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DISCONTINUOUS GALERKIN FINITE ELEMENT

HETEROGENEOUS MULTISCALE METHOD

FOR ELLIPTIC PROBLEMS WITH MULTIPLE SCALES

ASSYR ABDULLE

Abstract. An analysis of a multiscale symmetric interior penalty discontinu-
ous Galerkin finite element method for the numerical discretization of elliptic
problems with multiple scales is proposed. This new method, first described
in [A. Abdulle, C.R. Acad. Sci. Paris, Ser. I 346 (2008)] is based on numer-
ical homogenization. It allows to significantly reduce the computational cost
of a fine scale discontinuous Galerkin method by probing the fine scale data
on sampling domains within a macroscopic partition of the computational do-
main. Macroscopic numerical fluxes, an essential ingredient of discontinuous
Galerkin finite elements, can be recovered from the computation on the sam-
pling domains with negligible computation overhead. Fully discrete a priori
error bounds are derived in the L2 and H1 norms.

1. Introduction

The modeling and the numerical simulation of physical processes in strongly
heterogeneous media (e.g., deformation or diffusion in composite materials, flow in
porous medium, etc.), pose major mathematical and computational challenges. In
theory, the numerical approximation of such problems could be obtained by stan-
dard numerical methods as the finite element method (FEM), the finite difference
method (FDM) or the finite volume method (FVM). However, the convergence of
such methods requires a mesh size h small enough to resolve the finest length scale
of the problem (denoted here by ε), i.e., h < ε. Therefore, if ε is small, microscopic
computations often represent a prohibitive cost due to the high number of degrees
of freedom. A cheap remedy is to neglect the fine scales of the problem in numeri-
cal computations. But macroscopic approaches which do not take into account the
fine-scale physics are of limited interest, since the microscopic heterogeneities sig-
nificantly affect the properties of the solution at larger scales. One thus has to rely
on approaches combining microscopic and macroscopic descriptions of the problem.

Methods based on a coupling of macroscopic and microscopic solvers have become
increasingly popular. We mention upscaling methods in structural mechanics [48],
the quasicontinuum method [47], the gap-tooth scheme [40] and the heterogeneous
multiscale method (HMM) [31]. Multiscale FEMs for elliptic problems (based on
multiscale basis functions) have been pioneered by Babŭska and Osborn [18], [19].
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Recent developments, mainly for elliptic problems with multiple scales, include [15],
[35], [37], [42], [48] (see also the references in these papers).

The framework of the HMM is used to construct the new method proposed in
this paper. The HMM is based on the assumption that a macroscopic description
of the multiscale problem exists but may not be explicitly given. This macroscopic
problem is, however, solved directly by a macro FEM on a coarse mesh. The
(unknown) effective data of the macroscopic problems are extracted on the fly by
solving microscopic problems (micro FEM) on sampling domains within the coarse
mesh. For homogenization problems, the HMM is related to so-called numerical
homogenization methods, relying on the solution of local problems to derive an
effective equation, where the small scales have been averaged out. However, the
simultaneous coupling of macroscopic and microscopic solvers offers advantages for
the analysis (quantify the propagation of error across scales), for coupling various
type of FEM at various scales, for switching locally to the fine scale solver (e.g.,
near cracks or fractures) and for designing numerical software [12], [6], [7].

The analysis of the finite element heterogeneous multiscale method (FE-HMM)
has been given in [32] and [9] assuming exact solutions of the micro solver. The first
fully discrete a priori analysis for elliptic and elastic problems has been proposed
in [3] and [5], respectively. The framework of the HMM is particularly flexible to
allow different types of methods to be used at different scales. In [10], a coupling
of a FEM for the macroscopic solver with a pseudo-spectral method for the micro
solver has been proposed allowing near optimal computational complexity for prob-
lems involving oscillatory coefficients with sufficient regularity. Finally, crucial for
practical computations is the ability to assess the quality of a computed solution
and to refine the grid in elements that contribute most to the global error. This
has been studied in [13], [7].

Local conservation properties in the numerical approximation and flexibility in
meshing (e.g., hanging nodes, local refinements) are desirable for many problems. A
popular methodology to achieve these aims is to use (local) discontinuous approxi-
mations in the FE space as, for example, in the discontinuous Galerkin (DG) FEMs.
Such methods have been extensively studied for hyperbolic problems, advection-
diffusion and diffusion problems [16], [17], [26], [27], [38], [49]. While a large body
of literature is available for DG methods applied to single scale problems, the con-
struction and analysis of multiscale DG methods have rarely been addressed. We
note that a DG method in the framework of the HMM for hyperbolic and parabolic
one-dimensional scalar problems has been proposed in [25]. The formulation of this
latter method (based on the local discontinuous Galerkin method) differs from the
method proposed in the present paper. Another DG-FEM for multiscale elliptic
problems has been proposed in [1]. This method is constructed in the framework
of the multiscale finite element (MsFEM) framework of [35]. This method, which
has not yet been analyzed, also differs significantly from the method proposed here.
In this paper we construct and analyze a numerical method, the discontinuous
Galerkin heterogeneous multiscale method (DG-HMM), combining HMM with the
symmetric interior penalty (IP) discontinuous Galerkin FEM (DG-FEM). To the
best of our knowledge, this is the first analysis of a multiscale DG method for elliptic
homogenization problems. The attractive properties of the DG-FEM as local mass
and flux conservation or flexibility in meshing, will be inherited by our multiscale
method at the macroscopic level. The DG-HMM, has first been announced in [11].
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In this paper we give the full proof, improve and extend the results stated in [11] to
a more general framework. Non-optimal micro a priori error bounds were stated in
[11]. Here, optimal fully discrete error bounds in the L2 and H1 norms are derived.

Although the implementation of our method and the proof of the existence of a
numerical solution do not require any assumption on the type of heterogeneities,
the analysis of the convergence rates relies on local periodicity of the conductivity
tensor (piecewise constant in the slow variable). We note that periodic coefficients
have been used for the analysis of multiscale methods by many authors [15], [35],
[36], [42], [45].

Our method is not limited to elliptic problems and can readily be applied to
parabolic problems. It is known that for such problems, the mass matrix is block-
diagonal when using a DG-FEM (even diagonal if choosing orthogonal basis func-
tions). Thus, a multiscale discretization in space can be easily combined with
explicit stabilized solvers in time such as the ROCK methods [8], [2] to obtain a
fully discrete explicit coarse-grained algorithm for time dependent multiscale par-
abolic problems. Besides the symmetric interior penalty DG-FEM, other types of
DG methods could be used in the framework developed below. The extension of
the results of [3] for non-symmetric elliptic problems obtained in [29] could, for
example, be used to construct DG methods for non-symmetric problems.

The paper is organized as follows. In subsection 2.1 we discuss the multiscale
model problem and briefly recall the HMM developed so far for this type of prob-
lems. In subsection 2.2 we briefly recall the FE-HMM and introduce in section
3 our new discontinuous Galerkin method for elliptic multiscale problems. The
well-posedness of our method is proved in section 4 and a priori error estimates for
locally periodic oscillating tensor and various coupling conditions between macro
and micro methods are given in section 5. A generalization to higher order is
discussed. Concluding remarks are given at the end of the paper in section 6.

Notations. In what follows, C, C̃ or C̄ denote generic positive constants, inde-
pendent of ε, whose values can change at any occurrence but depend only on
the quantities which are indicated explicitly. We will consider the usual Sobolev
space W s,p(Ω). For p = 2 we use the notation Hs(Ω) and H1

0 (Ω), and denote by
W 1

per(Y ) = {v ∈ H1
per(Y );

∫
Y
vdx = 0}, where Hs

per(Y ) is defined as the closure of

C∞
per(Y ) (the subset of C∞(Rd) of periodic functions in the unit cube Y = (0, 1)d)

for the Hs norm. For a matrix A ∈ R
d×d with entries aij , we denote its Frobenius

norm by ‖A‖F :=
√
trace(ATA) =

√∑
ij a

2
ij .

2. Model problem and finite element heterogeneous

multiscale method

In this section we briefly describe the homogenization problems that we consider
in this paper and we recall the (continuous) finite element heterogeneous multiscale
method (FE-HMM).

2.1. Homogenization problem. We consider the second-order elliptic problem
in a convex polygonal domain Ω ⊂ R

d, d ≤ 3,

(2.1) −∇ · (aε∇uε) = f in Ω, uε = 0 on ∂Ω,
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where we assume that the family of tensors, indexed by ε, are symmetric, satisfy
aε(x) ∈ (L∞(Ω))d×d, and are uniformly elliptic and bounded, i.e.,
(2.2)
∃λ,Λ > 0 such that λ|ξ|2 ≤ aε(x)ξ · ξ ≤ Λ|ξ|2, ∀ξ ∈ R

d, a.e. x ∈ Ω and ∀ε > 0,

where ε represents a small scale in the problem that characterizes the multiscale
nature of the tensor aε(x). We further assume that f ∈ L2(Ω). An application of
the Lax-Milgram theorem gives us a family of solutions {uε} which are bounded
in H1

0 (Ω). Without making any further assumption on the heterogeneities of the
tensor aε(x) using the notions of G − convergence introduced by De Giorgi and
Spagnolo [28]1 it is possible to show that there exists a symmetric tensor a0(x) and
a subsequence of {uε} which weakly converges to an element u0 ∈ H1

0 (Ω), where
u0 is the solution of the so-called homogenized or upscaled problem

(2.3) −∇ ·
(
a0∇u0

)
= f in Ω, u0 = 0 on ∂Ω.

It can also be shown that a0(x) (called the homogenized tensor) again satisfies
λ|ξ|2 ≤ a0(x)ξ · ξ ≤ Λ|ξ|2, ∀ξ ∈ R

d and problem (2.3) thus has a unique solution.
If aε(x) has more spatial structure, e.g., if aε(x) = a(x, x/ε) and is periodic in
its second argument, then classical results in homogenization theory (see [39], [24])
show that the whole sequence {uε} weakly converges to an element u0 ∈ H1

0 (Ω) and
the homogenized tensor a0(x) at x ∈ Ω can be characterized by a suitable average of
the solutions of d boundary value problems, the “cell problems”. In the latter case,
one has in general infinitely many cell problems to solve in order to compute the
matrix-valued function a0(x). Notice that in the above problem we have chosen zero
Dirichlet boundary conditions for simplicity. The numerical method constructed in
this paper can accommodate non-zero Dirichlet, Neumann, or mixed boundary
conditions without difficulties (with obvious changes in the bilinear form). Our
analysis also applies to these other types of boundary conditions.

2.2. The FE-HMM. A direct approach for numerical homogenization of (2.1)
which takes the fine scale tensor aε(x) as input coefficient has been recently pro-
posed in the framework of the HMM [31]. In a finite element context, the FE-HMM
was analyzed in [9], [3], [10], [32]. The method aims at capturing the homogenized
(coarse) solution of (2.1) without computing a0(x) explicitly. The method relies on
macro FEM based on quadrature points within a macro triangulation and micro
FEM defined on sampling domains centered at the quadrature points.

Macro finite element space. We consider

(2.4) S�
H(Ω, TH) = {vH ∈ H1

0 (Ω); uH |K ∈ R�(K), ∀K ∈ TH},
with macro elements K ∈ TH . We denote H = maxK∈TH

HK , where HK is the
diameter of the element K and TH is the macromesh of the domain Ω. Here H
is allowed to be much larger than ε. The polynomial space R� denotes either P�

the space of piecewise polynomials on the element K of total degree � if K is a
simplicial element (triangle if d = 2, tetrahedron if d = 3), or Q� the space of
piecewise polynomials on the element K of degree � in each variable, if K is a
quadrilateral element (quadrilateral if d = 2, hexahedron if d = 3).

1A generalization of this notion, called H-convergence has been introduced by Murat and
Tartar [43].
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Quadrature formulas. We define in each macro element K ∈ TH J macro
quadrature points xKj

and a quadrature formula (QF) {xKj
, ωKj

}Jj=1, where ωKj

are the quadrature weights. Centered around each macro quadrature point we
define a sampling domain Kδj = xKj

+ δI, where I = (−1/2, 1/2)d and δ ≥ ε.
These sampling domains are the physical domains for the micro FEMs. The QF
on K needs to be appropriately chosen to have optimal convergence results. More
precisely, for a reference element K̂ we consider a reference quadrature formula
{x̂j , ω̂j}Jj=1 and require

(Q1) ω̂j > 0, j=1, . . . , J ,
∑J

j=1 ω̂j |∇q̂(x̂j)|2≥ λ̂‖∇q̂‖2
L2(K̂)

, ∀q̂(x) ∈ R�(K̂);

(Q2)
∫
K̂
q̂(x)dx =

∑J
j=1 ω̂j q̂(x̂j), ∀q̂(x̂) ∈ Rσ(K̂), where σ = max(2� − 2, �) if

K̂ is a simplicial FE, or σ = max(2�− 1, �+ 1) if K̂ is a rectangular FE.
The quadrature weights and integration points on K ∈ TH are then given by

xKj
= FK(x̂j), ωKj

= ω̂jdet(∂FK), j = 1, . . . , J, where FK is a C1-diffeomorphism

such that K = FK(K̂).

Macro bilinear form. For vH , wH ∈ S�
H(Ω, TH) we define

(2.5) B(vH , wH) =
∑

K∈TH

J∑
j=1

ωKj

|Kδj |

∫
Kδj

aε(x)∇vhKj
· ∇wh

Kj
dx,

where vhKj
, wh

Kj
are appropriate micro-functions defined on sampling domains Kδj

(see below) and the factor |Kδj | gives the appropriate weight for the contribution
of the integrals defined on Kδj .

Micro solver. For a macro element K, consider Kδj , j = 1, . . . , J, the sampling
domains included inK. For each sampling domainKδj we consider a micromesh Th,
a partition ofKδj in simplicial or quadrilateral FEs. We then determine the additive

contribution to the macro stiffness matrix by computing micro-functions vhKj
(and

wh
Kj

) obtained by solving micro-problems on sampling domains Kδj , j = 1, . . . , J .

The micro-problems read as follows: find vhKj
such that (vhKj

−vHlin,Kj
) ∈ Sq(Kδj , Th)

and

(2.6)

∫
Kδj

aε(x)∇vhKj
· ∇zhdx = 0 ∀zh ∈ Sq(Kδj , Th),

where

(2.7) vHlin,Kj
(x) = vH(xKj

) + (x− xKj
) · ∇vH(xKj

)

is a linearization of the macro function vH at the integration point xKj
(see [6],

[32] for details) and

(2.8) Sq(Kδj , Th) = {zh ∈ W (Kδj ); zh|T ∈ Rq(T ), T ∈ Th},
where the choice of W (Kδj ) determines the coupling condition or boundary con-

ditions used for computing the micro-functions vhKj
(or wh

Kj
). Several choices are

possible for the coupling condition. We consider

(2.9) W (Kδj ) = W 1
per(Kδj ) = {v ∈ H1

per(Kδj );

∫
Kδj

vdx = 0},

for a periodic coupling or

(2.10) W (Kδj ) = H1
0 (Kδj )
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for a coupling through Dirichlet boundary conditions. We will sometimes refer to
these couplings as “periodic coupling” or “Dirichlet coupling”.

Variational problem. The macro numerical solution for the problem (2.3) is
defined by the following variational problem: find uH ∈ S�

H(Ω, TH) such that

(2.11) B(uH , vH) =

∫
Ω

fvHdx ∀vH ∈ S�
H(Ω, TH).

The primary goal of this method is to capture the effective solution u0 of (2.3).
As the method not only depends on the macromesh (of size H) but also on the
micromesh (of size h), H,h → 0 is needed for convergence. The rate at which
both meshes should be refined has been analyzed in [3]. This is crucial to have the
optimal accuracy with the smallest computational cost. As local information on
the small scale solution is available in the sampling domains Kδj ⊂ K (through the
micro-functions), a proper reconstruction in a post-processing step allows to define
an approximation of the fine scale solution uε of the equation (2.1). The accuracy
of such a reconstruction has also been analyzed in [3].

3. Discontinuous Galerkin heterogeneous multiscale method

In this section we introduce our multiscale method combining the heterogeneous
multiscale method and the interior penalty discontinuous Galerkin FEM. For sim-
plicity of the presentation we will consider simplicial piecewise linear micro and
macro finite elements. We notice that higher order FEs for the FE-HMM have been
considered and analyzed in [32], [10], [6]. Higher order FEs for the micro method on
the sampling domains can readily be used for the discontinuous Galerkin method
presented below and the analysis of [10], [6] can be carried over to the present sit-
uation with essentially no changes. However, a generalization of the method given
below is needed to accommodate higher order simplicial macro FEs or quadrilateral
FEs. This will be discussed in Section 5.4.

When considering linear macro FEs, J = 1 and hence we denote x1,K (located
at the barycenter) by xK and ω1,K = |K| by ωK . Likewise, the sampling domains
are denoted by Kδ and the micro-functions by vhK .

3.1. The interior penalty DG-FEM. For the convenience of the reader we
shortly recall the standard (single-scale) DG-FEM.

In this subsection, there are no macromeshes and micromeshes, and Th denotes
a shape-regular partition of Ω. The elements of the partition are denoted by T
here, i.e., Ω̄ =

⋃
T∈Th

T and h = maxT∈Th
hT , where hT is the size of T .2 We

denote by E the set of all open (d−1)-dimensional interfaces (faces or edges) of the
elements of Th. Since hanging nodes are permitted, elements of E will be defined as
the smallest common interfaces of neighboring elements T ∈ Th. We further denote
by Eint the set of all interior interfaces and by EB the set of all boundary interfaces.
Thus, E = Eint ∪ EB.

Let e ∈ Eint be an interface shared by two neighboring elements T+ and T−. For
a piecewise smooth function v, we denote by v+, v− its trace from within T+, T−,

2In the previous subsection and in the remaining part of the paper Th denotes the micro
triangulation of the sampling domains Kδj . This should not be confused with the mesh used in

this subsection to denote the partition of Ω.
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respectively, and define the average and the jump of v by

{v} =
1

2
(v+ + v−), �v� = v+nT+ + v−nT− ,

respectively, where nT± denotes the unit outward normal vectors on the interface
T±. Similarly, for a piecewise smooth vector-valued function q, we define the aver-
age and the jump by

(3.1) {q} =
1

2
(q1 + q2), �q� = q1 · n+ + q2 · n−,

respectively. For an interface on the boundary ∂Ω we define

{v} = v, �v� = vn and {q} = q, �q� = q · n,

where n is the unit outward normal vector on ∂Ω. Notice that the jump of a scalar
function is a vector-valued function, while the jump of a vector-valued function is
a scalar one.

Relaxing the interelement continuity requirement for a standard FE space, we
consider

Vh(Ω, Th) = {uh ∈ L2(Ω); uh|T ∈ P1(T ), ∀T ∈ Th},(3.2)

where P1(T ) is the space of linear polynomials on the triangle T . We also define
the piecewise Sobolev space

(3.3) Hk(Th) :=
∏

T∈Th

Hk(T ) = {v ∈ L2(Ω); v|T ∈ Hk(T ) ∀T ∈ Th}.

We note that Vh(Ω, Th) ⊂ H1(Th). The classical interior penalty DG-FEM can
be obtained as follows: we consider an arbitrary element T of our triangulation
Th; multiply the problem (2.1) by a smooth test function v and integrate by parts
(using aε∇uε ∈ H(div,Ω) to obtain

(3.4) −
∫
T

∇ · (aε∇uε) vdx =

∫
T

aε∇uε · ∇vdx−
∫
∂T

aε∇uε · nT vds,

where nT is the outward normal. Summing over T ∈ Th yields

(3.5)

∫
Ω

aε∇uε · ∇vdx−
∑
T∈Th

∫
∂T

aε∇uε · nT vds =

∫
Ω

fvdx

and using the above notation we can rewrite (3.5) as

(3.6)

∫
Ω

aε∇uε · ∇vdx−
∑
e∈E

∫
e

{aε∇uε} �v�ds =

∫
Ω

fvdx,

where we notice that aε∇uε ∈ H(div, T+ ∪ T−) implies aε∇uε ∈ H(div, T±) and
(aε∇uε)1nT+ + (aε∇uε)2nT− = 0. This in turn implies that

(aε∇uε)1nT+v+ + (aε∇uε)2nT−v− = {aε∇uε} �v�.

Since the exact solution of (2.1) is in H1
0 (Ω) we have �uε� = 0 and we can make the

bilinear form (3.6) symmetric by adding −
∑

e∈E
∫
e
{aε∇v} �uε�ds (assuming the

existence of a trace for aε∇v). Finally, to have a stable method one adds a penalty
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term. The finite-dimensional version leads to the interior penalty DG-FEM (see
[17]) which reads as follows: find uh ∈ Vh(Ω, Th) such that∫

Ω

aε∇uh · ∇vhdx−
∑
e∈E

∫
e

(
{aε∇uh} �vh� + {aε∇vh} �uh�

)
ds

+
∑
e∈E

∫
e

μ�uh��vh�ds =

∫
Ω

fvhdx ∀vh ∈ Vh(Ω, Th),
(3.7)

where μ = αh−1
e with α > 0 independent of the meshsizes and he is the interface

size with the aforementioned convention for hanging nodes. The last term in the
left-hand side of (3.7) is referred to as the interior penalty (IP) or stabilization
term, where μ (the penalty weighting function) penalizes the jumps of uh and vh

over the interfaces of Th.
Here and in what follows the gradient ∇ should be understood as a broken

gradient when dealing with functions discontinuous over T ∈ Th. The choice of α
is dictated by stability requirements. The analysis of this method as well as the
analysis of many other methods based on discontinuous Galerkin FE spaces for the
Laplace problem are discussed in [17].

Remark 3.1. For multiscale problems such as (2.1), in addition to the requirement
h < ε (needed for convergence which can be prohibitive in terms of computational
costs if ε is small), we also need regularity on aε to be able to define the numerical
flux aε∇vh on ∂T (existence of a trace). Such regularity on aε may not be realistic
for many problems with rough coefficients. In the method described below, the
numerical multiscale flux will only involve a piecewise constant tensor based on
a suitable average of aε on sampling domains. Thus, we avoid the issue of the
existence of traces of aε on ∂T .

3.2. The heterogeneous multiscale method based on DG-FEM. In this
section we derive a DG-HMM based on the macro DG space

VH(Ω, TH) = {uH ∈ L2(Ω); uH |K ∈ P1(K), ∀K ∈ TH},(3.8)

where P1(K) is the space of linear polynomials on the triangle K.
Since H is allowed to be much larger than ε we need to modify the bilinear

form (3.7). The first term in (3.7) can be treated as in (2.5). In what follows we
concentrate on the modeling of the macroscopic jump terms. We show that this
can be done by using only the information from the micro-problems (2.6) needed
anyway for assembling the stiffness matrix of the FE-HMM. For this purpose, we
define for each interior interface e of two elements K+,K− with sampling domains
K+

δ ,K−
δ and for an integrable function or vector-valued function ξ (ξ± = ξ|K±) an

average of multiscale fluxes as

(3.9) {ξ} =
1

2

⎛
⎜⎝ 1

|K+
δ |

∫
K+

δ

ξ+dx+
1

|K−
δ |

∫
K−

δ

ξ−dx

⎞
⎟⎠ .

For a boundary interface e ∈ EB of a triangle K with sampling domain Kδ we set

{ξ} =

⎛
⎝ 1

|Kδ|

∫
Kδ

ξdx

⎞
⎠ .
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We then define the following macro bilinear form on VH(Ω, TH)× VH(Ω, TH)

BDG(v
H , wH) =

∑
K∈TH

|K|
|Kδ|

∫
Kδ

aε∇vhK · ∇wh
Kdx−

∫
Γ

(
{aε∇vh}�wH�

+ {aε∇wh}�vH�
)
ds+

∫
Γ

μ�vH��wH�ds,(3.10)

where we used the notation ∫
Γ

· =
∑
e∈E

∫
e

·

and where vhK , wh
K are given by the solution of the micro problems (2.6) (q = 1

for piecewise linear micro FEs). Notice that for the averages {aε∇vh}, we skipped
the superscript notation K as these quantities are defined on the interface of two
elements. As in section 3.1 the penalty weighting function μ is defined by μ|e =
μe = αH−1

e , where α is a positive parameter independent of the local mesh size. We
recall that J = 1 and xKj

= xK is located at the barycenter of K and ω1,K = |K|.
In case of hanging nodes, similarly as discussed before, H|e = min{HK+ , HK−} for
an interface e between two macro elements K+,K− .

Remark 3.2. In the above formulation the micro FE space (2.8) can be of arbitrary
order. When using piecewise linear macro FEs, linear micro FEs are reasonable as
the error analysis shows that the contribution of the micro-discretization contributes
quadratically to the global error. For higher order macro FEs (see Section 5.4) higher
order micro FEs can be used provided that the regularity of the small scales allows
to take advantage of high order micro methods.

The macro solution of the DG-HMM is then defined by the following variational
problem: find uH ∈ VH(Ω, TH) such that

(3.11) BDG(u
H , vH) =

∫
Ω

fvHdx, ∀vH ∈ VH(Ω, TH).

For the implementation of the above method, the usual elementwise assembly for
FEM can be used. Expanding the unknown function uH in the basis of the macro
FE space, the solutions of the micro problems (2.6) are then constrained by the
local basis functions (we refer to [12] for details on the implementation).

Let us make some comments on this multiscale method. First, instead of solving
the fine scale problem on the whole computational domain (as required for (3.7)
since h < ε) we only solve it on sampling domains Kδ in the DG-HMM, hence
we have a significant computational saving. Second, it is not required to be able
to extend aε on ∂K (as was needed in (3.7)) as our multiscale fluxes are based
on averaged quantities. Third, the macroscale fluxes are computed with minimal
overhead using micro-functions already available from the computation of the first
term in the DG-HMM bilinear form (3.10).

4. Existence and uniqueness of a solution of the DG-HMM

In this section we first show that (3.11) has a unique solution. This can be done
with minimal assumptions on the oscillating tensor aε (of course we need uniform
boundedness and ellipticity).

First, we need to define the appropriate space for the analysis. We consider

(4.1) V (H) = VH(Ω, TH) +H1
0 (Ω) ∩H2(Ω) ⊂ H2(TH),
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with a mesh-dependent norm [17],

(4.2) |||v||| :=
(
‖∇v‖2L2(Ω) +

∑
K∈TH

H2
K |v|22,K + |v|2∗

)1/2

,

where HK denotes the size of the element H and where we used the notations

|v|2m,K =
∑

|α|=m

‖∂αv‖L2(K),

‖∇v‖2L2(Ω) =
∑

K∈TH

|v|21,K ,(4.3)

|v|2∗ =
∑
e∈E

‖μ1/2
e �v�‖2L2(e).

The function μe = αH−1
e is as previously defined. From the discrete Poincaré

inequality [16, Lemma 2.1]

(4.4) ‖v‖L2(Ω) ≤ C(‖∇v‖2L2(Ω) + |v|2∗),
we see that (4.2) is a norm on V (H). Clearly, on V (Ω, TH) the norm (4.2) reduces
to (‖∇v‖2L2(Ω) + |v|2∗)1/2. This is also a norm on V (H). The additional term in

(4.2) is needed to have stability on V (H) [17].
We show now the existence and uniqueness of the solution of (3.11), where the

micro solutions of (2.6) are constrained either by periodic or Dirichlet boundary
conditions (see (2.8)). The first lemma is an energy equivalence for the constrained
micro solutions.

Lemma 4.1. Let vH ∈ VH(Ω, TH) and let vhK be the solution of (2.6) with boundary
conditions given by (2.9) or (2.10). Assume that (2.2) holds. Then,

(4.5) ‖∇vH‖L2(Kδ) ≤ ‖∇vhK‖L2(Kδ) ≤
Λ

λ
‖∇vH‖L2(Kδ),

where λ,Λ are defined in (2.2).

Proof. See [3, Proposition 3.2]. �
Remark 4.2. The following generalization will be useful for the generalization of
the DG-HMM to higher order macro FEs. Consider vH ∈ V �

H(Ω, TH) = {vH ∈
L2(Ω); vH |K ∈ P �(K), ∀K ∈ TH}, and vhKj

the solution of (2.6) in a sampling

domain Kδj ⊂ K constrained by vHlin,Kj
(see (2.7)), then

(4.6) ‖∇vHlin,Kj
‖L2(Kδj

) ≤ ‖∇vhKj
‖L2(Kδj

) ≤
Λ

λ
‖∇vHlin,Kj

‖L2(Kδj
).

For a proof, see [6, Lemma 3]).

The next lemma is fundamental for proving the stability of the DG-HMM.

Lemma 4.3. Let vH , wH ∈ VH(Ω, TH) and let vhK , K ∈ TH be the solutions of (2.6)
constrained by vH , with boundary conditions given by (2.9) or (2.10). Assume that
(2.2) holds. Then,

(4.7)

∫
Γ

{aε∇vh}�wH�ds ≤ Cα−1/2‖∇vH‖L2(Ω)|wH |∗,

where α is the penalty parameter (see (3.10)),
∫
Γ
=

∑
E

∫
e

, and where the constant

C is independent of H,h and ε.
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Proof. Applying the Cauchy-Schwarz inequality gives

(4.8)
∑
E

∫
e

(
{aε∇vh}�wH�ds ≤ α−1/2

(∑
E

He‖{aε∇vh}‖2L2(e)

)1/2

|wH |∗.

Let e ∈ Eint. We have

‖{aε∇vh}‖2L2(e) =

d∑
i=1

1

4

∫
e

∣∣∣∣∣∣∣
1

|K+
δ |

∫
K+

δ

(aε∇vhK+)idx+
1

|K−
δ |

∫
K−

δ

(aε∇vhK−)idx

∣∣∣∣∣∣∣
2

ds

≤ C sup
x∈Ω

‖aε‖2F
∫
e

⎛
⎝ 1√

|K+
δ |

‖∇vhK+‖L2(K+
δ ) +

1√
|K−

δ |
‖∇vhK−‖L2(K−

δ )

⎞
⎠2

ds

≤ C

∫
e

(
|∇vH+ |+ |∇vH− |

)2
ds ≤ C

∫
e

(
|∇vH+ |2 + |∇vH− |2

)
ds,

where ∇vH± denotes ∇vH |K± and where we used the assumption (2.2) and Lemma
4.1. We recall that ‖ · ‖F denotes the Frobenius norm of a given matrix. The
case e ∈ EB is treated similarly. Summing over E , using the inverse inequality∫
∂K

|∇vH |2ds ≤ CH−1
K

∫
K
|∇vH |2dx, where C depends on the shape regularity

and the dimension d and HK denotes the diameter of the triangle K, we obtain

∑
e∈E

He‖{aε∇vh}‖2L2(e)ds ≤ C
∑
e∈E

∫
e

He(|∇vH+ |2 + |∇vH− |2)ds

≤ C
∑

K∈TH

HK

∫
∂K

|∇vH |2ds ≤ C
∑

K∈TH

∫
K

|∇vH |2dx = C‖∇vH‖2L2(Ω),

and the result follows. �

We can now prove the existence and uniqueness of the solution of problem (3.11).

Theorem 4.4. Assume that (2.2) holds. Then there exists a threshold value αmin

for the penalty parameter depending only on the shape regularity of the triangulation
TH , d, � and the bound in (2.2), such that for α ≥ αmin the bilinear form (3.10) is
uniformly elliptic and bounded on VH(Ω, TH) × VH(Ω, TH) and the problem (3.11)
has a unique solution in uH ∈ VH(Ω, TH) which satisfies

(4.9) |||uH ||| ≤ C‖f‖L2(Ω),

where C is independent of H,h, and ε.
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Proof. To show the uniform ellipticity of (3.10) we use (2.2), Lemmas 4.1 and 4.3,
and compute

BDG(v
H , vH) =

∑
K∈TH

|K|
|Kδ|

∫
Kδ

aε(x)∇vhK · ∇vhKdxdx

−2

∫
Γ

{(aε∇vh)}�vH�ds+

∫
Γ

μ�vH�2ds

≥ λ
∑

K∈TH

‖∇vH‖2L2(K) − 2Cα−1/2‖∇vH‖L2(Ω)|vH |∗ +
∑
e∈E

∫
e

‖μ1/2�vH�‖2L2(e)

≥ min(λ, 1)

( ∑
K∈TH

‖∇vH‖2L2(K) +
∑
e∈E

∫
e

‖μ1/2�vH�‖2L2(e)

)

−2Cα−1/2

( ∑
K∈TH

‖∇vH‖2L2(K)

)1/2 (∑
e∈E

∫
e

‖μ1/2�vH�‖2L2(e)

)1/2

≥ (min(λ, 1)− Cα−1/2)

( ∑
K∈TH

‖∇vH‖2L2(K) +
∑
e∈E

∫
e

‖μ1/2�vH�‖2L2(e)

)

= (min(λ, 1)− Cα−1/2)|||vH |||2.

This proves that the bilinear form (3.10) is uniformly elliptic, provided α is large
enough. We next show that (3.10) is bounded (independently of H,h and ε). For
that, we use again Lemmas 4.1 and 4.3, the Cauchy-Schwarz inequality and (2.2).
We obtain

|BDG(v
H , wH)| ≤ C̃

∑
K∈TH

‖∇vH‖L2(K)‖∇wH‖L2(K) + C̄α−1/2‖∇vH‖L2(Ω)|wH |∗

+ C̄α−1/2‖∇wH‖L2(Ω)|vH |∗ + |vH |∗|wH |∗

≤ max(1, C̃, C̄α−1/2)
(
‖∇vH‖L2(Ω)‖∇wH‖L2(Ω)(4.10)

+ ‖∇wH‖L2(Ω)|vH |∗ + ‖∇vH‖L2(Ω)|wH |∗ + |vH |∗|wH |∗
)

≤ C|||v||||||w|||.(4.11)

The existence and the uniqueness of the solution of (3.11) and the estimates (4.9)
now follow from the Lax-Milgram theorem. �

Remark 4.5. Notice that we have not specified the order of the micro FE method
Sq(Kδ, Th) used to solve the cell problem (2.6) in the bilinear form (3.10). We
emphasize that the results of Theorem 4.4 are valid for any q ≥ 1.

5. A priori error estimates

In this section we shall derive a priori error estimates for the DG-HMM. We
perform the analysis in two successive steps. In a first step (Section 5.2) we analyze
the contribution to the error coming from the macro and micromeshes (recall that
our DG-HMM approximation relies on macro and micro FE spaces). In a second
step (Section 5.3) we analyze the so-called modeling error, i.e., the contribution to
the error which remains when macro and micro meshsizes tend to zero.
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5.1. Preliminary results. We collect in this section several useful preliminary
results. We start by defining a numerically homogenized tensor which will be used
in the a priori analysis. Consider the Sobolev space W (Kδ) defined in (2.10) or
(2.9) and the FE space Sq(Kδ, Th) ⊂ W (Kδ) defined in (2.8). For each vector

ei, i = 1, . . . , d of the canonical basis of Rd let ψi,h
K ∈ Sq(Kδ, Th) be the solution of

the micro problem (2.6) with modified right-hand side

(5.1)

∫
Kδ

aε(x)∇ψi,h
K · ∇zhdx = −

∫
Kδ

aε(x)ei · ∇zhdx, ∀zh ∈ Sq(Kδ, Th).

We also consider the problem: find ψi
K ∈ W (Kδ) such that

(5.2)

∫
Kδ

aε(x)∇ψi
K · ∇zdx = −

∫
Kδ

aε(x)ei · ∇zdx, ∀z ∈ W (Kδ).

For the analysis of the micro problems, some regularity of the oscillating tensor
is required. As we use standard a priori results of FEMs in the sampling domain,
we will need (local) H2 regularity. However, the coefficient aε is allowed to be
discontinuous (at the macroscopic level) through smooth interfaces. We assume
that the macromesh (i.e., the interface between two neighboring elements) is aligned
with these discontinuities.

(H1) aε|K ∈ W 1,∞(K), ∀K ∈ TH and |aεij |W 1,∞(K) ≤ CKε−1 for i, j = 1, . . . , d.
In the analysis we will often use a constant C = maxK CK independent of K.

It is clear that if (H1) is valid for an initial mesh assumed to be aligned with the
possible discontinuities of aε, it is still valid (with the same value of C) for every
mesh obtained by refining the initial one.

Remark 5.1. Without any further knowledge about the structure of the oscillating
tensor aε, we will impose Dirichlet boundary conditions for (2.6) (or (5.1), (5.2)).

Assuming (H1) one can show |ψi
K |H2(Kδ) ≤ C ε−1

√
|Kδ|, with C independent of

ε and the domain Kδ (this follows from classical H2 regularity results [41, Chap.
2.6, eq. (6.23)]).

If aε = a(x, x/ε) = a(x, y) is y-periodic in a cube Y (e.g., Y = [0, 1]d) and

δ/ε ∈ N, then assuming (H1) one can show |ψi
K |H2(Kδ) ≤ C ε−1

√
|Kδ|, for

periodic boundary conditions and slow variable collocated in each sampling do-
main Kδj at the quadrature points xKj

in (5.1),(5.2) (this follows classical reg-
ularity results for solutions of periodic boundary value problems; see [21, Chap.
3]. In the locally periodic case, with fixed slow variable, higher order estimates

|ψi
K |Hq+1(Kδ) ≤ C ε−q

√
|Kδ|, q ∈ N can also be obtained provided there is appro-

priate regularity of the oscillating tensor.

We then define two tensors:

(5.3) a0K =
1

|Kδ|

∫
Kδ

aε(x)
(
I + JT

ψh
K(x)

)
dx,

where Jψh
K(x) is a d× d matrix with entries

(
Jψh

K(x)

)
i�
= (∂ψi,h

K )/(∂x�), and

(5.4) ā0K =
1

|Kδ|

∫
Kδ

aε(x)
(
I + JT

ψK(x)

)
dx,

where JψK(x) is a d× d matrix with entries
(
JψK(x)

)
i�
= (∂ψi

K)/(∂x�). We empha-

size that the tensor (5.3) is never computed explicitly in the DG-HMM and will
only be used as a tool for analysis.
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The following lemma quantifies the so-called “micro-error” and was first derived
in [3]. Recall that the measure of the sampling domain Kδ is given by |Kδ| = δd.

Lemma 5.2. Let ψi
K , ψi,h

K be the solutions of (5.1) and (5.2), respectively. For
general tensor aε(x) we assume that Dirichlet boundary conditions are used in (5.1)
and (5.2). If aε(x) = a(xK , x/ε) = a(xK , y) is y-periodic in Y, collocated in the
slow variables at the quadrature points of the sampling domain Kδj and δ/ε ∈ N,
we assume that either Dirichlet and periodic boundary conditions are used in (5.1)
and (5.2). Consider the FE space (2.8) with q = 1 and assume that (2.2) and (H1)
hold. Then

(5.5) sup
K∈TH

‖ā0K − a0K‖F ≤ C

(
h

ε

)2

,

where C is independent of h and ε.

Proof. We first define the functions ϕi
K := xi + ψi

K , ψi
K ∈ W (Kδ) and ϕi,h

K := xi +

ψi,h
K , ψi,h

K ∈ S1(Kδ, Th), and observe in view of (5.1),(5.2) that
∫
Kδ

aε (x)∇(ϕj,h
K −

ϕj
K) · ∇zh = 0, for all zh ∈ S1(Kδ, Th). We then obtain∣∣(ā0K)ij − (a0K)ij

∣∣ = ∣∣∣∣ 1

|Kδ|

∫
Kδ

(
aε(x)∇ϕj

K · ∇ϕi
K − a(x)ε∇ϕj,h

K · ∇ϕi,h
K

)
dx

∣∣∣∣
=

∣∣∣∣ 1

|Kδ|

∫
Kδ

aε (x)∇
(
ϕj,h
K − ϕj

K

)
· ∇

(
ϕi,h
K − ϕi

K

)
dx

∣∣∣∣
≤C

∣∣∣∣ 1

|Kδ|

∥∥∥∇(
ψj,h
K − ψj

K

)∥∥∥
L2(Kδ)

·
∥∥∥∇(

ψi,h
K − ψi

K

)∥∥∥
L2(Kδ)

∣∣∣∣
≤C

1

|Kδ|
h2

∣∣∣ψj
K

∣∣∣
H2(Kδ)

·
∣∣ψi

K

∣∣
H2(Kδ)

,(5.6)

where we used the symmetry of aε and the standard FE estimate [23, Thm. 3.2.2]
in the last inequality. Using (H1), the hypothesis of the lemma on the boundary
conditions and Remark 5.1 yields

(5.7)
∣∣∣ψj

K

∣∣∣
H2(Kδ)

≤ C|Kδ|1/2ε−1,

where C is independent of Kδ and ε. Inserting this inequality in (5.6) gives the
result. �

Provided higher order regularity of the solution of problem (5.2) (see Remark
5.1) we obtain the following corollary.

Corollary 5.3. In addition to (2.2) assume that ψi
K , the solution of (5.2) (with

either periodic or Dirichlet boundary conditions), satisfies

(5.8) |ψi
K |Hq+1(Kδ) ≤ C ε−q

√
|Kδ|

for a given q ∈ N with C independent of ε and the domain Kδ, then by solving (5.1)
in Sq(Kδ, Th) we obtain

(5.9) sup
K∈TH

‖ā0K − a0K‖F ≤ C

(
h

ε

)2q

.

Proof. Follows the lines of Lemma 5.2 using (5.8) instead of (5.7). �
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Notice that the expression ĥ = h/ε is independent of ε. Indeed, if we use Nmicro

elements in each space dimension for the discretization of the sampling domains,

we have h = δ/Nmicro and therefore ĥ = (δ/ε) · (1/Nmicro). Since δ scales with ε,

typically δ = Cε (with a constant C of moderate size), we have ĥ = (C/Nmicro).
The following two lemmas allow us to give a reformulation of the DG-HMM.

Lemma 5.4. Let vhK , wh
K be the solutions of (2.6) constrained by vH , wH ∈

VH(Ω, TH) with boundary conditions given by (2.9) or (2.10). Then

1

|Kδ|

∫
Kδ

aε(x)∇vhK · ∇wh
Kdx =

1

|K|

∫
K

a0K∇vH · ∇wHdx.

Proof. The proof is similar to (A.1) in [9, App. A] (see also formula (63) in [6]). We
first notice that the solution vhK or wh

K of the micro problem (2.6) can be written
as

(5.10) vhK (x) = vH (x) +

d∑
i=1

ψi,h
K (x)

∂vH (x)

∂xi
,

where the functions ψi,h
K are defined above. Using this formula and noting that vhK

and wh
K solve the problem (2.6), and that ∇vH ,∇wH are constant, we see that

1

|Kδ|

∫
Kδ

aε (x)∇vhK · ∇wh
Kdx

=
1

|Kδ|

∫
Kδ

aε (x)

(
∇vH +

d∑
i=1

∇ψi,h
K (x)

∂vH (x)

∂xi

)
· ∇wHdx

=
1

|Kδ|

∫
Kδ

aε (x)
(
I + JT

ψh
K(x)

)
∇vH · ∇wHdx,

=
1

|K|

∫
K

a0K∇vH · ∇wHdx,(5.11)

where we used the definition (5.3). �

Corollary 5.5. Let vhK be the solution of (2.6) constrained by vH ∈ VH(Ω, TH)
with boundary conditions given by (2.9) or (2.10). Then

1

|Kδ|

∫
Kδ

aε(x)∇vhKdx =
1

|K|

∫
K

a0K∇vHdx = a0K∇vH .

Proof. Follows the lines of Lemma 5.4. �

Lemma 5.6. Let K+,K− ∈ TH having a common interface e. Let vhK± be the

solution of (2.6) in K+,K−, respectively, constrained by vH ∈ V 1
H(Ω, TH) with

boundary conditions given by (2.9) or (2.10). Then,

(5.12) ‖{aε∇vh}‖L2(e) = ‖{a0K∇vH}‖L2(e).

Proof. We have

‖{aε∇vh}‖2L2(e) =
1

4

∫
e

∣∣∣∣∣∣∣
1

|K+
δ |

∫
K+

δ

(aε∇vhK+)dx+
1

|K−
δ |

∫
K−

δ

(aε∇vhK−)dx

∣∣∣∣∣∣∣
2

ds.
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Inserting ∇vhK± = ∇vH± +
∑d

i=1 ∇ψi,h
K± (x)

∂vH
± (x)

∂xi
and using Corollary 5.5 gives

‖{aε∇vh}‖2L2(e) =
1

4

∫
e

∣∣a0K+∇vH+ + a0K−∇vH−
∣∣2 ds,

where vH± = vH |K± . Taking the square root of the right-hand side of the above
equality gives (5.12). �

The reformulation of the DG-HMM (3.10) read as follows.

Proposition 5.7. Let vH , wH ∈ VH(Ω, TH) × VH(Ω, TH). Then (3.10) can be
written as

BDG(v
H , wH) =

∑
K∈TH

∫
K

a0K∇vH · ∇wHdx−
∫
Γ

(
{a0K∇vH}�wH�

+ {a0K∇wH}�vH�
)
ds+

∫
Γ

μ�vH��wH�ds.(5.13)

Proof. Follows for Lemmas 5.4 and 5.6. �

Standard IP discontinuous Galerkin for the homogenized problem. Con-
sider the homogenized problem (2.3). We note that the error analysis of the macro
FE-HMM (see [3], [6], [32]) relies on convergence rates for FEM with numerical in-
tegration [23]. While well documented for FEM, the effect of numerical quadrature
in DG-FEM has, to the best of our knowledge, not been analyzed for elliptic prob-
lems with variable coefficients. Such results (for single scale elliptic problems) have
yet to be derived. As this is not the focus of our paper and to avoid dealing with
numerical quadrature for standard DG-FEM, we assume the following structure
assumption on the oscillating tensor

(H2) aε = a(x, x/ε) = a(x, y) is Y -periodic in y, and for K ∈ TH a(·, y)|K is
constant, where Y = (0, 1)d. A consequence of (H2) is that the homogenized tensor
a0 will be piecewise constant in any K ∈ TH (this follows from classical periodic
homogenization see e.g., [24]). We note that an assumption as (H2) has been
been used by many authors for the analysis of multiscale method [15], [35], [36],
[45]. We emphasize that results derived for single scale DG-FEM with numerical
integration could be readily used in the analysis developed in this paper and the
above assumption could be relaxed to standard local periodicity, i.e, a(x, y) is Y -
periodic in y and smooth in x. Smoothness of the homogenized tensor in K will
still be needed to have a well-defined trace for a0 when using standard DG-FEM
as, e.g., the requirement for a0ij(x) to be Lipschitz continuous inside any K ∈ TH .
The local periodicity assumption is also essential for the analysis of the FE-HMM
[3], [32].

We now define for vH , wH ∈ VH(Ω, TH)× VH(Ω, TH) the usual IP discontinuous
Galerkin method with piecewise constant coefficients in each K ∈ TH denoted by
a0(xK) (recall that xK is the quadrature node in K).

BDG,0(v
H , wH) =

∑
K∈TH

∫
K

a0(xK)∇vH · ∇wHdx−
∫
Γ

(
{a0∇vH}�wH�

+ {a0∇wH}�vH�
)
ds+

∫
Γ

μ�vH��wH�,(5.14)
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where for an interface e of K+,K−, we have

{a0∇vH} =
1

2

(
a0(xK+)∇vH(xK+) + a0(xK−)∇vH(xK−)

)
.

We notice that with our assumption on a0 (induced by (H2)), the above bilinear
form is well defined on V (H) × V (H). The coercivity of (5.14) in VH(Ω, TH) ×
VH(Ω, TH) and the boundedness on V (H)× V (H) can be established following the
results in [17]. We denote by u0,H the solution of the problem

(5.15) BDG,0(u
0,H , vH) =

∫
Ω

fvHdx, ∀vH ∈ VH(Ω, TH).

5.2. A-priori estimates: macro an micro errors. In this section we derive our
main results: an optimal a priori convergence rate for the DG-HMM in the ||| · |||
and the L2 norm. Following the framework of the error analysis for the FE-HMM
[6] we decompose the error in

(5.16) |||u0 − uH ||| ≤ |||u0 − u0,H |||+ |||u0,H − uH |||,
where u0 is the solution of (2.3), u0,H is the solution of (5.15) and uH is the solution
of (3.11).

The first term on the right-hand side of (5.16) is the macro error and is related
to the macro solver and the error induced by the macroscopic triangulation. This
error can be estimated in a standard way (see below). The second term in the
right-hand side of (5.16) will further be decomposed in modeling and micro errors
(see (5.21)). The micro error is related to the error introduced by solving (2.6) in
a micro FE space while the modeling error quantifies how well the coarse graining
procedure captures the effective solution of the multiscale problem (see Section 5.3).

Macro error. The term |||u0 − u0,H ||| can be estimated following classical a priori
error analysis for IP discontinuous Galerkin method applied to (2.3). The conver-
gence rates read (see [17]):

Lemma 5.8. Let u0, u0,H be the solutions of (2.3) and (5.15), respectively. Assume
that (2.2) and (H2) hold, and that u0 ∈ H2(Ω). Then

|||u0 − u0,H ||| ≤ CH,(5.17)

‖u0 − u0,H‖L2(Ω) ≤ CH2.(5.18)

Remark 5.9. It is well known that with piecewise discontinuous coefficients the
solution u0 of (2.3) may not be in H2(Ω) and the above convergence rate may
deteriorate (see [30] for convergence results for the IP DG-FEM with discontinuous
coefficients). This possible deterioration of the convergence rate is an issue for
standard FEM (or DG-FEM) applied to (the single scale) problem (2.3) and does
not constitute a limitation specific to our multiscale strategy.

Micro error. We start with a Strang type lemma. From

C|||u0,H − uH |||2 ≤ BDG,0(u
0,H − uH , u0,H − uH)

= BDG(u
H , u0,H − uH)−BDG,0(u

H , u0,H − uH),

we deduce that

(5.19) |||u0,H − uH ||| ≤ C sup
vH∈VH(Ω,TH)

|BDG(u
H , vH)−BDG,0(u

H , vH)|
|||vH ||| .
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Lemma 5.10. Let uH and u0,H be the solutions of (3.11) and (5.15), respectively.
Assume that (2.2) and (H2) hold. Then we have

(5.20) |||u0,H − uH ||| ≤ C sup
K∈TH

‖a0(xK)− a0K‖F |||uH |||,

where the constant C is independent of H,h and ε.

Proof. We have

|BDG(u
H , vH)−BDG,0(u

H , vH)| ≤
∣∣∣∣∣ ∑
K∈TH

∫
K

(
a0(xK)− a0K

)
∇uH · ∇vHdx

∣∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣
∫
Γ

(
{
(
a0(xK)− a0K

)
∇uH}�vH� + {

(
a0(xK)− a0K

)
∇vH}�uH�

)
ds

∣∣∣∣ .︸ ︷︷ ︸
I2

The expression I1 can be bounded as

I1 ≤ sup
K∈TH

‖a0(xK)− a0K‖F ‖∇uH‖L2(Ω)‖∇vH‖L2(Ω).

Following the proof of the Lemma 4.3 we can estimate the expression I2 as

I2 ≤ Cα−1/2 sup
K∈TH

‖a0(xK)− a0K‖F |||uH ||| |||vH |||.

Using the above estimates and (5.19) gives the result. �

In view of (5.20) we consider the decomposition,

(5.21) sup
K∈TH

‖a0(xK)− a0K‖F ≤ sup
K∈TH

‖a0(xK)− ā0K‖F︸ ︷︷ ︸
errmod

+ sup
K∈TH

‖ā0K − a0K‖F︸ ︷︷ ︸
errmic

,

where ā0K is defined in (5.4) and corresponds to a tensor similar to a0K but using
exact micro functions. Hence, the second term of the right-hand side of (5.21)
corresponds to the error introduced by the micro FEM and the first term mea-
sures how accurate our modeling of the micro problems is when compared to the
homogenized tensor. The micro error has been estimated in Lemma 5.2 and reads

(5.22) sup
K∈TH

‖ā0K − a0K‖F ≤ C

(
h

ε

)2

.

We can now state our first a priori result. As for Lemma 5.2, we assume in the
following theorem that periodic or Dirichlet boundary conditions are used for the
micro problems (2.6) if the locally periodic tensor aε is such that δ/ε ∈ N, and that
Dirichlet boundary conditions are used otherwise.
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Theorem 5.11. Let u0, uH be the solutions of (2.3) and (3.11), respectively. As-
sume that (2.2), (H1) and (H2) hold, and that u0 ∈ H2(Ω). Then3

|||u0 − uH ||| ≤ C

(
H +

(
h

ε

)2

+ sup
K∈TH

‖a0(xK)− ā0K‖F

)
,(5.23)

‖u0 − uH‖L2(Ω) ≤ C

(
H2 +

(
h

ε

)2

+ sup
K∈TH

‖a0(xK)− ā0K‖F

)
,(5.24)

where C is independent of H,h and ε.

Proof. Follows from the decomposition (5.16), Lemmas 5.2, 5.8 and 5.10. �

Corollary 5.12. Assume in addition to the hypothesis of Theorem 5.11 that (5.8)

hold, then we can replace the terms
(
h
ε

)2
in the above theorem by

(
h
ε

)2q
.

Complexity. The convergence rates derived in Theorem 5.11 allow us to study the
complexity of the DG-HMM. First, we notice that errmod = supK∈TH

‖a0(xK) −
ā0K‖F which appears in (5.23) and (5.24) is a quantity independent of the dis-

cretization parameters H,h (see Section 5.3). Second, we recall that ĥ = h/ε is
independent of ε and, when using Nmicro elements in each space dimension for the

discretization of the sampling domains, we have ĥ = (C/Nmicro) (as δ scales with
ε). Let us denote by Mmicro the number of degrees of freedom (DOF) of a micro
FEM in a sampling domain. We have

Mmicro = Nd
micro = Cĥ−d.

To quantify the complexity of the numerical method, we also define Nmacro, the
number of macroscopic elements in each space dimension, hence, H = C/Nmacro.
Then, the total macroscopic degrees of freedom is given by

Mmacro = Nd
macro = CH−d.

Next, we rewrite (5.23) and (5.24) in terms of macro and micro DOF. We obtain

|||u0 − uH ||| ≤ C
(
M

−1
d

macro +M
−2q
d

micro + errmod

)
,(5.25)

‖u0 − uH‖L2(Ω) ≤ C
(
M

−2
d

macro +M
−2q
d

micro + errmod

)
.(5.26)

In the periodic case, when δ/ε ∈ N, then errmod = 0 (see Section 5.3) and the above
convergence rates show that our method is robust, i.e., converges independently of
ε. Assuming that the complexity is proportional to the total number of DOF
(e.g., by using a multigrid solver for the linear system) and in view of the error
estimates (5.25),(5.26), the total cost of the DG-HMM is Mα1

macro × ·Mα2
micro, where

α1, α2 depend on the error norm and the type of FEs. In contrast, the memory
requirement is only proportional to Mmacro +Mmicro, because the micro problems
are independent of one another and thus can be solved one at a time. For example,
when d = 2 and when using piecewise linear FEs for the macro and the micro
method we can choose Mmicro = Mmacro (L2 norm) and Mmicro =

√
Mmacro (H1

norm), and we have optimal convergence rates with a total of M2
macro and M

3/2
macro

DOF for the L2 and the H1 norm, respectively.

3Compared with previous results [11, Thm. 4.5], where linear micro convergence rates were
obtained, we see in Theorem 5.11 that we are able to get quadratic micro convergence rates.
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We note that, in general, we have superlinear complexity in the macro degrees of
freedom for the DG-HMM (as for the FE-HMM). Observe that we have nevertheless
achieved a considerable computational saving, as solving the fine scale problem
with the standard DG method (3.7) would imply a complexity of O(ε−d). In
special cases, for example, when the tensor only depends on a fast variable (e.g.,
aε = a(x/ε)), the micro problem can be done once and we have a linear complexity.
The issue of the superlinear overall complexity has been addressed for the FE-
HMM in [10] for locally periodic coefficients, where near optimal computational
complexity has been achieved by combining a FEM for the macroscopic solver with
a pseudo-spectral method for the micro solver. Such type of micro solvers could
also be used for the DG-HMM. We also emphasize that the DG-HMM is trivial to
parallelize as the cell problems can be computed independently.

Small scale recovery. The primary goal of the DG-HMM, given the oscillatory
problem (2.1), is to approximate the solution of the homogenized or upscaled prob-
lem (2.3). While uH converges to the solution uε of (2.3) in the L2 norm, a
convergence of uH to uε in the energy or H1 norm is not guaranteed in general.
Indeed, the oscillations of uε introduce O(1) perturbations in the gradient which
are not captured by uH . The same behavior holds for the homogenized solution u0

of (2.3).
An approximation of the gradient of uε can nevertheless be obtained from the

known macroscopic numerical solution uH and the known microscopic solutions in
the sampling domains computed during the assembly process of the DG-HMM. By
extending periodically the known solution uh

K in Kδ on K as

up,ε(x) := uH(x) + (uh
K − uH)(x− [x]Kδ

) for all x ∈ K ∈ TH ,

where for x ∈ R
d, [x]Kδ

∈ δZd is such that x − [x]Kδ
∈ Kδ, we obtain a fine scale

approximation defined (piecewise) in each macro domain K (see [3], [6] for details).
This procedure has first been analyzed for the continuous FE-HMM in [32] (semi-
discrete case) and [3] (fully-discrete case). Assuming a smooth locally periodic
tensor and periodic boundary conditions for the micro solver (with a sampling
domain covering an integer number of the period in each spatial direction) we have

‖uε − up,ε‖H̄1(Ω) ≤ C(H +
h

ε
+
√
ε),(5.27)

where H̄1(Ω) denotes a broken norm ‖u‖H̄1(Ω) := (
∑

K∈TH
‖∇u‖2L2(K))

1/2 as up,ε(x)

can be discontinuous across the macro elements K (see [3, Thm 3.11]).

5.3. A priori estimates: modeling error. In this section we analyze the so-
called modeling error, i.e., the term supK∈TH

‖a0(xK)− ā0K‖F in Theorem 5.11 (see
also (5.16) and (5.21)). We recall that under assumption (H2) the homogenized
tensor a0 can be computed explicitly for x ∈ Ω as

(5.28) a0ij(x) =

∫
Y

(
aij(x, y) +

d∑
k=1

aik(x, y)
∂χj(x, y)

∂x

)
dy, i, j = 1, . . . , d,

where the functions χj(·, y) are the solutions of the cell problem [20]

(5.29)

∫
Y

a(x, y)∇χj(x, y)∇zdy = −
∫
Y

a(x, y)ej∇zdy, ∀z ∈ W 1
per(Y ),
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where ej is the j-th basis vector of Rd. In view of (H2), the “slow variable” x here
only depends on the macro elements K ∈ TH .

We shall now distinguish two cases. First, we consider periodic boundary con-
ditions for the micro problems and second, Dirichlet boundary conditions. Thanks
to the framework developed in this paper, we can use for the modeling error of the
DG-HMM the results obtained for the continuous FE-HMM (see [32], [3], [9], or [6]
for a review).

5.3.1. Periodic boundary conditions. We assume that S1(Kδ, Th) ⊂ W 1
per(Kδ). In

this case we suppose that δ/ε ∈ N, i.e., the sampling domain covers an integer
number of the exact period of the tensor a(x, ·).

Theorem 5.13. Let u0, uH be the solutions of (2.3) and (3.11), respectively, where
the micro problems (2.6) are solved using periodic boundary conditions (2.9). As-
sume δ/ε ∈ N and that the hypotheses of Theorem 5.11 hold. Then

|||u0 − uH ||| ≤ C

(
H +

(
h

ε

)2
)
,(5.30)

‖u0 − uH‖L2(Ω) ≤ C

(
H2 +

(
h

ε

)2
)
,(5.31)

where C is independent of H,h and ε.

Proof. Consider, for a given K ∈ TH , ā0K defined in (5.4) with aε(x) = a(x, x/ε) =
a(x, y) (Y periodic in the y variable). As the tensor is constant in the x variable
within each element K ∈ TH , using the change of variable y = x/ε and the period-
icity in the fast variable y, we see (compare (5.2) with (5.29)) that ā0K(x) is equal
to the tensor a0(x)|K defined in (5.28). This proves the theorem. �

Remark 5.14. For a more general tensor aε = a(x, x/ε) = a(x, y), Y -periodic in y
and not necessarily constant in the slow variable within a macro element K, the
results of Theorem 5.13 for the modeling error are still valid, provided that we
collocate the slow variable of the oscillating tensor at the barycenter xK in the
DG-HMM bilinear form, i.e., provided that a(xK , x/ε) is used in each sampling
domain Kδ instead of a(x, x/ε) in the bilinear form (3.11). Without collocating the
slow variable, we have an additional error term proportional to δ (see [6]).

5.3.2. Dirichlet boundary conditions. Here we assume that δ > ε and S1(Kδ, Th) ⊂
H1

0 (Kδ). In this situation δ/ε ∈ N is no longer required.

Theorem 5.15. Let u0, uH be the solutions of (2.3) and (3.11), respectively, where
the micro problems (2.6) are solved using Dirichlet boundary conditions (2.10).
Assume that the hypotheses of Theorem 5.11 hold. Then

|||u0 − uH ||| ≤ C

(
H +

(
h

ε

)2

+
ε

δ

)
,(5.32)

‖u0 − uH‖L2(Ω) ≤ C

(
H2 +

(
h

ε

)2

+
ε

δ

)
,(5.33)

where C is independent of H,h and ε.
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Proof. We have to estimate supK∈TH
‖a0(xK) − ā0K‖F where periodic boundary

conditions are used for a0(xK) and Dirichlet boundary conditions are used for ā0K .
The bound ‖a0(xK)− ā0K‖F ≤ C( εδ ) is deduced from [32, Thm 3.2]. �

Remark 5.16. For a more general tensor aε = a(x, x/ε) = a(x, y), Y -periodic in y
and not necessarily constant in the slow variable within a macro element K, the
results of Theorem 5.13 are still valid with an additional error term proportional
to δ, i.e., a modeling error of the form δ + ε

δ . This is precisely the modeling error
obtained in [32, Thm 3.2].

5.4. Higher order DG-HMM. In this section we explain how to extend the
DG-HMM to higher order FEs. We consider

(5.34) V �
H(Ω, TH) = {vH ∈ L2(Ω); vH |K ∈ P�(K), ∀K ∈ TH},

where P�(K) is defined as in Section 2.2. Let {x̂j , ω̂j}Jj=1 be a QF defined on

the reference element K̂. While for the analysis we will use hypothesis (H2) (see
Section 5.1), we present the algorithm for general tensors. We notice that for
simplicial FEs, the assumption (Q2) on the QF (see Section 2.2) implies (Q1).
Recall next, assuming (Q2), that the QF {x̂j , ω̂j}Jj=1 based on J points is required
to be exact for polynomial of degree 2�−2 if � > 1. It is easy to see that the bounds
J ≥ (1/2)�(� + 1) (d = 2) and J ≥ (1/6)�(� + 1)(� + 2) (d = 3) hold. We notice
that some well-known QF minimize the aforementioned inequality in the following
sense:

J =
1

2
�(�+ 1), d = 2, J =

1

6
�(�+ 1)(�+ 2), d = 3.(5.35)

For a general discussion on the aforementioned condition we refer to [46] and for
examples of QF formula, we refer, e.g., to [34, Chap. 8]. It is clear that the
condition (5.35) is desirable as it minimizes the number of quadrature points in
the DG-HMM and thus reduces the computational cost (recall that the number of
quadrature points is related to the number of micro problems that need to be solved
in each macro element). In the analysis below we will assume that (5.35) holds.
The algorithm itself described below for higher order macro elements (DG-HMM)
can be generalized for QF which do not satisfy (5.35) but the analysis would involve
additional technicalities.

Higher order fluxes. For the above QF and every K ∈ TH , consider the J
micro-functions vhKj

, solutions of (2.6) on the J sampling domains Kδj centered

at xKj
. We then consider the interpolation polynomial in (P�−1(K))d denoted by

Πaε∇vh
K
(x) such that

(5.36) Πaε∇vh
K
(xKj

) =
1

|Kδj |

∫
Kδj

aε∇vhKj
dx, j = 1, . . . , J.

We note that for v ∈ C0(K), assuming (Q2), the following interpolation problem
has a unique solution: find Πv(x)∈(P�−1(K))d s.t. Πv(xKj

)=v(xKj
), j=1, . . . , J.

Using Corollary 5.5 (for each sampling domain) we see that

(5.37) Πaε∇vh
K
(xKj

) = a0Kj
∇vH(xKj

), j = 1, . . . , J,
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where a0Kj
is defined as in (5.3) for the sampling domain Kδj . Similarly to (3.9) we

define for each interior interface e of two triangles K+,K− an average by

(5.38) {Πaε∇vh}(s) = 1

2

(
Πaε∇vh

K+
(s) + Πaε∇vh

K−
(s)

)
,

and

{Πaε∇vh}(s) = Πaε∇vh
K
(s),

where s ∈ e for a boundary interface e ∈ EB of a macro element K. When denoting
the average {Πaε∇vh} we skip the subscript K for the function vh as the average
involves the domain K+ ∪K−.

We then define the following macro bilinear form on V �
H(Ω, TH)× V �

H(Ω, TH)

BDG(u
H , vH) =

∑
K∈TH

J∑
j=1

ωKj

|Kδj |

∫
Kδj

aε(x)∇uh
Kj

· ∇vhKj
dx−

∫
Γ

(
{Πaε∇uh}�vH�

+ {Πaε∇vh}�uH�
)
ds+

∫
Γ

μ�uH��vH�ds,(5.39)

where uh
Kj

, vhKj
are given by the solution of the micro problems (2.6) in the micro

FE space Sq(Kδj , Th). The penalty weighting function μ is defined as in (3.10).
Notice that the parameter α depends on the polynomial degree of the macro FE
space (see [33] for a discussion on this topic). Similarly to (3.11) the macro problem
reads: find uH ∈ V �

H(Ω, TH) such that

(5.40) BDG(u
H , vH) =

∫
Ω

fvHdx, ∀vH ∈ V �
H(Ω, TH).

Remark 5.17. Observe that for piecewise linear polynomials, i.e., � = 1 the defini-
tions (5.38) and (5.39) coincide with (3.9) and (3.10).

Existence and uniqueness. We start with the following generalization of Lemma
4.3.

Lemma 5.18. Let vH , wH ∈ V �
H(Ω, TH) and let vhKj

, j = 1, . . . , J, K ∈ TH be the

solutions of (2.6) constrained by vHlin,Kj
with boundary conditions given by (2.9) or

(2.10). Assume that (2.2) and (H2) hold and that the QF formula satisfies (Q2).
Then

(5.41)

∫
Γ

{Πaε∇vh}�wH�ds ≤ Cα−1/2‖∇vH‖L2(Ω)|wH |∗,

where α is the penalty parameter (see (3.10)) and where the constant C is indepen-
dent of H,h and ε.

Proof. By hypothesis (H2), the tensor a0Kj
=: a0K is constant in each K ∈ TH ,

thus, using (5.37) we have Πaε∇vh
K
(xKj

) = a0K∇vH(xKj
). Then in view of (4.6)

and (5.37), the proof of Lemma 5.18 is obtained by following the lines of Lemma
4.3. �

Using Lemma 5.18 we obtain the existence and uniqueness of a solution uH ∈
V �
H(Ω, TH) of the problem (5.40) by following the lines of Theorem 4.4.
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A priori error estimates. We define by Πa0
K∇vH the polynomial in (P �−1(K))d

defined by

(5.42) Πa0
K∇vH (xKj

) = a0Kj
∇vH(xKj

), j = 1, . . . , J

and

(5.43) {Πa0
K∇vH}(s) = 1

2

(
Πa0

K+∇vH (s) + Πa0
K−∇vH (s)

)
.

In view of (5.37) we see that

(5.44) Πaε∇vh
K
(s) = Πa0

K∇vH (s) and thus {Πaε∇vh} = {Πa0
K∇vH}.

Then, similarly to (5.13), the DG-HMM bilinear form (5.39) can be reformulated
as

BDG(u
H , vH) =

∑
K∈TH

J∑
j=1

ωKj
a0Kj

∇uH(xKj
) · ∇vH(xKj

)dx

−
∫
Γ

(
{Πa0

K∇uH}�vH� + {Πa0
K∇vH}�uH�

)
ds+

∫
Γ

μ�uH��vH�ds.(5.45)

We recall the decomposition

(5.46) |||u0 − uH ||| ≤ |||u0 − u0,H |||+ |||u0,H − uH |||,
where u0 is the solution of (2.3), u0,H is the solution of (5.15) in V �

H(Ω, TH) and
uH is the solution of (5.40).

As previously, using (H2) (i.e., a0Kj
=: a0K for all j = 1, . . . , J), the macro error

can be estimated by standard results ([17]) and we obtain

|||u0 − u0,H ||| ≤ CH�,(5.47)

‖u0 − u0,H‖L2(Ω) ≤ CH�+1,(5.48)

provided that the solution u0 of (2.3) is regular enough. For the micro error and
the modeling error, we notice that the estimates previously derived only depend
on the average of micro problems in sampling domains or analogously on (5.3),
(5.4). In view of the reformulation (5.45) of the DG-HMM the results derived for
piecewise linear macro FEM can be generalized mutatis mutandis to higher order
macro FEM. In particular, following the lines of the proof of Lemma 5.10, assuming
the hypotheses of Lemma 5.18, we obtain

(5.49) |||u0,H − uH ||| ≤ C sup
K∈TH

‖a0(xK)− a0K‖F |||uH |||,

where the constant C is independent of H,h and ε. Considering then the decom-
position (5.21), we obtain

|||u0 − uH ||| ≤ C

(
H� +

(
h

ε

)2q

+ sup
K∈TH

‖a0 − ā0K‖F

)
,(5.50)

‖u0 − uH‖L2(Ω) ≤ C

(
H�+1 +

(
h

ε

)2q

+ sup
K∈TH

‖a0 − ā0K‖F

)
,(5.51)

which follow from (5.47),(5.48),(5.51),(5.9). We recall that the value of q depends on
the regularity of the micro problem (5.1) and the structure of the oscillating tensor
aε. In the above estimate we have also assumed the regularity u0 ∈ H�+1(Ω).
For discontinuous coefficients the regularity of the solution may not allow to take
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advantage of high order macro FEs (see Remark 5.9). For smooth solutions if
u0 ∈ Hk+1, then the macroscopic order of convergence is (as usual) proportional
to Hmin(�,k) (||| ||| norm) and is proportional to Hmin(�,k)+1 (L2 norm). Finally, the
last contribution to the error ‖a0 − ā0K‖F in (5.50) and (5.51) can be estimated
similarly as in section 5.3.

6. Conclusion

In this paper we have presented a fully discrete analysis of the DG-HMM first
introduced in [6]. We have analyzed the method under various coupling conditions
between the macro and micro solvers and presented the algorithm for a general
oscillating tensor. We have derived optimal L2 and H1 a priori error estimates.
The framework that we introduced for the analysis allows for generalization to ran-
dom tensor. Partial results for the FE-HMM with random coefficients have been
obtained in [32, Thm. 1.3] (for dimensions d = 1 and d = 3). These results
could be used to estimate the modeling error for the DG-HMM with a homoge-
neous, ergodic random tensor. The macroscopic error can be estimated following
the analysis of this paper (for this class of problems, the homogenized tensor is
constant). Other regularity assumptions than used in this paper might, however,
be necessary to analyze the microscopic error. Recently, fully discrete results have
been obtained for the FE-HMM applied to parabolic problems [14]. It would be
interesting to extend these results for the DG-HMM. As the mass matrix is block
diagonal for the DG method applied to parabolic problems, one could combine the
DG-HMM with explicit stabilized methods [8], [2] in time to obtain an explicit
coarse-grained algorithm for parabolic homogenization problems. Finally, we note
that a generalization of our method to advection-diffusion problems is of high in-
terest. A multiscale method based on the FE-HMM has already been proposed in
[4]. However, it is well known that in the advection-dominated regime, continuous
FEM exhibit poor stability properties due to non-physical oscillations, polluting the
numerical solution. Approximations with DG methods have usually much better
stability properties and the analysis of DG-FEMs for such single scale problems
has attracted much attention in the past few years (see [38] and the references
therein). We think that the method developed in this paper is also promising for
such problems.
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