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Abstract. We propose an hp-version discontinuous Galerkin finite element method for fully
nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordes coefficients. The
method is proved to be consistent and stable, with convergence rates that are optimal with respect
to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments
on problems with nonsmooth solutions and strongly anisotropic diffusion coefficients illustrate the
accuracy and computational efficiency of the scheme. An existence and uniqueness result for strong
solutions of the fully nonlinear problem and a semismoothness result for the nonlinear operator are
also provided.
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1. Introduction. We study the numerical analysis of fully nonlinear second-
order elliptic Hamilton–Jacobi–Bellman (HJB) equations of the form

(1.1) sup
α∈Λ

[Lαu− fα] = 0 in Ω,

where Ω is a convex domain in R
n, n ≥ 2, Λ is a compact metric space, and the Lα,

α ∈ Λ, are elliptic operators of the form

(1.2) Lαv =

n∑
i,j=1

aαij vxixj +

n∑
i=1

bαi vxi − cα v.

HJB equations characterize the value functions of stochastic control problems, which
arise from applications in engineering, physics, economics, and finance [11]. The solu-
tion of (1.1) leads to the best choices of controls from the set Λ for steering a stochastic
process toward optimizing the expected value of a functional. We are interested in
consistent, stable, convergent, and high-order methods for multidimensional uniformly
elliptic HJB equations with anisotropic diffusions.

Discrete state Markov chain approximations to the underlying stochastic dynam-
ics were among the earliest computational approaches to these problems [19]. Along-
side the advent of the notion of a viscosity solution to a fully nonlinear second-order
equation [6], it became apparent that these Markov chain approximations admit equiv-
alent interpretations as monotone finite difference methods (FDM) [5, 11], i.e., that
satisfy a discrete maximum principle. These methods feature a general convergence
theory due to Barles and Souganidis [1], and are capable of approximating nonsmooth
viscosity solutions of certain degenerate problems.
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994 IAIN SMEARS AND ENDRE SÜLI

Various authors have commented on the necessarily low-order convergence rates
of monotone schemes [23] and on the restrictions that the choice of stencil imposes
on the set of problems amenable to discretization by monotone FDM [7, 17]. For an
analysis of convergence rates, see [9] and the references therein. Motzkin and Wasow
[22] found that for any choice of stencil, there exists a uniformly elliptic operator with
no consistent and monotone discretization; yet, for any set of nondegenerate diffusion
coefficients with uniformly bounded ellipticity constants, there is a stencil providing
a monotone and consistent discretization. Kocan studied the minimum size of such a
stencil as a function of the ellipticity constant in [17]. Conversely, Bonnans and Zidani
[5] examined the conditions that determine the set of problems that can be discretized
with various stencils: they found that the number of conditions on the diffusion coef-
ficient grows with both the stencil size and the problem dimension. An algorithm was
developed in [4] to compute a monotone discretization of two-dimensional problems,
with a consistency error depending on the stencil width.

While the above considerations concern the notion of consistency of FDM, con-
vergent monotone methods for fully nonlinear problems can also employ notions of
consistency from finite element methods (FEM); see [16] for the first convergent mono-
tone FEM for viscosity solutions of parabolic HJB equations. Böhmer proposed in [2]
a nonmonotone H2-conforming FEM for fully nonlinear PDE with linearizations in
divergence form; yet linearizations of the HJB operator are usually in nondivergence
form with discontinuous coefficients and cannot be recast into divergence form.

Discontinuous Galerkin finite element methods (DGFEM) allow the approximate
solution to be discontinuous between elements of the mesh, with the continuity condi-
tions being enforced only weakly through the discretized problem [8]. This facilitates
hp-refinement, which varies both mesh size and polynomial degree, thereby allowing
for exponential convergence rates, even for problems with nonsmooth solutions [30].
For problems in nondivergence form, a challenge in the design of DGFEM is to obtain
stable interelement communication. Nevertheless, the authors found new techniques
in [27] to obtain stable discretizations of certain linear nondivergence form equations
with discontinuous coefficients, and these techniques are taken further in this work.

We consider here uniformly elliptic HJB equations that satisfy the Cordes condi-
tion: we provide a concise and accessible proof of existence and uniqueness of a strong
solution of (1.1) associated to a homogeneous Dirichlet boundary condition. Then, we
construct a stable, consistent, and convergent hp-version DGFEM, for which we prove
convergence rates in a discrete H2-type norm that are optimal with respect to mesh
size and suboptimal in the polynomial degree by only half an order. As opposed to the
monotone methods considered above, our method is consistent regardless of the choice
of mesh, thereby permitting hp-refinement on very general shape-regular sequences
of meshes. An assumption on the solution of broken Hs-regularity, s > 5/2, is used
for the analysis, but numerical evidence shows that this is not a necessary condition
for convergence of the scheme. Our experiments show the gains in computational
efficiency, flexibility, and accuracy over existing monotone methods.

The Cordes condition, defined in section 2 below, encompasses a large range of
applications. For example, in two spatial dimensions, the condition amounts to simply
requiring uniform ellipticity of the diffusion coefficient and coercivity of the lower-
order terms; see Examples 1 and 2 of section 2. Let us now recount how the motivation
for the Cordes condition stems from genuine PDE-theoretic considerations. There is
a famous solution algorithm for (1.1), due to Bellman and Howard [3, 24], that may
be understood as follows. Given an approximate solution uk, k ∈ N, to (1.1), one
finds for each x ∈ Ω an Λ � αk(x) = argmaxα(L

αuk − fα)(x). A new approximation
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uk+1 is sought as the solution of Lαkuk+1 = fαk , where fαk : x �→ fαk(x)(x), and
where the coefficients of the linear operator Lαk are similarly defined; formally, a
solution of (1.1) is a fixed point of this iteration. It has long been known that this
method is in fact a Newton method for a nondifferentiable operator [3, 24], and we
contribute to its analysis by showing the semismoothness in function spaces [29] of
the HJB operator. The question of the well-posedness of the linear PDE to be solved
at each iteration is instructive: these are nondivergence form elliptic equations with
discontinuous coefficients, and it is known that well-posedness in the strong sense
is not guaranteed by uniform ellipticity alone [12, 20, 26], although it is recovered
under the Cordes condition [20]. Importantly, we show here that well-posedness of
strong solutions extends to HJB equations, under the same condition. Inspired by the
analysis of the PDE, the stability of our method is obtained by relating the residual of
the equation to terms measuring the lack of H2-conformity of the numerical solution.

The structure of this article is as follows. After defining the problem in section 2,
we prove its well-posedness in section 3. The hp-version DGFEM framework is pre-
pared in section 4 and is followed by the definition and consistency analysis of the
method in section 5. We establish the stability of the scheme in section 6 and we
determine its convergence rates in section 7. Section 8 analyzes a superlinearly con-
vergent semismooth Newton method used to solve the discrete problem, and section 9
presents the results of numerical experiments that demonstrate the high accuracy and
computational efficiency of the method.

2. Statement of the problem. Let Ω be a bounded convex polytopal open set
in R

n, n ≥ 2, and let Λ be a compact metric space. It will always be assumed that Ω
and Λ are nonempty. Convexity of Ω implies that the boundary ∂Ω is Lipschitz; see
[13]. Let the real-valued functions aij = aji, bi, c, and f belong to C(Ω × Λ) for all
i, j = 1, . . . , n. For each α ∈ Λ, we consider the function aαij : x �→ aij(x, α), x ∈ Ω.
The functions bαi , c

α, and fα are defined in a similar way. Define the matrix-valued
functions aα := (aαij) and define the vector-valued functions bα := (bα1 , . . . , b

α
n), where

α ∈ Λ. The bounded linear operators Lα : H2(Ω) → L2(Ω) are defined by

(2.1) Lαv :=

n∑
i,j=1

aαij vxixj +

n∑
i=1

bαi vxi − cα v, v ∈ H2(Ω), α ∈ Λ.

Compactness of Λ and continuity of the coefficients a, b, c, and f imply that the fully
nonlinear operator F , defined by

(2.2) F : v �→ F [v] := sup
α∈Λ

[Lαv − fα] ,

is well-defined as a mapping from H2(Ω) to L2(Ω). The problem considered is to
find u ∈ H2(Ω) ∩ H1

0 (Ω) that is a strong solution of the HJB equation subject to a
homogeneous Dirichlet boundary condition

F [u] = 0 in Ω,(2.3)

u = 0 on ∂Ω.

Well-posedness of problem (2.3) is established in section 3 under the following hy-
potheses. It is assumed that there exist positive constants ν ≤ ν̄ such that

(2.4) ν|ξ|2 ≤
n∑

i,j=1

aαij(x) ξi ξj ≤ ν̄|ξ|2 ∀ ξ ∈ R
n, ∀x ∈ Ω, ∀α ∈ Λ.
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996 IAIN SMEARS AND ENDRE SÜLI

The function cα is supposed to be nonnegative on Ω for each α ∈ Λ. We assume the
Cordes condition: there exist λ > 0 and ε ∈ (0, 1) such that for each α ∈ Λ,

(2.5)
|aα|2 + |bα|2/2λ+ (cα/λ)

2

(Tr aα + cα/λ)
2 ≤ 1

n+ ε
in Ω,

where |·| represents the Euclidian norm for vectors and the Frobenius norm for
matrices. In the special case bα ≡ 0 and cα ≡ 0 for each α ∈ Λ, we set λ = 0
and the Cordes condition (2.5) is replaced by the following: there exists ε ∈ (0, 1)
such that for each α ∈ Λ,

(2.6)
|aα|2

(Tr aα)
2 ≤ 1

n− 1 + ε
in Ω.

Conditions (2.5) and (2.6) are related through the observation that the term cα/λmay
be viewed as the (n+1, n+1) entry of an (n+1)× (n+1) matrix with principal n×n
submatrix aα, which explains the difference in the right-hand sides of the inequalities
in (2.5) and (2.6). The parameter λ serves to make the Cordes condition invariant
under rescaling the coordinates. It will be seen below that it is often easy to choose
an appropriate value for λ.

Example 1. We show how the Cordes condition (2.5) arises in practice in an
example from stochastic control problems [11]. We consider a problem where the
controls permit the choice of orientation and angle between two Wiener diffusions.
Let Ω be a domain in R

2 and let Λ = [0, π/3]× SO(2), where SO(2) is the set of 2× 2
rotation matrices. The diffusions act along the directions σα

1 and σα
2 , where

(2.7) σα := (σα
1 σ

α
2 ) := R�

(
1 sin θ
0 cos θ

)
, α = (θ,R) ∈ Λ.

In stochastic control problems, we have aα := σα(σα)�/2 and usually cα ≡ c0 > 0 is
a fixed constant [11]. Then, Tr aα = 1 and |aα|2 = (1 + sin2 θ)/2 ≤ 7/8; so condition
(2.6) holds with ε = 1/7. Momentarily assuming that bα ≡ 0, by choosing the value
λ = 8

7c0 that minimizes the left-hand side in (2.5), we find that condition (2.5) also
holds with ε = 1/7. For nonzero bα, the Cordes condition holds for ε < 1/7 whenever
|bα|2/c0 is sufficiently small; this amounts to a standard coercivity assumption.

Example 1 is considered further in the numerical experiments of section 9.1. Ob-
serve that for any choice of Cartesian coordinates on R

2, for θ = π/3 there is an
R ∈ SO(2) such that aα is not diagonally dominant. Therefore, the classical mono-
tone Kushner–Dupuis FDM is not applicable here [5].

Example 2. For problems in two dimensions, i.e., n = 2, the uniform ellipticity
condition (2.4) is sufficient for the Cordes condition (2.6). Indeed, for each α ∈ Λ, we
have ν2 ≤ det aα, and aα11 + aα22 ≤ 2ν̄, so, for ε = ν2/(2ν̄2 − ν2), we get

(2.8)
(aα11)

2 + 2(aα12)
2 + (aα22)

2

(aα11 + aα22)
2 ≤ 1− 2ν2

(aα11 + aα22)
2 ≤ 1− ν2

2ν̄2
=

1

1 + ε
.

The above examples demonstrate that the results of this paper are relevant to a
very broad class of problems, including some that require large stencils for monotone
FDM; significant further evidence for this observation is found in section 9. Define
the strictly positive function γ : Ω× Λ → R>0 by

(2.9) γ(x, α) :=
Tr aα(x) + cα(x)/λ

|aα(x)|2 + |bα(x)|2/2λ+ (cα(x)/λ)
2 .
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In the special case bα ≡ 0 and cα ≡ 0 for all α ∈ Λ, we take λ = 0 and define

(2.10) γ(x, α) :=
Tr aα(x)

|aα(x)|2 .

As above, for each α ∈ Λ, we define γα : x �→ γ(x, α), x ∈ Ω. It follows from the
continuity assumptions on the coefficients and from the uniform ellipticity condition
(2.4) that γ ∈ C(Ω×Λ). Furthermore, nonnegativity of c, continuity of the coefficients
and (2.4) imply that there is a positive constant γ0 > 0 such that γ ≥ γ0 on Ω × Λ.
Define the operator Fγ : H

2(Ω) → L2(Ω) by

(2.11) Fγ [v] := sup
α∈Λ

[γα (Lαv − fα)] .

It will be seen below that the HJB equation (2.3) is in fact equivalent to the problem
Fγ [u] = 0 in Ω, u = 0 on ∂Ω. For λ as in (2.5), let the operator Lλ be defined by

(2.12) Lλv := Δv − λv, v ∈ H2(Ω).

The following inequality generalizes results in [20, 27] that were used to analyze linear
PDE satisfying the Cordes condition. It is key to our analysis of HJB equations.

Lemma 1. Let Ω be a bounded open subset of Rn and suppose that (2.4) holds,
and suppose that either (2.5) holds with λ > 0 or that (2.6) holds with bα ≡ 0, cα ≡ 0
for all α, and λ = 0. Then, for any open set U ⊂ Ω and u, v ∈ H2(U), w := u − v,
the following inequality holds a.e. in U :

(2.13) |Fγ [u]− Fγ [v]− Lλ(u− v)| ≤
√
1− ε

√
|D2w|2 + 2λ|∇w|2 + λ2|w|2.

Proof. It will be clear how to adapt the following arguments to treat the simpler
situation where bα ≡ 0, cα ≡ 0, and λ = 0. So, we consider the case where (2.5) holds
with λ > 0. First, set w := u − v. Note that we have the identity Fγ [u] − Lλu =
supα∈Λ [γαLαu− Lλu− γαfα] . Also, for bounded sets of real numbers, {xα}α and
{yα}α, we have |supα xα − supα y

α| ≤ supα|xα − yα|. Therefore,

|Fγ [u]− Fγ [v]− Lλw| ≤ sup
α∈Λ

|γαLαw − Lλw|

≤ sup
α∈Λ

|γαaα − In||D2w|+ |γα||bα||∇w|+ |λ− cαγα||w|,

where In is the n×n identity matrix. The Cauchy–Schwarz inequality with a param-
eter gives

|Fγ [u]− Fγ [v]− Lλw| ≤
(
sup
α∈Λ

√
Cα

)√
|D2w|2 + 2λ|∇w|2 + λ2|w|2,

where, for each α ∈ Λ,

(2.14) Cα := |γαaα − In|2 + |γα|2 |b
α|2
2λ

+
|λ− cαγα|2

λ2
.

Expanding the square terms in (2.14) gives

Cα = n+ 1− 2γα
(
Tr aα +

cα

λ

)
+ |γα|2

(
|aα|2 + |bα|2

2λ
+

|cα|2
λ2

)
.

The definition of γ in (2.9) and the Cordes condition (2.5) imply that Cα ≤ 1− ε on
U for every α ∈ Λ, thus completing the proof of (2.13).
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In the following analysis, we shall write a � b for a, b ∈ R to signify that there
exists a constant C such that a ≤ C b, where C is independent of the mesh size
and polynomial degrees used to define the finite element spaces below, but otherwise
possibly dependent on other fixed quantities, such as the constants in (2.4) and (2.5)
or the shape-regularity parameters of the mesh, for example.

3. Analysis of the PDE. For λ ≥ 0 as above, define the seminorm |·|H2(Ω),λ

on H2(Ω) by

(3.1) |u|2H2(Ω),λ := |u|2H2(Ω) + 2λ|u|2H1(Ω) + λ2‖u‖2L2(Ω).

If λ > 0, then this defines a norm on H2(Ω). The following result follows from the
Miranda–Talenti estimate; see [13, 20, 27]. Recall that Lλu = Δu− λu.

Theorem 2. Let Ω be a bounded convex open subset of Rn. Then, for any λ ≥ 0
and any u ∈ H2(Ω) ∩H1

0 (Ω), the following inequalities hold:

|u|H2(Ω),λ ≤ ‖Lλu‖L2(Ω),(3.2a)

‖u‖H2(Ω) ≤ C‖Lλu‖L2(Ω),(3.2b)

where C is a positive constant depending only on n and diamΩ.
Proof. In [27, Theorem 2], it is shown that on bounded convex domains, we have

the Miranda–Talenti estimate |u|H2(Ω) ≤ ‖Δu‖L2(Ω) for any u ∈ H2(Ω)∩H1
0 (Ω). The

identity
∫
Ω uΔu dx = −

∫
Ω|∇u|2dx, based on integration by parts, gives

(3.3) ‖Lλu‖2L2(Ω) =

∫
Ω

(Δu − λu)2 dx = ‖Δu‖2L2(Ω) + 2λ|u|2H1(Ω) + λ2‖u‖2L2(Ω).

The Miranda–Talenti estimate and (3.3) give (3.2a). The bound (3.2b) follows
from (3.3) and the estimate ‖u‖H2(Ω) ≤C(n, diamΩ)‖Δu‖L2(Ω) shown in
[27, Theorem 2].

Theorem 3. Let Ω be a bounded convex open subset of Rn, and let Λ be a compact
metric space. Let the data a, b, c, f be continuous on Ω × Λ and satisfy (2.4) and
either (2.5) with λ > 0 or (2.6) with c ≡ 0, b ≡ 0, and λ = 0. Then, there exists a
unique strong solution u ∈ H2(Ω)∩H1

0 (Ω) of the HJB equation (2.3). Moreover, u is
also the unique solution of Fγ [u] = 0 in Ω, u = 0 on ∂Ω.

Proof. First, set H := H2(Ω) ∩H1
0 (Ω); then H is a separable Hilbert space. The

proof consists of showing solvability of the equation Fγ [u] = 0 in H by the method
of Browder and Minty and establishing its equivalence with the HJB equation (2.3).
Let the operator A : H → H∗ be defined by

(3.4) 〈A(u), v〉 :=
∫
Ω

Fγ [u]Lλv dx, u, v ∈ H.

We claim that A is Lipschitz continuous and strongly monotone. Indeed, let u, v ∈ H
and set w := u− v. Then, by adding and subtracting Lλw, we get

(3.5) 〈A(u)−A(v), u − v〉 = ‖Lλw‖2L2(Ω) +

∫
Ω

(Fγ [u]− Fγ [v]− Lλw)Lλw dx.

Lemma 1 and the Cauchy–Schwarz inequality show that

(3.6) 〈A(u)−A(v), u − v〉 ≥ ‖Lλw‖2L2(Ω) −
√
1− ε |w|H2(Ω),λ‖Lλw‖L2(Ω).
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We then use (3.2a) to obtain 〈A(u) − A(v), u − v〉 ≥
(
1−

√
1− ε

)
‖Lλw‖2L2(Ω), so

‖u − v‖2H2(Ω) � 〈A(u) − A(v), u − v〉 as a result of (3.2b), thus showing that A is
strongly monotone. Compactness of Λ and continuity of the data imply that A is
Lipschitz continuous: to see this, let u, v, z ∈ H . Then, we find that

|〈A(u)−A(v), z〉| ≤ ‖Fγ [u]− Fγ [v]‖L2(Ω)‖Lλz‖L2(Ω) ≤ C‖u− v‖H2(Ω)‖z‖H2(Ω),

where the constant C depends only on λ and on the supremum norms of aij , bi, c, and
γ over Ω× Λ for i, j = 1, . . . , n. Lipschitz continuity and strong monotonicity imply
that A is bounded, continuous, coercive, and strongly monotone, so the Browder–
Minty theorem [25] shows that there exists a unique u ∈ H such that A(u) = 0.

For every g ∈ L2(Ω), there is a v ∈ H such that Lλv = g. Therefore A(u) = 0
implies

∫
Ω
Fγ [u] g dx = 0 for all g ∈ L2(Ω), thus showing that Fγ [u] = 0 a.e. in Ω. We

claim that Fγ [u] = 0 if and only if u solves (2.3). Since γα is positive, γα(Lαu−fα) ≤ 0
for all α ∈ Λ is equivalent to Lαu − fα ≤ 0 for all α ∈ Λ; i.e., F [u] ≤ 0 if and only
if Fγ [u] ≤ 0. Compactness of Λ and continuity of a, b, c, f , and γ imply that at
a.e. point of Ω, the suprema in the definitions of F [u] and Fγ [u] are attained by an
element of Λ, thereby giving F [u] ≥ 0 if and only if Fγ [u] ≥ 0. Therefore, existence
and uniqueness of the solution u of Fγ [u] = 0 in Ω is equivalent to existence and
uniqueness of a solution of (2.3).

4. Finite element spaces. Let {Th}h be a sequence of shape-regular meshes
on Ω, consisting of simplices or parallelepipeds. For each element K ∈ Th, let hK :=
diamK. It is assumed that h = maxK∈Th

hK for each mesh Th. Let F i
h denote the

set of interior faces of the mesh Th, and let F i,b
h denote the set of boundary faces.

The set of all faces is F i,b
h := F i

h∪Fb
h. Since each element has piecewise flat boundary,

the faces may also be chosen to be flat.
Mesh conditions. We shall make the following assumptions on the meshes. The

meshes are allowed to be irregular, i.e., there may be hanging nodes. We assume that
there is a uniform upper bound on the number of faces composing the boundary of
any given element; in other words, there is a cF > 0, independent of h, such that

(4.1) max
K∈Th

card
{
F ∈ F i,b

h : F ⊂ ∂K
}
≤ cF ∀K ∈ Th, ∀h > 0.

It is also assumed that any two elements sharing a face have commensurate diameters,
i.e., there is a cT ≥ 1, independent of h, such that

(4.2) max(hK , hK′) ≤ cT min(hK , hK′),

for any K and K ′ in Th that share a face. For each h, let p = (pK : K ∈ Th) be a
vector of positive integers. In order to let pK appear in the denominator of various
expressions, we shall assume that pK ≥ 1 for all K ∈ Th. We make the assumption
that p has local bounded variation [15]: there is a cP ≥ 1, independent of h, such that

(4.3) max(pK , pK′) ≤ cP min(pK , pK′),

for any K and K ′ in Th that share a face.
Function spaces. For each K ∈ Th, let PpK (K) be the space of all polynomials

with either total or partial degree less than or equal to pK . The discontinuous Galerkin
finite element space Vh,p is defined by

(4.4) Vh,p :=
{
v ∈ L2(Ω), v|K ∈ PpK (K) ∀K ∈ Th

}
.
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1000 IAIN SMEARS AND ENDRE SÜLI

Let s = (sK : K ∈ Th) denote a vector of nonnegative real numbers, and let r ∈ [1,∞].
The broken Sobolev space W s,r(Ω; Th) is defined by

(4.5) W s,r(Ω; Th) := {v ∈ Lr(Ω), v|K ∈W sK ,r(K) ∀K ∈ Th} .

For shorthand, define Hs(Ω; Th) := W s,2(Ω; Th), and set W s,r(Ω; Th) := W s,r(Ω; Th),
where sK = s, s ≥ 0, for all K ∈ Th. For v ∈ W 1,r(Ω; Th), let ∇hv ∈ Lr(Ω;Rn)
denote the broken gradient of v, i.e., (∇hv)|K = ∇(v|K) for all K ∈ Th. Higher
broken derivatives are defined in a similar way. Define a norm on W s,r(Ω; Th) by

(4.6) ‖v‖rW s,r(Ω;Th)
:=

∑
K∈Th

‖v‖rW s,r(K)

with the usual modification when r = ∞.
Jump, average, and tangential operators. For each face F , let nF ∈ R

n denote a
fixed choice of a unit normal vector to F . Since each face F is flat, the normal nF is
constant. For an element K ∈ Th and a face F ⊂ ∂K, let τF : Hs(K) → Hs−1/2(F ),
s > 1/2, denote the trace operator from K to F . The trace operator τF is extended
componentwise to vector-valued functions. Define the jump operator �·� and the
average operator {·} by

�φ� := τF
(
φ|Kext

)
− τF

(
φ|Kint

)
, {φ} := 1

2τF
(
φ|Kext

)
+ 1

2 τF
(
φ|Kint

)
if F ∈ F i

h,

�φ� := τF
(
φ|Kext

)
, {φ} := τF

(
φ|Kext

)
if F ∈ Fb

h,

where φ is a sufficiently regular scalar or vector-valued function, and Kext and Kint

are the elements of which F is a face, i.e., F = ∂Kext ∩ ∂Kint. Here, the labeling is
chosen so that nF is outward pointing for Kext and inward pointing for Kint. Using
this notation, the jump and average of scalar-valued functions, respectively, vector-
valued, are scalar-valued, respectively, vector-valued. For two matrices A,B ∈ R

n×n,
we set A : B =

∑n
i,j=1 AijBij . For an element K, we define the inner product 〈·, ·〉K

by

(4.7) 〈u, v〉K :=

⎧⎪⎨
⎪⎩
∫
K
u v dx if u, v ∈ L2 (K) ,∫

K u · v dx if u, v ∈ L2 (K;Rn) ,∫
K
u : v dx if u, v ∈ L2 (K;Rn×n) .

The abuse of notation will be resolved by the arguments of the inner product. The
inner products 〈·, ·〉∂K and 〈·, ·〉F , F ∈ F i,b

h , are defined in a similar way.

For F ∈ F i,b
h , denote the space of Hs-regular tangential vector fields on F by

Hs
T(F ) := {v ∈ Hs(F )n : v · nF = 0 on F}. We define below the tangential gradient

∇T : Hs(F ) → Hs−1
T (F ) and the tangential divergence divT : Hs

T(F ) → Hs−1(F ),
where s ≥ 1, following [13]. Let {ti}n−1

i=1 ⊂ R
n be an orthonormal coordinate system

on F . Then, for u ∈ Hs(F ) and v =
∑n−1

i=1 vi ti, with vi ∈ Hs(F ) for i = 1, . . . , n− 1,
we define

(4.8) ∇T u :=

n−1∑
i=1

ti
∂u

∂ti
, divT v :=

n−1∑
i=1

∂vi
∂ti

.

5. Numerical scheme. The definition of the numerical scheme requires the
following bilinear and nonlinear forms. First, for λ ≥ 0 as above, the symmetric
bilinear form Bh,∗ : Vh,p × Vh,p → R is defined by
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DGFEM FOR HJB EQUATIONS WITH CORDES COEFFICIENTS 1001

Bh,∗(uh, vh) :=
∑

K∈Th

[
〈D2uh, D

2vh〉K + 2λ〈∇uh,∇vh〉K + λ2〈uh, vh〉K
]

+
∑

F∈Fi
h

[
〈divT ∇T {uh} , �∇vh · nF �〉F + 〈divT ∇T {vh} , �∇uh · nF �〉F

]

−
∑

F∈Fi,b
h

[
〈∇T {∇uh · nF } , �∇T vh�〉F + 〈∇T {∇vh · nF } , �∇T uh�〉F

]

− λ
∑

F∈Fi,b
h

[〈{∇uh · nF } , �vh�〉F + 〈{∇vh · nF } , �uh�〉F ]

− λ
∑

F∈Fi
h

[〈{uh} , �∇vh · nF �〉F + 〈{vh} , �∇uh · nF �〉F ] ,

where uh and vh will denote functions in Vh,p throughout this work. Then, for positive
face-dependent quantities μF and ηF to be specified later, the jump stabilization
bilinear form Jh : Vh,p × Vh,p → R is defined by

Jh(uh, vh) :=
∑

F∈Fi,b
h

[
μF 〈�∇T uh�, �∇T vh�〉F + ηF 〈�uh�, �vh�〉F

]
(5.1)

+
∑

F∈Fi
h

μF 〈�∇uh · nF �, �∇vh · nF �〉F .

For each θ ∈ [0, 1], define the bilinear form Bh,θ : Vh,p × Vh,p → R by

(5.2) Bh,θ(uh, vh) := θBh,∗(uh, vh) + (1− θ)
∑

K∈Th

〈Lλuh, Lλvh〉K + Jh(uh, vh).

The nonlinear form Ah : Vh,p × Vh,p → R is defined by

(5.3) Ah(uh ; vh) :=
∑

K∈Th

〈Fγ [uh], Lλvh〉K +Bh,1/2(uh, vh)−
∑

K∈Th

〈Lλuh, Lλvh〉K .

The form Ah is linear in its second argument but nonlinear in its first argument. The
scheme for approximating the solution of (2.3) is to find uh ∈ Vh,p such that

(5.4) Ah(uh ; vh) = 0 ∀ vh ∈ Vh,p.

The choice of nonlinear form in (5.3) is made to mirror the addition-substraction step
of (3.5) in the proof of Theorem 3. It will be seen below that the last two terms of
(5.3) cancel when the first argument of the form is smooth, and it is in this sense that
this method relates the residual of the numerical solution to its lack of smoothness.

5.1. Consistency. The next result shows that the bilinear form Bh,θ is obtained
from a discrete analogue of the identities that underpin Theorem 2.

Lemma 4. Let Ω be a bounded Lipschitz polytopal domain and let Th be a sim-
plicial or parallelepipedal mesh on Ω. Let w ∈ Hs(Ω; Th) ∩H2(Ω) ∩H1

0 (Ω), s > 5/2.
Then, for every vh ∈ Vh,p, we have the identities

(5.5) Bh,∗(w, vh) =
∑

K∈Th

〈Lλw,Lλvh〉K and Jh(w, vh) = 0.D
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1002 IAIN SMEARS AND ENDRE SÜLI

Proof. The second part of (5.5) is obvious. We also note that all terms in
Bh,∗(w, vh) that involve jumps of w or of its first derivates vanish. For the case λ =
0, the stated result reduces to [27, Lemma 5], which treats the consistency of the
second-order terms, namely, Bh,∗(w, vh) =

∑
K〈Δw,Δvh〉K for all vh ∈ Vh,p. So,

for λ > 0, the identities of (5.5) are deduced from the previous result and from the
identities

−λ
∑

K∈Th

〈Δw, vh〉K = λ
∑

K∈Th

〈∇w,∇vh〉K − λ
∑

F∈Fi,b
h

〈{∇w · nF } , �vh�〉F ,(5.6)

−λ
∑

K∈Th

〈w,Δvh〉K = λ
∑

K∈Th

〈∇w,∇vh〉K − λ
∑

F∈Fi
h

〈{w} , �∇vh · nF �〉F(5.7)

for all vh ∈ Vh,p, where we use the fact that w|F = 0 for all F ∈ Fb
h in (5.7).

If the function w satisfies the hypotheses of Lemma 4, then (5.5) implies that

(5.8) Bh,θ(w, vh) =
∑

K∈Th

〈Lλw,Lλvh〉K ∀ vh ∈ Vh,p, ∀ θ ∈ [0, 1].

The following consistency result for the scheme (5.4) follows immediately from
Theorem 3, (5.8), and from the definition of Ah in (5.3).

Corollary 5. Let Ω be a bounded convex polytopal domain, let Th be a simplicial
or parallelepipedal mesh, and let u ∈ H2(Ω) ∩H1

0 (Ω) be the unique solution of (2.3).
If u ∈ Hs(Ω; Th), s > 5/2, then u satisfies Ah(u ; vh) = 0 for every vh ∈ Vh,p.

The above consistency result involves a regularity assumption on the solution.
This assumption is also used in the error analysis of section 7. However, we refer the
reader to the numerical experiment of section 9.3 for an example of convergence of
the scheme when this assumption is relaxed.

6. Stability. For λ ≥ 0 as above, define the seminorms |·|H2(K),λ, K ∈ Th, and
|·|H2(Ω;Th),λ on H2(Ω; Th) by

|v|2H2(K),λ := ‖D2v‖2L2(K) + 2λ‖∇v‖2L2(K) + λ2‖v‖2L2(K),(6.1)

|v|2H2(Ω;Th),λ
:=

∑
K∈Th

|v|2H2(K),λ.(6.2)

For each θ ∈ [0, 1], define the functional ‖·‖h,θ : Vh,p → R≥0 by

(6.3) ‖vh‖2h,θ :=
∑

K∈Th

[
θ|vh|2H2(K),λ + (1 − θ)‖Lλvh‖2L2(K)

]
+ Jh(vh, vh).

For each θ ∈ [0, 1], ‖·‖h,θ is a norm on Vh,p. Indeed, homogeneity and the triangle
inequality are clear. If ‖vh‖h,θ = 0, then vh ∈ H2(Ω) ∩ H1

0 (Ω) since �∇vh� = 0 for

all F ∈ F i
h and �vh� = 0 for all F ∈ F i,b

h . Moreover, Lλvh ≡ 0 (if θ = 1, use
|vh|H2(K),λ = 0 for allK), so vh ≡ 0 as a result of (3.2b).

For each face F ∈ F i,b
h , define

(6.4) h̃F :=

{
min(hK , hK′) if F ∈ F i

h,

hK if F ∈ Fb
h,

p̃F :=

{
max(pK , pK′) if F ∈ F i

h,

pK if F ∈ Fb
h,
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DGFEM FOR HJB EQUATIONS WITH CORDES COEFFICIENTS 1003

where K and K ′ are such that F = ∂K ∩ ∂K ′ if F ∈ F i
h or F ⊂ ∂K ∩ ∂Ω if F ∈ Fb

h.
The assumptions on the mesh and the polynomial degrees, in particular (4.2) and
(4.3), show that if F is a face of K, then

hK ≤ cT h̃F and p̃F ≤ cP pK .(6.5)

Lemma 6. Let Ω be a bounded convex polytopal domain and let {Th}h be a shape-
regular sequence of simplicial or parallelepipedal meshes satisfying (4.1). Then, for
each constant κ > 1, there exists a positive constant cstab, independent of h, p, and
θ, such that for any vh ∈ Vh,p and any θ ∈ [0, 1], we have

(6.6) Bh,θ(vh, vh) ≥
θ

κ
|vh|2H2(Ω;Th),λ

+ (1− θ)
∑

K∈Th

‖Lλvh‖2L2(K) +
1
2Jh(vh, vh)

whenever, for any fixed constant σ ≥ 1,

(6.7) μF = σcstab
p̃2F
h̃F

and ηF > σλ cstab
p̃2F
h̃F

.

The strict inequality in the second part of (6.7) serves to cover the case λ = 0.
Proof. For vh ∈ Vh,p, we have

Bh,θ(vh, vh) = θ|vh|2H2(Ω;Th),λ
+ (1− θ)

∑
K∈Th

‖Lλvh‖2L2(K) + Jh(vh, vh) + θ

4∑
i=1

Ii,

where

I1 := 2
∑

F∈Fi
h

〈divT ∇T {vh} , �∇vh · nF �〉F , I3 := −2λ
∑

F∈Fi
h

〈{vh} , �∇vh · nF �〉F ,

I2 := −2
∑

F∈Fi,b
h

〈∇T {∇vh · nF } , �∇T vh�〉F , I4 := −2λ
∑

F∈Fi,b
h

〈{∇vh · nF } , �vh�〉F .

In [27, Lemma 7], it is shown that there is a constant C(n) depending only on n, such
that for any δ > 0,

|I1| ≤ δ C(n)CTr cF
∑

K∈Th

‖D2vh‖2L2(K) +
∑

F∈Fi
h

p̃2F
δh̃F

‖�∇vh · nF �‖2L2(F ),(6.8)

|I2| ≤ δ C(n)CTr cF
∑

K∈Th

‖D2vh‖2L2(K) +
∑

F∈Fi,b
h

p̃2F
δh̃F

‖�∇T vh�‖2L2(F ),(6.9)

where CTr is the combined constant of the trace and inverse inequalities, and cF is
given by (4.1). The inverse and trace inequalities also show that

|I3| ≤ 2λ

√√√√ ∑
F∈Fi

h

δh̃F
p̃2F

‖{vh}‖2L2(F )

√√√√ ∑
F∈Fi

h

p̃2F
δh̃F

‖�∇vh · nF �‖2L2(F )(6.10)

≤ δ C(n)CTr cF
∑

K∈Th

λ2‖vh‖2L2(K) +
∑

F∈Fi
h

p̃2F
δh̃F

‖�∇vh · nF �‖2L2(F ).
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1004 IAIN SMEARS AND ENDRE SÜLI

Similarly, it is found that

(6.11) |I4| ≤ δ C(n)CTr cF
∑

K∈Th

2λ‖∇vh‖2L2(K) +
∑

F∈Fi,b
h

λp̃2F
2δh̃F

‖�vh�‖2L2(F ).

We may take C(n) to be the same constant in each of the above estimates. So,

Bh,θ(vh, vh) ≥ θ(1− δC(n)CTrcF )|vh|2H2(Ω;Th),λ
+ (1− θ)

∑
K∈Th

‖Lλvh‖2L2(K)

+
∑

F∈Fi
h

(
μF − 2θp̃2F

δh̃F

)
‖�∇vh · nF �‖2L2(F ) +

∑
F∈Fi,b

h

(
μF − θp̃2F

δh̃F

)
‖�∇T vh�‖2L2(F )

+
∑

F∈Fi,b
h

(
ηF − λθp̃2F

2δh̃F

)
‖�vh�‖2L2(F ).

For any given κ > 1, there is a δ > 0 such that 1−δC(n)CTrcF > κ−1. Set cstab = 4/δ,
so that (6.6) holds whenever μF and ηF satisfy (6.7).

Theorem 7. Let Ω be a bounded convex polytopal domain and let {Th}h be a
shape-regular sequence of simplicial or parallelepipedal meshes satisfying (4.1). Let Λ
be a compact metric space and let the data satisfy (2.4) and either (2.5) or (2.6) with
b ≡ 0, c ≡ 0, λ = 0. Let cstab, ηF , and μF be chosen so that Lemma 6 holds with
κ < (1− ε)−1. Then, for every uh, vh ∈ Vh,p, we have

(6.12) ‖uh − vh‖2h,1 ≤ C
(
Ah(uh ;uh − vh)−Ah(vh ;uh − vh)

)
,

where the constant C := 2κ/ (1− κ (1− ε)). Moreover, there exists a constant C,
independent of h and p, such that for any uh, vh, and zh in Vh,p,

(6.13) |Ah(uh ; zh)−Ah(vh ; zh)| ≤ C‖uh − vh‖h,1‖zh‖h,1.

Therefore, there exists a unique solution uh ∈ Vh,p to the numerical scheme (5.4).
We have the bound

‖uh‖h,1 ≤
2κ

√
n+ 1 ‖γ‖C(Ω×Λ)

1− κ (1− ε)
‖sup
α∈Λ

|fα|‖L2(Ω).(6.14)

Proof. First, note that since ε ∈ (0, 1), it is possible to choose the constants

cstab, μF , and ηF such that κ < (1− ε)
−1

. Let uh and vh belong to Vh,p and set
wh := uh − vh. Then, we have

Ah(uh ;wh)−Ah(vh ;wh) = Bh,1/2(wh, wh) +
∑

K∈Th

〈Fγ [uh]−Fγ [vh]−Lλwh, Lλwh〉K .

Note that Lemma 1 gives∑
K∈Th

|〈Fγ [uh]− Fγ [vh]− Lλwh, Lλwh〉K | ≤
√
1− ε

∑
K∈Th

|wh|H2(K),λ‖Lλwh‖L2(K)

≤ 1− ε

2
|wh|2H2(Ω;Th),λ

+
1

2

∑
K∈Th

‖Lλwh‖2L2(K).
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This estimate and Lemma 6 show that

Ah(uh ;wh)−Ah(vh ;wh) ≥
1− κ (1− ε)

2κ
|wh|2H2(Ω;Th),λ

+ 1
2Jh(wh, wh) ≥ C−1‖wh‖2h,1,

where C := 2κ/ (1− κ (1− ε)). Since κ (1− ε) < 1, we obtain (6.12). Now, let
zh ∈ Vh,p. Then, using linearity of Bh,θ and inverse inequalities, we find that there
exists a constant C depending on the constants appearing in the proof of Lemma 6,
but not on h or p, such that |Bh,1/2(uh − vh, zh)| ≤ C‖uh − vh‖h,1‖zh‖h,1. Using
Lemma 1 and the above estimates, we deduce that there is a constant C depending
only on n and ε such that∑

K∈Th

|〈Fγ [uh]− Fγ [vh]− Lλ(uh − vh), Lλzh〉K | ≤ C‖uh − vh‖h,1‖zh‖h,1.

It then follows that Ah is Lipschitz continuous, as stated in (6.13). The Browder–
Minty theorem [25] with (6.12) and (6.13) imply that there exists a unique uh ∈ Vh,p
such that Ah(uh ; vh) = 0 for all vh ∈ Vh,p. By taking vh = 0 in (6.12), we find that

‖uh‖2h,1 ≤ C|Ah(0 ;uh)| ≤ C
∑

K∈Th

|〈sup
α∈Λ

[−γαfα] , Lλuh〉K |

≤ C‖γ‖C(Ω×Λ)‖sup
α∈Λ

|fα|‖L2(Ω)

√
n+ 1‖uh‖h,1,

where C = 2κ/ (1− κ (1− ε)), thus showing the bound (6.14).
In the above stability result, it was required that cstab be chosen so that Lemma 6

holds for some κ < (1 − ε)−1. It can be seen from the proof of Lemma 6 that there
exists a constant C, independent of the discretization parameters, such that this holds
whenever cstab ≥ C/ε. Then, cstab and κ can be chosen so that the constant in (6.12)
is of order 1/ε when ε is small.

7. Error analysis. The above stability results make use of the lower bound
(6.7) on the jump penalty terms ηF , F ∈ F i,b

h . In the following, we require that

(7.1) ηF ≤ C
p̃4F
h̃3F

∀F ∈ F i,b
h ,

where C is a fixed constant that is chosen sufficiently large to allow both (6.7) and
(7.1). The good stability properties of the proposed method make it possible to obtain
the following a priori error bound.

Theorem 8. Let Ω be a bounded convex polytopal domain, and let the shape-
regular sequence of simplicial or parallelepipedal meshes {Th}h satisfy (4.1) and (4.2),
with p satisfying (4.3) for each h. Let Λ be a compact metric space, let the data
satisfy (2.4) and either (2.5) or (2.6) when b ≡ 0, c ≡ 0, and λ = 0, and let u ∈
H2(Ω) ∩ H1

0 (Ω) be the unique solution of (2.3). Assume that u ∈ Hs(Ω; Th) with
sK > 5/2 for each K ∈ Th. Let cstab, μF , and ηF be chosen as in Theorem 7 for all

F ∈ F i,b
h , and let ηF also satisfy (7.1) for each F ∈ F i,b

h . Then, there exists a positive
constant C, independent of h, p, and u, but depending on maxK sK , such that

(7.2) ‖u− uh‖2h,1 ≤ C
∑

K∈Th

h2tK−4
K

p2sK−5
K

‖u‖2HsK (K),

where tK = min(pK + 1, sK) for each K ∈ Th.
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1006 IAIN SMEARS AND ENDRE SÜLI

Note that for the special case of quasi-uniform meshes and uniform polynomial
degrees, if u ∈ Hs(Ω) with s > 5/2, the a priori estimate (7.2) simplifies to

‖u− uh‖h,1 ≤ C
hmin(p+1,s)−2

ps−5/2
‖u‖Hs(Ω).

Therefore, the convergence rates are optimal with respect to the mesh size and sub-
optimal in the polynomial degree only by half an order.

Proof. Since the sequence of meshes is shape-regular, there is a zh ∈ Vh,p and a
constant C, independent of u, hK , and pK , but dependent on maxK sK , such that
for each K ∈ Th, each nonnegative integer q ≤ sK , and each multi-index β with
|β| < sK − 1/2, we have

‖u− zh‖Hq(K) ≤ C
htK−q
K

psK−q
K

‖u‖HsK (K),(7.3)

‖Dβ(u − zh)‖L2(∂K) ≤ C
h
tK−|β|−1/2
K

p
sK−|β|−1/2
K

‖u‖HsK (K).(7.4)

Set ψh := uh − zh and ξh := u − zh. By Corollary 5, we have Ah(u ; vh) = 0 for all
vh ∈ Vh,p. Strong monotonicity of Ah on Vh,p, as shown in Theorem 7, yields

(7.5) ‖ψh‖2h,1 � Ah(uh ;ψh)−Ah(zh ;ψh) = Ah(u ;ψh)−Ah(zh ;ψh).

By applying the Cauchy–Schwarz inequality to the terms appearing on the right-hand
side of (7.5) and applying inverse inequalities to ψh ∈ Vh,p, we eventually obtain

(7.6) Ah(u ;ψh)−Ah(zh ;ψh) ≤
√∑10

i=1Ei ‖ψh‖h,1,

where the quantities Ei are defined by

E1 :=
∑

K∈Th

|ξh|2H2(K),λ, E2 :=
∑

K∈Th

‖Lλξh‖2L2(K),

E3 :=
∑

K∈Th

‖Fγ [u]− Fγ [zh]‖2L2(K), E4 :=
∑

F∈Fi
h

μ−1
F ‖divT ∇T {ξh}‖2L2(F ),

E5 :=
∑

F∈Fi
h

μF ‖�∇ξh · nF �‖2L2(F ), E6 :=
∑

F∈Fi,b
h

μ−1
F ‖∇T {∇ξh · nF }‖2L2(F ),

E7 :=
∑

F∈Fi,b
h

μF ‖�∇T ξh�‖2L2(F ), E8 :=
∑

F∈Fi,b
h

λ2η−1
F ‖{∇ξh · nF }‖2L2(F ),

E9 :=
∑

F∈Fi,b
h

(λμF + ηF )‖�ξh�‖2L2(F ), E10 :=
∑

F∈Fi
h

λ2μ−1
F ‖{ξh}‖2L2(F ).

The estimate (7.3) shows that

(7.7) E1 + E2 �
∑

K∈Th

h2tK−4
K

p2sK−4
K

‖u‖2HsK (K).

By compactness of Λ, continuity of the data and (2.4), Fγ is Lipschitz continuous, so

(7.8) E3 �
∑

K∈Th

‖ξh‖2H2(K) �
∑

K∈Th

h2tK−4
K

p2sK−4
K

‖u‖2HsK (K).
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We use (4.1), (4.2), (4.3), (6.7), and (7.4) to obtain

E4 + E6 �
∑

K∈Th

hK
p2K

h2tK−5
K

p2sK−5
K

‖u‖2HsK (K) =
∑

K∈Th

h2tK−4
K

p2sK−3
K

‖u‖2HsK (K),(7.9)

E5 + E7 �
∑

K∈Th

p2K
hK

h2tK−3
K

p2sK−3
K

‖u‖2HsK (K) =
∑

K∈Th

h2tK−4
K

p2sK−5
K

‖u‖2HsK (K).(7.10)

Similarly, we use (6.7) to get

(7.11) E8 �
∑

K∈Th

hK
p2K

h2tK−3
K

p2sK−3
K

‖u‖2HsK (K) =
∑

K∈Th

h2tK−2
K

p2sK−1
K

‖u‖2HsK (K).

By hypothesis, ηF � p̃4F /h̃
3
F by (7.1), so (4.2) and (4.3) imply that

(7.12) E9 �
∑

K∈Th

p4K
h3K

h2tK−1
K

p2sK−1
K

‖u‖2HsK (K) =
∑

K∈Th

h2tK−4
K

p2sK−5
K

‖u‖2HsK (K).

Finally, (7.4) yields

(7.13) E10 �
∑

K∈Th

hK
p2K

h2tK−1
K

p2sK−1
K

‖u‖2HsK (K) =
∑

K∈Th

h2tKK

p2sK+1
K

‖u‖2HsK (K).

The a priori bound (7.2) is obtained from ‖u − uh‖h,1 ≤ ‖ψh‖h,1 + ‖ξh‖h,1 and the
above estimates.

8. Semismooth Newton method. We turn to the analysis of an algorithm for
solving the discrete problem (5.4), which can be interpreted as a Newton method for
nonsmooth operator equations [24]. After showing that the algorithm is well-posed,
we obtain and then use a semismoothness result for HJB operators in function spaces
to establish its superlinear convergence. The semismoothness of finite-dimensional
HJB operators in a different form was studied in [3].

For 1 ≤ r ≤ ∞, a function u ∈ W 2,r(Ω; Th) defines a vector-valued function
u ∈ Lr(Ω;Rm) through u =

(
u,∇hu,D

2
hu

)
, where ∇hu and D2

hu denote the broken
gradient and broken Hessian of u; see section 4. For a vector u = (z, p,M) ∈ R

m,
define the function Fγ : Ω× R

m → R by

(8.1) Fγ(x,u) := sup
α∈Λ

[γα (aα : M + bα · p− cαz − fα)|x] .

For each (x,u) ∈ Ω × R
m, we define Λ(x,u) as the set of all α ∈ Λ such that the

supremum in (8.1) is attained. This defines a set-valued map (x,u) �→ Λ(x,u).
Lemma 9. Let Ω be a bounded open subset of Rn, let Λ be a compact metric space,

let the data a, b, c, and f be continuous on Ω×Λ, and suppose that (2.4) holds. Then,
for each (x,u) ∈ Ω × R

m, Λ(x,u) is a nonempty closed subset of Λ. The set-valued
map (x,u) �→ Λ(x,u) is upper semicontinuous; that is, for every (x,u) ∈ Ω×R

m, and
any open neighborhood U of Λ(x,u), there exists an open neighborhood V of (x,u)
such that Λ(y,v) ⊂ U for every (y,v) ∈ V .

We remark that the uniform ellipticity condition (2.4) is only used in Lemma 9
to guarantee that γ ∈ C(Ω× Λ).
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Proof. For every (x,u) ∈ Ω × R
m, where u = (z, p,M), compactness of Λ and

continuity of a, b, c, f , and γ imply the existence of a maximizer in (2.2); so Λ(x,u)
is nonempty. The set Λ(x,u) is closed: if α is in the closure of Λ(x,u), say, αj → α,
with αj ∈ Λ(x,u) for each j ∈ N, then continuity of the data implies that

γα (aα : M + bα · p− cαz − fα)|x = lim
j→∞

γαj (aαj : M + bαj · p− cαjz − fαj )|x .
(8.2)

Since αj ∈ Λ(x,u) for each j ∈ N, the right-hand side of (8.2) equals F (x,u), thus
giving α ∈ Λ(x,u) and showing that Λ(x,u) is closed.

We prove upper semicontinuity of (x,u) �→ Λ(x,u) by contradiction. Suppose
that there exists an (x,u) ∈ Ω × R

m, a neighborhood U of Λ(x,u), and a sequence
{(xj ,uj)}∞j=1, uj = (zj, pj ,Mj), converging to (x,u), together with αj ∈ Λ(xj ,uj)\U
for all j ∈ N. Because Λ is compact and Λ \ U is closed, there exists a subsequence,
to which we pass without change of notation, such that αj → α ∈ Λ \ U . On the one
hand, Λ(x,u) is nonempty so there is β ∈ Λ(x,u). Then, by definition of F ,

(8.3) γα (aα : M + bα · p− cαz − fα)|x ≤ F (x,u).

On the other hand, αj ∈ Λ(xj ,uj) implies that we have, for each j ∈ N,

γαj (aαj : Mj + bαj · pj − cαjzj − fαj )|xj
≥ γβ

(
aβ : Mj + bβ · pj − cβzj − fβ

)∣∣
xj
.

Taking the limit j → ∞ in the above inequality shows that equality holds in (8.3)
because β ∈ Λ(x,u). Hence, α ∈ Λ(x,u); however, U is an open neighborhood of
Λ(x,u) and α ∈ Λ \ U , so we have a contradiction.

The following selection theorem, due to Kuratowski and Ryll-Nardzewski [18], is
required for the analysis of the algorithm for solving (5.4).

Theorem 10. Let Ω ⊂ R
n be a bounded open set, let Λ be a compact metric

space, and let (x,u) �→ Λ(x,u) be an upper semicontinuous set-valued function from
Ω × R

m to the subsets of Λ, such that Λ(x,u) is nonempty and closed for every
(x,u) ∈ Ω × R

m. Then, for any Lebesgue measurable function u : Ω → R
m, there

exists a Lebesgue measurable selection α : Ω → Λ such that α(x) ∈ Λ
(
x,u(x)

)
for a.e.

x ∈ Ω.

For u ∈ W 2,r(Ω; Th), let Λ[u] be the set of all Lebesgue measurable functions
α : Ω → Λ such that α(x) ∈ Λ(x,u(x)) for a.e. x ∈ Ω, where u =

(
u,∇hu,D

2
hu

)
.

Lemma 9 and Theorem 10 show that Λ[u] is nonempty for each u ∈W 2,r(Ω; Th). For
measurable α : Ω → Λ, we define γα : Ω → R>0 through γα(x) = γ(x, α(x)), where
γ : Ω×Λ → R>0 was defined by (2.9) or (2.10). It follows from uniform continuity of
γ over Ω× Λ that γα ∈ L∞(Ω) with ‖γα‖L∞(Ω) ≤ ‖γ‖C(Ω×Λ). The functions aα, bα,
cα, and fα and the operator Lα are defined in a similar way and are likewise bounded.
It is clear that if α ∈ Λ[u], then Fγ [u] = γα(Lαu− fα) a.e. in Ω.

8.1. Algorithm. We now present the definition of the semismooth Newton
method for solving (5.4) and state the main result concerning its convergence rate.
Choose u0h ∈ Vh,p. Given ukh ∈ Vh,p, k ∈ N, choose αk ∈ Λ[ukh]. Then, obtain
uk+1
h ∈ Vh,p satisfying

(8.4) Ak
h(u

k+1
h , vh) =

∑
K∈Th

〈γαkfαk , Lλvh〉K ∀ vh ∈ Vh,p,
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where the bilinear form Ak
h : Vh,p × Vh,p → R is defined by

Ak
h(wh, vh) :=

∑
K∈Th

〈(γαkLαkwh, Lλvh〉K +Bh,1/2(wh, vh)−
∑

K∈Th

〈Lλwh, Lλvh〉K .

The fact that αk : Ω → Λ is measurable ensures that Ak
h is well-defined. As in the

proof of Theorem 7, it is found that the bilinear forms Ak
h, k ∈ N, are coercive on

Vh,p. In fact, for each k ∈ N, we have

(8.5) ‖vh‖2h,1 ≤
2κ

1− κ (1− ε)
Ak

h(vh, vh) ∀ vh ∈ Vh,p.

Therefore, the sequence of iterates {ukh}∞k=1 is well-defined by (8.4) and remains
bounded in Vh,p. The main result of this section is the following.

Theorem 11. Under the hypotheses of Theorem 7, there exists a constant R > 0,
possibly depending on h and p, such that if ‖uh − u0h‖h,1 < R, where uh solves (5.4),
then the sequence {ukh}∞k=1 converges to uh with a superlinear convergence rate.

The proof of this theorem will be given in the next section. Despite the possible
dependence of R on h and p in the above theorem, it is seen from the numerical exper-
iments in section 9, in particular in Figure 2 later, that in practice, the convergence
rates of the algorithm depend only weakly on the discretization parameters.

Since the bilinear forms Ak
h are stable in an H2-type norm, the condition num-

ber of the resulting linear system is generally of order maxK∈Th
p8K/h

4
K for common

choices of basis functions for Vh,p. Therefore, there can be significant benefits in us-
ing preconditioners when solving the linear systems with certain iterative methods:
see [10, 28] for the analysis and numerical study of nonoverlapping domain decompo-
sition preconditioners for DGFEM that are stable in H2-type norms.

8.2. Semismoothness of HJB operators. The proof of Theorem 11 rests
upon the notion of semismoothness, as defined in [29]. We recall the definition below.
For sets X and Y , we write G : X ⇒ Y if G is a set-valued map that maps X into
the subsets of Y .

Definition 12. Let X and Y be Banach spaces, and let F : U ⊂ X → Y be a
map defined on a nonempty open set U of X. Let DF : U ⇒ L(X,Y ) be a set-valued
map with nonempty images. For x ∈ U , the map F is called DF -semismooth at x if

(8.6) lim
‖e‖X→0

1

‖e‖X
sup

D∈DF [x+e]

‖F [x+ e]− F [x]−De‖Y = 0.

The map F is called DF -semismooth on U if F is DF -semismooth at x for every
x ∈ U . The set-valued map DF is then called a generalized differential of F on U .

For 1 ≤ q < r ≤ ∞, the map DFγ : W
2,r(Ω; Th) ⇒ L

(
W 2,r(Ω; Th), Lq(Ω)

)
is

defined by

(8.7) DFγ [u] :=
{
γαLα := γα

(
aα : D2

h + bα · ∇h − cα
)
: α ∈ Λ[u]

}
.

Theorem 13. Let Ω be a bounded open subset of Rn, let Λ be a compact metric
space, let the data a, b, c, and f be continuous on Ω×Λ and suppose that (2.4) holds.
Let Th be a mesh on Ω. Then, for any 1 ≤ q < r ≤ ∞, the operator Fγ : W

2,r(Ω; Th) →
Lq(Ω) defined by Fγ [u] = Fγ(·, u,∇hu,D

2
hu) is DFγ-semismooth on W 2,r(Ω; Th).
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Proof. Supposing the claim to be false, there exist a function u ∈ W 2,r(Ω; Th), a
constant ρ > 0, and a sequence {ej}∞j=0 ⊂W 2,r(Ω; Th), with ‖ej‖W 2,r(Ω;Th) → 0, and
αj ∈ Λ[u+ ej ] such that, for each j ∈ N,

(8.8)
1

‖ej‖W 2,r(Ω;Th)
‖Fγ [u+ ej ]− Fγ [u]− γαjLαjej‖Lq(Ω) > ρ.

We will show that there is a subsequence for which (8.8) is violated and thus obtain a
contradiction. Since ‖ej‖W 2,r(Ω;Th) → 0, by passing to a subsequence without change
of notation, we may assume that ej and its first and second broken derivatives tend
to 0 pointwise a.e. in Ω. The following inequality will help to simplify the argument:

(8.9) |Fγ [u+ ej]− Fγ [u]− γαjLαjej| � Gj

(
|ej |+ |∇hej|+ |D2

hej|
)
,

where Gj : Ω → R≥0 is defined by

(8.10) Gj := inf
α∈Λ(·,u(·))

|γαaα − γαjaαj |+ |γαbα − γαjbαj |+ |γαcα − γαjcαj |.

It can be deduced from Lemma 9 that Gj is measurable, since it is the composition
of a lower semicontinuous function with a measurable function; compactness of Λ and
continuity of the data imply that ‖Gj‖L∞(Ω) is uniformly bounded for all j ∈ N.

We prove (8.9): since αj ∈ Λ[u+ ej ], we have a.e. in Ω

(8.11) Fγ [u+ ej ]− Fγ [u]− γαjLαjej = γαj (Lαju− fαj )− Fγ [u] ≤ 0.

Now, for a.e. x ∈ Ω, and arbitrary α ∈ Λ(x,u(x)), we have

0 ≤ Fγ [u+ ej ]− γα (Lα(u+ ej)− fα)(8.12)

= γαj (Lαju− fαj )− Fγ [u] + (γαjLαj − γαLα) ej

= Fγ [u+ ej ]− Fγ [u]− γαjLαjej + (γαjLαj − γαLα) ej,

where it is understood that the above expressions are evaluated at x. Rearranging
(8.11) and (8.12) gives (γαLα − γαjLαj ) ej ≤ Fγ [u+ ej ]− Fγ [u]− γαjLαjej ≤ 0, so

(8.13) |Fγ [u+ ej ]− Fγ [u]− γαjLαjej | ≤ |(γαLα − γαjLαj ) ej |.

Since (8.13) holds for arbitrary α ∈ Λ(x,u(x)), we readily obtain (8.9).
We claim that Gj → 0 pointwise a.e. in Ω. Recall that ej := (ej ,∇hej, D

2
hej)

tends to zero pointwise a.e. in Ω. Let � > 0 and x ∈ Ω be such that ej(x) → 0. Then,
by continuity of the data on the compact metric space Ω × Λ, there is a δ > 0 such
that for any α, β ∈ Λ with dist(α, β) < δ,

|γαaα − γβaβ |+ |γαbα − γβbβ|+ |γαcα − γβcβ | < � at x ∈ Ω.

Since (x,u) �→ Λ(x,u) is upper semicontinuous by Lemma 9, there is an N ∈ N such
that for each j ≥ N , there is an α ∈ Λ(x,u(x)) with dist(α, αj(x)) < δ. Therefore
0 ≤ Gj(x) < � for all j ≥ N , and hence Gj → 0 pointwise a.e. in Ω.

Because 1 ≤ q < r ≤ ∞, setting s = r/q > 1 and s′ such that 1/s+ 1/s′ = 1, we
have 1 ≤ s′ < ∞. Inequality (8.9) followed by an application of Hölder’s inequality
shows that

(8.14)
1

‖ej‖W 2,r(Ω;Th)
‖Fγ [u+ ej]− Fγ [u]− γαjLαjej‖Lq(Ω) � ‖Gj‖Lqs′ (Ω),
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Since Gj → 0 pointwise a.e. and {Gj}∞j=0 is uniformly bounded in L∞(Ω), the dom-
inated convergence theorem implies that ‖Gj‖Lqs′(Ω) → 0. Therefore, (8.14) contra-

dicts (8.8), and Fγ is DFγ-semismooth at u, thus completing the proof.
Remark 1. The restriction q < r in Theorem 13 cannot be relaxed in general,

as evidenced by the counterexample in [14] involving a special case of the class of
operators considered here.

Proof of Theorem 11. Since αk ∈ Λ[ukh] for each k, we have Fγ [u
k
h] = γαkLαkukh−

γαkfαk . Therefore, (8.4) is equivalent to

(8.15) Ak
h(u

k+1
h , vh) =

∑
K∈Th

〈γαkLαkukh − Fγ [u
k
h], Lλvh〉K ∀ vh ∈ Vh,p.

The definition of the numerical scheme (5.4) implies that uh satisfies

(8.16) Ak
h(uh, vh) =

∑
K∈Th

〈γαkLαkuh − Fγ [uh], Lλvh〉K ∀ vh ∈ Vh,p.

After subtracting (8.16) from (8.15), the bound (8.5) then shows that

(8.17) ‖uk+1
h − uh‖h,1 ≤ C1‖Fγ [u

k
h]− Fγ [uh]− γαkL

α
k (u

k
h − uh)‖L2(Ω),

where the constant C1 depends only on κ, ε, γ, and n as in (6.14), but not on k. Fix
r > 2; since Vh,p is finite-dimensional, there is a constant C2 depending on h and
p such that ‖vh‖W 2,r(Ω;Th) ≤ C2‖vh‖h,1 for all vh ∈ Vh,p. Theorem 13 shows that
for each ρ ∈ (0, 1), there is a Rρ > 0 such that if ‖wh − uh‖h,1 < Rρ, then, for any
α ∈ Λ[wh],

(8.18) ‖Fγ [wh]− Fγ [uh]− γαLα(wh − uh)‖L2(Ω) ≤
ρ

C1C2
‖wh − uh‖W 2,r(Ω;Th).

If ‖u0h − uh‖h,1 < Rρ for some ρ < 1, then we use (8.17) and (8.18) to obtain

‖uk+1
h − uh‖h,1 ≤ ρ‖ukh − uh‖h,1 ∀ k ≥ 0,

which yields convergence of ukh to uh. For each ρ < 1, ‖ukh − uh‖h,1 < Rρ is then
eventually satisfied, thus implying a superlinear convergence rate.

9. Numerical experiments. We provide the results of two tests of the scheme
on problems with strongly anisotropic diffusion coefficients and an experiment for a
solution that does not meet the regularity assumption of the analysis.

9.1. First experiment. We consider once again Example 1 for testing the accu-
racy of the scheme and the performance of the semismooth Newton method. Recalling
that Λ = [0, π/3]×SO(2) and aα = σα(σα)�/2, with σα given by (2.7), let Ω = (0, 1)2,
let bα ≡ 0, cα ≡ π2, and choose fα ≡

√
3 sin2 θ/π2 + g, g independent of α, so that

the exact solution of the HJB equation (2.3) is u(x, y) = exp(xy) sin(πx) sin(πy).
These choices are made so that the optimal controls vary significantly throughout the
domain and to ensure that the corresponding diffusion coefficient is not diagonally
dominant in parts of Ω.

The numerical scheme (5.4) is applied with meshes obtained by regular subdivision
of Ω into uniform quadrilateral elements of size h = 2−k, 1 ≤ k ≤ 6. The finite element
spaces Vh,p are defined by employing the space of polynomials of fixed total degree p
on each element with 2 ≤ p ≤ 5. The penalty parameters are set to cstab = 10 and
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ηF = cstab p̃
4
F /h̃

3
F . Figure 1 confirms the optimal convergence rates with respect to

mesh refinement that are predicted by Theorem 8.
The numerical solutions were obtained by the semismooth Newton method of

section 8, for which we use a strict convergence criterion by requiring a relative residual
below 5 × 10−12 and a step-increment L2-norm below 1 × 10−11. The initial guess
used for each computation was u0h ≡ 0. The convergence histories shown in Figure 2
demonstrate the fast convergence of the algorithm.

0.01 0.1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

0.5

Mesh size

‖u
−
u
h
‖ H

2
(Ω

;T
h
)

p = 2
p = 3
p = 4
p = 5

Fig. 1. The errors in approximating the solution of the problem of section 9.1 for various mesh
sizes and polynomial degrees. The optimal convergence rates ‖u − uh‖H2(Ω;Th) = O

(
hp−1

)
are

observed.

1 2 3 4 5 6 7
Converged

10−12

10−8

10−4

1

Iteration number k

‖u
h
−
u
k h
‖ H

2
(Ω

;T
h
)

h = 1/4

h = 1/8

h = 1/16

h = 1/32

h = 1/64

Fig. 2. Convergence histories of the semismooth Newton method applied to the problem of
section 9.1 on successively refined meshes, with p = 4. The predicted superlinear convergence rate
is observed, and the number of iterations required for convergence shows little variation under re-
finement.
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Fig. 3. Mesh on Ω used for the approximation of (9.2). The origin is at the bottom left corner.
The mesh has eight geometrically refined layers with grading factor 1/2.

9.2. Second experiment. We investigate the robustness of the scheme against
a combination of near-degenerate diffusions, nonsmooth solutions, and boundary lay-
ers. This example is to our knowledge the first fully nonlinear second-order problem
solved with an exponentially accurate scheme. Let Ω = (0, 1)2, bα ≡ (0, 1), cα ≡ 10
and define

(9.1) aα := α�
(
20 1
1 0.1

)
α, α ∈ Λ := SO(2).

For λ = 1/2, the Cordes condition (2.5) holds with ε ≈ 0.0024. We choose fα so that
the solution of the corresponding HJB equation is

(9.2) u(x, y) = (2x− 1)
(
e1−|2x−1| − 1

)(
y +

1− ey/δ

e1/δ − 1

)
, δ > 0.

We choose δ = 0.005 to be of the same order as ε, thus leading to a sharp boundary
layer in a neighborhood of

{
(x, y) ∈ Ω: y = 1

}
.

The results of [5] show that a very large stencil would be necessary to obtain a
consistent monotone FD discretization of this problem. On uniform grids, these low-
order methods would require a fine grid to resolve the boundary layer, while the use
of locally refined grids is complicated by consistency and monotonicity requirements.

Our method features no such constraints, so we are free to take advantage of hp-
refinement techniques that are capable of delivering highly accurate approximations
for a smaller computational cost. Following a suggestion in [21], we perform a sequence
of computations by increasing the uniform polynomial degrees p from 2 to 10 on a
fixed mesh shown in Figure 3. The number of degrees of freedom ranges from 100 to
1320 and the following results were obtained with cstab = 10, as in section 9.1. Here,
we use ηF = λ cstab p̃

4
F /h̃

3
F . Figure 4 shows that the error converges with a rate of

O
(
exp(−c 3

√
DoF)

)
, as expected from the results in [30], which leads to high accuracy

with few degrees of freedom.

9.3. Third experiment. We consider the convergence of the scheme when re-
laxing the assumption on the solution of broken Hs-regularity for some s > 5/2. We
also treat a problem with an inhomogeneous Dirichlet boundary condition, which can
be handled by a straightforward extension of the scheme; see [27] for further details.

Consider a hexagonal domain Ω ⊂ R
2 with unit face length, as shown in Figure 5.

Laplace’s equation, Δu = 0 in Ω, is a special case of the HJB equation at hand, and
the boundary condition u = g on ∂Ω is chosen such that u = r3/2 sin(32θ), where r is
the distance to the upper vertex of Ω, and θ is the counterclockwise angle from the
upper left face of Ω. It follows that broken Hs-regularity of u fails for s ≥ 5/2.
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5 6 7 8 9 10 11
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

3
√
DoF

R
el
a
ti
ve

E
rr
o
r

Broken H2 norm

Broken H1 norm

Fig. 4. Exponential convergence in the broken H1- and H2-norms of the approximations to the
solution defined by (9.2). The relative errors ‖u− uh‖/‖u‖ are plotted against the cube root of the
number of degrees of freedom, with each data point corresponding to a computation using a total
polynomial degree p = 2, . . . , 10.

Fig. 5. The planar hexagonal domain Ω ⊂ R2 with uniformly refined and geometrically graded
parallelepipedal meshes.

0.01 0.1 1
10−2

10−1

100

Mesh size

‖u
−
u
h
‖ H

2
(Ω

;T
h
)

h-refinement

p = 2
p = 5

4 6 8 10 12
10−2

10−1

100

3
√
DoF

‖u
−
u
h
‖ H

2
(Ω

;T
h
)

hp-refinement

Fig. 6. Convergence in the broken H2-norm of the approximations to the singular solution
on the hexagonal domain. We observe approximate convergence rates of O(h1/2) for uniform h-
refinement, while rates of O(exp(−c 3

√
DoF)) are obtained under hp-refinement. The number of de-

grees of freedom used for the largest computations were 1604 (hp-refinement), 73,728 (h-refinement,
p = 2), and 258,048 (h-refinement, p = 5), thus showing the efficiency of hp-refinement.
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Two sets of computations were performed, the first using uniform h-refinement
and the second using hp-refinement on geometrically graded meshes with linearly
increasing polynomial degrees away from the singularity of the solution. Figure 5 il-
lustrates the respective sequences of meshes. We use cstab = 10 and ηF = cstab p̃

4
F /h̃

3
F .

Figure 6 shows that the method is convergent under both refinement strategies. In
the case of h-refinement, the convergence rate is approximately of O(h1/2), irrespec-
tive of the polynomial degree, as may be expected given the limited regularity of the
solution. In the case of hp-refinement, the rate is of O(exp(−c 3

√
DoF)), where DoF is

the number of degrees of freedom.

These results show that the regularity assumption on the solution used in the
analysis of this work is not a necessary condition for the convergence of the numerical
scheme. Furthermore, the ability of the method to handle hp-refinement is a significant
advantage for computational efficiency.

10. Conclusion. We have considered the PDE analysis and numerical analysis
of HJB equations that satisfy the Cordes condition. Our contributions include an
existence and uniqueness result for strong solutions to the fully nonlinear problem,
the construction of a consistent and stable hp-version DGFEM with proven conver-
gence rates, and a study of the semismoothness of HJB operators. The numerical
experiments demonstrated the high efficiency and accuracy of the scheme and the
fast convergence of the semismooth Newton method, while highlighting the wide ap-
plicability of the results of this work.
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