DISCONTINUOUS GROUPS OF AFFINE TRANSFORMATIONS OF C^3

KÔJI UCHIDA AND HISAO YOSHIHARA

(Received January 30, 1975)

1. Introduction. Let G be a group of affine transformations acting freely and properly discontinuously on C^n . Suppose that C^n/G is compact. Let G_0 be the subgroup of G consisting of translations, which is a normal subgroup of G. Moreover we assume that $H = G/G_0$ is a finite group. Enriques and Severi show that in the case of surfaces i.e., n = 2, H is a cyclic group of order d, d = 1, 2, 3, 4, 6, [1]. In this paper in the case of n = 3 we shall prove the following

THEOREM. If H is cyclic, then $H \cong \mathbb{Z}/d$, d = 1, 2, 3, 4, 5, 6, 8, 10, 12. If H is not cyclic but abelian, then $H \cong \mathbb{Z}/d_1 \oplus \mathbb{Z}/d_2$, $(d_1, d_2) = (2, 2)$, (2, 4), (2, 6), (2, 12), (3, 3), (3, 6), (4, 4), (6, 6). Finally, if H is not abelian, then H is D_4 : a dihedral group of order 8.

2. Let g be an affine transformation of C^n i.e., gx = A(g)x + a(g) where $x \in C^n$, $A(g) \in GL(n, C)$, $a(g) \in C^n$. If g has no fixed points, then at least one eigenvalue of A(g) has to be 1. It is easy to see that if g has no fixed points, then g^m has no fixed points. We call A(g) the holonomy part of g and A a holonomy representation.

PROPOSITION 1. Let G be the group in Introduction. If K is an abelian subgroup of G with finite index, then G_0 contains K i.e., G_0 is the largest abelian subgroup of G with finite index.

PROOF. As K is commutative, all the elements of K can be diagonalized simultaneously. Suppose $K-G_0\neq\emptyset$ and choose $g\in K-G_0$. Then $gx_j=\alpha_jx_j+a_j$, where $\alpha_1=1$, $\alpha_n\neq 1$. May assume $\alpha_n=0$, because otherwise we consider hgh^{-1} instead of g, h being a translation defined by ${}^t(0,\cdots,0,a_n/(\alpha_n-1))$. Owing to the commutativity of K this implies that any $g'\in K$ acts like $g'x_n=\beta_nx_n$. Hence C^n/K is not compact, which contradicts the assumption $|G:K|<\infty$.

COROLLARY 1. Let G' be the group similar to G. If $G \simeq G'$ by an isomorphism \mathcal{P} , then $\mathcal{P}G_0 = G'_0$. Hence $H = G/G_0 \simeq H' = G'/G'_0$.

PROOF. $\varphi(G_0) \subset G'_0$, and $\varphi^{-1}(G'_0) \subset G_0$, by Proposition 1.

Thus, G_0 and H depend only on the group structure of G.

3. In what follows we assume n=3.

PROPOSITION 2. The order of any element $\overline{g} \in H$ is one of 1, 2, 3, 4, 5, 6, 8, 10, 12. Hence the first part of Theorem is proved.

PROOF. Let Ω denote the period matrix of the torus C^3/G_0 . Since $gG_0g^{-1}=G_0$, it follows $A\Omega=\Omega N$, where A is the holonomy part of g and N an integral matrix. Eigenvalues of N are m-th roots of 1. Since $N \in GL(6, \mathbb{Z}), \ \varphi(m) \leq 4$. Hence m=1, 2, 3, 4, 5, 6, 8, 10, 12.

REMARK 1. Det $G \subset C^*$ is a cyclic group isomorphic to \mathbb{Z}/d , d=1, 2, 3, 4, 5, 6, 12. Actually, any element $\overline{g}=A(g)$ of order 10 is mapped to det A(g) whose order is 5. The similar argument is available to exclude the case of order 8.

Let $G_1 = \{g \in G; \det A(g) = 1\}$. Then the order m of $\overline{g}_1 \in H_1 = G_1/G_0$ is 1, 2, 3, 4, 6 because $\varphi(m) \leq 2$. Hence the order of H_1 is $2^a 3^b$. Since H is an extention of H_1 by a cyclic group $\det G \subset C^*$, we have

Proposition 3. H is a solvable group.

LEMMA 1. If $^{\sharp}H = |H:1|$ is a multiple of 5, then $^{\sharp}H = 2^a 3^b 5$.

PROOF. By Remark 1, the cyclic group det G is $\mathbb{Z}/5$. Hence by $^{\sharp}H = {^{\sharp}(G/G_1) \cdot {^{\sharp}H_1}}$, we obtain the result.

PROPOSITION 4. H has no abelian subgroup of type (p, p, p). Moreover H_1 has no abelian subgroup of type (q, q), q = 3, 4, 6.

Proof. Let K be an abelian subgroup of H. Then $K = C_1 \times C_2 \times C_3$, where each C_i is a cyclic group acting on C^3 . If K is of type (p, p, p), then each $C_i \cong \mathbb{Z}/p$. Hence, a general element of K has not 1 as its eigenvalue. If $K \subset H_1$ is of type (q, q), then we arrive at a contradiction by the similar consideration.

COROLLARY 2. If H is an abelian group, it is a cyclic group or a product of two cyclic groups.

Proposition 5. The 3-Sylow group of H is $\mathbb{Z}/3 \oplus \mathbb{Z}/3$ or $\mathbb{Z}/3$ or 1.

PROOF. Let Q be the 3-Sylow group of H. Suppose Q is not an abelian group, then the holonomy representation $Q \subset GL(3,C)$ is irreducible. Take $A \in Z(Q) - \{1\}$. Then by Schur's lemma A is a scalar matrix $\lambda 1$ and hence any eigenvalue of A is not 1, a contradiction. Thus Q is abelian. By Propositions 2 and 4 we obtain the result.

LEMMA 2. If the 5-Sylow group of H is not trivial, the 3-Sylow group of H is trivial.

PROOF. Since ${}^{*}H = 5 \cdot 2^{a} \cdot 3^{b}$, b = 0, 1, 2, we have only to consider the two cases: (i) ${}^{*}H = 5 \cdot 2^{a} \cdot 9$ and (ii) ${}^{*}H = 5 \cdot 2^{a} \cdot 3$. In (i), ${}^{*}H_{1} = 2^{a}9$. Hence, H_{1} has a subgroup of order 9, which is isomorphic to $\mathbb{Z}/3 \oplus \mathbb{Z}/3$. This contradicts Proposition 4. In (ii), recalling that H is solvable, there exists a subgroup of order 15 by Hall's theorem, which is $\mathbb{Z}/15$. This contradicts Proposition 2.

LEMMA 3. Suppose that H is a non-abelian group and is generated by 2 elements A(g), A(h) satisfying $A(g)A(h)A(g)^{-1}=A(h)^{-1}$. Then any element A(k) of H can be represented as $\alpha(k) \dotplus \beta(k)$ where $\alpha(k) \in C^*$, $\beta(k) \in GL(2, C)$, by choosing a suitable base. Moreover we have $A(g)^2 = 1$, $\alpha(g) \neq 1$.

PROOF. As the abelian group generated by $A(g)^2$, A(h) has the index 2 in H, the degree of the irreducible representation of H is one or two. Hence H can be represented as above. Since H is non-abelian, $A(h)^2 \neq 1$. On the other hand, $\beta(h)$ and $\beta(h)^{-1}$ have the same eigenvalue. Hence $\beta(h)$ does not have eigenvalue 1 and so $\alpha(h) = 1$. Suppose $\alpha(g) = 1$. Since $gx_1 = x_1 + a_1$ and $hx_1 = x_1 + b_1$ we have $(gh)^2g^{-2}x_1 = x_1 + 2b_1$. Hence $(gh)^2g^{-2}h^{-2}x_1 = x_1$. The eigenvalue of $\beta((gh)^2g^{-2}h^{-2}) = \beta(h^{-2})$ is not 1, so $(gh)^2g^{-2}h^{-2}$ has a fixed point. Thus $\alpha(g) \neq 1$. Since $A(g)^2 \in Z(H)$, $\beta(g)^2$ is a scalar matrix. If $\alpha(g)^2 \neq 1$ and $\beta(g)^2 = 1$, then $A(g^2h) - 1$ is non-degenerate. If $\beta(g)^2 \neq 1$, then A(g) - 1 is non-degenerate. Hence $\alpha(g)^2 = \beta(g)^2 = 1$ so $A(g)^2 = 1$.

LEMMA 4. If H is a non-abelian 2-group, it is D_4 .

PROOF. By choosing an appropriate base, $A(h) \in H$ can be represented as a direct sum of $\alpha(h) \in C^*$ and $\beta(h) \in GL(2,C)$. The representation β is faithfull. In fact otherwise we have $A(h_1) = \alpha + 1_2$, $\alpha \neq 1$ and $A(h_2) = 1 + \beta 1_2$, $\beta \neq 1$ where $A(h_2) \in Z(H) - 1$. Then $A(h_1h_2) - 1$ is non-degenerate. Let $N = \{A(h) \in H; \det \beta(h) = 1\}$. Then N is a normal subgroup of H and the element A(h) of order 2 in N satisfies $\beta(h) = -1_2$. Hence such an A(h) is unique. In addition N does not contain the elements of order 8. It follows that N is either a quaternion group or a cyclic group of order at most 4. (Hall [2], Theorem 12.5.2). By Lemma 3, N is cyclic. Let $N = \langle y \rangle$. As H/N is cyclic, let x be the element of H which generates H/N. Then $H = \langle x, y \rangle$. Since N is a cyclic group of order at most 4 and H is a non-abelian group, we have a relation $xyx^{-1} = y^{-1}$, $y^2 \neq 1$. Hence $y^4 = 1$ and by Lemma 3 we have $x^2 = 1$. Thus H is D_4 .

LEMMA 5. If H contains an element of order 5, it is a cyclic group of order 5 or 10.

PROOF. At first note that *H is $5 \cdot 2^a$ and *H_1 is 2^a . By Lemmas 1 and 4 we have $a \leq 3$. Hence the 5-Sylow group of H is a normal subgroup $\langle x \rangle$. For any $y \in H_1$, $yxy^{-1} = x^k$. Hence $\det x = (\det x)^k$, so k = 1. Consequently H is an abelian group. Since H cannot have an abelian subgroup of type (2, 10), it turns out to be \mathbb{Z}/d , d = 5, 10.

PROPOSITION 6. Heannot contain a subgroup which is isomorphic to S_3 .

PROOF. Suppose that H contains such a group K. Since there is one and only one irreducible representation of degree two of S_3 , we may assume that K is generated by

$$A(g) = egin{pmatrix} -1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}, \qquad A(h) = egin{pmatrix} 1 & 0 & 0 \ 0 & \omega & 0 \ 0 & 0 & \omega^2 \end{pmatrix}$$

 ω : a primitive cubic root of 1.

Then $hg^2h^{-1}g(x) = x$ has a solution $x_1 = a_1/2$, $x_2 = \lambda$, $x_3 = \lambda + \omega^2a_2 - \omega a_3$ where $a(g) = {}^t(a_1, a_2, a_3)$, $\lambda \in C$.

PROPOSITION 7. H cannot contain a subgroup K which is isomorphic to A_{4} .

PROOF. Suppose H contains such a group K. Since A_4 has the only one irreducible representation of degree 3 and three representations of degree 1, we may assume that K can be generated by

$$A(g) = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{array}
ight), \qquad A(h) = \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{array}
ight).$$

Then $gh^3g^{-1}h$ has a fixed point.

LEMMA 6. If ${}^{\sharp}H = 2^{a}3^{b}$, then H is a product of the 2-Sylow group and the 3-Sylow group.

PROOF. Use the induction on *H. Take a normal subgroup K such that |H:K|=2 or 3. By induction hypothesis we have $K=M\times N$ where M is a 2-group and N is a 3-group, in which M and N are normal subgroups of H. In case |H:K|=2, choose $x\in H-K$ such that $x^{2^m}=1$ for some m. Then $\langle x,M\rangle$ is the 2-Sylow group of H. If [x,N]=1, then $H=\langle x,M\rangle\times N$. If $[x,N]\neq 1$, then we have an element $y\in N$ such that $y^3=1$ and $xyx^{-1}=y^{-1}$. By Lemma 3, we have $x^2=1$. Hence

 $\langle x,y\rangle\cong S_3$. In case |H:K|=3, choose $x\in H-K$ such that $x^3=1$. If [x,M]=1, then $H=M\times\langle x,N\rangle$. If $[x,M]\ne 1$, then M is abelian, since Aut $D_4\cong D_4$. Hence $\langle x,M\rangle$ has a subgroup which is isomorphic to A_4 .

Now we shall prove the last part of Theorem. If *H is a multiple of 5, then H is cyclic by Lemma 5. Hence it suffices to consider the case ${}^*H = 2^a 3^b$. By Lemma 6, $H = S \times Q$ where S is a 2-group and Q a 3-group. If S is non-abelian, then $S = D_4$ by Lemma 4. Hence S is generated by

$$A(g) = egin{pmatrix} -1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} \ ext{and} \ \ A(h) = egin{pmatrix} & 1 & 0 & 0 \ 0 & i & 0 \ 0 & 0 & -i \end{pmatrix} \ ext{where} \ \ i = \sqrt{-1} \ .$$

Suppose $Q \neq 1$. Hence $1 \neq A(k) \in Q$ can be written $\alpha \dotplus \beta \dotplus \beta$, $\alpha^3 = \beta^3 = 1$. If $\beta \neq 1$, A(gk) - 1 is non-degenerate and if $\alpha \neq 1$, A(hk) - 1 is non-degenerate, a contradiction.

Example. Define g_1, \dots, g_7 as follows;

$$A(g_{_1}) = 1 \dotplus i \dotplus (-i) \;, \quad a(g) = {}^{t}(1/4, \, 0, \, 0) \;, \quad A(g_{_2}) = -1 \dotplus \left(egin{matrix} 0 & 1 \ 1 & 0 \end{matrix}
ight) \;,$$

$$a(g_2) = {}^{t}(0, (1+i)/2, 0)$$
, $g_3(x) = (x_1 + \alpha, x_2, x_3)$, $\text{Im } \alpha \neq 0$,

$$g_4(x) = (x_1, x_2 + 1, x_3), \quad g_5(x) = (x_1, x_2 + i, x_3),$$

$$g_6(x) = (x_1, x_2 + (1+i)/2, x_3 + (1+i)/2)$$
,

$$g_7(x) = (x_1, x_2 + (1 + i)/2, x_3 + (1 - i)/2)$$
.

Then the group $G=\langle g_1,\cdots,g_7\rangle$ satisfies the condition in Introduction and $H\cong D_4$.

In what follows we consider the case in which H is non-cyclic abelian. Let A and B generate H. By choosing an appropriate base we write $A=1+\alpha+\beta$ and $B=\gamma+\delta+\varepsilon$.

LEMMA 7. If $\gamma \neq 1$, then (1) $\alpha = \delta = 1$ or (2) $\beta = \varepsilon = 1$ or (3) $A^2 = B^2 = 1$.

PROOF. By noting one of eigenvalues of each AB, A^2B , AB^{-1} and AB^2 has to be 1, we can check this easily.

LEMMA 8. H does not contain an element A such that the order m of its eigenvalue is 8 or 12.

PROOF. Suppose that H contains such an element A. Then by Lemma 7 it is generated by A, B; $A = 1 \dotplus \alpha \dotplus \beta$, $B = 1 \dotplus \delta \dotplus \varepsilon$. Moreover we may assume $\varepsilon = 1$, because B can be chosen in the kernel of the projection $\tau: H \to C^*$, $\tau(B') = \varepsilon'$ where $B' = \gamma' \dotplus \delta' \dotplus \varepsilon'$. Then $\alpha\delta$, β , $\overline{\alpha\delta}$,

 $\overline{\beta}$ turn out to be primitive *m*-th roots of 1. This is a contradiction. Similarly we can prove

LEMMA 9. If H contains an element of order 12, then it is an abelian group of type $(12, 2) \cong (6, 4)$.

The group G such that G/G_0 is non-cyclic but abelian can be constructed as follows: Let ξ and η be the primitive m and n-th root of 1, respectively, where $\mathcal{P}(m) \leq 2$ and $\mathcal{P}(n) \leq 2$.

Set

$$\mu = egin{cases} \xi & ext{if } arphi(m) = 2 \ i & ext{if } arphi(m) = 1 \end{cases} \quad ext{and} \quad
u = egin{cases} \eta & ext{if } arphi(n) = 2 \ i & ext{if } arphi(n) = 1 \end{cases}.$$

Define g_1, \dots, g_6 as follows;

$$g_1(x)=(x_1+1/m,\,\xi x_2,\,x_3)$$
 , $g_2(x)=(x_1+i/n,\,x_2,\,\eta x_3)$, $g_3(x)=(x_1,\,x_2+1,\,x_3)$, $g_4(x)=(x_1,\,x_2+\mu,\,x_3)$, $g_5(x)=(x_1,\,x_2,\,x_3+1)$ and $g_6(x)=(x_1,\,x_2,\,x_3+\nu)$.

Then $G/G_0 \cong \mathbb{Z}/m \oplus \mathbb{Z}/n$.

Thus we have proved the whole part of Theorem.

REFERENCES

- [1] F. Enriques et F. Severi, Mémoire sur les surfaces hyperelliptiques, Acta Math., 32 (1909), 283-392; 33 (1910), 321-403.
- [2] M. HALL, The theory of groups, Macmillan 1959.

KÖJI UCHIDA
MATHEMATICAL INSTITUTE
TÕHOKU UNIVERSITY
SENDAI, JAPAN
AND
HISAO YOSHIHARA
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KYOTO UNIVERSITY
KITASHIRAKAWA, SAKYO-KU
KYOTO, JAPAN