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SUMMARY

A Discontinuous Galerkin (DG) method with solenoidal approximation for the simulation of
incompressible flow is proposed. It is applied to the solution of the Stokes equations. The Interior
Penalty Method is employed to construct the DG weak form. For every element, the approximation
space for the velocity field is decomposed as direct sum of a solenoidal space and an irrotational space.
This allows to split the DG weak form in two uncoupled problems: the first one solves for the velocity
and the hybrid pressure (pressure along the mesh edges) and the second one allows the computation of
the pressure in the element interior. Furthermore, the introduction of an extra penalty term leads to
an alternative DG formulation for the computation of solenoidal velocities with no presence of pressure
terms. Pressure can then be computed as a post-process of the velocity solution. Numerical examples
demonstrate the applicability of the proposed methodologies. Copyright c© 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Research in Finite Element Methods for the numerical solution of problems with
incompressibility constraints has been very active in the last decades. These problems have
a large number of applications ranging from the simulation of incompressible fluids to the
solution of the Maxwell’s equations in electrodynamic problems. An interesting alternative is
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to use explicit divergence-free bases in order to solve problems with incompressibility. Crouzeix
and Raviart in [1] were the first to construct divergence-free elements in order to eliminate
the pressure in the final equation. They used triangular conforming and non-conforming
elements where the incompressibility condition was only approximately satisfied. Griffiths
in [2] proposed an element level divergence-free basis for several finite element schemes on
triangular and quadrilateral elements. Nevertheless, a major limitation of these techniques is
that continuous and weakly divergence-free (or discretely divergence-free following the notation
of [3]) approximation spaces are difficult to generalize for higher order approximations.

More recently, several authors have focused their attention in Discontinuous Galerkin (DG)
formulations for computational fluid dynamics [4], and in particular for the Stokes equations
[5, 6, 7]. The attractiveness of DG is mainly due to its stability properties in convection
dominated problems, its efficiency for high-order computations, which allows hp-adaptive
refinement, and local conservation properties. Moreover, in a DG framework divergence-
free high-order approximations can be easily defined: an element by element discontinuous
approximation with a divergence-free polynomial base in each element can be considered and
with a straightforward definition for high-order approximations [5, 6]. Due to the important
costs of DG methods, the reduction in degrees of freedom (both in velocity and pressure)
induced by a divergence-free approach is very interesting from a computacional point of view.

In the 90’s Baker, Jureidini and Karakashian [5, 8] developed and analyzed a DG
formulation with piecewise polynomial divergence-free velocity, with optimal error bounds.
Nevertheless, this formulation has some limitations: it requires the use of continuous pressure
approximations, only Dirichlet boundary conditions are considered (in fact, natural boundary
conditions cannot be easily imposed), and different computational meshes (with different mesh
sizes) must be considered for velocity and pressure to ensure stability.

A DG method for the Stokes equations with piecewise polynomial approximations was also
proposed and analyzed by Toselli [7], but without the point-wise imposition of the divergence-
free condition. This DG formulation shows better stability properties than continuous Galerkin
approximations and uniform divergence stability is proven when velocity is approximated one
or two degrees higher than pressure. In fact, for equal order interpolation numerical results show
no spurious pressure modes although no uniform stability properties are proven. Unfortunately,
the bilinear form related with velocities is non symmetric, and the DG advantages for the
definition of piecewise solenoidal approximations are not exploited.

More recently, Cockburn and coworkers propose [6, 9, 10] a DG formulation with solenoidal
piecewise polynomial approximations. It is derived from a Local Discontinuous Galerkin
(LDG) rationale based on a mixed formulation of the problem (with velocity, vorticity and
pressure), and with the introduction of numerical traces. The concept of hybrid pressures is
also introduced, that is pressures along the element sides, and pressures in the interior of the
elements are computed as a postprocess of the LDG solution. For analysis purposes, the LDG
formulation is written in compact form in [9]. With the introduction of proper lifting operators,
the vorticity is replaced in the LDG formulation leading to a velocity-pressure formulation with
symmetric and coercive bilinear form for velocities.

In this work a new DG formulation with piecewise solenoidal polynomial velocity and
hybrid pressures is proposed. It is derived from an Interior Penalty Method (IPM) rationale
[11, 12], leading also to a symmetric and coercive bilinear form for velocities. As for the LDG
formulation, the approximation space for the velocity field is decomposed in every element as
direct sum of solenoidal and irrotational polynomial spaces. This allows also to split the IPM
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DG METHODS FOR STOKES USING DIVERGENCE-FREE APPROXIMATIONS 3

weak form in two uncoupled problems: the first one solves for velocity and hybrid pressure and
the second one allows the evaluation of pressures in the interior of the elements. The resulting
method has many points in common with the LDG formulation in compact form stated in [9].
Namely, both are formulated in terms of piecewise solenoidal velocities and hybrid pressures,
the bilinear form is symmetric and positive definite and the pressure in the interior of the
elements is computed as a post-process of the solution. Nevertheless, different rationales are
followed for the LDG and IPM methods, leading to completely different formulations. For
instance, one of the most remarkable differences is that the IPM formulation proposed here
does not involve lifting operators, which induce an approximate orthogonality property in the
LDG formulation [9].

The IPM weak problem is also reformulated as a minimization problem subject to the
constraint of normal continuity of the velocity field. The solution of this optimization problem
with the introduction of a non-consistent penalty leads to an alternative DG formulation for the
computation of solenoidal velocities with no presence of pressure terms (i.e. solving a system
with symmetric positive definite matrix). Pressure can then be computed as a post-process
of the velocity solution. This second IPM method exactly coincides with the DG method
proposed in [13], where different alternatives for the approximation, based on the definition
of a piecewise continuous stream function spaces, are also proposed and analyzed. In fact, it
is worth noting the contributions in solid mechanics by Hansbo and co-workers [14, 15, 12],
which have inspired several authors (see for instance [16] for the solution of the Navier-Stokes
equations) and in particular this paper.

The contributions of this paper are presented as follows. The derivation of a new DG
IPM formulation for the solution of Stokes problems, with Dirichlet and Neumann boundary
conditions, is presented in detail in Section 3.1. The particularization of the IPM weak form
with a splitting of the velocity space in solenoidal and irrotational parts is presented and
analyzed in Section 3.2. In Section 3.3, the DG method initially proposed by Hansbo and
Larson in [13] is presented with an alternative derivation. The implementation of Neumann
boundary conditions is included in the formulation, and a methodology for the computation
of pressures as a postprocess of the velocity solution is proposed. Numerical tests demonstrate
the applicability of both methodologies (IPM and IPM with non-consistent penalty) for the
solution of the Stokes equations in Section 5. The selection of the penalization parameters in
order to achieve optimal convergence rates is also studied. Finally, the IPM formulation is used
for the simulation of a fluid flow through a porous medium.

2. THE STOKES PROBLEM

Let Ω ⊂ R
nsd be an open bounded domain with piecewise linear boundary ∂Ω and nsd the

number of spatial dimensions. Suppose that Ω is partitioned in nel disjoint subdomains Ωi,
which for example correspond to different materials, with also piecewise linear boundaries ∂Ωi

which define an internal interphase Γ; the following definitions and notation are used

Ω =
nel⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ for i �= j,
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Ω̂ :=
nel⋃
i=1

Ωi, and Γ :=
nel⋃

i,j=1
i�=j

Ωi ∩ Ωj =
[ nel⋃

i=1

∂Ωi

]
\∂Ω.

The strong form for the homogeneous Stokes problem can be written as

−∇· σ = s in Ω̂, (1a)

∇· u = 0 in Ω̂, (1b)
u = uD on ΓD, (1c)

n · σ = t on ΓN , (1d)
�n ⊗ u� = 0 on Γ, (1e)
�n · σ� = 0 on Γ, (1f)

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, s ∈ L2(Ω) is a source term, σ is the (“dynamic” or
“density-scaled”) Cauchy stress, which is related to velocity, u, and pressure, p, by the linear
Stokes’ law

σ = −p I + 2ν ∇su, (2)

with ν being the kinematic viscosity and ∇s = 1
2 (∇ + ∇T ).

The jump �·� and the mean {·} operators are defined along the interface Γ using values from
the elements to the left and right of the interface —say, Ωi and Ωj— and are also extended
along the exterior boundary —only values in the interior of Ω are employed—, namely

��� =

{
�i +�j on Γ,
� on ∂Ω,

and {�} =

{
κi �i +κj�j on Γ,
� on ∂Ω.

Usually κi = κj = 1/2 but, in general, these two scalars are only required to verify κi +κj = 1,
see for instance [12]. Note that definitions such as

κi =

{
1 if Ωi is the largest,
0 otherwise,

are also possible.
The major difference between the mean and the jump operator is that the latter always

involves the normal to the interface or to the domain. Given two contiguous subdomains Ωi

and Ωj their exterior unit normals are denoted respectively ni and nj (recall that ni = −nj)
and along ∂Ω the exterior unit normal is denoted by n. In what follows the jump operator as
defined previously will appear in these three cases:

�p n� =

{
pi ni + pj nj = ni(pi − pj) on Γ
p n on ∂Ω

for scalars, (3)

�n ⊗ v� =

{
ni ⊗ vi + nj ⊗ vj = ni ⊗ (vi − vj) on Γ
n ⊗ v on ∂Ω

or (4)

�n · v� =

{
ni · vi + nj · vj = ni ·(vi − vj) on Γ
n · v on ∂Ω

for vectors, (5)
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�n · σ� =

{
ni · σi + nj · σj = ni ·(σi − σj) on Γ
n · σ on ∂Ω

for second order tensors. (6)

This definition of the jump was previously considered by other authors, see for instance [9],
and presents two important advantages: first, it does not depend on a selection of a privileged
normal sign on the edges in 2D or faces in 3D, and second, the input and output spaces for
the operator coincide, that is, the jump of a scalar is a scalar, the jump of a vector is a vector,
etc. Other definitions have been more popular in the past, but do not have these advantages.
For instance, the jump at an edge ΓE , shared by two elements Ωi and Ωj with i < j, could
be defined as �u� = ui − uj , see [5] among others. This definition involves the decision of a
privileged normal sign, and therefore, it may lead to weak definitions with a not desirable
dependency on this choice. Another alternative definition, would be �u� = uini + ujnj for
scalar u, �u� = ui · ni + uj · nj for vector u, etc, see for instance [17]. It also does not
require the selection of a normal sign, but it has different spaces for the input and the output:
the jump of a scalar is a vector, and the jump of a vector is a scalar. Moreover, the use of
this definition camouflages the presence of the normal in the weak formulation: note that the
evaluation of �u� involves the normal, although the normal does not explicitly appear in the
weak form. Thus, in the authors opinion the jump operator (3) leads to more easily readable
weak formulations. Nevertheless, there is one situation where the jump (3) or the definition
used in [17] present some limitations: the computation of the jump of a scalar function with
no presence of the normal vector. In the following this computation appears only for terms of
the form

(
ui −uj ,vi −vj

)
ΓE

, where Ωi and Ωj are the elements sharing the interface ΓE , and
the following identity is used(

ui − uj ,vi − vj

)
ΓE

=
(
�n ⊗ u�, �n ⊗ v�

)
ΓE

.

3. THE WEAK FORM OF THE STOKES PROBLEM

Following the usual methodology in the DG framework, the weak problem from the strong form
defined by (1) is considered for each domain Ωi. That is, find ui ∈ [H1(Ωi)]nsd and pi ∈ L2(Ωi)
for i = 1, . . . , nel, which comply the boundary conditions (1c), (1e) and (1f), and such that

aΩi

(
ui,v

)
+ bΩi

(
v, pi

) − (
ni · σ(ui, pi),v

)
∂Ωi\ΓN

+ bΩi

(
ui, q

)
= lΩi

(
v
)

+
(
t,v

)
∂Ωi∩ΓN

(7)

for all (v, q) ∈ [H1(Ωi)]nsd × L2(Ωi), where

aΩi

(
v,w

)
=

∫
Ωi

2ν ∇sv :∇sw dΩ , bΩi

(
v, q

)
= −

∫
Ωi

q ∇ · v dΩ

lΩi

(
v
)

=
∫

Ωi

s v dΩ.

In the previous and the following equations,
(·, ·)

Υ
denotes the L2 scalar product in any domain

Υ ⊂ Γ ∪ ∂Ω, that is(
p, q

)
Υ

=
∫

Υ

p q dΓ for scalars,

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–19
Prepared using fldauth.cls
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(
u,v

)
Υ

=
∫

Υ

u · v dΓ for vectors,

(
σ, τ

)
Υ

=
∫

Υ

σ : τ dΓ for second order tensors.

In order to rewrite all nel weak problems defined in (7) as one weak problem, let u be such
that its restriction to Ωi is ui, namely u ∈ [H1(Ω̂)]nsd with

[H1(Ω̂)]nsd :=
{
v ∈ [L2(Ω)]nsd | v|Ωi

∈ [H1(Ωi)]nsd for i = 1, . . . , nel
}

and, similarly, p ∈ L2(Ω) is such that its restriction to Ωi is pi. Differential operators are
assumed to act on these functions piecewise and not in the sense of distributions. Thus, adding
equations (7) for i = 1, . . . , nel, the unique weak problem becomes: find u and p such that

a
(
u,v

)
+ b

(
v, p

) − nel∑
i=1

(
ni · σ(ui, pi),v

)
∂Ωi\ΓN

+ b
(
u, q

)
= l

(
v
)
, (8)

for all test functions v ∈ [H1(Ω̂)]nsd and q ∈ L2(Ω); where the bilinear forms are now integrated
over the whole domain Ω, namely

a
(
v,w

)
=

∫
Ω

2ν ∇sv :∇sw dΩ , b
(
v, q

)
= −

∫
Ω

q ∇ · v dΩ

and l
(
v
)

=
∫

Ω

s v dΩ +
(
t,v

)
ΓN

.

For two contiguous subdomains, Ωi and Ωj , with a common boundary Γe ⊂ Γ it is easy to
check that(

ni · σ(ui, pi),vi

)
Γe

+
(
nj · σ(uj , pj),vj

)
Γe

=
({σ(u, p)}, �n ⊗ v�

)
Γe

+
(
�n · σ(u, p)�, κjvi + κivj

)
Γe

.

Moreover, the boundary condition (1f) simplifies the previous equation because the last term
is zero. Thus, from the previous equation the weak form (8) can be rewritten as

a
(
u,v

)
+ b

(
v, p

) − ({σ(u, p)}, �n ⊗ v�
)
Γ
− (

n · σ(u, p),v
)
ΓD

+ b
(
u, q

)
= l

(
v
)
.

This expression can be further simplified using the extension of the jump and mean operators
on the exterior boundary, in particular in this case along ΓD, and the identity n · σ · v =
σ :(n ⊗ v). The weak problem equivalent to (1) becomes: find u ∈ [H1(Ω̂)]nsd and p ∈ L2(Ω)
subject to the boundary conditions defined by (1c) and (1e) such that

a
(
u,v

)
+ b

(
v, p

) − ({σ(u, p)}, �n ⊗ v�
)
Γ∪ΓD

+ b
(
u, q

)
= l

(
v
)

(9)

for all test functions v ∈ [H1(Ω̂)]nsd and q ∈ L2(Ω).

3.1. Interior Penalty Method formulation

Following the standard approach of IPM [11], the previous weak problem (9) is symmetrized
and a new term is added to ensure a coercive bilinear form for the velocity. In this process
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DG METHODS FOR STOKES USING DIVERGENCE-FREE APPROXIMATIONS 7

the boundary conditions (1c) and (1e) – not yet imposed – are used in order to maintain the
consistency of the weak problem (i.e. the solution of (1) is solution of the weak problem). The
resulting IPM weak problem can then be written as: find u ∈ [H1(Ω̂)]nsd and p ∈ L2(Ω) such
that

a
(
u,v

)
+ b

(
v, p

)
+ b

(
u, q

) − ({σ(u, p)}, �n ⊗ v�
)
Γ∪ΓD

− (
�n ⊗ u�, {σ(v, q)})

Γ∪ΓD

+ γ
(
l−1
e �n ⊗ u�, �n ⊗ v�

)
Γ∪ΓD

= l
(
v
) − (

uD,n · σ(v, q)
)
ΓD

+ γ
(
l−1
e uD,v

)
ΓD

for all v ∈ [H1(Ω̂)]nsd and q ∈ L2(Ω), where le is a measure of each interface Γe (edge in 2D,
face in 3D) and γ is a scalar parameter which must be sufficiently large (to ensure coercivity of
the form aIP

(·, ·) defined below, see Remark 1 in Section 3.2). Note that boundary conditions
(1c) and (1e) are no longer explicitly mentioned because they are now imposed in weak form.

Using the constitutive law (2) in the previous equation, the weak problem, which presents
a symmetric structure, can be written as: find u ∈ [H1(Ω̂)]nsd and p ∈ L2(Ω) such that

aIP
(
u,v

)
+ b

(
v, p

)
+

({p}, �n · v�
)
Γ∪ΓD

+ b
(
u, q

)
+

({q}, �n · u�
)
Γ∪ΓD

= lIP
(
v
)

+
(
q,n · uD

)
ΓD

, (10)

for all v ∈ [H1(Ω̂)]nsd and q ∈ L2(Ω), with

aIP
(
u,v

)
:= a

(
u,v

) − (
2ν{∇su}, �n ⊗ v�

)
Γ∪ΓD

− (
�n ⊗ u�, 2ν{∇sv})

Γ∪ΓD
+ γ

(
l−1
e �n ⊗ u�, �n ⊗ v�

)
Γ∪ΓD

, (11a)

and
lIP

(
v
)

:= l
(
v
) − (

uD, 2ν n ·∇sv
)
ΓD

+ γ
(
l−1
e uD,v

)
ΓD

. (11b)

This weak form is close to the formulation proposed in [7] where stability is also studied. It
clearly identifies pressure with the Lagrange multiplier that imposes both a weakly solenoidal
field inside each element and a continuous normal component along Γ. However, the IPM
provides a symmetric bilinear form for the velocity, see equation (11a), whereas the formulation
proposed in [7] does not.

An alternative IPM formulation that does not require the evaluation of the divergence of
the velocity field can also be obtained from (10). The divergence term is replaced using the
following identity valid for any v ∈ [H1(Ω̂)]nsd and any q ∈ L2(Ω):

b
(
v, q

)
+

({q}, �n · v�
)
Γ∪∂Ω

=
(
v,∇q

)
Ω
− (

�q n�, {{v}})
Γ

,

where the operator {{·}} is defined at any interior edge ΓE = Ωi ∩ Ωj as

{{v}} = κjvi + κivj .

Using this identity and its particularization for v = u solution of the problem (which is
continuous and verifies (1c)), i.e.

b
(
u, q

)
+

(
q,n · u)

ΓN
=

(
u,∇q

)
Ω
− (

n · uD, q
)
ΓD

− (
�q n�, {{u}})

Γ
,

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–19
Prepared using fldauth.cls



8 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

the IPM weak formulation (10) can be written as: find u ∈ [H1(Ω̂)]nsd and p ∈ L2(Ω) such
that

aIP
(
u,v

)
+

(
v,∇p

)
Ω
− (

p,n · v)
ΓN

− (
�p n�, {{v}})

Γ

+
(
u,∇q

)
Ω
− (

q,n · u)
ΓN

− (
�q n�, {{u}})

Γ

= lIP
(
v
)

+
(
n · uD, q

)
ΓD

,

for all v ∈ [H1(Ω̂)]nsd and q ∈ L2(Ω). The structure of this formulation suggests the use of
continuous pressures to simplify the equation, removing the terms with the {{·}} operator.
The resulting formulation is more closely related to the work presented in [5, 8], where
the proposed bilinear form is also symmetric and with no presence of divergence terms.
Nevertheless, the weak formulation proposed in [5, 8] has some limitations: as commented,
it requires the use of continuous approximations for the pressure, it is developed only for
Dirichlet boundary conditions and natural boundary conditions can not be directly imposed,
and different computational meshes (with different mesh size) must be considered for velocity
and pressure to ensure stability.

In this paper the IPM formulation (10) is preferred because discontinuous approximations
for the pressure are considered and, more important, because this weak formulation can be
further simplified using piecewise solenoidal approximations.

3.2. Interior Penalty Method formulation with solenoidal space

It is well known that any function in [H1(Ωi)]nsd can be written as the sum of a solenoidal part
and an irrotational one. Thus the functional space for the velocity can be split in the direct
sum: [H1(Ω̂)]nsd = S ⊕ I where

S :=
{
v ∈ [H1(Ω̂)]nsd | ∇· v|Ωi

= 0 for i = 1, . . . , nel
}
,

I ⊂ {
v ∈ [H1(Ω̂)]nsd | ∇×v|Ωi

= 0 for i = 1, . . . , nel
}
.

Note also that u, the solution of the original problem (1) and (10), belongs to S. Under these
circumstances, problem (10) can be split in two uncoupled problems, for test functions in S
and I respectively.

First, divergence-free solution and test functions, u, v ∈ S, are considered in the IPM
formulation (10), leading to a simplified IPM formulation with no divergence terms

aIP
(
u,v

)
+

({p}, �n · v�
)
Γ∪ΓD

+
({q}, �n · u�

)
Γ∪ΓD

= lIP
(
v
)

+
(
q,n · uD

)
ΓD

, (12)

for all v ∈ S and q ∈ L2(Ω). This formulation is further simplified with the introduction of
the space of so-called hybrid pressures, that is

P := {p̂ | p̂ : Γ ∪ ΓD −→ R and p̂ = �n · v� for some v ∈ S} , (13)

see [6] for details.
Thus, the first problem for divergence-free velocities and hybrid pressures becomes: find

u ∈ S and p̂ ∈ P such that{
aIP

(
u,v

)
+

(
p̂, �n · v�

)
Γ∪ΓD

= lIP
(
v
) ∀v ∈ S,(

q̂, �n · u�
)
Γ∪ΓD

=
(
q̂,n · uD

)
ΓD

∀q̂ ∈ P,
(14a)
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The second problem, which requires the solution of the previous one, i.e the velocity u and
the hybrid pressure p̂, determines the interior pressure: find p ∈ L2(Ω̂)

b
(
v, p

)
= lIP

(
v
) − aIP

(
u,v

) − (
p̂, �n · v�

)
Γ∪ΓD

∀v ∈ I. (14b)

Note that this second problem would allow an independent computation of the interior pressure
at every domain Ωi.

The IPM formulation with solenoidal and irrotational spaces proposed here has many points
in common with the LDG formulation in compact form presented in [9]. Both consider piecewise
polynomial approximations, see Section 4, and a splitting of the approximation space as a
sum of solenoidal and irrotational parts, leading to two uncoupled problems: the first for
velocities and hybrid pressures, and the second for the computation of pressures in the interior
of the elements. Moreover, the bilinear form is symmetric, continuous and coercive in both
formulations (see Remark 1). Nevertheless, the IPM and the LDG methods correspond to
different formulations. In fact, none of the two methods can be written as a particular case of
the other one. The LDG method is deduced from a mixed formulation of the Stokes problem
with velocity, vorticity and pressure, and it is written in compact form using proper lifting
operators to replace the vorticity. In fact, the presence of lifting operators in the weak form
is an important difference with the IPM method, with consequences in the consistency of the
formulation. The IPM formulation is a consistent formulation, in the sense that the solution of
the Stokes problem (1) is also a solution of the IPM weak form, whereas the LDG formulation
only verifies an approximate orthogonality property, see [9] for details.

Remark 1. For γ large enough, the IPM bilinear form aIP
(·, ·) defined in (11a) is continuous

and coercive, that is
aIP (u,v) ≤ �u � �v � ∀v ∈ S (15)

and
m � v� ≤ aIP (v,v) ∀v ∈ S (16)

for some constant m > 0 independent of the mesh size h, where

�v�2 = ‖∇sv‖2
Ω + ‖h1/2n · {∇sv}‖2

Γ∪ΓD
+ ‖h−1/2�n ⊗ v�‖2

Γ∪ΓD
(17)

and the L2 norms are defined as

‖f‖2
Ω =

∑
i

∫
Ωi

f :f dΩ, ‖f‖2
Γ∪ΓD

=
(
f, f

)
Γ∪ΓD

. (18)

These properties can be proved following standard arguments, see [14, 13] for details.

3.3. IPM formulation with penalization of the discontinuity

The IPM formulation with solenoidal spaces presented in the previous section, see equation
(14a), allows a computation of the velocity solution involving the pressure only in the boundary
of the domains Ωi, i.e the hybrid pressure. The aim of this section is more ambitious: to obtain
a completely decoupled formulation allowing the computation of the solenoidal velocity, but
with no presence of pressures at all. As proposed in [13], the introduction of a new penalty in
the weak formulation achieves this purpose. However, the price of a totally decoupled velocity-
pressure formulation is the lost of consistency, which provokes the ill-conditioning typical for
non-consistent penalty formulations.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–19
Prepared using fldauth.cls



10 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

The DG formulation initially proposed and analyzed in [13] is deduced next from an
alternative rationale, based on the IPM formulation (14a) and the introduction of a non-
consistent penalty. The IPM formulation with solenoidal velocities (14a) can be rewritten as
a saddle-point problem, namely

(u, p̂) = arg min
v∈S

max
q̂∈P

1
2
aIP

(
v,v

) − lIP
(
v
)

+
(
q̂, �n · v�

)
Γ∪ΓD

− (
q̂,n · uD

)
ΓD

, (19)

or, equivalently, as a minimization problem subject to normal continuity constraints,

u = arg min
v ∈ S

s.t. �n · v� = 0 in Γ
n · v = n · uD in ΓD

1
2
aIP

(
v,v

) − lIP
(
v
)
. (20)

Note that the terms with pressures are canceled thanks to the imposed continuity constraints.
As usual in constrained minimization problems, the previous optimization problem can be
solved using a non-consistent penalty, see for instance [18]. The corresponding minimization
problem with penalty is

u = arg min
v∈S

1
2
aIP

(
v,v

) − lIP
(
v
)

+ β
[(

�n · v�, �n · v�
)
Γ
− (

n ·(uD − v),n ·(uD − v)
)
ΓD

]
where β is a scalar penalty to be chosen. The solution of this optimization problem is the
solution of the following IPM weak formulation with penalty: find uβ ∈ S such that

aIP
(
uβ ,v

)
+ β

(
�n · uβ�, �n · v�

)
Γ∪ΓD

= lIP
(
v
)

+ β
(
n · v,n · uD

)
ΓD

(21)

for all v ∈ Sh. In the following, we refer to this weak formulation as Interior Penalty Method
with Penalty (IPMP) in front of the IPM formulation described in (14).

Once the velocity is obtained, pressure can be computed as a postprocess with two steps.
First an approximation of the hybrid pressure can be obtained introducing the solution of (21)
in (14a), namely

p̂β =

{
β �n · uβ� on Γ,
β n ·[uβ − uD] on ΓD.

Then, with uh
β and p̂h

β the interior pressure can be determined as the solution of (14b).
It is important to remark that the IPMP formulation (21) involves two different penalties

with important differences. The first one is inherited from the IPM formulation, i.e. γ/le in
the bilinear form aIP

(·, ·) defined in (11a). It is a consistent penalty in the sense that the
solution of the original problem (1) is solution of the IPM formulation (14a) and therefore, as
usual in IPM formulations, in practice moderate values of the constant parameter γ provide
accurate and optimally convergent results. This is not the case for the second penalty. The
penalty β in the IPMP formulation (21) is a non consistent penalty: the solution of the IPMP
formulation verifies the continuity of the normal component of the velocity and the Dirichlet
boundary conditions only in the limit, for β going to infinity. This lack of consistency is the
origin of the usual drawbacks of penalty techniques: the tuning of the penalty parameter
affects the accuracy of the solution and, in practice, too large values of β are needed, leading
to ill-conditioned systems of equations. In fact, as proved in [18] in the context of boundary
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conditions, and as it is seen in the numerical examples, the penalty parameter β has to be of
order h−k in order to keep the optimal H1 convergence rate, with h the element size and k
the degree of the approximation.

It is worth noting that an alternative and consistent methodology for the solution of the
constrained minimization problem (20) would be the introduction of a Lagrange multiplier.
That is,

(u, λ) = arg min
v∈S

max
λ∈Λ

1
2
aIP

(
v,v

) − lIP
(
v
)

+
(
λ, �n · v�

)
Γ
− (

λ,n ·(v − uD)
)
ΓD

,

where λ is the Lagrange multiplier defined at Γ ∪ ΓD. This formulation corresponds exactly
to (19), or equivalently to the IPM formulation (14a), demonstrating that the hybrid pressure
plays the role of a Lagrange multiplier to impose the continuity of the normal velocity.

4. FINITE DIMENSIONAL SPACES

In practice approximations to the exact solution are obtained using finite dimensional spaces.
In particular, standard finite dimensional polynomial spaces may be introduced in each element
(standard discontinuous Galerkin) for all the previously defined weak problems, namely{

Vh :=
{
v ∈ [H1(Ω̂)]nsd | v|Ωi

∈ [Pk(Ωi)]nsd for i = 1, . . . , nel
}

and

Qh :=
{
p ∈ L2(Ω) | p|Ωi

∈ P
k−1(Ωi) for i = 1, . . . , nel

}
,

where P
m denotes the space of complete polynomials of degree less or equal to m. The finite

counterparts of S and I are

Sh =
{
v ∈ [H1(Ω̂)]nsd | v|Ωi

∈ [Pk(Ωi)]nsd , ∇ · v|Ωi
= 0 for i = 1, . . . , nel

}
,

Ih ⊂ {
v ∈ [H1(Ω̂)]nsd | v|Ωi

∈ [Pk(Ωi)]nsd , ∇×v|Ωi
= 0 for i = 1, . . . , nel

}
,

such that Ih ⊂ I. Note that the following relations and inclusions are verified: Vh = Sh⊕Ih,
Vh ⊂ [H1(Ω̂)]nsd , Qh ⊂ L2(Ω) and Sh ⊂ S. The finite dimensional subspace associated with
the hybrid pressures, Ph ⊂ P, can be defined directly from (13) restricting velocities to Sh.
In fact, reference [6] also demonstrates that Ph corresponds to piecewise polynomial pressures
in the element edges in 2D, or faces in 3D.

It is worth noting that the definition of the solenoidal and irrotational polynomial base to
be used at each element is an easy task. For instance, a solenoidal base in a 2D triangle for an
approximation of degree k = 2 is

Sh = 〈
(

1
0

)
,

(
0
1

)
,

(
0
x

)
,

(
x
−y

)
,

(
y
0

)
,

(
0
x2

)
,

(
2xy
−y2

)
,

(
x2

−2xy

)
,

(
y2

0

)
〉.

The use of this polynomial basis defined with cartesian coordinates was also proposed in [6].
An irrotational base for k = 2 is

Ih = 〈
(

x
0

)
,

(
x2

0

)
,

(
0
y2

)
〉.

In the numerical examples, to avoid ill-conditioning of the elemental matrices, all
polynomials p of the base are centered and scaled at each element as p((x − ce)/he), where ce

and he denote the center and the size of the element respectively.
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12 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

Remark 2. With these polynomial spaces, the numerical solution uh of the IPM method
presented in Section 3.2 verifies the following error bound

�u − uh� ≤ Khα|u|H1+α(Ω) (22)

for u ∈ H1+α(Ω), 1 ≤ α ≤ k and some constant K. This result can be proved using the
continuity and coercivity of the bilinear form, see Remark 1 in Section 3.2. Following [9],
the space of piecewise divergence-free polynomial functions with continuity constraints for the
normal velocity is considered

Zh(uD) = {v ∈ Sh : (q, �n · v�)Γ∪ΓD
= (q,n · uD)ΓD

∀q ∈ Ph} ⊂ Sh.

Note that whereas the LDG formulation analyzed in [9] verifies an approximate orthogonality
with a residual Rh �= 0 (due to the introduction of the lifting operators), the IPM formulation
is consistent and therefore the residual is in this case Rh = 0. Thus, the particularization of
the error bound stated in [9] is

�u − uh� ≤ (1 + m) inf
v∈Zh(uD)

�u − v�,

where m is the coercivity constant, see Remark 1. The error bound (22) is obtained
considering the projection into the BDM0 space (Brezzi-Douglas-Marini space of full polynomial
approximations with normal continuity and zero elementwise divergence, see [19] for details),
that is v = πBDMu. Note that BDM0 ⊂ Zh(uD), thus using the bound in [13] for the � · �
norm, i.e.

�u −πBDMu� ≤ Chα|u|H1+α(Ω).

with some constant C, the bound (22) is proved.

Remark 3. The convergence of the IPMP formulation, developed in Section 3.3, is analyzed
in detail in [13] for different approximation spaces. For velocity approximation spaces including
the BDM0 space, the error bound is

�u − uh� ≤ C
(
hα|u|H1+α(Ω) + h‖p‖H1(Ω)

)
for some constant C, and u ∈ H1+α(Ω), with 1 ≤ α ≤ k.

5. NUMERICAL EXAMPLES

To demonstrate the applicability of the two proposed methods some numerical examples are
shown in this section. In all tests an approximation of order k for velocity and k−1 for pressure
is considered. Triangular meshes are obtained by splitting a regular n × m cartesian grid into
a total of 2n × m triangles for a rectangular domain, or 2n2 triangles for a square domain,
giving uniform element size of h = 1/n.

5.1. Driven cavity example

A standard benchmark test for incompressible flows is considered first. A plane flow of an
isothermal fluid in a lid-driven cavity is modeled in a 2D square domain Ω =]0, 1[×]0, 1[, with
zero body force and one moving wall. A velocity u = (1, 0)T is imposed on the exterior upper
boundary {y = 1}, and a zero velocity u = (0, 0)T is enforced on the three other sides.
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(a) IPM velocity and pressure with γ = 10
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(b) IPMP velocity and pressure with γ = 10 and β = 1000/h2

Figure 1. Driven cavity IPM (top) and IPMP (bottom) results for second-order velocity and linear
pressure

Figure 1 shows the velocity vectors and the pressure fields of the flow for respectively the
IPM and the IPMP formulations, with a discretization of order k = 2 for velocity and order
k − 1 = 1 for pressure. Results fit to the expected solution, note that around the two upper
corners the pressure takes not bounded values because of the discontinuity of the velocity.
Recall that the computation of velocity and pressure is completely decoupled using the IPMP,
with the corresponding saving in computational cost. Nevertheless, it is worth noting that
the use of the non-consistent parameter β = 1000/h2 in the IPMP considerably increases

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–19
Prepared using fldauth.cls



14 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

0 0.7

1 1

0 0.7(a) Velocity streamlines (b) Scaled velocity 

Figure 2. IPM velocity solution with 140 elements, fourth-order velocity approximation and γ = 20.

the condition number of the matrix. Moreover, although similar accuracy is obtained for the
velocity field, for the same discretization the IPM provides more accurate and stable results
for the pressure field than the IPMP.

The same example is now used for a rectangular cavity Ω =]0, 0.7[×]0, 1[. Figure 2 illustrates
the results obtained using the IPM formulation. The results present the expected behavior.
Contra-rotating vortices are created in the corners opposite to the moving wall. In the
representation of the velocity vectors, only the direction of the flow is represented, all the
arrows have the same length so that the contra-rotating vortices can be noticed. The velocity
streamlines are represented as well to prove that the contra-rotating vortices have small
amplitude compared to the main vortex movement.

5.2. Analytical example

An example with analytical solution is now considered to study the accuracy and convergence
properties of the proposed methodologies. The Stokes equations are solved in a 2D square
domain Ω =]0, 1[×]0, 1[ with Dirichlet boundary conditions on three edges, and a Neumann
boundary condition on the fourth edge {y = 0}. A body force

f =


12(1 − 2y)x4 + 24(−1 + 2y)x3 + 12(−4y + 6y2 − 4y3 + 1)x2

+(−2 + 24(y − 3y2 + 2y3))x + 1 − 4y + 12y2 − 8y3

8(1 − 6y + 6y2)x3 + 12(−1 + 6y − 6y2)x2

+(4 + 48(y2 − y3) + 24(y4 − y))x − 12y2 + 24y3 − 12y4


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is imposed in order to have the polynomial exact solution

u =

(
x2(1 − x)2(2y − 6y2 + 4y3)

−y2(1 − y)2(2x − 6x2 + 4x3)

)
,

p = x(1 − x).

5.2.1. IPM analysis The behavior of the IPM formulation is first studied. In all examples
the consistent penalty term γ is set to a sufficiently large value to ensure the coercivity of the
form aIP

(
,
)
, see equation (11a). In practice moderate values of this penalty term are required.

Figure 3 shows the IPM solution obtained with an approximation of degree k = 2 and
k = 4 for the velocity field (k − 1 for pressure), with the same number of degrees of freedom.
One of the advantages of the proposed method is that the order of the approximation can
be easily increased, with a straightforward modification of the definition of the solenoidal and
irrotational base, see Section 4. As expected, the higher order approximation provides more
accurate results, with smaller discontinuities in the solution, especially for the pressure field.

These results also confirm that the condition proposed in [20] to ensure the coercivity of the
bilinear form, is also valid for the IPM formulation with solenoidal approximation proposed
here. The explicit formula used for the computation of the consistent penalty parameter is

γ ≈ aνk2 (23)

where a is a positive constant and k is the degree of the velocity approximation.
Figure 4 shows the convergence under h-refinement, for different orders of approximation of

the velocity and pressure. Optimal convergence is obtained using polynomials of degree k to
approximate the velocity and k − 1 for pressure; that is, convergence of order k + 1 for the
velocity L2 norm, order k for the energy norm, and order of k for the pressure L2 norm. As
usual in consistent IPM formulations, a penalty term of order h−1, i.e constant γ, suffices to
maintain the optimal convergence rates for any order of approximation. As seen in the following
examples, this is not the case for the non-consistent penalty β in the IPMP formulation.

5.2.2. IPMP analysis The IPMP behavior is tested with the same analytical example. First
the influence of the non-consistent penalty term β is analyzed. The IPMP velocity for an
approximation of degree k = 3, with two different values of the non-consistent penalty
parameter β is depicted in Figure 5. As previously commented rather large values of β are
necessary to ensure moderate discontinuities of the normal velocity.

Figure 6 shows the results for two different orders of approximation. Again, higher order
approximations provide more accurate results for the same number of degrees of freedom,
specially for the pressure field that presents much better continuity.

Figure 7 shows the evolution of the error under h-refinement for different orders of
approximation of the velocity and pressure, using the IPMP formulation. As usual for non-
consistent penalty formulations [18], almost optimal converge rates are achieved using a penalty
term of order h−k. As previously noticed, the need of large values for the penalty β is the main
drawback of the IPMP formulation, because of the ill-conditioning of the matrices in the
solution with fine meshes. For instance, for a computation with fourth-order interpolation of
the velocity and 72 elements, the dimension of the system of equations to be solved for the
IPM (with velocity and hybrid pressures) is 1350, whereas for the IPMP (with only velocities)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–19
Prepared using fldauth.cls



16 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

(a) Velocity and pressure with degree k = 2, 256 elements and γ = 10
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(b) Velocity and pressure with degree k = 4, 72 elements and γ = 40

Figure 3. IPM velocity vectors and pressure field for two different orders of approximation k = 2, 4.

the dimension is 1308. The reduction in the number of degrees of freedom is thus appreciable
for the IPMP case, but in return the condition number of the matrix is higher for the IPMP
formulation: around 5 109 for the IPMP with γ = 40, and 4 107 for the IPM with the same γ
and β = 4000/h4. Moreover, under h-refinement or p-refinement, the condition number grows
faster for the IPMP than for the IPM.

To further compare the IPM and IPMP formulations, Figure 8 plots the errors obtained for
velocity and pressure with both methods. Similar accuracy is obtained for the velocity field and
the main differences are present in the pressure results. Although both methods provide optimal
convergence rates, more accurate results for pressure are obtained with a coupled computation
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(c) Pressure L2 error

Figure 4. IPM convergence results with velocity approximation of degree k = 2, 3, 4 and pressure
interpolation of degree k − 1, with γ = 10, 20, 40 respectively.

of hybrid pressures and velocities, using the IPM formulation. As commented in the previous
example in Section 5.2, the computation of pressures as a postprocess of velocities with the
IPMP represents a saving in computational cost, preserving the accuracy in the velocity field,
but with a slightly worse solution for pressure.

5.3. Flow in an idealized porous medium

A fluid in an idealized porous medium is subject to a friction force proportional to the fluid
velocity u. This kind of problem is derived from the Stokes equations and it follows the Darcy’s
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(a) β = 5/h4 (b) β = 2000/h4

Figure 5. IPMP velocity solution (top) and detail (bottom), for two different values of the penalty
term β, with a third-order velocity approximation and 32 elements.

law. It is valid for slow, viscous flow, such as groundwater flows. The problem to be solved is

−∇ · σ = −αu in Ω̂,

∇· u = 0 in Ω̂
u = uD on ΓD,

�n ⊗ u� = 0 on Γ,
�n · σ� = 0 on Γ,

where α is the inverse of the local permeability of the medium (α = 0 for an empty medium
and α = +∞ for a solid wall), see [21].

These equations are solved in the computational domain shown in Figure 9, consisting of
a long straight channel of height l and length L = 10l. The porous domain is limited to the
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(a) Velocity and pressure with degree k = 2, 256 elements, γ = 10 and β = 1000/h2
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(b) Velocity and pressure with degree k = 4, 72 elements, γ = 40 and β = 4000/h4

Figure 6. IPMP velocity vectors and pressure field for different orders of approximation k = 2, 4.

central part of length 5l. The Dirichlet boundary conditions prescribe a parabolic velocity
profile at the inlet and at the outlet, and a no-slip condition for the fluid on the channel side.
The porous domain is filled with porous material of arbitrary value α = 100 for 2.5 < x < 7.5
except for two regions verifying

x ∈]3.5, 6.5[ and y ∈]0,
1
3
[ ∪ ]

2
3
, 1[.

where empty medium is assumed, see white region in Figure 10.
A detail of the IPM velocity result in the porous domain is shown in Figure 10, demonstrating

the capability of the IPM formulation for the solution of these problem types. As expected,
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Figure 7. IPMP convergence results with degree k = 2, 3, 4 for velocity and degree k − 1 for pressure,
with γ = 10, 20, 40 and β = 1000/h2, 2000/h3, 4000/h4 respectively.
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Figure 8. Comparison of the errors obtained with IPM and IPMP, for a cubic approximation of the
velocity (left) and a quadratic interpolation of the pressure (right), with γ = 20 and β = 2000/h3.
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Figure 9. Computational domain. The porous domain is limited to the central part, of length 5l and
height l.
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Figure 10. Velocity vectors within the porous domain of length 5l. The grey part represents a porous
material, the white ones an empty domain.

the two empty regions divert the flow away from the center of the channel: the flow tends to
go into the empty domains, with higher velocities than the porous region.

6. CONCLUDING REMARKS

Two discontinuous Galerkin (DG) formulations with solenoidal approximation for the
simulation of incompressible flow are proposed, with application to the Stokes equation.
Following the methodology of the interior penalty method (IPM), and considering a solenoidal
and irrotational decomposition of the interpolation space, an efficient DG formulation for the
computation of velocities and hybrid pressures (pressures along the element sides) is developed.
Moreover, the introduction of a penalty parameter for the weak enforcement of continuity of
the normal velocity along element sides, leads to an alternative DG formulation where the
computation of velocities and pressures is completely decoupled. This second formulation,
coincides with the formulation proposed in [13] and allows to compute the velocity field with
no presence of pressure terms; the pressure field can then be obtained as a postprocess of the
velocity solution.

Numerical experiments demonstrate the applicability of the proposed methods, with optimal
convergence rates under h-refinement. The effect of the penalty parameter is also analyzed: as
usual in IPM formulations, a penalty of order h−1 provides optimal results, whereas the non-
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consistent penalty in the second formulation must be of order h−k, with k the degree of the
approximation. Thus, for large engineering computations this second formulation represents
an important save in the number of degrees of freedom in front of the IPM or alternative
formulations, but as usual in non-consistent penalty formulations, it may lead to ill-conditioned
systems of equations. Moreover, for the same discretization the IPM provides more accurate
pressure results than the second formulation.
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16. I. Mozolevsky, E. Süri and P.R. Bösing, “Discontinuous Galerkin finite element approximations of the
two-dimensional Navier-Stokes equations in stream-function formulation”, Commun. Numer. Meth. Eng.,
vol. 23, no. 6, pp. 447-459, 2007.

17. D. N. Arnold, F. Brezzi, B. Cocknurn, and L. D. Marini, “Unified analysis of discontinuous galerkin
methods for elliptic problems,” SIAM J. Numer. Anal., vol. 39, no. 5, pp. 1749–1779, 2002.

18. I. Babuska, “The finite element method with penalty,” Math. Comp., vol. 27, pp. 221–228, 1973.
19. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer: Berlin, 1991.
20. S. Prudhomme, F. Pascal, J. Oden, and A. Romkes, “High-order accurate time-stepping schemes for

convection-diffusion problems,” Tech. Rep. 00-27, TICAM, Austin, TX., 2000.
21. F. Okkels, L. Olesen, and H. Bruus, “Applications of topology optimization in the design of micro- and

nanofluidic systems,” in Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade
Show, pp. 575–578, 2005.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–19
Prepared using fldauth.cls


