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Abstract

We propose a different apprecach to the kinds of economic problems
that lead to disceontinucus games. We take the view that the under-
lying payoffs for these problems are only partially determined,
rather than discontinuous. At points where ties occur, we propose
that the sharing rule should be determined endogenously, i.e., as
part of the solution to the model rather than as part of the des-
cription of the model. This leads us to define a game with an en-
dogenous sharing rule. It consists of a strategy space for each of
a finite number of players, together with a payoff correspondence,
interpreted as the union of all possible sharing rules. A sclution
for such a game is a selection from the payoff correspondence to-
gether with a strategy profile satisfying the usual {(Nash) best
response criterion. OQur principal result is that such a solution
always exists.
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1. INTRODUCTION

A number of classical problems in economics are traditionally
formulated as games with a continuum of strategies and discontinuous
payoffs ("discontinuous games"). The best known of these are Bertrand's
(1883) model of duopolistic price competition and Hotelling's (1929) model
of duopolistic spatial competition. (Dasgupta and Maskin (1986b) provide
many other examples.) In the Bertrand model, firms choose prices; the firm
that charges the lower price supplies the entire market. In the Hotelling
model, firms choose locations; each firm monopolizes the portion of the
market that is closer to it. In each case, discontinuities arise at the points
where ties occur {i.e., when the firms charge the same price or locate at the

same point).

The conventional way to approach such problems is to include a particular
“tie-breaking rule” in the specification of the model. (Since more generally
disbohtinuities may arise from sources other than ties, we prefer the term
sharing rule .) Given a sharing rule - equal division is typical - one may
then investigate conditions under which the resulting discontinuous game
has an equilibrium. It has been known for many years that not all such
games have equilibria (Sion and Wolfe (1957)). While some existence
results have been obtained since then, the conditions required are
restrictive, difficult to interpret intuitively, and hard to verify. (See

Dasgupta and Maskin (19862, b) and Simon (1987).)

This paper proposes a different approach to the kinds of economic




problems that lead to discontinuous games. We propose that the underlying
payoffs for these problems should be viewed as only partially determined,
rather than discontinuous. At points where ties occur (or more generally,
wherever the economic nature of the problem leads to indeterminacies), we
propose that the sharing rule should be determined endogenously, i.e., as
part of the solution to the model rather than as part of the description of

the model. This leads us to define a game with an endogenous sharing rule .
It consists of a strategy space (assumed to be compact metric) for each of a
finite number of players, together with a payoff correspondence (assumed

to be bounded and upper hemi-continuous, with convex, compact, non-empty
values), interpreted as the union of all possible sharing rules. A solution

for such a game is a selection from the payoff correspondence together with
a (mixed) strategy profile satisfying the usual (Nash) best response

criterion. Since any selection from the payoff correspondence amounts to a
particular sharing rule, it defines a game in the ordinary sense. Hence, a
solution for a game with an endogenous sharing rule may equally well be
described as a particular sharing rule, together with a Nash equilibrium

. profile for the resulting game. Our principal result is that such a solution

always exists.

As an illustration, we consider the classical Hotelling problem and a
simple variant. Two psychiatrists have o choose a location on a portion of
Interstate 5 running through California and Oregon. We represent the
relevant portion of Interstate 5 by the interval [0, 4] ; the California
portion {(which is longer) is represented by the interval [0, 3], and the
Oregon portion by [3, 4] . There is a continuum of potential clients,

uniformly distributed along the Interstate; each client patronizes the




psychiatrist located closer to him. In the classical Hotelling problem, the
psychiatrists are free to locate anywhere in the interval [0, 4]. For our
variant, we assume instead that (as is the case in reality) California and
Oregon have licensing rules, and that each psychiatrist is licensed only in
his own state. Relicensing is assumed to be infinitely costly, so that
neither psychiatrist can relocate to another state. (We maintain the
assumption that clients patronize the closer doctor without regard for state

lines.) -

In each of these problems, an indeterminacy arises when the
psychiatrists locate at the same point. In the classical problem, it is
conventional to adopt equal division as the sharing rule. This rule seems
"obviousiy“ correct on several grounds (equity and focality, in particular),
and yields the unique equilibrium that both psychiatrists locate at the
midpoint 2. Moreover, any sharing rule that admits any equilibrium at all
must reduce to equal division when both psychiatrists locate at the
midpoint. For the variant, however, it seems more natural to adopt the
division 3/4 - 1/4 when both psychiatrists locate at the point 3 (the border
between California and Oregon). -This division gives each psychiatrist his
"natural market share" (i.e., the state in which he is licensed). Also, it is
the unique sharing rule that makes market shares continuous in locations.
Finally, it is the unique division that is individually rational for each of the
psychiatrists: by moving in from the border a little, the Californian can
guarantee himself a market share of arbitrarily close to 3/4. Similarly, the
Oregonian can guarantee himself a share of arbitrarily close to 1/4. When
the market is divided 3/4 - 1/4, the game has a unique equilibrium in which

both psychiatrists locate at the border (i.e., at 3).




Our next illustration is a Bertraﬁd model. There are two firms. One can
produce at a constant marginal cost of $1 per unit; the other's marginal
cost is $2 per unit. A strategy for a firm is to announce a price. If the
firms announce different prices, the one whose price is lower supplies the
market. If both firms announce the same price, market shares are
indeterminate. - it is customary to resolve this indeterminacy by dividing the
market equally. With this sharing rule, however, the resulting game
violates some assumption of any of the known existence theorems for
discontinuous games.  (For example, both Dasgupta and Maskin (1986a) and
Simon (1987) require that the sum of payoffs be an upper semi-continuous
function. This condition is violated at the point where both firms announce
a price of $2.) There is, however, an alternative division that seems |
completely natural: when both firms announce a price of $2, assign the
entire market to the more efficient firm. As in the previous example, this
is the unique division of the market that is individually rational for each
player. The more efficient firm would not agree to any other division, since
by cutting his price slightly, he can capture the entire market and increase
his profit. (The less efficient firm is indifferent between all rules at this
point.) When the market is divided in this way, the game has a pure strategy

equilibrium in which the price charged is $2.”

Thus, in each of these problems, it seems that there is a unique and
compelling "right answer" to the question "What should the sharing rule be?”
But these answers are different. The moral is, simply, that the choice of an
appropriate sharing rule for a game must surely take into account the

particular context; the same sharing rule should not be expected to work




for all problems. Indeed, even within the same problem, different shares
may be appropriate at different points in the strategy space. The main
result of our paper is that for any game in which indeterminacies arise
because of an unspecified sharing rule, there will always be at least one

rule that is consistent with the existence of equilibrium.

What does it mean to endogenize the sharing rule? One alternative has
already been suggested. We can view the determination of the sharing rule
as part of a preplay agreement between the players themselves. In each of
our examples, there was a unique division that was individually rational for
each player. Atleastin these cases, it is hard to imagine the players
agreeing upon any other division. Thus, once we view the sharing rule as
determined by preplay agreement, there is no reason to expect that equal

division will be the chosen sharing rule in every instance.

A second alternative is to view the sharing rule as a statistic,
summarizing the actions taken by unseen agents whose behavior is not
modelled explicitly. In each of the examples above, these agents are the
consumers. The sharing rule that is part of our solution can be thought of as
a proxy for consumers' equilibrium behavior in an appropriately specified
extensive form game. in our variant of the Hotelling model, for example,
this game would have a continuum of consumers. The psychiatrists would
first choose their locations, then each consumer would choose which doctor
to patronize. When this view is taken, there is a one-to-one relationship
between the set of all possible sharing rules (which is the payoff
correspondence for the game with an endogenous sharing rule) and the

correspondence mapping first stage locations into second stage equilibrium




choices by consumers. If both psychiatrists choose the same location in the
first stage, then any division of the market can be implemented as a Nash
equilibrium of the associated second-stage subgame. The unique division
that is consistent with Nash equilibrium for the game as a whole is the
division 3/4 - 1/4.1 A very similar extensive form game can be specified

for the Bertrand example.

There is, in the treatment of indeterminacy here, an analogy with general
equilibrium theory. An equilibrium aliocation is by definition a family of
choices"from individua! excess demand sets that clears the market. When
preferences are not strictly convex, excess demand will not generally be
single-valued. In this case, there will generally be prices for which some
families of choices clear the market {and hence are equilibrium
allocations), while others do not. In our game-theoretic context, choosing a
sharing rule in advance is analogous to specifying a selection from the
excess demand correspondences in advance . This hardly seems like a
sensible approach, in either the general equilibrium context or in ours. One
cannot push this analogy too far, however. It is well known that
generically, market excess demand is single valued in continuum economies.
(See Mas-Colell and Neuefeind (1977).) Therefore, the selection issue
arises only rarely in general equilibrium theory, while in our context, it is

the typical case.

1 - To solve this game, we would have to confront exactly the problems that are
addressed in this paper. That is, optimizing behavior by these players would
generate discontinuities in firms' payoff functions of a kind o which extant
equilibrium existence results would not apply.




One could ask why consumers behave in the way summarized by our
endogenously determined sharing rule. The answer is as it always is:
equilibrium theory never explains why any agents act in any particular
way.  The concern of equilibrium theory is with how the economy behaves,
given a particular specification of agents’ characteristics, not with why

consumers behave in a certain way.

A final comment: Games with infinitely many strategies are sometimes
viewed as proxies for games with a large finite number of strategies. From
this point of view it is the equilibria (or approximate-equilibria) of the
finite games which are of real interest; equilibria of the infinite games are
merely convenient proxies. Ideally, it would be the case that (1) every limit
of equilibria of finite games is an equilibrium of the infinite game, and (2)
every equilibrium of the infinite game is a limit of equilibria (or
approximate-equilibria) of nearby finite games. (See Fudenberg and Levine
(1986).) Our approach is not inconsistent with this view. Indeed, the proof
of our existence theorem shows that (1) is true, in the sense that every
limit of equilibria of finite games is an equilibrium for the infinite game
defined by some sharing rule. (2) remains an open (and apparently difficult)

problem.




2. GAMES WITH ENDOGENOUS SHARING RULES

An N?pléger gaméwz’t/? an endogenous sharing ru/e is an N+ 1-tuple
['=(Sy,...5y. Q) consisting of a strateqy spsce S; for each player and
a payofrcorrespondence Q:S=9xSyx ... xSy > RN . Anelement s €S
is a strateqy profile. We interpret Q(s) as the universe of utility
possibilities given the strategy profile s. Throughout, we assume that
each of the strategy spaces S; is a compact metric space and that the
Vpagof f correspondence Q is bounded and upperr hemi-continuous, with
non-empty, convex, compact values. Upper hemi-continuity of the
correspondence Q means that the set of utility possibilities for each
strategy profile is at least as large as the set of limits of utility

'possibilities of nearby profiles. Convexity of each Q(s) means that we
allow for randomization. A sAaring ru/e is a Borel measurable selection
from the correspondence Q ; i.e., aBorel measurable function
q:5- RN such that q(s)€Q(s) for each s€S. Since Q(s) is the
universe of utility possibilities given the strategy profile s, a sharing
rule is just a particular choice of payoff at each point of the space of
strategy profiles. The reader should keep in mind that the payoff

correspondence Q will not generally admit cont/nvous selections.

As the Introduction suggests, many games with endogenous sharing
rules arise from economic situations for which payoff functions are
well-defined and continuous on a large set, but indeterminate elsewhere.
In the classical Hotelling problem, for instance, payoffs are well-defined
and continuous everywhere except on the diagonal. More generally,

suppose we are given strateqy spaces S;, a dense subset S” of S, and
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a bounded continuous function ¢ :5" -+ RN . Let Cy:S- RN be the
correspondence whose graph is the closure of the graph of ¢, and define
Qg(s) to be the convex hull of Cg(s) for each s€S; we-call the
correspondence Qg the convescompletion of @ . It is not hard to see
that Qg is bounded and upper hemi-continuous, that it has non-empty,
convey, compact values, and that Q(p(s) = ¢(s) for each s€5” (because ¢
is continuous on 8™ ). (The correspondence Qp may also be described as
the smallest upper hemi-continuous, compact and convex-valued
correspondence from S into BN which agrees with ¢ on s™ ) Note
that any selection q from the correspondence Qg ‘agrees with ¢ on

5™ , and hence every sharing rule is an extension of the given payoff
function ¢ on S™ to the entire space S of strategy profiles. The
failure of ¢ to be specified at points of S - 5" isan indeterminacy, and
a sharing rule resolves the indeterminacy. Of course, as is the case in the
classical Hotelling problem, the function ¢ need not admit any

continuous extension to allof 5.

There are games with endogenous sharing rules that do not arise in this
way. However, it is probably true that most of the economically

interesting examples are of this form, and the reader should think of them

as typical.

As usual a mixed strategy for player i is a probability measure on
Si, and a mixed strategy profife is an N-tuple («y,...oqy) of mixed
strategies. We write S.j= S| x,..x Sj_yxSj*... xSy, and
K- T ) XX ooy Xotjep X Xoy . We abuse notation to identify

5i%5.; with S and ojre&-; With o = oXepx ... Xy .




A solution for T is a sharing rule and a mixed strategy profile with
the property that, given the sharing rule, each player's action is @ best
response to the actions of other players. More precisely, a solution for T
is @ pair (q,{cy,...0qq)), where q is a Borel measurable selection from
the payoff correspondence Q and (xj,...oqq) is a profile of mixed
strategies, with the property that, for each i, and for each probability

measure B; on Sj,

J-Qi(s)d(txixoc-i) 2 fqi(s)d(Bixm_i) .

We could also adopt an alternative view. Each sharing rule q defines
agame Iy in the usual sense (perhaps with discontinuous payoffs), with
strategy spaces S; and payoff function q. A solution for T is simply a
sharing rule q, together with a profile of mixed strategies which
constitutes a Nash equilibrium for the game Iq . Once again, the reader
should keep in mind that the typical payoff correspondence Q will not
admit selections which are continuous, or even nearly so. In particular,
none of the known equilibrium existence results may apply to any of the
games }"q.

Qur central result is:

THEOREM: Every game with an endogenous sharing rule has a solution.

10




3. EXAMPLE

In this Section, we discuss a simple game with an endogenous sharing
rule. (This particular example was chosen for illustrative purposes and is
not intended to represent an economic situation.) In conjunction with the
proof of the Theorem, the example is intended to point out that the values
of the solution sharing rule q must be chosen carefully at the

equilibrium strategy profile and at all profiles in which only one player

is deviating.

The game has two players, with strategy spaces Sy =57 ={-1,1].
Write S={-1,1]x[-1, 1} for the set of strategy pairs, and let
S* = {(sy,82) 5152 #0}; i.e, S" is the set of strategy pairs for which
neither player plays 0 . As in Section 2, we consider a payoff function
which is defined and continuous on S™ and indeterminate elsewhere; the

particular payoff function ¢ we have in mind is defined in Figure 1.

iy
2-|sy].3-|sg] 3-s1].2-|sz|
S\ &}
4-1sy|,1-]s2l 1 t-isy].4-]so]
- 0 N
Sy
FIGURE |
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(In keeping with the usual tradition that the first player plays "rows” we
have labelled axes so that the first coordinate is on tha vertical axis.)
The convex completion Q of this function is obtained by closing the graph

of ¢ and convexifying the values of the resulting correspondence. Hence:

Qls1,0) = {(2-fsy]+*t,3-t):0<t<1} for s;>0;
Qs1,0) = {(1-|sy[+t,4+t):0<t <3} for 5;<0;
Q0,s9) = {(3-t,2-|sp|+t):0st<1) for s5>0;
Q0,82) = {(4-t,i-]sg|+t):0<t<3) for sp<0;
Q0,0) = {(1+t,4-t):0<t<3};

Qlsy,s9) = {P(sq,85)) for (5,890 €S" .

As noted before, every selection from the correspondence Q (i.e.,
every sharing rule) gives rise to a game in the ordinary sense. In this
case, there is no continuous selection from Q. In fact, no selection from
Q is sufficiently well-behaved to satisfy the requirements of any of the
known existence theorems for discontinuous games. However, we shail

see that there are many selections which admit equitibria.

Let (q,(xq. o)) be asolution for this game, so that q is a sharing
rule and (xq,o<p) is a mixed strategy profile. Note that, so long as
neither pléger plays O ', each 'plager's payof f is stfictlg d.e.creas.ing in the
absolute value of his own strétegg. Simple dominance arguments imply
that at least one player assigns probability 1 to the strategqy 0 . In
fact, the equilibrium strategy profiles of this game fall into two distinct
classes: (1) the pure strategy equilibria in which both players assign
probability 1 to the strategy 0 (as we shall see, many different sharing

rules lead to such equilibrium strategy profiles), and (2) equilibria in

12




which exactly one player assigns probability 1 to the strategy 0 and
the other player randomizes. We focus on the pure strategy equilibria, and

feave the others for the reader to investigate.

For the pure strategy equilibria, the first issue is the value q(0,0) of
the sharingrule q at (0,0) . By definition, q(0,0) belongs to the set
Q0,0)={(1+t,4-1):0<t <3}, but we can in fact say more. if player
I isknown toplay 0 with probability 1, player 2 can guaranteshimself
a payoff of at least 2-¢ for £> 0 as small as he likes (because the
sharing rule is a selection from the correspondence Q and player 2
obtains a payoff of at least 2-¢ at every point of Q(0,¢€) ). Similarly,
if player 2 is known to play O with probability 1, player 1
Can guarantee /mself a payoff of at least 2-¢ for €>0 assmall as Ze
likes. This constrains ¢{(0,0) tolie inthe set E={(2+t,3-t):0<t <1},

In fact, any vector in £ can be supported as the value of g(0,0) ina
pure strategy equilibrium, but only if we are careful about the values of q
elsewhere. Note that player 1 can reach any point on the wert/ca/ axis by
deviating, while player 2 can reach any point on the forizonta/axis by
deviating. The values of q along these axes must therefore satisfy the
constraints: q(sy,0) < 41(0,0) and qz(0,s2)< 42(0,0) . This will be
the caéé i.f we choose q(sy,0) to minimize the payoff of player 1 and
choose q(0,s5) to minimize the payoff of player 2 (but other choices may

also be possible).
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4. PROQOFS

Before commencing the proof of the Theorem, we collect some
preliminaries. The first of these is a simple lemma concerning weak
convergence of measures and integration of lower semi-continuous

functions. (Recall that :5-R is /owersem/-continvous if
liminf f(s') 2 f(s) for each s€5.)
§' =g

LEMMA 1: Let S be a compact metric space, let {un} be a sequence of
positive measures on S converging weakly to ji, and let [ be a lower

semi-continuous real-valued functionon S. Then
lim inf [fdpn 2 [rdp .

(Note: If f were continuous, the definition of weak convergence of
measures would of course imply that lim [Tdpn = [Tap )

PROOF: Since f is lower semi-continuous, there is a sequence {r} of
continuous functions such that fi(s) < Ty, 1(s) and fy(s)- f(s) for each

s €3 . Lebesque's monotone convergence theorem implies that
() {Tdp - [rap.

Each of the measures ) is positive, each of the functions Ty is
continuous, and f(s) < (s) for each s€S; hence

(mre) lim infj-fdpn 2 lim infffk dj_ln = Jfk dj..l
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for each k . Combining (*) and (**) yields the desired result.

We now recall some facts about absolute continuity of measures and
the Radon-Nikodym theorem. Consider two real-valued Borel measures
{, v defined on the same measure space, with y positive. (In our
applications p and v will be Borel measures on a compact metric
space.) By definition, v is absolutely continvous with respect to y if
v(E) =0 whenever p(E) =0 . The Agdon-Nikogym treorem asserts that
v is absolulely continuous with respect to p if and only if there is a
measurable, p-integrable, real-valued function  (called the
Radon-Nikadym derivative of v with respect to 1) with the property
that v(F) = [ fdy for every measurable set F; it is customary to
abbreviate this by writing v = fp . (When such a function f exists, it is
uniquely determined except for its vaiues on a set of p-measure zero.) It
follows that, for every measurable, v-integrable function g,

[gdv = [gfdp . (For further discussion, see Royden (1968) for example.)

If v takes its values in BN instead of in R (but f remains
reai-valued and positive), we can obtain entirely analogous results simply
bg' trééiiﬁg thecomponentsof v iﬁdi\}iduélig“, b.ui ihterpreting the resulits
in vector notation. Thus, to éag that v is absolutely continuous with
respect to yt means that v(E) = 0 (the zero vector in RN ) whenever
pE)=0. Asin the scalar case, this will be so exactly when there is a
measurable, p-integrable function f taking values in BN such that
v(F) = [; fdp for every measurable set F; we continue to abbreviate

this by writing v =y .
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The second lemma deals with weak convergence of absolutely
continuous measures and selections from a correspondence; it is an

analog of a lemma of Artstein (1879).

LEMMA 2: Let S be a compact metric space, let {u} be a sequence of
positive measures on S converging weakly to j, and let Q:S- BN be 3
bounded, upper hemi-continuous correspondence on S with compact,
convex, non-empty values. For each n, let g, be a Borel measurable
selection from Q. If the sequence {qnjin) of vector-valued measures
converges weakly to the vector-valued measure v, then v is absolutely
continuous with respect to p and there is a Borel measurable selection
q from Q suchthat v=qpu.

PROOF: Since Q is bounded, there is a constant C such that

21} < Cforevery xeQ(s) and every s€S. If gy is the sum of the
absolute values of the components of qn, then 0 < gn(s)sC for every
s€S. Hence, 0 < gpHn < CHp, SO that, if ¥ is the sum of the
components of v, we obtainthat 0 < P<Cp. In particular, this means
that v is absolutely continuous with respect to p, so the
Radon-Nikodym theorem provides a Borel measurable function q:$- RN
suchthat v =qp. (Note: this of course depends crucially on the
boundedness of Q.) Since g is determined aimost everywhere (with
respect to p ), this means we need only show that q(s) € Q(s) almost
everywhere (with respect to 1 ), and then correct g on the set of

measure zero where q(s) £ Q(s) .
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To thisend, set E={s€S: q(s) £Q(s)). Since Q is compact-valued
and upper hemi-continuous, and q is a Borel measurable function, the set

E is itself a Borel set; we need to show that u(E)=0.

Since Q(s) is a compact, convex set (for each s ), any point of RN
not belonging to Q(s) can be separated from Q(s) by a hyperplane; in
particular, if q(s) £ Q(s) then there is avector £ ¢ RN and there are
real numbers a,a suchthat &£-q(s) >a>a > &-y for every ye Q(s).
Since R and RN are separable, we can choose countable dense subsets

faj} of R and {8 of RN; foreach j, ' and k, and write:
E(j,j"k)={se5: E-q(s)>aj> aj->£-g for every yeQ(s)}.

Since {aj} is a dense subset of R and {&} is a dense subset of RN,

the union of all the sets E(j, j',k) is E; hence at least one of them has
positive i-measure. After relabeling, we conclude that there is a vector
n € Y and real numbers b, so that the set

F={seS: n-qls)>b>c>n-y forevery yeQ(s))
has positive yi-measure.

Since the measure p is régular, we can find a compact set K CF
which also has positive y-measure. Since Q is upper hemi-continyous,
there is an open subset U of S which contains K and has the property
that ¢>m-y for every yeQ(u) and every u€U; we may also choose
U so that p(U)-p(K) = p(U-K) is as small as we like. Applying

Urysohn's femma yields a continuous function f:S-{0, 1] which is

17




identically 1 on K and identically O on the complement of U .

We now consider the integral [f(s)m-q{s)dp . On the one hand, our
construction, together with weak convergence of q,uy to v = qpu and
continuity of fm , yields:

= ftedn-qe)dp = tim [ (s)n g (s) dpin,
= lim [, f(s)n - qp(s) dpp,
< lim [y, f(s)cdyy
= lim [g f(s)cdpy

= [1(s) cdp
< cp(u).

On the other hand,

Jef@n-als)dp + [, f(s)n-qls)dp
2 bp(K) - [mfcuu-x).

(##) Jt(s)m - qls) dps

Since p(U-K) = p(U-K) may be made as small as we like, it follows
| th.ét. jf(é)ﬁ -q(s)dp is almost as large as bu(K) . On the other hand,
we have already seen that [f(s)n-q(s)dp can be no bigger than c p(U) .
When p(U-K) = p(U-K) is small, p(U) is close to p(K): since b>c,

this is a contradiction. The proof is now complete. fi
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With these preliminaries out of the way, we are ready for the proof of
the Theorem. For the guidance of the reader, we preface the proof proper
with a brief overview. The proof is divided into six steps. Given a game
I' with an endogenous sharing rule, we begin (Step 1) by constructing a
family {I"} of finite games which "approximate” I'. Each of these finite
games has a Nash equilibrium, which can be viewed as a mixed strategy
profile for T'. An appropriate subsequence of these profiles-converges to
a mixed strategy profile (al,...,uN) , and an appropriate subsequence of
payoff functions for the games I'T also converges - in the sense of
Lemma 2 - to a function q (Step 2); moreover, q is a sharingrule for
I' (Step 3). The desired solution mixed strategy profile will be
{e¢q,...,00y) , and the solution sharing rule will be a perturbation of q.
This perturbation may be necessary because the limit sharing rule q is
determined only up to sets of e«yx... xeqy-measure zero. This leaves
open the possiblity that there are pure strategies for the i-th player
which are superior to the strategy «; (see the Example of Section 3).
However, the set of such pure strategies is of measure zero (Step 4), and
they can be eliminated by perturbing q (Step 5). Finally, it only needs to
be verified that the perturbed sharing rule, together with the mixed
strategy profile (ey,...,oqy) , constitutes a solution for the game T

(Step 6). This follows from Lemma | and the specific construction of q.

PROCF OF THE THEOREM: As outlined above, the proof is in six steps.

STEP 1: Finite approximations. For each i andeach r=1, .2,...
choose a finite subset Sif of S; so that the Hausdorff distance between

Si" and S; isatmost 1/r. For each r, choose a Borel measurable
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selection q" from Q (we could take each of the selections qf to be the
sama, but there is no 7sed to do so). Let I =(5y7,...,5\,q"), so that

IT is afinite game. Let (e¢yF,...,oy") be @ Nash equilibrium for the

game M. Write o = ocFx. . xoqyl .

STEP 2: Limits. Each «;f is a probability measure on S, which is
a subset of i, and hence may be regarded as a probability measure on

Sj that is supported on Sif . Taking this point of view, we may (passing
to a subsequence if necessary) assume that, for each i the sequence
{xjf} converges weakly to a probability measure x; on ;. Similarly,
we may regard each o as a probability measure on S which is
supported on SF = SyTx. . xSy, and each q'of as an RN-valued vector
measure on S which is supported on ST . We may also assume that the

sequence {q o} converges weakly to a vector measure v .

STEP 3: Selections. By Lemma 2, the measure v is absolutely
continuous with respect to « and there is a Borel measurable selection
q from Q suchthat v = g . (In an appropriate sense, the selections
q" converge to the selection q. We caution the reader, however, that
the sense of this convergence is very weak; in general it need not be the
case that q(s) converges to q(s) for any strategy profile s¢S. Of
course, since q and'q are selections from Q it will certainly be the
case that q'(s) = a(s) whenever Q(s) is a singleton. If Q is a convex
completion (as in Section 2), this certainly means that ¢" and q agree
except at points of indeterminacy.) ,

STEP 4: Better responses. Foreach i, let q; be the i-th component

of g and set:




Ej = {x€Sj: [qud(syxocj) > [qjdleixeccy) },

so that the set E; consists of those pure strategies for player i which
are better then o4 inresponse to «_;. Since q; is @ Borel measurable

function, the set Ej is a Borel set; we claim that «;{(E;) =0 .

Suppose this is not so; we construct a strategy for player i in some
game IT which is a better response to x-i thanis o4f . Regularity of
the measure o; means that we can find a compact set K CE; so that
«i(K) >0 . Let U be an open subset of S; which contains K ; write
£ = xj{U-K) = j(U)-;(K) , and note that we can choose U so that ¢ is
as small as we like.

We now argue as in the proof of Lemma 2. Urysohn's lemma provides a
continuous function f:S;- {0, 1] which is identically 1 on X and
identically 0 on the complement of U . Weak convergence of measures
and continuity of the function f yield that:

J-Qi_d(cxixoc_i) lim [qi" d (i xoc-i)

lim Ifq;rd(&irxm;ir) )

g dlojxoca)

We can use Fubini's theorem to write [fqjd(oci*ocj) = [[rqjdec.;dec; |
where the inner integral is over Sj and the outer integral is over S_; .
Since f is identically | on K and identicaily 0 in the complement of

U, we obtain:
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[Jfgjdocjdo = [fy qidocjdog + [fy-g fajdocdoj
The last of these double integrals can be made as small as wa like by
making € small. The double integral involving integration over K can be

estimated by reversing the order of integration, observing that

q(x,) = [q;d8y , and keeping in mind that the set K is contained in E; :

"

[T qidecjde = fg Jaj (%, ddox-j dexi(x)

Jx [faid8gdec dexi(x)

v

[x [Tajdecidoc dexi(x)

«i(K) [[qjdexey dog .

For & very small (so that o(K) isnearly o(U) and [fdeq is
nearly «;(K) ), we now consider the strategy 8i = {1/(Jfdeq )} fe" for
player i inthe game IT. Notethat [Tdei™ » [fde, which is nearly
«i(K) for £ small enough. Together with the above inequalities, this
implies that B is a better response than oj” to oi" in the game
', provided that r is sufficiently large and ¢ is sufficiently small.
However, this contradicts the fact that (T, ...,00qy") is an equilibrium,

and this contradiction establishes our claim that «;(Ej) =0 .

STEP 5: Perturbation. We can now perturb g to obtain the desired
sharing rule §. For each i, let ' be any Borel measurable selection
from Q which minimizes the i-th component; write p;ii(s) for the i-th
component of Pi(s) . Let T={seS:s;€E for at least two indices i},

and define q as follows:




q(s)
q(s)

pi{s)  if s€EjxS_; but S£T,

q(s) otherwise .

Note that (ocyx...xeqy)(EjxS-j) = 0 for each i, so that q(s) agrees
with q(s) except on a set of (xq*...xeq)-measure 0. In particular,
given the mixed strategy profile (xy,...,oy) , the change from q to g

leaves each player's expected payoff unchanged.

STEP 6: Solution. We claim that the sharing rule q and the mixed
strateqy profile (oq , ...,fo) together constitute a solution for the game
T". Toshow that this is so, we ask whether plager i has a better
response than «; t0 «-j. If so, he has a better pure strategy response;

call it 8y . We distinguish two cases.

CASE 1: x £ E;. Note that

(M JTgjdeqdocy = [ fqj docjdoxe

@ [idsgdeci = [0 )b = [ailx ey

because we have altered q;(x,-) onlg'on the set [xxS'_i]h'[u(E'i xS j)]
(the union taken over j#i), whichhas o measure 0 since x £ E;.

The fact that x ¢ E; also gives:
(3) [qi(x,)dx.y = [[qjdecidec; -

Combining (1), (2), (3) yields that 8§ is nof a better response than «;
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to o ; this disposes of CASE 1.

CASE 2: x€Ej. Since Q is an upper hemi-continuous correspondence,
the function p; defined in Step S is lower semi-continuous; moreover,
pi(s) = qi(s) if s€EjxS_; and s ¢ T . Choose a sequence {x'}

converging to x with the property that %™ € Sif for each r. Them:

@ Jix )y = [fpydsydec

A

lim inf [ [pjdsyrdoc_if {0y Lemma 1)

A

lim inf ”qir 8¢ dox-. "

because p; minimizes the payoff to player i at each point. If 8§, were
a better response than «; it would follow, putting (1), (2), (4) togsther,
that, for r sufficiently large,

[laff deyraecit > [[qif doqdecif
which would contradict the fact that (xy",...,«y ) is a Nash equilibrium

profile in the game I'T . This contradiction completes the argument of
'CASE 2, and with it the proof of the THEOREM.
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