
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1047 | https://doi.org/10.1007/s42452-019-1065-4

Research Article

Discontinuous Galerkin approximations in computational mechanics: 
hybridization, exact geometry and degree adaptivity

Matteo Giacomini
1
  · Ruben Sevilla

2

© Springer Nature Switzerland AG 2019

Abstract

Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree 
adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approxima-
tions and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform 
rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method. 
Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric 
second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. 
Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous 
flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework 
of face-centered finite volumes.

Keywords Hybridizable discontinuous Galerkin · Mixed formulation · Exact geometry · NURBS-enhanced finite 
element · Degree adaptivity · Superconvergence · Face-centered finite volume

1 Introduction

The importance of high-order approximations for the sim-
ulation of physical phenomena has been demonstrated in 
several fields of science and engineering, including elec-
tromagnetics [1, 2] and flow problems [3, 4]. DG methods 
have shown great potential for the development of effi-
cient high-order discretizations, exploiting modern par-
allel computing architectures and adaptive strategies for 
non-uniform degree approximations [1, 5–8]. Neverthe-
less, the duplication of unknowns in classical DG methods 
and their resulting higher computational cost have limited 
their application mostly to academic problems and only 
few attempts to perform large-scale DG simulations are 
available in the literature, see [9–11].

To remedy this issue, static condensation of finite ele-
ment approximations [12] and hybridization of mixed 

methods [13] have received special attention in recent 
years. Following the rationale in [14], these concepts are 
applied to DG methods by defining the unknowns in each 
element as solution of a boundary value problem with Dir-
ichlet data, whereas the interelement communication is 
handled by means of appropriate transmission conditions. 
Such approach leads to a wide range of hybrid discretiza-

tion techniques [15] in which the only globally-coupled 
degrees of freedom of the problem are located on the 
mesh faces. The computational benefit of hybridization in 
the context of DG approximations has been analyzed in 
[16] in terms of floating-point operations. Other thorough 
numerical comparisons are detailed in [17, 18].

Contributions on hybrid methods may be subdivided 
in two main groups, relying either on primal or mixed for-
mulations. The former includes: (1) classical DG methods 
in which the number of coupled degrees of freedom is 
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reduced simply by means of hybridization [19–21]; (2) 
the reduced stabilization approach exploiting a primal 
unknown approximated using a polynomial function of 
degree k + 1 and a trace variable of polynomial degree k 
to furtherly ease the computational burden [22, 23]; (3) 
the hybrid high-order (HHO) method which introduces a 
local reconstruction operator to mimick the behavior of 
the gradient of the primal solution and an appropriate 
stabilization term [24, 25]. It is worth recalling that the 
HHO method belongs to the family of hybridizable DG 
approaches and can be recasted in this framework by an 
appropriate definition of the involved stabilization opera-
tor [26].

Stemming from the work on the local DG method [27, 
28], the hybridizable DG method proposed by Cockburn 
and coworkers relies on a mixed hybrid formulation [15], 
based on polynomial approximations discontinuous ele-
ment-by-element [29]. The latter group thus includes all 
HDG formulations featuring the introduction of a mixed 
variable [30–39]. The advantage of directly approximating 
flux/stress via the introduction of a mixed variable is of 
special interest in the context of engineering problems in 
which quantities of interest usually rely on such informa-
tion. Thus, in the following sections, these specific hybrid 
methods based on mixed formulations will be consid-
ered and, with an abuse of notation, they will be denoted 
generically as HDG approaches.

Hybrid discretization techniques have been successfully 
applied to several problems of engineering interest. In 
the context of computational fluid dynamics, HDG mixed 
formulations of the incompressible Navier–Stokes equa-
tions have been presented in [36, 40] and [41] using equal 
order and different order of polynomial approximations 
for the primal, mixed and hybrid variables, respectively. 
HHO formulations have been discussed in [42, 43]. On the 
one hand, special emphasis has been devoted to the con-
struction of pointwise divergence-free approximations in 
incompressible flows [44, 45]. Recent results proposing a 
relaxed H(div)-conforming discretization of the velocity 
field are available in [46, 47]. On the other hand, exten-
sion to turbulent flows using implicit large eddy simula-
tions [48] and the Spalart–Allmaras model [49, 50] and 
treatment of complex rheologies like quasi-Newtonian 
fluids [51] and viscoplastic materials [52] are active topics 
of investigations. First results of the application of hybrid 
discretization techniques to compressible flow problems 
are available in [53, 54].

Concerning linear elasticity, the strong enforcement of 
the symmetry of the stress tensor in HDG has been studied 
by different authors. A formulation using different degrees 
of polynomial approximation for the primal and hybrid 
variables has been discussed in [55]. In [56], an appropriate 
enrichment of the local discrete space of approximation 

via the M-decomposition framework is proposed to ensure 
optimal convergence of the mixed variable and supercon-
vergence of the postprocessed one. An easy-to-implement 
alternative is represented by the HDG-Voigt approach 
introduced in [57] and detailed in Sect. 4 of the present 
contribution. In the context of nonlinear elasticity, hybrid 
methods based on primal formulations have shown prom-
ising results, see [58–60] for HHO applications to hyper-
elastic, plastic and elastoplastic regimes. The exploitation 
of HDG mixed formulations to simulate these phenom-
ena is currently an open problem, as described in [61–63]. 
Moreover, results on fluid-structure interaction problems 
and arbitrary Lagrangian Eulerian formulations have been 
investigated in [64] and [65], respectively.

Other fields actively studied using hybrid discretization 
methods include subsurface flows [66, 67] and wave prop-
agation phenomena [68], spanning from elastodynamics 
[69–71] to coastal water simulations [72], from Maxwell’s 
equations [73] to acoustics [74], optics [75] and plasmon-
ics [76, 77].

Besides the application of hybrid discretization meth-
ods to different physical problems, several efforts have 
been devoted in recent years to the construction of effi-
cient strategies to exploit the numerical advantages of 
the above mentioned approaches. On the one hand, the 
flexibility of DG methods has been exploited to perform 
mesh refinement based on octrees [78], driven by adjoint-
based [79] and fully-computable [80] a posteriori error 
estimators. On the other hand, the possibility of using 
nonuniform polynomial degree approximations has been 
explored in [81] and [82, 83].

It is worth recalling that the accuracy of the functional 
approximation is strictly related to the one of the geo-
metrical description of the domain. In this context, HDG 
for domains with curved boundaries have been analyzed 
in [84–87] via the extension to a fictitious subdomain, 
whereas a classical isoparametric framework has been 
developed for HHO in [88]. In [82, 83], the NEFEM paradigm 
is coupled with HDG to treat exact geometries described 
by means of NURBS. The strict relationship between geo-
metrical and functional approximation error and its impor-
tance in the context of degree-adaptive procedures is fur-
ther detailed in Sect. 3 of the present contribution.

Recently, different approaches to problems featuring 
unfitted interfaces have been proposed using immersed 
HDG formulations [89, 90], the extended HDG framework 
(X-HDG) which mutuates ideas from X-FEM to treat cut 
cells [91–93] and the cut-HHO method which relies on a 
cell agglomeration procedure and exploits the capability 
of HHO to handle generic mesh elements [94]. Moreover, 
numerical strategies to couple continuous Galerkin and 
HDG discretizations have also been recently proposed for 
mono- and multiphysics problems [95, 96].



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1047 | https://doi.org/10.1007/s42452-019-1065-4 Research Article

Concerning specific solution strategies for hybrid dis-
cretization methods, a parallel solver based on the itera-
tive Schwarz method has been developed in [97], fast 
multigrid solvers have been employed in [98–100] and 
iterative approaches inspired by the Gauss–Seidel method 
have been discussed in [101, 102]. Moreover, tailored pre-
conditioners for the hybrid DG method have been pro-
posed in [103, 104] in the context of the Stokes equations.

This contribution presents an overview of some recent 
advances on HDG methods with application to different 
problems in computational mechanics, namely elec-
trostatics, linear elasticity and incompressible viscous 
flow simulations. The rationale to devise an HDG mixed 
approximation of a second-order partial differential equa-
tion (PDE) is recalled in Sect. 2. In Sect. 3, the importance 
of accounting for the exact geometry described by means 
of NURBS is illustrated via the framework of NEFEM. An 
HDG-NEFEM discretization with degree adaptivity is thus 
discussed for an electrostatics problem. In Sect. 4, an appli-
cation of HDG to linear elasticity is considered. Special 
attention is devoted to the construction of a formulation 
using a pointwise symmetric mixed variable, namely the 
strain rate tensor, via Voigt notation [105]. The resulting 
HDG-Voigt formulation is robust for nearly-incompressible 
materials and provides optimally-convergent stresses and 
superconvergent displacements which are exploited to 
construct local error indicators to perform degree adap-
tive procedures. Eventually, a lowest-order HDG approxi-
mation, the recently proposed FCFV method [106, 107], is 
devised to efficiently solve large-scale problems involving 
incompressible flows (Sect. 5). The FCFV method provides 
an LBB-stable discretization which is insensitive to mesh 
distortion and stretching and features first-order accu-
rate fluxes without the need to perform a reconstruction 
procedure.

2  The HDG rationale

To recall the rationale of the HDG method, the Laplace 
equation is considered in an open bounded domain 

Ω ⊂ ℝ
�
�� , �

��
 being the number of spatial dimensions,

where u and u
D

 are the unknown variable and its imposed 
value on the boundary, respectively. From the point of 
view of modeling, Eq. (1) represents an electrostatic prob-
lem where u is the unknown electric potential.

The standard HDG mixed formulation described in 
[108] is detailed. Recall that the main features of this HDG 

(1)

{

−�⋅�u = 0 in Ω,

u = u
D

on �Ω,

method is the introduction of a mixed variable, namely 

q = −�u allowing to rewrite a second-order PDE as a sys-
tem of first-order PDEs, and of a hybrid variable û repre-
senting the trace of the primal unknown on the faces of 
the internal skeleton

where �
��

 is the number of non-overlapping elements 
Ω

e
, e = 1,… , �

��
 in which the domain is partitioned. 

Thus, Eq. (1) is rewritten as a system of first-order PDEs 
element-by-element

with the following transmission conditions enforcing the 
continuity of the solution and of the fluxes across the 
interface Γ

where [[⊙]] = ⊙
i
+⊙

l
 is the jump operator proposed in 

[109] as the sum of the values in the elements Ω
i
 and Ω

l
 

on the right and on the left of the interface respectively, 
whereas the trace of the numerical flux is defined as

with � being an appropriate stabilization parameter 
[31–34, 36]. Note that the first transmission condition is 
automatically fulfilled owing to the Dirichlet boundary 
condition u

e
= û imposed in the local problems on �Ω

e
⧵�Ω 

and to the uniqueness of the hybrid variable û on each 
mesh face in 𝜕Ω

e
⊂ Γ.

Thus, the HDG local problems are defined as follows: for 

e = 1,… , �
��

 compute (u
e
,q

e
) ∈ H

1(Ω
e
) ×

[

H(div;Ω
e
);ℝ�

��

]

 
such that

f o r  a l l  (v,w) ∈ H
1(Ω

e
) ×

[

H(div;Ω
e
);ℝ�

��

]

 ,  w h e r e 
[

H(div;Ω
e
);ℝ�

��

]

 is the space of square integrable vectors 
of dimension �

��
 with square integrable divergence on Ω

e
.

Γ ∶=

[

�
��

⋃

e=1

�Ω
e

]

⧵�Ω,

⎧
⎪
⎨
⎪
⎩

q
e
+ �u

e
= 0 in Ω

e
, e = 1,… , �

��
,

�⋅q
e
= 0 in Ω

e
, e = 1,… , �

��
,

u
e
= u

D
on 𝜕Ω

e
∩ 𝜕Ω,

u
e
= û on 𝜕Ω

e
⧵𝜕Ω,

{

[[un]] = 0 onΓ,

[[n̂⋅q]] = 0 onΓ,

�n⋅q ∶=

{

n⋅q
e
+ 𝜏(u

e
− u

D
) on 𝜕Ω

e
∩ 𝜕Ω,

n⋅q
e
+ 𝜏(u

e
− û) elsewhere,

(2)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−∫
Ωe

w⋅qe dΩ + ∫
Ωe

�⋅w ue dΩ = ∫
𝜕Ωe∩𝜕Ω

n⋅w uD dΓ + ∫
𝜕Ωe⧵𝜕Ω

n⋅w û dΓ,

∫
Ωe

v �⋅qe dΩ + ∫
𝜕Ωe

𝜏 v ue dΓ = ∫
𝜕Ωe∩𝜕Ω

𝜏 v uD dΓ + ∫
𝜕Ωe⧵𝜕Ω

𝜏 v û dΓ,
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Following the notation in [108], the discrete functional 
spaces 

are introduced for the HDG approximation. In 
Eq.  (3), Pk(Ωe) (respectively, Pk(Γ

i
) ) represents the 

space of polynomial functions of complete degree 
at most k ≥ 1 in Ω

e
 (respectively, on Γ

i
 ). Thus, for 

e = 1,… , �
��

 the HDG discrete local problem is: given 
ûh on Γ , find (uh

e
,qh

e
) ∈ V

h(Ωe) ×
[

V
h(Ωe)

]�
�� , approxi-

mating the pair (u
e
,q

e
) , such that Eq.  (2) holds for all 

(v,w) ∈ V
h(Ωe) ×

[

V
h(Ωe)

]�
��.

Remark 1 For each element Ω
e
, e = 1,… , �

��
 , the primal, 

uh
e
 , and mixed, qh

e
 , variables are determined as functions 

of the unknown hybrid variable ûh on �Ω
e
⧵�Ω . From the 

point of view of modeling, the HDG local problem estab-
lishes a relationship between the electric potential and 
electric field inside each element and the electric potential 
on the corresponding element boundary.

The HDG global problem is defined from the previously 
introduced transmission conditions: find û ∈ H

1∕2(Γ) such 
that

for all v̂ ∈ L
2
(Γ) , where u

e
 and q

e
 are obtained from the 

local problems defined in Eq. (2).
The HDG discrete global problem is thus obtained solv-

ing the previous equation in the hybrid space introduced 
in (3), that is, find ûh ∈ �V

h

(Γ) such that Eq. (4) holds for all 

v̂ ∈ �V
h

(Γ).
Recall that using equal order k for the approximation 

of the primal, mixed and hybrid variables, HDG provides 
optimal convergence of order k + 1 for all the unknowns 
[31]. Inspired by the work of Stenberg [110], this property is 
exploited to devise an inexpensive local postprocessing pro-
cedure leading to a superconvergent approximation of the 
primal variable [35, 82, 108]: for e = 1,… , �

��
 , compute u⋆

e
 

using a polynomial approximation of degree k + 1 such that

(3a)
V
h(Ω) ∶=

{
v ∈ L2(Ω) ∶ v|Ωe

∈ P
k(Ωe) ∀Ωe, e = 1,… , �

��

}
,

(3b)

�V
h

(S)∶=
{
v̂ ∈ L2(S) ∶ v̂|Γi

∈ P
k(Γi) ∀Γi ⊂ S ⊆ Γ ∪ 𝜕Ω

}
,

(4)

�
��

∑

e=1

{

∫
𝜕Ωe⧵𝜕Ω

v̂ n⋅qe dΓ

+ ∫
𝜕Ωe⧵𝜕Ω

𝜏 v̂ ue dΓ − ∫
𝜕Ωe⧵𝜕Ω

𝜏 v̂ û dΓ

}

= 0,

(5)

{

�⋅�u
⋆

e
= −�⋅qh

e
inΩe,

n⋅�u⋆
e
= −n⋅qh

e
on 𝜕Ωe,

with the solvability constraint

The computed u⋆
e

 thus superconverges with order k + 2 
[111] and has been exploited to define a simple and inex-
pensive error indicator to perform degree adaptive proce-
dures [82, 112, 113].

Henceforth, the superscript h identifying the discrete 
HDG solution will be omitted to ease readability and nota-
tion, if no risk of ambiguity is possible.

3  HDG‑NEFEM: exact geometry and degree 
adaptivity

The possibility to easily implement a variable degree of 
approximation in DG methods has motivated the recent 
interest in degree adaptive processes for convection-
dominated flow and wave propagation phenomena. In 
this context, the superconvergent property of HDG is espe-
cially attractive, as it allows to devise an inexpensive error 
indicator for a computed approximation [82, 112, 113].

One aspect that has been traditionally ignored when 
proposing new degree adaptive procedures is the rep-
resentation of the geometry. In an isoparametric formu-
lation, a degree adaptive process requires communicat-
ing with the CAD model and regenerating the mesh, at 
least near the boundary, at each iteration. Nonetheless, 
the associated computational cost makes this strategy 
unfeasible for practical applications. Thus, it is common 
practice to represent the geometry with quadratic or cubic 
polynomials and change only the degree of the functional 
approximation during the adaptivity process, leading to 
subparametric and superparametric formulations [112, 
113]. An alternative procedure based on the NEFEM 

rationale [114] is discussed here. The boundary of the 
computational domain is represented using the true CAD 
model, irrespective of the functional approximation used. 
The effort required to implement this approach is similar 
to the one employing subparametric or superparametric 
formulations: no communication with the CAD model or 
regeneration of the mesh are required, while the geomet-
ric uncertainty introduced by a polynomial description of 
the boundary of the domain is completely removed.

According to the framework described in Sect. 2, for a 
given distribution of the degree k of the functional approxi-
mation, the global problem (4) is solved first to obtain the 
trace of the electric potential on the mesh edges/faces. Sec-
ond, an element-by-element problem is solved to compute 
the value of the electric potential u and its gradient, i.e. the 
electric field, in the elements, according to Eq. (2). Finally, an 

(6)∫
Ωe

u
⋆

e
dΩ = ∫

Ωe

u
h

e
dΩ.
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element-by-element postprocess is performed to obtain a 
superconvergent solution u⋆

e
 by solving (5)–(6).

Following [82, 113], a measure of the error in each ele-
ment Ω

e
, e = 1,… , �

��
 is defined

Moreover, the local a priori error estimate derived in [115] 
for elliptic problems, states that the error in an element is 
bounded as

By means of Richardson extrapolation, it is possible to esti-
mate the unknown constant C in Eq. (8), assuming that 
two values of the error, obtained with different degrees of 
approximation, are considered. In order to determine the 
change of degree required to achieve a desired error � , 
first, an estimate of the error is devised using Eq. (7). Then, 
the target approximation degree is computed accord-
ing to Eq. (8) by imposing a desired elemental error �

e
 . As 

detailed in [82], the change of degree in the element Ω
e
 

is thus given by

where ⌈⋅⌉ is the ceiling function and he is the non-dimen-
sional characteristic size of the element Ω

e
.

The proposed degree adaptive process is tested by 
computing the electric field in a rectangular domain with 
a square inclusion, Ω = [−75, 75] × [−100, 100]⧵[−50, 50]2 . 

(7)E
u

e
=

[
1

|Ωe| ∫Ωe

(
u
⋆

e
− ue

)2
dΩ

]1∕2
.

(8)�e = ‖u − uh‖Ωe
≤ Ch

ke+1+���∕2
e .

(9)Δke =

⌈

log(�∕Eu
e
)

log(he)

⌉

, e = 1,… , �
��
,

A unit potential is imposed on the outer boundary and a 
zero potential on the inclusion. As it is common in practi-
cal engineering applications, the corners of the inclusion 
are rounded to eliminate the singularity induced by the 
re-entrant corners [116]. Specifically, a fillet defined using 
a small radius r is introduced to increase the regularity of 
the boundary. Figure 1 shows the intensity of the electric 
field for three different geometries, with a fillet of radius 
r = 5 , r = 2 and r = 1 respectively.

The results clearly illustrate the change in the maxi-
mum intensity of the electric field (Fig. 1-top), as well 
as the localized variations at the corners in terms of the 
radius of the fillet (Fig. 1-bottom).

For the application of interest, a fillet of radius r = 1 is 
considered. In this case, a fine mesh is thus required by 
isoparametric elements to capture the localized high cur-
vature of the boundary around the corners and the degree 
adaptive process has to be coupled with mesh adaptation, 
leading to an hp-refinement strategy. With the proposed 
HDG-NEFEM approach, a coarse mesh of uniform element 
size is employed while preserving the exact representa-
tion of rounded corners. The degree adaptive process thus 
determines the required nonuniform degree of approxi-
mation to compute the solution with a desired tolerance 

� = 0.5 × 10−3 , provided by the user a priori and repre-
sented by the target dashed line in Fig. 3. The resulting 
intensity of the electric field computed on a quarter of the 
domain and the distribution of the polynomial degree of 
approximation are depicted in Fig. 2.

The evolution of the estimated and exact errors for the 
proposed HDG-NEFEM approach is shown in Fig. 3 (left) 
and compared against the estimated and exact errors for an 
isoparametric approach. It is important to note that the usual 

Fig. 1  Top: intensity of the 
electric field for three different 
radii of the fillet. From left to 
right: r = 5 , r = 2 and r = 1 . 
Bottom: detail of the top-right 
corner of the inclusion and the 
computed electric field
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isoparametric strategy presents two major drawbacks. First, 
each iteration involving a modification of the polynomial 
degree in the elements with the rounded corner requires 
communication with the CAD model and regeneration of the 
distributions of nodes for the curved elements. Second, the 
change in geometry induced by the change in the degree 
of the functional approximation is not able to decrease the 
error towards the imposed tolerance. The nonsmooth repre-
sentation of the geometry, i.e. only C0 between the elements, 
entails that the numerical approximation of u presents a 
nonphysical singularity and the degree adaptive process 
does not provide an optimal solution. In contrast, with the 
proposed HDG-NEFEM approach the error decreases mono-
tonically until the desired tolerance is achieved.

To further illustrate the benefits of the proposed HDG-
NEFEM approach, a degree adaptive process is performed 
next with standard high-order elements avoiding the costly 
communication with the CAD model. To this end, the geom-
etry is represented with cubic polynomials and during the 
degree adaptive process only the degree of the functional 
approximation of the solution is changed.

Figure 3 (right) shows the evolution of the estimated and 
exact errors. The results clearly show that despite the adap-
tive process stops in eight iterations because the estimated 
error has reached the desired tolerance, the exact error is far 

from being close to the desired error. This indicates that the 
adaptive process is actually converging to the solution of a 
different problem where the geometry is represented with 
polynomials and remains unchanged during the adaptive 
iterations. It is worth noticing that using a fixed polynomial 
approximation of the geometry in a degree adaptive con-
text has been extensively utilized in the literature, see [112, 
113], but this simple example demonstrates the limitations 
of such approach.

4  HDG‑Voigt formulation in continuum 
mechanics and local error indicators

In continuum mechanics, the strong enforcement of the 
symmetry of the stress tensor is associated with the point-
wise fulfillment of the conservation of angular momentum. 
It is well-known that the classical HDG mixed formulation 
suffers from suboptimal convergence when low-order dis-
cretizations of symmetric second-order tensors are involved 
[34, 37]. To remedy this issue, several techniques have been 
proposed in the context of hybrid discretization techniques 
[25, 41, 55, 56, 117]. The HDG-Voigt formulation introduced 
in [57, 118] exploits Voigt notation for second-order ten-
sors, see [105], to strongly enforce symmetry by storing 
solely �

��
∶= �

��
(�

��
− 1)∕2 non-redundant off-diagonal 

components of the stress tensor in a vector form �
�
 , namely,

where �
��

 is the number of spatial dimensions of the 
problem.

Consider a domain Ω ⊂ ℝ
�
�� such that �Ω = Γ

D
∪ Γ

N
 and 

Γ
D
∩ Γ

N
= � and the following system of equations describ-

ing the behavior of a continuum medium

(10)�
�
∶=

{

[

�11, �22, �12

]T
�
��

= 2,
[

�11, �22, �33, �12, �13, �23

]T
�
��

= 3,

(11)

⎧
⎪
⎨
⎪
⎩

−�
T

�
�
�
= s inΩ,

�
�
= �(E, �)�

�
u inΩ,

u = u
D

onΓ
D
,

�
T
�
�
= g onΓ

N
,

Fig. 2  Left: intensity of the electric field computed with the pro-
posed HDG-NEFEM approach. Right: distribution of the approxima-
tion degree after eight iterations of the degree adaptive process

Fig. 3  Evolution of the exact 
and estimated errors as a 
function of the number of 
iterations in the degree adap-
tive procedure. Left: isopara-
metric and NEFEM elements. 
Right: high-order elements 
with a fixed approximation 
of the geometry using cubic 
polynomials
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where u is the unknown displacement field, s is the exter-
nal body force and u

D
,g are the imposed displacement 

and traction on the boundary, respectively. The �
��

× �
��

 
matrices �

�
 and � account for the linearized symmetric 

gradient operator and the normal direction to the bound-
ary and have the following form 

The relationship between the stress tensor and the dis-
placement field is expressed by means of the Hooke’s law 
for linear elastic homogeneous materials, �

�
= �(E, �)�

�
u , 

where the matrix � describes the mechanical behavior of 
the solid as a function of Young’s modulus E and Poisson’s 
ratio � , according to the classical definitions in [105].

Introducing a symmetric mixed variable L
e
 for the discre-

tization of the strain rate tensor, the linear elasticity problem 
in Eq. (11) is split into a set of �

��
 local problems that define 

the primal and mixed variables (u
e
, L

e
) as functions of the 

hybrid variable ̂u representing the trace of the displacement 
field on the edges/faces of the mesh, namely

and a global problem imposing the Neumann bound-
ary condition and the transmission conditions to enforce 
inter-element continuity of the solution and the tractions

where n is the outward normal vector to the faces of the 
internal skeleton Γ and ̂�T�1∕2L

e
 is the trace of the numeri-

cal flux, defined as a function of û and the stabilization 
parameter �

(12a)�
�
∶=

⎧
⎪⎪⎨⎪⎪⎩

�
�∕�x1 0 �∕�x2
0 �∕�x2 �∕�x1

�T
�
��

= 2,

⎡
⎢⎢⎣

�∕�x1 0 0 �∕�x2 �∕�x3 0

0 �∕�x2 0 �∕�x1 0 �∕�x3
0 0 �∕�x3 0 q�∕�x1 �∕�x2

⎤⎥⎥⎦

T

�
��

= 3.

(12b)

� ∶=

⎧⎪⎪⎨⎪⎪⎩

�
n1 0 n2

0 n2 n1

�T
�
��

= 2,

⎡
⎢⎢⎣

n1 0 0 n2 n3 0

0 n2 0 n1 0 n3

0 0 n3 0 n1 n2

⎤⎥⎥⎦

T

�
��

= 3.

(13)

⎧
⎪
⎨
⎪
⎩

L
e
+ �

1∕2
�
�
u
e
= 0 inΩ

e
, e = 1,… , �

��
,

�
T

�
�

1∕2L
e
= s inΩ

e
, e = 1,… , �

��
,

u
e
= u

D
on �Ω

e
∩ Γ

D
,

u
e
= û on �Ω

e
⧵Γ

D
,

(14)

⎧
⎪
⎨
⎪
⎩

�
T
�

1∕2L
e
= −g on Γ,

[[u⊗n]] = 0 on Γ,

[[ ��T�1∕2L
e
]] = 0 on Γ,

Note that owing to the Voigt framework, the mixed 
variable utilized in the HDG formulation is the pointwise 

(15)

̂�T�1∕2L
e
∶=

{

�
T
�

1∕2L
e
+ �(u

e
− u

D
) on �Ω

e
∩ Γ

D
,

�
T
�

1∕2L
e
+ �(u

e
− û) elsewhere.

symmetric strain rate tensor, the conservation of angular 
momentum is fulfilled pointwise in each mesh element 
and physical tractions are imposed on the Neumann 
boundary. Following the HDG rationale, first, the global 
problem in Eq. (14) is solved to obtain û on the internal 
skeleton Γ and on the Neumann boundary Γ

N
 . Then, the 

primal and mixed variables (u
e
, L

e
) are computed ele-

ment-by-element by solving the HDG local problems in 
Eq. (13) independently in each Ω

e
, e = 1,… , �

��
 . Eventu-

ally, the following postprocessing procedure is devised: 
for e = 1,… , �

��
 compute a displacement field u⋆

e
 using 

a polynomial approximation of degree k + 1 such that

with the solvability constraint in Eq.  (6) to remove the 
underdetermination due to rigid body translations and

to account for rigid body rotations, where t is the tangen-
tial direction to the boundary �Ω

e
.

It is worth recalling that HHO and HDG, that is, both 
primal and mixed formulations of hybrid discretization 
methods display a robust behavior for nearly incom-
pressible materials and do not experience locking phe-
nomena [25, 37, 38]. The discussed HDG-Voigt strategy 
inherits such property. Nonetheless, classical HDG meth-
ods using approximations with equal-order polynomials 
of degree k for all the variables experience suboptimal 
behavior for k < 3 . On the contrary, the proposed HDG-
Voigt formulation provides a discretization with optimal 
convergence of order k + 1 for u, L and û , even in case 
of low-order polynomial approximations. Thus, in this 
context, the advantages of using the HDG-Voigt formu-
lation are twofold. On the one hand, an approximation 
of the strain rate tensor is directly obtained from the 

(16)

{

�
T

�
�

1∕2
�
�
u
⋆

e
= −�T

�
L
e

in Ω
e
,

�
T
�

1∕2
�
�
u
⋆

e
= −�T

L
e

on 𝜕Ω
e
,

(17)∫
Ωe

� × u
⋆

e
dΩ = ∫

𝜕Ωe

ue⋅t dΓ,
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mixed formulation without the need to postprocess the 
primal variable of the problem. On the other hand, the 
resulting method provides optimally convergent stress 
and superconvergent displacement field using a nodal-
based approximation for all the variables [57] and with-
out resorting to different interpolation degrees [55] or 
to the enrichment of the local discrete spaces discussed 
in [56].

The HDG-Voigt formulation is tested on a well-known 
benchmark test for bending-dominated elastic problems, 
the Cook’s membrane [119]. The domain consists of a 
tapered plate clamped on the left end and subject to a ver-
tical shear load g = (0, 1∕16) on the opposite end, whereas 
zero tractions are imposed on the top and bottom parts 
of the boundary. Following the problem setup in [120], 
a nearly incompressible material with Young’s modulus 
E = 1.12499998125 and Poisson’s ratio � = 0.499999975 
is considered. Figure 4 shows the displacement of the 
mid-point of the right end of the membrane for linear, 
quadratic and cubic elements on both quadrilateral and 
triangular meshes.

The results display the convergence to the reference 
value, taken from [120], even for low-order triangular ele-
ments, showing the robustness of the HDG-Voigt formula-
tion in the incompressible limit.

Exploiting the optimal convergence of order k + 1 
of the discretized strain rate tensor L

e
 and the post-

processing procedure discussed in [57, 118] to resolve 
the underdetermination due to rigid body motions, a 
superconvergent approximation u⋆

e
 of the displacement 

field is constructed. Thus, the error indicator in Eq. (7) is 
computed starting from the approximated primal and 
postprocessed displacement fields. Alternatively, a local 
error indicator based on the strain rate tensor

(18)E
L

e
=

[
1

|Ωe| ∫Ωe

(
�
�
u
⋆

e
− �

�
ue

)
⋅

(
�
�
u
⋆

e
− �

�
ue

)
dΩ

]1∕2

can be used when a certain level of accuracy is required 
on the stress tensor rather than on the displacement field 
[83].

Figure 5 shows a comparison of the error indicators (7) 
and (18) for the displacement field and the strain rate 
tensor, respectively. The different information captured 
by each error indicator is clearly observed. In particular, 
it is straightforward to observe that the error indicator 
based on the strain rate tensor is able to provide infor-
mation about regions where a concentration of stress is 
present. This information is of great interest in engineer-
ing applications, e.g. for the optimal design of elastic 
structures [121].

5  FCFV: lowest‑order HDG method 
for large‑scale problems

One of the major challenges that current techniques in 
computational mechanics face when confronted to indus-
trial applications is proving their ability to efficiently solve 
large-scale problems in a reliable and robust way. Despite 
the numerous advantages in terms of accuracy, efficient 
treatment of convection-dominated phenomena in flow 
problems and flexibility for parallelization, the adoption 

Fig. 4  Convergence of the 
displacement of the mid-point 
of the right end of Cook’s 
membrane as a function of the 
number of degrees of freedom 
of the HDG discretization, 
using polynomial approxima-
tions of degree k = 1, 2, 3 . Left: 
quadrilateral elements. Right: 
triangular elements
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Fig. 5  Error indicator based on the displacement field (left) and the 
strain rate tensor (right)
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of high-order methods by the industry is still limited, par-
tially due to the difficulty to generate high-order curvi-
linear meshes of complex configurations [122]. Starting 
from the framework discussed above, a novel efficient and 
robust finite volume (FV) rationale has been proposed in 
[106, 107].

In order to describe this approach, an incompressible 
Stokes flow is considered

where the pair (u, p) represents the unknown velocity and 
pressure fields, 𝜈 > 0 is the viscosity of the fluid, �

�
��

 is the 

�
��

× �
��

 identity matrix and s,u
D
,g respectively are the 

source term, the imposed velocity and pseudo-tractions, 
see [123], on the boundary.

Following the HDG rationale introduced in Sect.  2, 
the FCFV local and global problems for the Stokes 
equations are introduced. More precisely, in each cell 
Ω

e
, e = 1,… , �

��
 , it holds

with the following additional constraint to remove the 
underdetermination of pressure due to the Dirichlet 
boundary conditions imposed in Eq. (20)

The FCFV global problem features the Neumann bound-
ary conditions and the transmission conditions enforcing 
inter-element continuity of the solution and the fluxes, as 
previously detailed for the HDG method

where the numerical normal flux on the boundary is 
defined as

(19)

⎧⎪⎨⎪⎩

−�⋅(��u − p�
�
��

) = s in Ω,

�⋅u = 0 in Ω,

u = uD on ΓD ,�
��u − p�

�
��

�
n = g on ΓN ,

(20)

⎧
⎪⎪⎨⎪⎪⎩

Le +
√
��ue = 0 in Ωe, e = 1,… , �

��
,

�⋅

�√
�Le + pe��

��

�
= s in Ωe, e = 1,… , �

��
,

�⋅ue = 0 in Ωe, e = 1,… , �
��
,

ue = uD on �Ωe ∩ ΓD ,

ue = û on �Ωe⧵ΓD ,

(21)∫
�Ωe

pe dΓ = |�Ωe|�e.

(22)

⎧
⎪⎪⎨⎪⎪⎩

�√
𝜈Le + pe��

��

�
n = −g on Γ,

[[u⊗n]] = 0 on Γ,

[[
��√

𝜈Le + pe��
��

�
n]] = 0 on Γ,

Moreover, the incompressibility constraint is expressed in 
weak form as

FCFV may be interpreted as the lowest-order HDG 
mixed method which employs a constant degree of 
approximation in each cell for the velocity u

e
 , the pres-

sure pe and the mixed variable L
e
 , representing the gradi-

ent of velocity, a constant degree of approximation on 
each edge/face for the velocity û and a constant value 
�
e
 for the mean pressure in each cell. Moreover, the FCFV 

global and local problems are discretized using a quad-
rature with one integration point located in the centroid 
of the cell or face and in the midpoint of the edge.

FCFV solves the problem in two phases [106, 107]. First, by 
applying the divergence theorem to Eq. (20) and exploiting 
the definition of the numerical normal flux on the boundary 
in Eq. (23), a set of �

��
 local integral problems is obtained

Note that the divergence theorem applied to the incom-
pressibility constraint in Eq. (20) leads to Eq. (24), which is 
thus omitted from the local problem since only the global 
unknown û is involved. Moreover, the last equation of the 
previous system directly stems from Eq. (21).

It is worth noticing that the equations of the FCFV local 
problem decouple and a closed-form expression of all the vari-
ables as functions of the velocity û on the boundary �Ω

e
⧵Γ

D
 

and the mean value �
e
 of the pressure inside the element Ω

e
 is 

obtained. The previously determined elemental expressions of 
(ue, pe, Le) are employed to solve the FCFV global problem (22) 
with the incompressibility constraint in Eq. (24), namely

(23)

̂�√
�Le + pe��

��

�
n ∶=

⎧⎪⎨⎪⎩

�√
�Le + pe��

��

�
n + �(ue − uD) on �Ωe ∩ ΓD ,�√

�Le + pe��
��

�
n + �(ue − û) elsewhere.

(24)

∫
�Ωe⧵ΓD

û⋅n dΓ + ∫
�Ωe∩ΓD

uD⋅n dΓ = 0 for e = 1,… , �
��
.

(25)

−∫
Ωe

Le dΩ = ∫𝜕Ωe∩ΓD

√
𝜈uD⊗n dΓ + ∫𝜕Ωe⧵ΓD

√
𝜈�u⊗n dΓ,

∫𝜕Ωe

𝜏 ue dΓ = ∫
Ωe

s dΩ + ∫𝜕Ωe∩ΓD

𝜏 uD dΓ + ∫𝜕Ωe⧵ΓD

𝜏 �u dΓ,

∫𝜕Ωe

pe dΓ = �𝜕Ωe�𝜌e.

(26)

�
��

�

e=1

�

∫
�Ωe⧵ΓD

√

�Len dΓ + ∫
�Ωe⧵ΓD

pen dΓ + ∫
�Ωe⧵ΓD

� ue dΓ

−∫
�Ωe⧵ΓD

� û dΓ

�

= −

�
��

�

e=1
∫
�Ωe∩ΓN

g dΓ,

∫
�Ωe⧵ΓD

û⋅n dΓ = −∫
�Ωe∩ΓD

uD⋅n dΓ = 0 for e = 1,… , �
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.
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The resulting linear system obtained from the FCFV dis-
cretization of Eq. (26) is symmetric and features a saddle-
point structure with �

��
�
��

+ �
��

 unknowns, being �
��

 the 
number of internal and Neumann edges/faces. The FCFV 
global problem has a sparse block structure allowing 
a computationally efficient implementation, see [106]. 
Moreover, FCFV local computations to determine velocity, 
pressure and gradient of velocity in the centroid of each 
cell solely involve elementary operations cell-by-cell for 
which modern parallel architectures can be exploited.

FCFV inherits the approximation properties of the cor-
responding high-order HDG formulation from which it is 
derived. More precisely, optimal first-order convergence 
is obtained for velocity, pressure and gradient of velocity. 
In addition, contrary to other mixed finite element meth-
ods, with the FCFV it is possible to use the same space of 
approximation for both velocity and pressure, circumvent-
ing the so-called Ladyzhenskaya–Babuška–Brezzi (LBB) 
condition.

Compared to other FV methods, the FCFV provides first-
order accuracy of the solution and its gradient without 
the need to perform flux reconstruction as in the context 
of cell-centered and vertex-centered finite volumes [124, 
125]. Furthermore, the accuracy of the FCFV method is pre-
served in presence of unstructured meshes, with distorted 
and stretched cells [106, 107]. This is of major importance 
when solving problems in complex geometries as other FV 
methods lose accuracy and optimal convergence proper-
ties when non-orthogonal and anisotropic cells are intro-
duced in the computational mesh [124, 125].

To highlight the efficiency of the proposed FCFV 
method, a Stokes flow is simulated in a channel with 39 

rigid particles in the shape of red-blood cells (RBCs). A 
parabolic velocity profile modelling an undisturbed flow 
is imposed on the inlet and on the outlet of the channel, 
whereas a no-slip boundary condition is imposed on the 
remaining walls and on the surface of the particles.

The computational domain Ω = [−10, 25] × [−5, 5]

×[−5, 5]⧵B , where B is the union of the 39 RBCs, is discre-
tized using an unstructured mesh of 8,972,888 tetrahedral 
cells, 35,891,552 nodes and 17,523,981 internal faces. The 
FCFV global system for the mesh configuration under anal-
ysis features 61,544,832 unknowns. The simulation was 
performed using a code developed in Matlab

Ⓡ . The com-
putation of all the elemental contributions to the global 
system took 51 min whereas 18 min were required for the 
assembly of the matrix. The solution of the linear system 
was performed using the Matlab

Ⓡ biconjugate gradient 
method in a single processor and without preconditioner. 
Eventually, the evaluation of the element-by-element solu-
tion in all 61 millions elements took 7 min using a single 
processor.

The pressure distribution on the surface of the RBCs and 
the velocity streamlines are presented in Fig. 6.

Figure 7 displays the magnitude of the velocity field at 
three different sections of the computational domain.

6  Concluding remarks

Three recent contributions to HDG are discussed in this 
paper. First, the HDG-NEFEM paradigm exploits the 
description of the boundary of the domain via NURBS to 
construct an HDG approximation with exact geometry 

Fig. 6  Pressure field on 39 
particles modelling RBCs 
immersed in an incompressible 
Stokes flow in a channel and 
streamlines of the velocity field
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Fig. 7  Magnitude of the veloc-
ity field of an incompressible 
Stokes flow in a channel with 
39 particles modelling RBCs. 
Section plane for y = −3 (top), 
y = 0 (center) and y = 3 (bot-
tom)
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and to devise an efficient and robust degree adaptivity 
strategy. Second, the HDG-Voigt formulation is utilized 
in the context of continuum mechanics to devise an 
HDG method with pointwise symmetric mixed variable, 
namely the strain rate tensor. The resulting formulation 
allows to achieve optimal convergence and supercon-
vergence properties even for low-order polynomial 
approximations and, consequently, to compute local 
error indicators based on either the displacement or 
the stress field. Third, the FCFV rationale proposes a fast 
implementation of the lowest-order HDG method. The 
resulting finite volume paradigm is reconstruction-free, 
robust to mesh distortion and element stretching and is 
able to efficiently tackle large-scale problems. Ongoing 
investigations focus on the application of the discussed 
strategies to nonlinear problems of interest in engi-
neering applications and to the simulation of transient 
phenomena.
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