)

v
n + 1

r = 0.5 v
n

r − u
n

r + v
n

r . (6b)

4) Multi-resolution Optimization—To reduce computational complexity, a multi-

resolution scheme [23], [45] is used in RAMS. From the second level on, each node MV is 

decomposed into two additive components: a prior value and an incremental value. The prior 

component is obtained by B-spline interpolation of the node MVs of the previous level. Only 

the incremental component is searched. From lower to higher levels, node spacing, MV 

quantization, and label search range are successively decreased.
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Isotropic level parameters were used in previous studies [23], [45]. However, in MRI, voxel 

sizes are commonly anisotropic, and respiratory motion magnitudes are usually anisotropic 

as well. To optimize computer resource utilization, especially for large motion registration, 

anisotropic node spacing, MV quantization, and label search ranges are used in RAMS.

B. Coarse Segmentation based on Node MV Estimates

For motion pattern analysis in computer vision, motion segmentation is usually formulated 

as a clustering problem of the motion flow fields [48–50]. In our previous work [51], an 

MST clustering with maximum standard deviation reduction (MSDR) [52] was used. To 

boost the robustness in motion clustering using inaccurate motion estimates, we make use of 

prior knowledge about the sliding motion interface by introducing active contour models 

[53]. Active contours have been widely used in continuous optimization based image 

segmentation, e.g., automatic left ventricle segmentation [54] and the user-guided 

segmentation software ITK-SNAP [55]. To avoid the inherent sensitivity to local minima in 

continuous optimization, and inspired by the GCBAC approach to object segmentation [41], 

we propose a discrete optimization based method (Fig. 2). Based on the node MV estimates 

at each resolution level in the first registration pass, a coarse segmentation partitions the 

nodes of G into an inner and an outer region. The optimal 3D contour corresponds to the 

segmentation boundary, ideally the sliding motion interface. It is computed by a series of s-t 

min-cut based graph partitioning [41].

1) Edge Capacity Generation—The capacity Cm p, q  for each edge p, q  of G is set to

Cm p, q = cmexp − γmGm p, q /max p, q ∈ �
Gm p, q

2
(7)

Gm p, q = up − uq 2
/ rp − rq 2

(8)

where Gm p, q  is the node MV gradient along the edge p, q , cm and γm constant integers, 

and ·  denotes the floor operation such that the edge capacity is rounded to the nearest 

integer less than or equal to that value. Here the subscript m is used to identify the 

parameters for motion field-based segmentation. The maximum value of Gm p, q  in the 

entire graph is used for normalization of the gradient magnitude. γm determines the 

sensitivity in boundary detection, and cm scales the edge capacity before discretization.

2) Contour Initialization—At the first level, the initial contour CR0 is initialized with 

the surfaces of a shrunk image cuboid, which is dm away from the image bounds in the right, 

left, anterior, and posterior directions, shown as the black dotted lines in Fig. 2. From the 

second level on, the contour CR
k
 is initialized by upsampling the contour CR

k − 1 obtained at 

the previous level.
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3) Contour Dilation—The contour CR
k − 1 is morphologically dilated to a contour 

neighborhood CN
k
 using a 2dm + 1 3 sized 3D patch of ones as a structuring element, where 

dm is the isotropic dilation half-width.

4) Subgraph Extraction—A subgraph, which consists of the nodes only in CN
k
 and 

their associated edges, is extracted from the original graph G. As shown in Fig. 2, the nodes 

in the inner and outer contour of CN
k
 are set as the source and sink vertices, respectively, 

and the remainder nodes in CN
k
 are set as the intermediate vertices. This multi-source multi-

sink subgraph is then converted to a single-source single-sink subgraph by collapsing all 

source and sink vertices to a single source and a sink vertex, respectively [41].

5) Subgraph Partitioning—A new optimal contour CR
k
 is computed by finding the s-t 

min-cut of the subgraph:

cut* = argmincutF cut = argmincut∑ p, q ∈ cut
Cm p, q (9)

where cut is a set of edges such that, by removing them, the subgraph is split into a source 

partition and a sink partition, and F(cut) is the sum of edge capacities of cut. The preflow-

push algorithm with excess scaling [56] is used to compute the s-t min-cut. The total 

capacity of the min-cut F
k
 is exactly the maximum flow between the source and the sink. 

CR
k
 is set to the set of outer nodes of the inner source partition.

6) Stopping Criteria—Iterations are stopped when F
k

= F
k − 1. From the first to the final 

level, the spatial resolution of coarse segmentation is refined successively.

C. Fine Segmentation based on Image Intensity

Based on the final level coarse segmentation output, a subsequent fine segmentation is 

performed at voxel resolution using the MR signal intensity. The algorithm for fine 

segmentation is similar to the coarse segmentation, except for the following three 

differences:

1. Graph vertices correspond to voxels.

2. To improve noise robustness, the MR image is low pass filtered before 

computing the edge capacity Ci(p, q):

Ci p, q = ciexp − γiGi p, q /max p, q ∈ �
Gi p, q

2
(10)

Gi p, q = I′ rp − I′ rq / rp − rq 2
(11)
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where Gi p, q  is the voxel intensity gradient along the edge p, q , ci and γi 

constant integers, and I′ is the low pass filtered image of I. Here the subscript i 

indicates image-based segmentation. A windowed isotropic 3D Gaussian filter, 

consisting of a series of 1D Gaussian filtering steps, is used for low pass filtering. 

In each dimension, the 1D Gaussian filter g x = exp −x
2/ 2σ

2 / 2πσ  is sampled 

and normalized with σ = 1 and x = −2,   − 1,   0,   1,   2 , resulted in a 5-tap 

filter with coefficients [0.0545, 0.2442, 0.4026, 0.2442, 0.0545].

3. Because F cut  tends to decrease when fewer edges are included in cut [41], the 

optimal contour tends to shrink inwards and the obtained motion boundaries are 

generally smaller than the actual sliding interface (see Fig. 3). Therefore, the 

dilation of the 3D contour CR
k − 1 is constrained outwards at each iteration k. 

This is implemented by excluding the vertices in the inner source partition after 

an isotropic dilation using a 2d
i
+ 1 3 sized 3D patch of ones as a structuring 

element, where d
i
 is the dilation half-width.

After the fine segmentation, a binary image mask Mi(r) is obtained for each image, with 

Mi(r) = 1 for voxels in the inner region. When the motion discontinuity is small, 

segmentation is not necessary for registration. Therefore, in RAMS, if max
p, q ∈ �

Gm p, q

of the final level is less than a preset threshold τ, then the motion field segmentation and the 

second registration (described below) pass are not carried out.

D. Masked Regularization on an MSF

To incorporate motion masks into the regularization, the MST graph is generalized to an 

MSF graph, which is a union of MSTs [57]. At each level in the second registration pass, a 

mask for nodes, Mn(p), is derived by down-sampling the corresponding image mask Mi(r):

Mn p = 0.5 +
1

� rp

∑
r ∈ � r

p

Mi r (12)

Those edges connecting nodes of different mask values are then removed from the initial 26-

neighbor graph, resulting in two disconnected subgraphs. Using the edge weight defined in 

(4), an MST is extracted for each subgraph using Prim’s algorithm [46]. To simplify the 

reuse of data structure and MRF solver, a virtual tree is used to represent MSF by 

introducing an additional virtual root vertex as the parent of the MST root vertices. The data 

and regularization terms associated with the virtual root are both set to zero. Therefore, fast 

L1 regularization on an MSF is solved similarly by message passing over a virtual tree 

instead of manipulating separate trees.

E. Masked Interpolation of Motion Vector

MV interpolation is performed in two subtasks: the inverse consistent iterations of u r  and 

v r  at each level using (6a) and (6b); and the upsampling of node MVs for generating the 
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prior component of the next level node MVs and the final voxel-wise MVs. In the first 

registration pass, trilinear B-spline interpolation is performed using all eight surrounding 

nodes as references. In the second pass, when a motion mask is present, a neighboring node 

is only included if it belongs to the same mask as the interpolated point. Candidate reference 

nodes are searched on the two nearest neighboring axial node planes simultaneously. The 

search radius is increased in step-wise fashion until valid reference nodes become available. 

If the nearest eight surrounding reference nodes are all valid, trilinear interpolation is 

performed. Otherwise, inverse distance weighted (IDW) interpolation [58] is performed 

using the valid reference nodes.

III. EXPERIMENTS

A. Liver MRI Data

In vivo abdominal MRI data were acquired for the validation of the proposed algorithm. 

This study was institutional review board approved and HIPAA compliant. Ten healthy 

volunteers (5 males and 5 females, 20–30 years old) were imaged after obtaining informed 

consent. From each volunteer, two breath-hold 3D abdominal images were acquired using a 

1.5T scanner, 8-channel cardiac coil, LAVA-FLEX sequence, slice thickness 2 mm, matrix 

size 512 × 512 × 88–96, in plane resolution 0.66 to 0.78 mm. The volunteers were instructed 

to hold their breath at the end of maximum exhalation and then at maximum inhalation. The 

field of view was tuned for each individual so that it covered the whole liver. From the first 

volunteer, three additional breath-hold images were obtained at different inspiration levels, 

approximately evenly distributed between maximum exhalation and maximum inhalation.

Registration experiments were performed on intra-subject image pairs. For each subject, the 

maximum expiratory breath-hold image was set as the target for registration. 13 cases were 

constructed: cases 1–10 corresponded to 10 maximum expiratory and maximum inspiratory 

image pairs from the 10 subjects, and cases 1.1–1.3 corresponded to the three additional 

image pairs from the first subject by setting the other three breath-hold images as the source 

images in order of increasing inspiration level.

B. Parameter Setting in Liver MR Registration

A fixed parameter setting was used for all of the liver MR registration experiments. Three 

resolution levels were used for each registration pass, and the level parameters were the 

same for the first and the second pass. Using the right-left (RL), anterior-posterior (AP), 

inferior-superior (IS) coordinate system, the upsampling rate for the input images was s = 

(1,1,2). From the first level to the third level, the node spacing was 

n = 8, 8, 8 , 6, 6, 6 , 4, 4, 4  voxels, respectively, the MV quantization was 

q = 4, 4, 4 , 2, 2, 2 , 1, 1, 1 , respectively, and the half-width of MV label search space was 

l = 8, 15, 18 , 6, 6, 6 , 4, 4, 4  respectively. For the i-th dimension, the label search subspace 

was defined as ℒ i = −l i , ⋯, − 1, 0, + 1, ⋯, l i , and the corresponding space in voxel 

units was ℒ′ i = ℒ i q i /s i . Note that l was anisotropic at the first level in order to cover 

maximum motion magnitudes in different directions while minimizing computational 

burden. The weighting parameter α in (1) was set to 16, which was empirically determined 
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by checking the standard deviation of the determinant of the Jacobian, std(J), in the regions 

of smooth motion field.

The parameters for coarse segmentation were empirically determined as cm = 128, γm = 15, 

dm = 4, and fixed for all three levels. The fine segmentation parameters were ci = 128, 

γi = 15,di = 4. The Gaussian filter for image smoothing in (11) was 3D isotropic with σ = 1

and a window length of 5. The threshold for activating RAMS segmentation and the second 

registration pass was τ = 4.0.

C. Performance Evaluation on Liver MRI Data

For quantitative evaluation of automated segmentation, manual segmentation of the 

anatomical sliding interface between the internal organs and the abdominal/thoracic wall 

was performed for the target (maximum expiratory) image in each subject using ITK-SNAP 

[55]. The anatomical boundaries of the sliding interface were traced slice by slice in the 

high-resolution axial cross-section under the supervision of body radiologist with 24 years 

of experience (Dr. Martin R. Prince).

The Dice similarity coefficient (DSC) [59] was used to compare the resulted masks between 

automatic segmentation and manual segmentation:

DSC X, Y =
2 X ∩ Y

X + Y
(13)

where X and Y represent the binary image masks, and ⋅  denotes the number of non-zero 

voxels. A higher DSC indicates a better matching.

In addition, the bidirectional local distance (BLD) [60] was calculated to measure the local 

surface differences by setting the manually segmented boundary as the reference surface:

BLD pre f , T = max FMinD pre f , T , BMaxD T, pre f (14)

where the forward minimum distance FMinD p
re f

, T  is defined as the minimum of 

Euclidean distances from a point p
re f

 on a reference surface R to all points on a test surface 

T, and the backward maximum distance BMaxD T, p
re f

 is defined as the maximum of those 

FMinD p
t
, R ,   p

t
∈ T which equals p

t
− p

re f 2
.

To evaluate registration accuracy, the results of the first and second registration passes were 

compared under the same parameter settings. For additional validation of the obtained 

motion masks, the open source registration software Elastix v4.8 [61] was tested in two 

modes using the same recommended parameter file: affine transform followed by cubic B-

spline transform, Normalized Correlation Coefficient (NCC) similarity metric, and adaptive 

stochastic gradient descent optimizer. In the first mode, a single cubic B-spline transform 
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was used for the entire image. In the second mode, the motion fields of the inner and the 

outer region were estimated in two separate registrations using the target image mask 

calculated by RAMS. Mutual information between image pairs was used to evaluate image 

alignment quantitatively, as in [12–14].

D. Additional Evaluation Using Liver CT Data

As presented in [62], a more reliable quantitative evaluation of registration accuracy is 

comparing the estimated MVs with the reference MVs derived from a set of densely 

distributed voxel-wise manually annotated corresponding landmark pairs. Unfortunately, no 

such dataset is currently publicly available for liver MR registration. Therefore, we evaluated 

RAMS using an open liver CT dataset hosted on ITK’s medical development database 

(http://midas.kitware.com/community/view/47) as a supplement. Following previous work 

[17, 19, 21], RAMS was performed on the same four preprocessed image pairs with 

isotropic voxel spacing of 2×2×2 mm3 and image dimension of 

(230~250)x(154~171)x(150~200) using the following parameters (see above for notation): s 
= (2,2,2), n = (5,5,5), (4,4,4), (3,3,3), q = (3,3,3), (2,2,2), (1,1,1), l = (4,4,7), (3,3,4), (3,3,3), 

cm = 128, γm = 18, dm = 2, ci = 128, γi = 18, and di = 2. A series of 

α = 2k, k = 0, 1, 2, 3, 4, 5, 6, 7 were tested for each patient. To quantify the registration accuracy, 

the total registration error (TRE) was calculated for each test using the well-distributed lung 

landmarks and abdominal landmarks provided with this dataset [17], and compared with 

state-of-the-art results reported in the literature [17, 19, 21].

IV. RESULTS

A. Segmentation Performance in Liver MR Registration

Fig. 3 shows the RAMS segmentation result of the target and source images for case 1. The 

sliding motion interface in each image was globally detected by coarse segmentation using 

the forward or backward motion field estimates. Only the final level coarse segmentation 

result is shown. The motion boundaries were aligned with anatomical boundaries of the 

sliding interface by the subsequent fine segmentation.

A 3D visualization of the segmented boundaries for the target image in case 1 is shown in 

Fig. 4. Without the motion based coarse segmentation, MR signal intensity based GCBAC 

found the outer body surface of the subject (Fig. 4a). In contrast, the boundaries segmented 

by RAMS (Fig. 4c) coincided well with the manually segmented sliding motion interface 

(Fig. 4b).

Table I summarizes the DSC results for the target image of each case. In case 1.1, RAMS 

failed to obtain a satisfactory segmentation due to small motion discontinuity with the final 

level max
p, q ∈ �

Gm p, q = 3.7. As presented in Section II.C.3), RAMS segmentation and 

the second registration pass are unnecessary and should be disabled for such cases, therefore 

case 1.1 is not included in the statistics. In all other cases, the coarse segmentation (with 

overall mean DSC of 92.8%±0.4%) greatly outperformed MR signal intensity-based 

segmentation (with overall mean DSC of 67.1%±1.1%), and the fine segmentation (with 

overall mean DSC of 96.5%±0.2%) further improved the result. From cases 1.2 and 1.3 to 1, 
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DSC of the coarse segmentation decreased slightly. In contrast, after image based fine 

segmentation, no such trend in DSC was observed.

Table II summarizes the averaged BLD for the segmentation of target images. In all cases 

except case 1.1, the coarse segmentation (with overall mean BLD of 4.3±0.3 mm) greatly 

outperformed MR signal intensity-based segmentation (with overall mean BLD of 36.5±1.2 

mm), and the fine segmentation (with overall mean BLD of 2.3±0.1 mm) further improved 

the result. Both DSC and BLD metrics show a high consistency between RAMS 

segmentation and manual segmentation.

B. Registration Performance on Liver MRI Data

1) Comparison between DEEDS-SSC-L1 and RAMS—Fig. 5 shows a comparison 

of images before and after registration in case 2. Fig. 6 compares the resulting motion fields 

in the same axial, coronal, and sagittal slices of Fig. 5. After the first registration pass 

(DEEDS-SSC-L1), small features inside the liver in the source image were well aligned with 

those in the target image, whereas the tissues around the sliding interface were still 

misaligned (Fig. 5, third column). After the second registration pass (RAMS), the spatial 

alignment in this neighborhood was well preserved.

The improvement in image alignment resulted from the improvement in motion estimation 

accuracy, as shown in Fig. 6. In DEEDS-SSC-L1, the sliding motion interface was over-

smoothed to an erroneous wide transition zone. This led to an incorrect transformation of the 

voxels in the source image, resulting in the misalignment of image features. By using 

explicit masked regularization and masked interpolation in the second registration pass, the 

registration accuracy around the sliding interface has been substantially improved in RAMS 

(Fig. 5, fourth column).

2) Elastix with and without the RAMS Derived Mask—Fig. 7 shows the 

transformed source images after Elastix registration in the same cross sections of Figs. 5–6. 

A large neighborhood around the sliding interface (arrows in Fig. 7, left column) was not 

aligned with the target image (Fig. 5, first column), due to incorrect homogeneous 

smoothness constraints when using a single cubic B-spline transform. By introducing the 

target image mask calculated by RAMS into Elastix registration, two separate cubic B-spline 

transforms were used to model the motion field in two regions, so that motion smoothness 

constraints across the sliding interface were removed, leading to a substantial improvement 

in motion estimation accuracy and better image alignment after registration (Fig. 7, right 

column).

Fig. 8 presents volumetric 3D rendering of the inner regions of the images in case 2. Image 

alignment around the sliding interface is significantly improved by using explicit motion 

masks derived from RAMS segmentation in both registration methods.

Table III summarizes the mutual information (MI) between each image pair. For each 

method and for every case (except case 1.1), under the same parameter settings, the MI after 

registration using a mask was greater than without a mask, indicating improved registration 

accuracy. The incremental MI was larger in Elastix than in RAMS, showing more benefits 
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brought by using a motion mask in Elastix. By incorporating the motion mask information, 

Elastix achieved a similar level of spatial alignment after registration. We also observed that 

in case 1.1, the MI decreased on the contrary after the second registration pass in RAMS. 

This might be attributed to inaccurate segmentation of the sliding interface. However, in 

RAMS, the segmentation and the second registration pass are not performed in this case 

since max
p, q ∈ �

Gm p, q < τ, and the accuracy of the first registration pass (DEES-SCC-

L1) is sufficient.

3) Quantification of Deformation Smoothness—To examine spatial smoothness of 

the result motion field of RAMS, we computed voxel-wise Jacobians of the forward motion 

field in each case. Using the fine segmentation derived by RAMS, voxels in a target image 

were partitioned into three regions: the inner region, the sliding interface, and the outer 

region. To include boundary voxels on both sides, the initial sliding interface was 

morphologically dilated using a spherical structuring element whose radius was 1 voxel. The 

standard deviation of Jacobians (Std(J)) was calculated separately for individual regions and 

summarized in Table IV.

According to Table IV, large transformation complexity is observed around the sliding 

interface (with overall mean Std(J) of 5.21±0.53), whereas smooth deformation is observed 

both in the inner region (with overall mean Std(J) of 0.39±0.02) and the outer region (with 

overall mean Std(J) of 0.19±0.01). By incorporating motion masks into registration, RAMS 

is able to preserve motion discontinuity along the sliding interface while obtaining plausible 

transformations without folding inside each of the two separate domains.

4) Quantification of Sliding Motion—To quantify the locations and level of sliding 

motion detected by RAMS, we used a sliding motion measure proposed in [63] which 

calculates voxel-wise maximum shear stretch γmax of the estimated motion field. It has been 

shown that respiratory sliding motion between lung boundaries and the chest wall could be 

well characterized by voxel-wise γmax based only on the motion field obtained from lung CT 

registration [18, 63]. the maximum shear stretch γmax is defined at each voxel as follows:

λi = eigenvalues F
T

F ,  i = 1, 2, 3 (15)

γmax = λ1 − λ3 /2, (16)

where F is 3×3 matrix representing the gradient tensor of 3D motion field at this voxel, λ1

and λ3 are the maximal and minimal principal stretch components, respectively [63].

Fig. 9 visualizes voxel-wise γmax of the forward motion field u r  estimated by DEEDS-

SSC-L1 and RAMS for case 10 in an example coronal section and an example axial section. 

The manual segmentation and RAMS fine segmentation of the same cross-sections are also 
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shown in Fig. 9(a) for reference. The value of γmax is linearly mapped to pseudo color using 

“jet” colormap. As presented in [18, 63], γmax = 5 can be set as a noticeable level of sliding 

motion. Distinct contours, which correspond to very high values of γmax  ≫ 5 , can be easily 

observed in Fig. 9(c). And the locations of these contours are highly consistent with RAMS 

segmentation of the sliding interface shown in Fig. 9(a). In contrast, γmax are smaller and the 

data boundaries are smooth in DEEDS-SSC-L1 as shown in Fig. 9(b).

5) Evaluation of Image-adaptive MST/MSF—In MST/MSF extraction, edge weights 

W p, q  in (4) are defined as the gradient between image patches. Therefore, locally adaptive 

regularization is achieved by removing most edges (thus motion smoothness constraints) 

between nodes with large intensity difference. We investigated the influence of using image 

gradient as edge cost in MST/MSF construction on RAMS segmentation and registration 

performance by comparing with the results using randomized edge cost. Fig. 10 visually 

compares DSC, average BLD, and MI results on our liver MRI dataset, where the data in 

red, blue and cyan color are copied from Table I-III.

As shown in Fig. 10(a) and (b), the accuracy of coarse segmentation decreases when using 

randomized edge cost, probably due to the drop in accuracy of motion field estimates 

obtained in the first registration pass. Nevertheless, after the subsequent fine segmentation, 

similar accuracy is achieved as usual. This demonstrates the robustness of image-based fine 

segmentation with respect to small changes in the initial boundaries output from coarse 

segmentation.

As seen in Fig. 10(c), the registration accuracy in terms of image matching decreases in both 

the first and second registration pass when using random edge cost in MST/MSF 

construction. More interestingly, RAMS result using random edge cost (green curve) is 

better than DEEDS-SSC-L1 result using image-adaptive edge cost (blue curve). This 

demonstrates the effectiveness of using explicit motion masks in respiratory motion 

registration.

C. Registration Performance on Liver CT Data—For each α, the TRE was 

calculated using all of the lung and abdominal landmarks from the four patients. The overall 

TRE was observed to reach a minimum when α = 8, and increase gradually when deviating 

from 8. Table V compares the TRE statistics of RAMS (α = 8) based on various set of 

landmarks to the state-of-the-art registration results reported in the literature (Anisotropic 

Diffusion [17], SLIC Demons [19], and XFFD [21]). Using Wilcoxon rank sum test, the 

TREs obtained by RAMS are statistically significant lower (p < 0.05) for both the lung 

landmarks and the abdominal landmarks.

D. Running Time

RAMS was implemented in C++, compiled and run on a desktop computer using an Intel 

i7–5820K CPU at 3.30GHz with 64GB RAM running Windows 7 Enterprise. For cases 2–

10 in liver MR registration, where each image had the same dimension of 512×512×96, the 

average running time was 39 seconds for SSC precomputation, 712 seconds for the first 
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registration pass, 6 seconds for the coarse segmentation, 274 seconds for the fine 

segmentation, and 347 seconds for the second registration pass. The average total 

registration time for each case was about 23 minutes. The coarse segmentation across three 

levels converged in maximum 22 iterations, and the fine one converged in maximum 37 

iterations. The time increase in fine segmentation was due to the vast increase in the number 

of vertices in the s-t min-cut computation. The time for the second registration pass was less 

than half of that for the first pass. The saved time mainly came from the reuse of data costs 

at the first level, which consumed nearly half of the first pass running time in order to cover 

the large MV search range.

V. DISCUSSION

The main contribution of RAMS approach is the novel adaptation and combination of two 

discrete optimization-based methods – DEEDS registration and GCBAC segmentation – for 

discontinuity preserving respiratory motion registration of liver MR images. And the key 

innovation is the proposed two-stage segmentation process. Using the motion field estimates 

obtained in the first mask-free registration pass, a coarse segmentation globally locates 

motion boundaries. Using the MR signal intensity, a subsequent fine segmentation aligns the 

motion boundaries with anatomical boundaries of the sliding motion interface.

As validated on in vivo breath-hold liver MRI data acquired in 10 healthy subjects across a 

large range of respiratory displacements, the motion masks calculated by RAMS agreed well 

with manual segmentations. By incorporating the motion segmentation information in the 

second registration pass, motion discontinuity around the sliding interface was preserved 

substantially better, leading to a significant improvement in image alignment after 

registration.

RAMS requires just two registration passes and one embedded segmentation process. This is 

in contrast to recently reported joint registration and segmentation methods for liver MR 

[12–14], where an iterative continuous optimization scheme was used at each of a series of 

coarse-to-fine pyramid levels to avoid local minima. At each level, many alternating 

optimizations of motion field estimation and segmentation were needed for convergence. 

The efficiency of RAMS can be primarily attributed to the proposed two-stage segmentation 

approach, which exploits both the information from the motion field estimates and from the 

MR signal intensity. The motion-based segmentation coarsely finds the global optimum, and 

the subsequent image-based segmentation refines the result to anatomical boundaries. This 

novel combination achieves fast convergence and avoids time-consuming iterations between 

motion registration and motion segmentation. Because the motion field-based coarse 

segmentation is crucial, it requires a high-performance mask-free registration algorithm in 

the first pass. In RAMS, this is accomplished by DEEDS-SSC-L1.

The improvement of registration accuracy by explicitly using motion masks in the 

regularization has been extensively validated in the literature, particularly for the respiratory 

motion registration of thoracic and abdominal images [7], [8], [38], [26]. Compared to 

thoracic CT images, automated segmentation of the sliding interface in abdominal MR 

images is more challenging due to the low contrast between internal organs and the 
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abdominal wall. As validated using Elastix, the motion masks calculated by RAMS can also 

benefit other registration algorithms, including continuous algorithms. As a byproduct of 

registration, the obtained segmentation may be used for other medical image analysis and 

clinical applications.

There are some limitations in the current work. The quantitative assessment of registration 

accuracy using well-distributed manually annotated landmark pairs was only done on the 

liver CT data which is publicly available. Nevertheless, under the same parameter settings, 

the comparison of image alignment between MR registrations with and without the motion 

mask is also a good metric. Additionally, a high agreement between RAMS segmentation 

and manual segmentation was observed.

The proposed two-stage GCBAC segmentation is designed to work for images with strong 

motion discontinuities. As observed in case 1.1, RAMS coarse segmentation fails to detect 

the sliding interface when motion discontinuity is small. A subsequent intensity-based 

segmentation would therefore have decreased accuracy. For this reason, in RAMS, such 

situation is detected automatically and the segmentation and the second registration pass are 

not carried out. In RAMS, the data similarity metric in registration uses the self-similarity 

context, which has robust performance in geometric matching with respect to intensity 

changes. However, like other intensity-based segmentation algorithms, the fine segmentation 

is sensitive to MRI artifacts such as image noise, partial volume effect (PVE), and bias field 

effect. We suppose that these artifacts could be effectively reduced by using modern MRI 

scanners with more advanced acquisition technology. As validated on the real MRI data 

acquired in our work, these artefacts are tolerable to the presented method. Additional 

preprocessing steps, e.g. bias field correction, will be further investigated to improve the 

robustness to MRI artefacts.

Recently, model-based methods incorporating liver shape prior knowledge have 

demonstrated superior performance on automated liver segmentation in CT scans, compared 

to conventional intensity-based segmentation methods [28–30]. We will investigate the 

potential to improve the accuracy and robustness of motion mask extraction in abdominal 

MR images by incorporating the model-based idea in our future work.

Running time is often comprised to improve registration accuracy in respiratory motion 

registration by introducing more sophisticated locally adaptive regularization. To enable 

realtime intra-procedure 3D motion estimations in MR-guided interventions, C. 

Baumgartner et al. [64] proposed a novel auto-adaptive 3D motion modeling using 2D 

motion fields estimated from sagittal MR slices. Nevertheless, this model-based motion 

estimation still requires a long calibration time of 12 min and a large prediction latency of 

800 ms. By using complete discrete optimization, the registration time of RAMS is 

predictable. Compared to the running time of continuous optimization-based approaches 

with locally adaptive regularization, e.g. more than 60 minutes for a typical lung CT 

registration in [18], the running time of RAMS is competitive. And the current 

implementation of RAMS is an initial non-optimized version for algorithm validation. For 

clinical application, RAMS could be accelerated by parallel processing, e.g. using General 

Purpose Graphics Processing Units (GPGPUs).
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VI. CONCLUSION

In summary, RAMS is a discontinuity preserving liver MR registration approach that, by 

combining motion field estimates and MR signal intensity, is shown to efficiently find the 

anatomical boundaries of the sliding motion interface and thereby improve overall motion 

estimation accuracy.
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Fig. 1. 

Flowchart of the proposed registration with 3D active contour motion segmentation (RAMS) 

approach for liver MR registration.
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Fig. 2. 

Illustration of RAMS segmentation process at each resolution level using graph cuts-based 

active contour (GCBAC) approach.
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Fig. 3. 

RAMS segmentation result for case 1. The left two columns show the final level coarse 

segmentation and the fine segmentation of the target image, and the right two columns show 

those of the source image. The rows show an example axial slice (top), coronal slice 

(middle), and sagittal slice (bottom), with the same slice coordinates for all columns. The 

white contours represent the outer boundaries of the inner segments.
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Fig. 4. 

3D visualization of the target image mask boundaries for case 1, generated by: (a) GCBAC 

segmentation using MR image only, (b) manual segmentation, and (c) RAMS segmentation.
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Fig. 5. 

Comparison of images before and after registration using DEEDS-SSC-L1 and RAMS in 

case 2. The left two columns show the target image and the source image, respectively. The 

right two columns show the transformed source images of DEEDS-SSC-L1 and RAMS. The 

rows show an example axial slice (top), coronal slice (middle), and sagittal slice (bottom). 

The white dotted lines in the leftmost column indicate the location of cross sections. The 

white arrows (third column) indicate decreased image alignment with DEES-SSC-L1 at the 

sliding motion interface. These are resolved when using RAMS (fourth column).
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Fig. 6. 

Comparison of the result motion fields of DEEDS-SSC-L1 and RAMS in case 2 in the same 

cross sections of Fig. 5: (a) deformed target axial slices in the source image, and (b) motion 

field projections on the coronal and the sagittal slices using HSV color mapping, with 

magnified regions of interest. The sliding motion interface is over-smoothed in DEEDS-

SSC-L1 whereas it is well preserved in RAMS, leading to substantially improved image 

alignment, as seen in Fig. 5.
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Fig. 7. 

Comparison of the transformed source images after Elastix registration for case 2 in the 

same cross sections of Fig. 5. Compared to the target image in Fig. 5, regions around the 

sliding interface are misaligned when not using a mask (white arrows, left column). Using 

the RAMS derived mask, the result of Elastix is significantly improved (right column).
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Fig. 8. 

Volumetric rendering of the inner regions of the following images in case 2: (a) the target 

image, (b) the source image, the transformed source image of (c) DEEDS-SSC-L1, (d) 

RAMS, (e) Elastix without mask, and (f) Elastix using the RAMS derived mask. Image 

alignment around the sliding interface is significantly improved comparing (d) to (c), and (f) 

to (e), respectively.
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Fig. 9. 

Quantification of the sliding motion for case 10 of the liver MRI dataset. The top row shows 

an example coronal slice and the bottom shows an example axial slice of the target image: 

(a) MR slice images overlaid with contours of RAMS fine segmentation in red, manual 

segmentation in green, and their overlaps in yellow; the maximal shear stretch of the forward 

motion field output from (b) DEEDS-SSC-L1 and (c) RAMS registration. Through the same 

linear pseudo color mapping, it can be easily observed that RAMS preserves sliding motion 

with sharp values of the maximal shear stretch at the sliding interface, while motion 

discontinuity is smoothed in DEEDS-SSC-L1.
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Fig. 10. 

Evaluation of the impact of using image gradient as edge cost in MST/ MSF construction on 

RAMS segmentation and registration performance by comparing with the results using 

randomized edge cost on the liver MRI dataset: (a) DSC, (b) average BLD and (c) MI. 

According to (a) and (b), the segmentation accuracy decreases in motion-based coarse 

segmentation when using randomized edge cost, but recovers after image-based fine 

segmentation. According to (c), the registration accuracy decreases in both the first and 

second registration pass when using random edge cost.
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