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Abstract. The paper is devoted to the analysis of the discontinuous Galerkin finite ele-
ment method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary
convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General
nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretiza-
tion of diffusion terms are considered. The main attention is paid to the impact of the
Neumann boundary condition prescribed on a part of the boundary on the truncation error
in the approximation of the nonlinear convective terms. The estimate of this error allows
to analyse the error estimate of the method. The results obtained represent the completion
and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim.
26 (2005), 349–383, where the truncation error in the approximation of the nonlinear con-
vection terms was proved only in the case when the Dirichlet boundary condition on the
whole boundary of the computational domain was considered.

Keywords: nonlinear convection-diffusion equation, mixed Dirichlet-Neumann condi-
tions, discontinuous Galerkin finite element method, method of lines, nonconforming
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1. Introduction

During last ten years, the discontinuous Galerkin (DG) method has become a

very popular technique for the solution of partial differential equations. DG method

is based on piecewise polynomial discontinuous approximations. For a survey on

DG methods, see [4] or [5]. There exist several DG techniques for the discretiza-

tion of linear elliptic boundary value problems (see [2]). Among them the interior

*This work is a part of the research project MSM 0021620839. It was also partly supported
by the grant No. 201/08/0012 of the Grant Agency of the Czech Republic.
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penalty Galerkin (IPG) methods are very popular. They are based on the so-called

primal formulation leading, for example, to the SIPG (symmetric interior penalty

Galerkin), NIPG (nonsymmetric interior penalty Galerkin), and IIPG (incomplete in-

terior penalty Galerkin) methods. These techniques were applied to elliptic problems

(see, e.g., [15], [20], [25]), parabolic problems (e.g., [1], [19]), and to the convection-

diffusion problems with linear convection (e.g., [16], [6], [21], [22], [24]).

In our recent papers [7], [10], [9] we applied the IPG methods to a scalar nonsta-

tionary convection-diffusion equation with nonlinear Lipschitz continuous convective

terms. This equation represents a model problem for the solution of the system of

the compressible Navier-Stokes equations which describes the flow of viscous com-

pressible fluids. In order to deal with nonlinear convective terms, the concept of the

so-called numerical flux was employed for the approximation of “convective bound-

ary” integrals.

Based on some assumptions on the numerical flux, on the regularity of the exact

solution, and the regularity of computational meshes we derived a priori error esti-

mates. In papers [7] and [9], in the formulation of the initial-boundary value problem

the mixed Dirichlet-Neumann boundary conditions were considered. However, the

reader can recognize that in the basic paper [7], the proof of the truncation error in

nonlinear convective terms was carried out in the case when the Dirichlet boundary

condition is prescribed on the whole boundary of the computational domain. The

technique developed does not allow the straightforward extension of our results to

problem, where the Neumann boundary condition is prescribed on a part of the

boundary.

In this paper we remove this drawback and analyze the IPG methods for nonlinear

convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions.

In Section 2 the initial-boundary value problem is formulated. In Section 3 we intro-

duce its discretization by IPG methods. Section 4 contains the numerical analysis of

these methods. First, we recall some results from our earlier papers and extend them

by replacing a rather limiting assumption on the computational mesh, used e.g. in [7]

in the case of nonconforming triangulations with hanging nodes. The main attention

is paid to the consistency analysis of the convection form under the assumption that

the mixed Dirichlet-Neumann boundary conditions are used. Finally, a priori error

estimates are established. Several concluding remarks are given in Section 5.
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2. Continuous problem

Let us consider the nonstationary nonlinear convection-diffusion problem: Find

u : QT = Ω × (0, T ) → R such that

a)
∂u

∂t
+

d
∑

s=1

∂fs(u)

∂xs
= ε∆u + g in QT ,(2.1)

b) u|∂ΩD×(0,T ) = uD,

c) ε
∂u

∂n

∣

∣

∣

∂ΩN×(0,T )
= gN ,

d) u(x, 0) = u0(x), x ∈ Ω.

We assume that Ω ⊂ Rd, d = 2, 3, is a bounded polygonal (if d = 2) or polyhedral (if

d = 3) domain with Lipschitz-continuous boundary ∂Ω = ∂ΩD∪∂ΩN , ∂ΩD∩∂ΩN =

∅ and T > 0. The diffusion coefficient ε > 0 is a given constant, g : QT → R,

uD : ∂ΩD × (0, T ) → R, gN : ∂ΩN × (0, T ) → R, and u0 : Ω → R are given functions,

fs ∈ C1(R), s = 1, . . . , d, are prescribed inviscid fluxes. Without loss of generality

we assume that fs(0) = 0, s = 1, . . . , d. In this paper we consider the case, when the

(d − 1)-dimensional measures of ∂ΩD and ∂ΩN are positive.

Using the techniques treated for example in [23], it is possible to show that under

some assumptions on the data there exists a unique weak solution of problem (2.1).

In the theory of error estimates we shall assume a suitable regularity of the solution

(specified later in (4.1)).

We shall use the standard notation of function spaces. If p ∈ [1,∞], k ∈ {1, 2, . . .}
and G ⊂ Rd, d = 2, 3, is a bounded domain with Lipschitz-continuous boundary, then

we shall use the notation Lp(G) and Lp(∂G) for the Lebesgue spaces over G and ∂G,

respectively. The symbol Hk(G) (= W k,2(G)) will denote the Sobolev spaces. By

| · |Hk(G) we denote the seminorm in Hk(G). The symbol Lp(0, T ; X) will denote the

Bochner space of functions in the interval (0, T ) with values in a Banach space X .

Further, C([0, T ]; X) will denote the space of continuous mappings of the interval

[0, T ] into X . (See, e.g., [17].)

3. Discretization

3.1. Finite element mesh

Let Th be a partition of the closure Ω of the domain Ω into a finite number

of closed d-dimensional simplices (triangles for d = 2 and tetrahedra for d = 3)

with pairwise disjoint interiors. We shall call Th a triangulation of Ω. We do not

require the standard properties of Th used in the finite element method. This means
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that we admit the so-called hanging nodes (and in 3D also hanging edges). In

our further considerations we use the following notation. For an element K ∈ Th

we set hK = diam(K), h = max
K∈Th

hK . By ̺K we denote the radius of the largest

d-dimensional ball inscribed intoK and by |K| we denote the d-dimensional Lebesgue

measure of K.

Let K, K ′ ∈ Th. We say that K and K ′ are neighbours, if the set ∂K ∩ ∂K ′

has positive (d − 1)-dimensional measure. We say that Γ ⊂ K is a face of K, if

it is a maximal connected nonempty open subset either of ∂K ∩ ∂K ′, where K ′ is

a neighbour of K, or of ∂K ∩ ∂Ω. By Fh we denote the system of all faces of all

elements K ∈ Th. Further, we define the set of all inner faces by

(3.1) FI
h = {Γ ∈ Fh : Γ ⊂ Ω},

and the sets of all Dirichlet and Neumann boundary faces by

(3.2) FD
h = {Γ ∈ Fh : Γ ⊂ ∂ΩD} and FN

h = {Γ ∈ Fh : Γ ⊂ ∂ΩN}.

Obviously, Fh = FI
h ∪ FD

h ∪ FN
h . We denote FID

h = FI
h ∪ FD

h and FB
h = FD

h ∪ FN
h .

For each Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈ FB
h

the normal nΓ has the same orientation as the outer normal to ∂Ω. For each face

Γ ∈ FI
h the orientation of nΓ is arbitrary but fixed. See Fig. 1. Finally, by d(Γ) we

denote the diameter of Γ ∈ Fh.

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8

Figure 1. Example of elements Kl, l = 1, . . . , 5, and faces Γl, l = 1, . . . , 7, with the corre-
sponding normals nΓl

.
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3.2. Spaces of discontinuous functions

Over a triangulation Th we define the broken Sobolev spaces

(3.3) Hk(Ω, Th) = {v : v|K ∈ Hk(K) ∀K ∈ Th}

equipped with the seminorm

(3.4) |v|Hk(Ω,Th) =

(

∑

K∈Th

|v|2Hk(K)

)1/2

.

For each face Γ ∈ FI
h there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th such that

Γ ⊂ ∂K
(L)
Γ ∩ ∂K

(R)
Γ . We use the convention that nΓ is the outer normal to the

elementK
(L)
Γ and the inner normal to the elementK

(R)
Γ , see Fig. 2. For v ∈ H1(Ω, Th)

and Γ ∈ FI
h we introduce the following notation:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ,(3.5)

v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ =
1

2

(

v|(L)
Γ + v|(R)

Γ

)

,

[v]Γ = v|(L)
Γ − v|(R)

Γ .

The value [v]Γ depends on the orientation of nΓ, but the value [v]ΓnΓ is independent

of this orientation.

K
(L)
Γ

K
(R)
Γ

Γ

~nΓ

Figure 2. Interior face Γ, elements K
(L)
Γ and K

(R)
Γ , and the orientation of nΓ.

Now, let Γ ∈ FB
h and let K

(L)
Γ ∈ Th be such an element that Γ ⊂ K

(L)
Γ ∩ ∂Ω. For

v ∈ H1(Ω, Th) we set

(3.6) vΓ = v|(L)
Γ = v|(R)

Γ = the trace of v|
K

(L)
Γ

on Γ

(i.e. we define v|(R)
Γ by extrapolation).
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If [·]Γ and 〈·〉Γ appear in an integral
∫

Γ
. . . dS, where Γ ∈ Fh, we omit the sub-

script Γ and write simply [·] and 〈·〉.
As we have already mentioned in Introduction, the DGFEM is based on the use

of discontinuous piecewise polynomial approximations. Let p > 1 be an integer.

The approximate solution will be sought in the space of discontinuous piecewise

polynomial functions

(3.7) Shp = {v : v|K ∈ P p(K), ∀K ∈ Th},

where P p(K) denotes the space of all polynomials on K of degree 6 p.

3.3. Discontinuous Galerkin space semidiscretization

Now we shall introduce a space DG semidiscretization of problem (2.1). To this

end, we denote by (·, ·) the scalar product in the space L2(Ω), i.e.

(3.8) (u, ϕ) =

∫

Ω

uϕdx, u, ϕ ∈ L2(Ω),

and define the following forms for functions u, ϕ ∈ H2(Ω, Th):

ah(u, ϕ) =
∑

K∈Th

∫

K

ε∇u · ∇ϕdx(3.9)

−
∑

Γ∈FI
h

∫

Γ

ε〈∇u〉 · n[ϕ] dS − θ
∑

Γ∈FI
h

∫

Γ

ε〈∇ϕ〉 · n[u] dS

−
∑

Γ∈FD
h

∫

Γ

ε∇u · nϕdS − θ
∑

Γ∈FD
h

∫

Γ

ε∇ϕ · nu dS,

Jh(u, ϕ) =
∑

Γ∈FI
h

∫

Γ

σ[u][ϕ] dS +
∑

Γ∈FD
h

∫

Γ

σuϕdS,(3.10)

lh(ϕ)(t) =

∫

Ω

g(t)ϕdx(3.11)

− θ
∑

Γ∈FD
h

∫

Γ

ε∇ϕ · nuD(t) dS + ε
∑

Γ∈FD
h

∫

Γ

σuD(t)ϕdS,

bh(u, ϕ) = −
∑

K∈Th

∫

K

d
∑

s=1

fs(u)
∂ϕ

∂xs
dx(3.12)

+
∑

Γ∈FI
h

∫

Γ

H
(

u|(L)
Γ , u|(R)

Γ , nΓ

)

[ϕ]Γ dS

+
∑

Γ∈FB
h

∫

Γ

H
(

u|(L)
Γ , u|(L)

Γ , nΓ

)

ϕ|(L)
Γ dS.
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The forms ah and Jh represent here the discretization of the diffusion term and the

interior and boundary penalty. We choose θ = 1 or θ = 0 or θ = −1 and speak of

the SIPG or IIPG or NIPG, respectively, version of the discretization of the diffusion

terms. By σ we denote a suitable positive weight, which will be defined in Section 4.

The form bh approximates the convective terms with the aid of a numerical flux

H(u, v, n). We assume that H has the following properties:

Assumptions (H):

(H1) H(u, v, n) is defined in R2 × B1, where B1 = {n ∈ Rd : |n| = 1}, and is
Lipschitz-continuous with respect to u, v:

|H(u, v, n) − H(u∗, v∗, n)| 6 LH(|u − u∗| + |v − v∗|),(3.13)

u, v, u∗, v∗ ∈ R, n ∈ B1.

(H2) H(u, v, n) is consistent :

(3.14) H(u, u, n) =

d
∑

s=1

fs(u)ns, u ∈ R, n = (n1, . . . , nd) ∈ B1.

(H3) H(u, v, n) is conservative:

(3.15) H(u, v, n) = −H(v, u,−n), u, v ∈ R, n ∈ B1.

By virtue of assumptions (H1) and (H2), Lf = 2LH is a Lipschitz-continuity

constant of the functions fs, s = 1, . . . , d.

Similarly to [7] or [10] we can show that a sufficiently regular exact solution u of

problem (2.1) satisfies the identity

(∂u(t)

∂t
, ϕh

)

+ bh(u(t), ϕh) + ah(u(t), ϕh) + εJh(u(t), ϕh) = lh(ϕh) (t)(3.16)

for all ϕh ∈ Shp and for a.e. t ∈ (0, T ).

On the basis of (3.16) we introduce the discrete problem: We say that uh is a

DGFE solution of the convection-diffusion problem (2.1), if

a) uh ∈ C1([0, T ]; Shp),(3.17)

b)
(∂uh(t)

∂t
, ϕh

)

+ bh(uh(t), ϕh) + ah(uh(t), ϕh) + εJh(uh(t), ϕh)

= lh(ϕh)(t) ∀ϕh ∈ Shp, ∀ t ∈ (0, T ),

c) uh(0) = u0
h,
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where u0
h ∈ Shp is the L2(Ω)-projection of the initial condition u0 onto Shp, i.e. a

function defined by

(3.18) (u0
h − u0, ϕh) = 0 ∀ϕh ∈ Shp.

4. Error analysis

4.1. Assumptions

We shall assume that the weak solution u of problem (2.1) is regular, namely

(4.1) u ∈ L2(0, T ; Hr+1(Ω)),
∂u

∂t
∈ L2(0, T ; Hr(Ω)),

where r > 1 is an integer. Then

(4.2) u ∈ C([0, T ]; Hr(Ω))

and it is possible to show that u satisfies the identity (3.16).

In our further consideration we shall use the notation

(4.3) µ = min(p, r).

We shall consider a regular system {Th}h∈(0,h0), h0 > 0, of triangulations of the

domain Ω. This means that there exists a constant CT > 0 such that

(4.4)
hK

̺K
6 CT ∀K ∈ Th ∀h ∈ (0, h0).

4.2. Some auxiliary results

In the analysis of the DGFEM we use the following important tools (see, e.g., [7]).

• Multiplicative trace inequality: There exists a constant CM > 0 independent

of v, h, and K such that

‖v‖2
L2(∂K) 6 CM (‖v‖L2(K)|v|H1(K) + h−1

K ‖v‖2
L2(K)),(4.5)

K ∈ Th, v ∈ H1(K), h ∈ (0, h0).

• Inverse inequality: There exists a constant CI > 0 independent of v, h, and K

such that

(4.6) |v|H1(K) 6 CIh
−1
K ‖v‖L2(K), v ∈ P p(K), K ∈ Th, h ∈ (0, h0).
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Now, for v ∈ L2(Ω) we denote by Πhpv the L2(Ω)-projection of v to Shp:

(4.7) Πhpv ∈ Shp, (Πhpv − v, ϕh) = 0 ∀ϕh ∈ Shp.

It is possible to show (cf., e.g., [14, Lemma 4.1]) that the operator Πhp has the

following property: There exists a constant CA > 0 independent of h, K, v such that

‖Πhpv − v‖L2(K) 6 CAhµ+1
K |v|Hµ+1(K),(4.8)

|Πhpv − v|H1(K) 6 CAhµ
K |v|Hµ+1(K),

|Πhpv − v|H2(K) 6 CAhµ−1
K |v|Hµ+1(K)

for all v ∈ Hµ+1(K), K ∈ Th and h ∈ (0, h0).

Because of our further considerations we introduce the norm in the spaceH1(Ω, Th)

defined by

(4.9) ‖w‖DG =
(1

2
(|w|2H1(Ω,Th) + Jh(w, w))

)1/2

.

An important step in the analysis of error estimates is the coercivity of the form

(4.10) Ah(u, v) = ah(u, v) + εJh(u, v), u, v ∈ H2(Ω, Th),

which reads

(4.11) Ah(ϕh, ϕh) > ε‖ϕ‖2
DG, ϕ ∈ Shp, h ∈ (0, h0).

The validity of estimate (4.11) depends on the definition of the weight σ in the

form Jh.

(I) Conforming mesh Th. We assume that the mesh Th has the standard

properties from the finite element method (cf., e. g. [3]): if K, K ′ ∈ Th, K 6= K ′, then

K ∩K ′ = ∅ or K ∩ K ′ is a common vertex or K ∩ K ′ is a common edge (or K ∩K ′

is a common face in the case d = 3) of K and K ′. In this case one usually sets

(4.12) σ|Γ =
CW

d(Γ)
, Γ ∈ Fh.

It was shown in [7] and [11] that (4.11) holds under the following choice of the

constant CW :

CW > 0 (e.g. CW = 1) for NIPG,(4.13)

CW > 4CM (1 + CI) for SIPG,

CW > 2CM (1 + CI) for IIPG,

where CM and CI are constants from (4.5) and (4.6), respectively.
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(II) Nonconforming mesh Th. In this case Th is formed by closed triangles

with mutually disjoint interiors with hanging nodes and/or hanging edges (in 3D) in

general. It is suitable to define the weight σ by

σ|Γ =
2CW

h
K

(L)
Γ

+ h
K

(R)
Γ

, Γ ∈ FI
h ,(4.14)

σ|Γ =
CW

h
K

(L)
Γ

, Γ ∈ FB
h ,

and consider the local quasi-uniformity of the system {Th}h∈(0,h0): there exists a

constant CH such that

(4.15) hK 6 CHhK′ , K, K ′ ∈ Th are neighbours, h ∈ (0, h0).

(Obviously CH > 1.) Then (4.11) holds provided

CW > 0 (e.g. CW = 1) for NIPG,(4.16)

CW > 2CM (1 + CI)(1 + CH) for SIPG,

CW > CM (1 + CI)(1 + CH) for IIPG.

See [11].

On the basis of the above considerations, using the technique from [7] and [13],

we can prove that there exist positive constants Ca and CJ such that for any v ∈
Hµ+1(Ω), ϕh ∈ Shp and h ∈ (0, h0) we have

|ah(Πhpv − v, ϕh)| 6 εCahµ|v|Hµ+1(Ω)‖ϕh‖DG,(4.17)

Jh(Πhpv − v, ϕh) 6 Jh(Πhpv − v, Πhpv − v)1/2Jh(ϕh, ϕh)1/2,(4.18)

|Jh(Πhpv − v, Πhpv − v)| 6 CJh2µ|v|2Hµ+1(Ω).(4.19)

In what follows, for the exact solution u of problem (2.1) and the approximate

solution uh defined by (3.17) we set

(4.20) η = u − Πhpu, ξ = Πhpu − uh.

Then the error eh = u − uh of the method (3.17) can be written as

(4.21) eh = η + ξ.
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Under the regularity assumptions (4.1), in virtue of (4.8) and (4.19) we have

‖η(t)‖L2(Ω) 6 Chµ+1|u(t)|Hµ+1(Ω),(4.22)

‖η(t)‖DG 6 Chµ|u(t)|Hµ+1(Ω), t ∈ [0, T ], h ∈ (0, h0),
∥

∥

∥

∂η(t)

∂t

∥

∥

∥

L2(Ω)
6 Chµ

∣

∣

∣

∂u(t)

∂t

∣

∣

∣

Hµ(Ω)
, a.e. t ∈ (0, T ), h ∈ (0, h0).(4.23)

4.3. Consistency analysis of the convection form bh

We shall be concerned with the consistency of the form bh in the case of a nonempty

Neumann part ∂ΩN of the boundary ∂Ω. We start with several auxiliary results.

Lemma 1. There exists a vector-valued function ϕ ∈ [W 1,∞(Ω)]d such that

(4.24) ϕ · n > 1 on ∂Ω.

P r o o f. By [17] or [18], it follows from the Lipschitz-continuity of ∂Ω that there

exist numbers α, β > 0 and Cartesian coordinate systems

Xr = (xr,1, . . . , xr,d−1, xr,d)
T = (x′

r, xr,d)
T ,

Lipschitz-continuous functions

(4.25) ar : ∆r = {x′
r = (xr,1, . . . , xr,d−1)

T : |xr,i| < α, i = 1, . . . , d − 1} → R

with a Lipschitz constant L > 0, and orthogonal transformations Ar : Rd → Rd,

r = 1, . . . , m, such that

(4.26) ∀x ∈ ∂Ω ∃ r ∈ {1, . . . , m} ∃x′
r ∈ ∆r : x = A−1

r (x′
r , ar(x

′
r)),

and under the notation

V̂ +
r = {(x′

r, xrd) : ar(x
′
r) < xrd < ar(x

′
r) + β, x′

r ∈ ∆r},(4.27)

V̂ −
r = {(x′

r, xrd) : ar(x
′
r) − β < xrd < ar(x

′
r), x′

r ∈ ∆r},
Λ̂r = {(x′

r, xrd) : xrd = ar(x
′
r), x′

r ∈ ∆r},

we have

(4.28) V̂ +
r ⊂ Ar(Ω), Λ̂r ⊂ Ar(∂Ω), V̂ −

r ⊂ Ar(R
d \ Ω), ∂Ω ⊂

m
⋃

r=1

Ur,
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where the sets Ur are defined by the relations

(4.29) Ûr = V̂ +
r ∪ Λ̂r ∪ V̂ −

r , Ur = A−1
r (Ûr).

The mappings Ar can be written in the form

(4.30) Ar(x) = Qrx + x0
r , x ∈ R

d,

where x0
r ∈ Rd and Qr are orthogonal d × d matrices, i.e. QrQ

T
r is the unit matrix.

Then the transformation of d-dimensional vectors x ∈ Rd reads

(4.31) y ∈ R → Qry ∈ R.

The sets Ur are open. There exists an open set U0 such that

(4.32) U0 ⊂ Ω, Ω ⊂
m
⋃

r=0

Ur.

By the theorem on partition of unity ([17]), there exist functions ϕr ∈ C∞
0 (Ur),

r = 0, . . . , m, such that 0 6 ϕr 6 1 and

(4.33)

m
∑

r=0

ϕr(x) = 1 for x ∈ Ω and

m
∑

r=1

ϕr(x) = 1 for x ∈ ∂Ω.

Since the functions ar are Lipschitz-continuous in ∆r, they are differentiable al-

most everywhere in ∆r, i.e. there exists the gradient

(4.34) ∇ar(x
′
r) =

( ∂ar

∂xr,1
(x′

r), . . . ,
∂ar

∂xr,d−1
(x′

r)
)T

for a.e. x′
r ∈ ∆r,

and

(4.35) |∇ar| 6 L a.e. in ∆r, r = 1, . . . , m.

(Here a.e. is meant with respect to the (d − 1)-dimensional measure.) Then there

exists a unit outer normal

(4.36) nr(x
′
r , ar(x

′
r)) =

1
√

1 + |∇ar(x′
r)|2

(∇ar(x
′
r),−1)

to ∂V̂ +
r for a.e. Xr = (x′

r , ar(x
′
r)) ∈ Λ̂r (with respect to the (d − 1)-dimensional

measure defined on Λ̂r—cf. [17]) and

(4.37) n(x) = Q
T
r nr(Ar(x)), a.e. x ∈ ∂Ω, Ar(x) ∈ Λ̂r,

is the unit outer normal to ∂Ω.
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Setting ed = (0, . . . , 0,−1)T ∈ Rd, we get by (4.34) and (4.35)

(4.38) nr(Xr) · ed =
1

√

1 + |∇ar(x′
r)|2

>
1√

1 + L2
, Xr ∈ Λ̂r, r = 1, . . . , m.

In virtue of the orthogonality of Qr, for a.e. x ∈ ∂Ω, with Ar(x) ∈ Λ̂r, we have

n(x) · (QT
r ed) = (QT

r nr(Ar(x))) · (QT
r ed)(4.39)

= (QT
r nr(Ar(x)))T (QT

r ed)

= (nr(Ar(x))T
Qr)(Q

T
r ed)

= nr(Ar(x)) · ed >
1√

1 + L2
, r = 1, . . . , m.

Now we define a function ϕ by

(4.40) ϕ(x) =
√

1 + L2

m
∑

r=1

ϕr(x)QT
r ed, x ∈ R

d.

Obviously, ϕ ∈ [C∞
0 (Rd)]d and, thus, ϕ ∈ [W 1,∞(Ω)]d. Moreover, by (4.33), (4.39),

and (4.40),

ϕ(x) · n(x) >

m
∑

r=1

ϕr(x) = 1, x ∈ ∂Ω.

�

Now we shall prove a “global version” of the multiplicative trace inequality.

Lemma 2. There exists a constant C′
M > 0 such that

‖v‖2
L2(∂Ω) 6 C′

M

{

‖v‖DG

(

‖v‖2
L2(Ω) +

∑

K∈Th

hK‖v‖2
L2(∂K)

)1/2

+ ‖v‖2
L2(Ω)

}

,(4.41)

v ∈ H1(Ω, Th), h ∈ (0, h0).

P r o o f. Let v ∈ H1(Ω, Th), h ∈ (0, h0), and K ∈ Th. Let ϕ ∈ [W 1,∞(Ω)]d be

the function from Lemma 1. Starting from functions belonging to C∞(K), using

Green’s theorem, the density of C∞(K) in H1(K), and the theorem on traces, we

find that ∫

∂K

v2
ϕ · ndS =

∫

K

(v2 div ϕ + 2vϕ · ∇v) dx.

This implies that

(4.42)

∫

∂Ω

v2
ϕ · ndS +

∑

Γ∈FI
h

∫

Γ

[v2]ϕ · ndS =
∑

K∈Th

∫

K

(v2 div ϕ + 2vϕ · ∇v) dx.
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In view of (4.24) and (4.42),

∫

∂Ω

v2 dS 6

∫

∂Ω

v2
ϕ · ndS

6
∑

K∈Th

∫

K

|v2 div ϕ + 2vϕ · ∇v| dx +
∑

Γ∈FI
h

∫

Γ

|[v2]||ϕ| dS.

Taking into account that ϕ ∈ [W 1,∞(Ω)]d and using the Cauchy inequality, we find

that

‖v‖2
L2(∂Ω) 6 ‖ϕ‖[W 1,∞(Ω)]d

(

∑

Γ∈FI
h

∫

Γ

|[v2]| dS(4.43)

+ ‖v‖2
L2(Ω) + 2

∑

K∈Th

‖v‖L2(K)|v|H1(K)

)

.

Further, let us consider the case (II) from Section 4.2 of nonconforming meshes. In

the case (I) we can proceed similarly. In view of (3.10) and (4.15), we have

∑

Γ∈FI
h

∫

Γ

|[v2]| dS = 2
∑

Γ∈FI
h

∫

Γ

|[v]〈v〉| dS(4.44)

6 2

(

∑

Γ∈FI
h

∫

Γ

σ[v]2 dS

)1/2(
∑

Γ∈FI
h

∫

Γ

σ−1〈v〉2 dS

)1/2

6 C
−1/2
W (1 + CH)1/2Jh(v, v)1/2

(

∑

K∈Th

hK‖v‖2
L2(∂K)

)1/2

.

Now, using (4.43), (4.44) and the Cauchy inequality, we get

‖v‖2
L2(∂Ω) 6 ‖ϕ‖[W 1,∞(Ω)]d

{

C
−1/2
W (1 + CH)1/2Jh(v, v)1/2

(

∑

K∈Th

hK‖v‖2
L2(∂K)

)1/2

+ ‖v‖2
L2(Ω) + 2‖v‖L2(Ω)|v|H1(Ω,Th)

}

,

which implies (4.41) with C′
M =

√
2 max{C−1/2

W (1 + CH), 2}‖ϕ‖[W 1,∞(Ω)]d . �

Now we shall apply the above results to the derivation of the consistency estimate

of the form bh. This form can be expressed as

(4.45) bh(w, v) = bID
h (w, v) + bN

h (w, v),
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where

bID
h (w, v) = −

∑

K∈Th

∫

K

d
∑

s=1

fs(w)
∂v

∂xs
dx(4.46)

+
∑

Γ∈FI
h

∫

Γ

H
(

w|(L)
Γ , w|(R)

Γ , nΓ

)

[v]Γ dS

+
∑

Γ∈FD
h

∫

Γ

H
(

w|(L)
Γ , w|(L)

Γ , nΓ

)

v|(L)
Γ dS

and, due to (3.14),

bN
h (w, v) =

∑

Γ∈FN
h

∫

Γ

H
(

w|(L)
Γ , w|(L)

Γ , nΓ

)

v|(L)
Γ dS(4.47)

=
∑

Γ∈FN
h

∫

Γ

d
∑

s=1

fs

(

w|(L)
Γ

)

nsv|(L)
Γ dS.

We are interested in the estimation of the expression

(4.48) bh(u, ξ) − bh(uh, ξ) = (bID
h (u, ξ) − bID

h (uh, ξ)) + (bN
h (u, ξ) − bN

h (uh, ξ)).

Using the same process as in [13], we get

(4.49) |bID
h (u, ξ) − bID

h (uh, ξ)| 6 CD‖ξ‖DG(hµ+1|u|Hµ+1(Ω) + ‖ξ‖L2(Ω)),

where CD is independent of u and h.

It remains to estimate the second term on the right-hand side of (4.48).

Lemma 3. If the exact solution u satisfies conditions (4.1), then

|bN
h (u, ξ) − bN

h (uh, ξ)|(4.50)

6 CN (h2µ+1|u|2Hµ+1(Ω) + ‖ξ‖DG‖ξ‖L2(Ω) + ‖ξ‖2
L2(Ω)),

where µ = min(p, r) and CN is a constant independent of u, uh, and h.

P r o o f. By (4.47), (3.13), (3.14), the Cauchy and Young’s inequalities, and the

relation u − uh = η + ξ,

|bN
h (u, ξ) − bN

n (uh, ξ)| 6 CL‖u − uh‖L2(∂ΩN )‖ξ‖L2(∂ΩN )(4.51)

6 CL‖u − uh‖L2(∂Ω)‖ξ‖L2(∂Ω)

6 CL

(1

2
‖η‖2

L2(∂Ω) +
3

2
‖ξ‖2

L2(∂Ω)

)

with CL = 2LH .
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By (4.5) and (4.8),

(4.52)
∑

K∈Th

‖η‖2
L2(∂K) 6 2CMC2

Ah2µ+1|u|2Hµ+1(Ω).

Since

‖η‖2
L2(∂Ω) 6

∑

K∈Th

‖η‖2
L2(∂K),

we have

(4.53) ‖η‖2
L2(∂Ω) 6 C∗h2µ+1|u|2Hµ+1(Ω)

with C∗ = 2CMC2
A.

Now we shall estimate ‖ξ‖2
L2(∂Ω) according to Lemma 2. Taking into account that

ξ ∈ Shp and using inequalities (4.5) and (4.6), we find that

∑

K∈Th

hK‖ξ‖2
L2(∂K) 6 CM

∑

K∈Th

hK(‖ξ‖L2(K)|ξ|H1(K) + h−1
K ‖ξ‖2

L2(K))(4.54)

6 CM (1 + CI) ‖ξ‖2
L2(Ω).

Hence, in view of (4.41) and (4.54), we have

‖ξ‖2
L2(∂Ω) 6 C′

M{(C1/2
M (1 + CI)

1/2 + 1)‖ξ‖DG‖ξ‖L2(Ω) + ‖ξ‖2
L2(Ω)}(4.55)

6 C∗∗(‖ξ‖DG‖ξ‖L2(Ω) + ‖ξ‖2
L2(Ω)),

where C∗∗ = C′
M (C

1/2
M (1 + CI)

1/2 + 1). Finally, (4.51), (4.53), and (4.55) yield

estimate (4.50) with CN = 1
2CL max{C∗, 3C∗∗}, which we wanted to prove. �

4.4. Error estimates

On the basis of the above results we prove now error estimates of the DGFEM

applied to the nonstationary nonlinear convection-diffusion problem with mixed

Dirichlet-Neumann boundary conditions.

Theorem 1. Let assumptions (H) and (4.4) be satisfied. Let u be the exact

solution of problem (2.1) satisfying conditions (4.1) and let uh be the numerical

solution obtained by method (3.17), where the weight σ from the penalty terms

and the constant CW satisfy the conditions discussed in (I) and (II) of Section 4.2.

Then there exists a constant C > 0 independent of h ∈ (0, h0) such that the error

eh = u − uh satisfies the estimate

(4.56) max
t∈[0,T ]

‖eh(t)‖2
L2(Ω) + ε

∫ T

0

‖eh(ϑ)‖2
DG dϑ 6 Ch2µ, h ∈ (0, h0).
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P r o o f. For simplicity, in the proof we shall denote by c a positive generic

constant attaining, in general, different values at different places. It is independent

of h, ε but depends on constants appearing in the previous lemmas. We use again

the notation ξ = Πhpu − uh ∈ Shp and η = u − Πhpu. Then eh = u − uh = ξ + η. If

we subtract (3.17) b) from (3.16), set ϕh := ξ, and use (4.11) and the relation

(∂ξ(t)

∂t
, ξ(t)

)

=
1

2

d

dt
‖ξ(t)‖2

L2(Ω),

we get

1

2

d

dt
‖ξ(t)‖2

L2(Ω) + ε‖ξ(t)‖2
DG(4.57)

6 bh(uh(t), ξ(t)) − bh(u(t), ξ(t)) −
(∂η(t)

∂t
, ξ(t)

)

− ah(η(t), ξ(t))

− εJh(η(t), ξ(t)) for a.e. t ∈ (0, T ).

Now we estimate the individual terms on the right-hand side of (4.57). By (4.48),

(4.49), (4.50), and Young’s inequality, we have (we omit the argument t)

|bh(uh, ξ) − bh(u, ξ)|(4.58)

6
3

2
αε‖ξ‖2

DG + c
(

1 +
1

ε

)

h2µ+1|u|2Hµ+1(Ω) + c
(

1 +
1

ε

)

‖ξ‖2
L2(Ω),

where α > 0 will be chosen later and c > 0 is a constant depending on α.

Further, using the relation

(4.59)
∂η

∂t
=

∂u

∂t
− Πhp

∂u

∂t
,

conditions (4.1) and (4.8) with µ := µ − 1, we get

∣

∣

∣

(∂η

∂t
, ξ

)∣

∣

∣
6 CA hµ

∣

∣

∣

∂u

∂t

∣

∣

∣

Hµ(Ω)
‖ξ‖L2(Ω)(4.60)

6
1

2
CA

(

h2µ
∣

∣

∣

∂u

∂t

∣

∣

∣

2

Hµ(Ω)
+ ‖ξ‖2

L2(Ω)

)

.

By (4.17)–(4.19), and Young’s inequality, we get

(4.61) |ah(η, ξ)| + ε|Jh(η, ξ)| 6 αε‖ξ‖2
DG + ch2µ|u|2Hµ+1(Ω),

where α > 0 is a constant from (4.58) and c > 0 is a constant depending on α, Ca,

and CJ .
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Choosing now α = 1/5, from (4.57)–(4.61) we get

d

dt
‖ξ‖2

L2(Ω) + ε‖ξ‖2
DG(4.62)

6 ch2µ
((

1 +
1

ε

)

|u|2Hµ+1(Ω) +
∣

∣

∣

∂u

∂t

∣

∣

∣

2

Hµ(Ω)

)

+ c
(

1 +
1

ε

)

‖ξ‖2
L2(Ω).

The integration from 0 to t ∈ [0, T ], the relation ξ(0) = Πhpu(0) − uh(0) = 0, and

the application of Gronwall’s lemma yield the estimate

‖ξ(t)‖2
L2(Ω) + ε

∫ t

0

‖ξ(ϑ)‖2
DG dϑ(4.63)

6 C̃h2µ
(

‖u‖2
L2(0,T ;Hµ+1(Ω)) +

∥

∥

∥

∂u

∂t

∥

∥

∥

2

L2(0,T ;Hµ(Ω))

)

, t ∈ [0, T ],

where C̃ is a positive constant independent of h, u, uh, but depending on ε.

Finally, the inequalities

‖eh‖2
L2(Ω) 6 2(‖η‖2

L2(Ω) + ‖ξ‖2
L2(Ω)),

‖eh‖2
DG 6 2(‖η‖2

DG + ‖ξ‖2
DG),

together with estimates (4.63) and (4.22) imply (4.56), which we wanted to prove.

�

5. Concluding remarks

In this paper we are concerned with the analysis of an error estimate in the

L∞(L2)- and L2(H1)-norms of the discontinuous Galerkin method applied to the

space semi-discretization of a nonstationary convection-diffusion problem with linear

diffusion and nonlinear convection and mixed Dirichlet-Neumann boundary condi-

tions on nonconforming meshes.

Combining our results with the technique from [12], we can easily extend the

estimates obtained to the case of nonlinear convection as well as diffusion. Moreover,

it is possible to extend error estimates of the full space-time discretization proved

in [8] to the case of the mixed boundary conditions and simplicial meshes.

There are still some open problems:

• analysis of optimal error estimates in the L∞(L2)-norm in the case of a weak

regularity of the exact solution, which is a consequence of nonconvexity of the

domain Ω and/or the use of mixed Dirichlet-Neumann boundary conditions,
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• analysis of optimal error estimates for problems with nonlinear convection and
diffusion,

• analysis of error estimates of the DGFEM applied to problems with mixed
boundary conditions on nonstandard meshes, used in [10] and [8].
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