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Discontinuous Solutions
in Problems of Optimization (*)

L. CESARI - P. BRANDI - A. SALVADORI

First we mention (§1) a few points of the theory of functions of v &#x3E; 1

independent variables, which are of class L1 and of bounded variation (BV ) in a
bounded domain, hence, possibly discontinuous and not of Sobolev. Calculus of
variations, for such functions as state variables, has been initiated in two different
directions, both very promising, based on the use of the Weierstrass and of the
Serrin integrals respectively. In Sections 3 and 4 we state results concerning the
use of the Serrin integral, as recently obtained by Cesari, Brandi and Salvadori
[l0abc] for simple (§3) and multiple (§4) integrals respectively and BV possibly
discontinuous solutions. In Section 5 we briefly summarize results concerning
the Weierstrass approach, as obtained by Cesari [8ab], Warner [23ab], Brandi
and Salvadori, first for continuous state variables [2abc], and recently for BV
possibly discontinuous solutions [2defgh].

1. - BV functions of v &#x3E; 1 indepedent variables

In 1936 Cesari [5] introduced a concept of BV real valued functions
z : G ---+ R, or z ( t ) , or z ( t 1, ... , from any bounded open subset G 
into R . - For the case v = 2, G the rectangle (a, b ; c, d) the definition is very

simple: we say that z if BV~ in G = (a, b; c, d) provided z E Li (G) and there is a
set E of measure zero in G such that the total variation Va: (y) of z ( ~, y) in (a, b)
is of class L1 (c, d), and the total variation V, (x) of z (x, .) in ~c, d) is of class

where these total variations are computed completely disregarding the

( ~ ) Enlarged version of a lecture at the Conference in memoriam of Leonida Tonelli,
Scuola Nonnale Superiore, Pisa, March 24-25, 1986.

Pervenuto alla Redazione il 27 Settembre 1986 e in forma definitiva il 15 Luglio 1988.
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values taken by z in E. The number

may well be taken as a definition of total variation of z in G = (a, b; c, d), (with
respect to such a set E c G of measure zero). Analogous definitions hold for
BV functions z ( t 1, ~ ~ ~ , in an interval G of

We shall state below the more involved definition of BV functions in a

general bounded open subset G 
If z is continuous in G, then no set E need be considered and the concept

reduces to Tonelli’s concept of B~ continuous functions. For discontinuous
functions, examples show how essential it is to disregard sets E of measure
zero in G. On the other hand, the concept obviously concerns equivalent classes
in LI (G) .

We may think of z (t), t E G as defining a nonparametric
discontinuous surface S : z = z (t) , t E G, and we may take as

generalized Lebesgue area L(S) of S the lower limit of the elementary areas
a ( E ) of the polyhedral surfaces E : z = Z(t), t E G, converging to z pointwise
a.e., in G (or More precisely, if ( Ek ) denotes any sequence of

polyhedral surfaces Ek : Z = Zk(t), t c G, converging to z pointwise a.e. in G
(or in Li (G)), we take for L (S) the number, 0  L ( S )  + oo, defined by

Cesari proved [5] that L(S) is finite if and only if z is BV in G. This
shows that the concept of BV functions is independent of the direction of the
axes in :1 v. More than that, the concept of BV functions is actually invariant
with respect to 1 - 1 continuous transformations which are Lipschitzian
in both directions.

In 1937 Cesari [6a] proved that for v = 2, G = (0, 2~; 0, 21r) and z BV in
G, then the double Fourier series of z converges to z (by rectangles, by lines,
and by columns) a.e. in G. Comparable, though weaker, results hold for BV
functions of v &#x3E; 2 independent variables and their multiple Fourier series [6b].

In 1950 Cafiero [4] and later in 1957 Fleming [15] proved the relevant
compactness theorem: any sequence (zk ) of BV functions with equibounded total
variations, say VO (Zk, G)  C, and equibounded mean values in G, possesses a
subsequence (zks ) which is pointwise convergent a.e. in G as well as strongly
convergent in Li (G) toward a B~ function z.

In 1966 Conway and Smoller [12] used these BV functions in connection
with the weak solutions (shock waves) of conservation laws, a class of nonlinear
hyperbolic partial differential equations x:?t v. Indeed, they proved that, if
the Cauchy data on (0) xR" are locally BV, then there is a unique weak solution
on R + also locally BV and satisfying an entropy condition. Without any
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entropy condition there are in general infinitely many weak solutions. Analogous
results for v = 1 had been obtained before by Oleinik [18]. Later Dafermos
[13] and Di Pema [14] characterized the properties of the BV weak solutions
of conservation laws.

Meanwhile, in the fifties, distribution theory became known, and in 1957
Krickeberg [17] proved that the BV functions are exactly those L 1 ( G) functions
whose first order partial derivatives in the sense of distributions are finite
measures in G.

Thus a BV function z(t), t E G, G a bounded domain in 3l. v , possesses first
order partial derivatives in the sense of distributions which are finite measures
~c~ , j - = 1, ... , v. On the other hand, if we think of the initial definition of z,
we see that the set E of measure zero in G has intersection E n i of linear
measure zero on almost all lines i parallel to the axes. Hence, z is BV on
almost all such straight lines when we disregard the values taken by z on E,
and has therefore "usual" partial derivatives D3z a.e. in G, and these derivatives
are functions in G of class Li (G). We call these Di z (t), t E G, j = 1, ~ ~ ~ , v,
computed by usual incremental quotients disregarding the values taken by z on
E, the generalized first order partial derivatives of z in G.

Much work followed on BV functions in terms of the new definition,
that is, thought of as those functions whose first order derivatives are
finite measures. We mention here Fleming [15], Volpert [22], Gagliardo [16],
Anzellotti and Giaquinta ([ 1 ]) and also De Giorgi, Da Prato, Giusti, Miranda,
Ferro, Caligaris, Oliva, Fusco, Temam. However, there are advantages in using
both view points.

Great many properties of B~ functions have been proved. To begin with, a
"total variation" V (z, G) can be defined globally in terms of functional analysis,

where the Sup is taken for all f 1, ... , with f2 1 + ....... + f)  1.

, 

If (zk ) is a sequence of BV functions on G with equibounded total

variations, say V (z, G) !~, C, and zk - z in then z is BV and

V’(z, G) lim V (zk, G).
k --&#x3E; oo

The question of the existence of traces -y : for BV functions
z : G ~ ~ has been discussed under both view points. Note that for a BV
function z in an interval G = (a, b; c, d) it is trivial that the generalized limits
z(a+, y) and z(b-, y), z(x; c+) and z(x, d-), exist a.e., and are L1 functions,
i.e., the trace ’1(z) of z on a G exists and is For general domains G
in ~ ~ possessing the cone property everywhere on a theorem of Gagliardo
[16] characterizes the properties of r3 G, and one can prove that any BV function
z in a bounded domain G with the cone property and  oo, possesses
a trace -1 (z) onag with -1 (z) E L1 (a G).



222

We mention here the following theorem by Gagliardo on bounded domains
G with the cone property: If G is a bounded open domain having the
cone property, then there is a finite system (Gi , ... , Gm) of open subsets of G
with max diam Ga as small as we want, each G 8 has the cone property, and
has locally Lipschitzian boundary 

From this result, and trace properties for Lipschitzian domains, it is possible
to define the trace of a B~ function on 8G, for G bounded and with the
cone property. An equivalent definition of traces of BV functions in terms of
the distributional definition is also well known.

We come now to the delicate question of the continuity of the traces 1(z)
of BV functions z in a domain G, in other words whether zk --~ z, say in

Li (G) , may actually imply - under assumptions - that --~ ~ ( z ) in L 1 ( ~3 G ) .
A number of devices have been proposed to this effect. For instance, Anzellotti
and Giaquinta ( [ 1 ] ) have recently proved the following statement in terms of the
distributional definition of BV functions: If G has the cone property at every
point of aG, if ~l ~ ~ 1 ( ~3 ~)  oo, if the functions zk are BV C,
if z~ --&#x3E; z in Li (G) with then -Y (Zk) -i I(Z) in A

parallel proof of this statement is available in terms of the original definition
of BV functions. We mention here that it is well known that any BV function

G c can be approximated in Li(G) by BV smooth functions Zk
with - V (z),, C.

The following example shows a simple situation in which the trace operator
is not continuous:

, 

Of course the condition of Giaquinta and Anzellotti is not satisfied here
since
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Another relevant statement concerning the continuity of the trace operator
is as follows: For all BV in G let denote the systems of
their first order partial derivatives in the sense of distributions, namely, v-vector
valued finite measures in G. Let Z, Zk denote the mean values of z, zk in G.
If Z~ -~ Z and if weakly, then 1(Zk) ---~ -y (z) 

We only mention here that by weakly we mean, in terms of
duality, that J  f, dJ1.k &#x3E; -&#x3E; f  f, dp. &#x3E; for all continuous functions f on G,

G G

or f E (C’(G))v, and in both integrals we mean that G is (bounded) and open
in Rv

For v - 1, i.e., for functions z (t) , a  t  b, of a real variable t,
say of bounded variation in (a, b), then the generalized limits z ( a+ ~ and

z(b-) (the traces) obviously exist and are finite. If a  t  b, is
a sequence of B~ functions, say equibounded and with equibounded total

variations, then by Helly’s theorem, there is a subsequence Zks which converges
pointwise everywhere in [a, b I (as well as in Li(G)) toward a B ~ function

z (t), a  ~  b, with V (z)  lim V(Zks)’ and in particular, we may require that
2013~(a), 2013~~(6). Thus, for v = 1, the -question of the continuity of

the end values is trivially answered in the affirmative by everywhere pointwise
convergence and Helly’s theorem.

We shall see now how these ideas have been used in questions of

optimization.

2. - Calculus of variations in classes of BV functions

When the state variable z, or z (t) = (z’, - - - , E is only
BV, the usual Lebesgue integral of the calculus of variations

may not give a true, or stable value for the functional of interest. There are
two basic processes to determine a true, or stable value for the underlying
functional, and both have generated a great deal of recent work.

One is the limit process already proposed by Weierstrass, leading to a
functional, or Weierstrass integral, W (z). Tonelli made use of it in his early
work (1914) on the direct method in the calculus of variations for parametric
continuous curves C, or z (t ) = (z 1, ~ ~ ~ , z~ ) , a  t  b, of finite length,
hence, all z: are BV and continuous. Recently, Cesari [8ab] presented an
abstract formulation of the Weierstrass integral as a Burkill type limit on

"quasi additive" set functions (p(I) = ( ~p 1, ~ ~ ~ , and state functions

~(~) - Cesari also proved [8b] that W (z) has
a representation as a Lebesgue-Stieltjes integral in terms of measures and
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Radon-Nikodym derivatives derived from the set function ~. Warner [23] then
proved lower semicontinuity theorems for continuous varieties, and very recently
Brandi and Salvadori [2defgh] extended further the abstract formulation, proved
further representation properties, and lower semicontinuity theorems, both in
the parametric and in the nonparametric case, and for vector functions z (state
variables) only BV, possibly discontinuous, possibly not Sobolev (see §5 below).

Another approach was proposed by Serrin [20a] leading to a functional,
or Serrin in classes of BV vector functions z(t) , t e 

The Serrin functional is obtained by taking lower limits on the value of I
on AC, or functions, a process which is similar to the one with which

Lebesgue area is defined. Recently, Cesari, Brandi and Salvadori [10ab] proved
closure and lower closure theorems, hence theorems of lower semicontinuity in
the L1-topology, and finally theorems of existence of the absolute minimum
of 9 (z) in classes of BV vector functions whose total variations V(z) are

equibounded [l0ab]. (See also [19]). We proved also that 1(z) 9(~), and that
9 is a proper extension of I in the sense that £l(z) = I(z) for all z which are
AC, or W1.1(G) (see §§3, 4 below). A number of applications of this approach
has been announced [9abc, llab].

3. - Problems of optimization for simple integrals, v = 1, by the use of
Serrin’s functional

We may be interested either in problems of the classical calculus of

variations involving a vector valued state variable z(t) = ( z 1, ~ ~ ~ , zn ) , 
t _ t2, or in problems of optimal control involving an analogous state variable
z (t) = (z1, ... ~ zn) and a control variable u(t) = (ul, - - ., ,urn), ti  t c t2, with
given control space U (t, z) and constraint u (t) c U (t, z (tj j .

It is more general, and more satisfactory, (cfr. [7]), to deparametrize the
problems of optimal control, and concern ourselves exclusively with generalized
problems of the calculus of variations with constraints on the derivatives, say

where t e (a.e.), where A is a subset whose projection
on the t-axis contains t2 i, and where, for every (t, z) E A, a set Q(t, z) is

given constraining the direction z’ (t) of the tangent to the state variable z a.e.
in 
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The process of deparametrization mentioned above can be summarized as
follows. Given a problem of optimal control:

with ordinary differential system and constraints

let us take

Then, the corresponding problem of the calculus of variations with
constraints on the derivatives is as follows:

For what concerns boundary conditions for problem (1), we restrict

ourselves here to Dirichlet type boundary conditions

Above, let M denote the set M = [ (t, z, ç) (t, z) C A, ~ E Q (t, z~ C 3.1+2n,
and let fo (t, z, I) be a real valued function on M. Let f) be a class of admissible
functions, i.e., functions z : --i ~ n, or z {t~ = {z 1, ~ ~ ~ , such that
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It is easy to see that the Lebesgue integral definition (1) of the functional
I does not yield stable and realistic values for I, and one may use a Serrin

type integral. To this effect, for every z E 11 we denote by F(z) the class of all
sequences (zk ) of elements Zk e Q with

(a) zk is AC in [tl, t2l;
(b) zk 2013~ pointwise a.e. in 

If r(z) is empty we take 9(z) = +00. If r(z) is not empty, then we take

This is the Serrin type definition of the functional which was inspired to
the Lebesgue area of nonparametric surfaces.

If problem (1) has assigned boundary conditions, say of the Dirichlet type
(2), then let r (z) denote the class of all sequences (zk) of elements zk in fl
with

(a) zk is AC and satisfies the boundary conditions;

(b~ ) z~ ---+ Z pointwise a.e. in [t 1, t~ ~, in particular zk (ti) --+ i = 1, 2.

Then the analogous integral defined by (3) could be denoted by ~* and
obviously 9  ~* .

We can state now a lower semicontinuity theorem and an existence theorem
for integrals on BV functions. To this purpose we have first to define as usual
the "augmented" sets as follows:

A lower semicontinuity theorem

Let us assume that

(i) A is closed;

(ii) the sets l(t, z) are closed, convex, and satisfy property (Q) with respect
to (t, z) at every (t, z) e A;

(iii) fo (t, z, ç) is lower semicontinuous in M, and there exists some function
À E ] such that fo (t, z, ~) ~! A (t) for all (t, z, ~) ~ M.
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Let z(t), t E Itl, t2]’ be BV, and let zk(t), t E Itt, t2], k - 1,2,..., ,
be a sequence of AC‘ functions zk such that zk 2013~ z pointwise a.e. in

a.e. in [tl, t~], and C. Then,
(~()) 6 A, z’(t) E a.e. in [tt, t2], and ~(z)  lim I~zk~ [10a].

k --&#x3E; oo

A fundamental consequence of this lower semicontinuity theorem is that
if (zk) is any of the sequences of AC elements in r ( z ) , with C, and
we take j = lim I ( zk ) , then

k --&#x3E; ooo

Furthermore, the Serrin integral 9 is actually an extension of the integral
.t. Indeed, if z E n n AC, then, by taking zk = z we conclude that

.I (z) ~ ~ (z)  = 

k --&#x3E; oo

Note that, for sequences (zk ) as above unbounded, it may well
occur that 9(z)  as it has been proved by examples (cfr. [10a]).

We mention here that Kuratowski’s property ( K ) at a point (to, zo) is

expressed by the relation

The analogous condition (Q) at the point (to, zo) is expressed by the
relation

If problem (1) has assigned boundary conditions of the type (2), then

in the theorem above we assume that z~ -- z a.e. in ~t 1, ~2 ~ , in particular
-+ = 1, 2, and the same statement holds for 9*.

An existence theorem for the integral Elf

Let us assume that

(i) A is compact and ~VI is closed;

(ii) the are closed, convex, and satisfy property (Q) with respect
to (t, z) at every point (t, z) of A;

(iii) fo (t, z, ~~ is lower semicontinuous in M.
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Assume that the class n is nonempty and closed, V (z)  C for 
and t (z) is nonempty for at least one z. Then the functional 9 has an absolute
minimum z in 0 [10a].

In other words, let z denote the infimum of I(z) for z E A C’ n Q, let (zk)
denote a sequence of elements zk e AC n fl with I(zk) ---~ i. Then, there is an
element z c 0, z E BV, such that I(z) ~ = i.

EXAMPLE 1. Let

with

If we take

for

for

for

we have

Thus i = 0, is a minimizing sequence. The minimum of 9 is attained
by the discontinuous function

and I
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EXAMPLE 2. Let

with

If we take

for

for

we have

Thus, z = 0, is a minimizing sequence. The minimum is attained by
the discontinuous function

for for

and

EXAMPLE 3. Let
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with

0  t  1, denote the usual Cantor ternary function. Then

(t, 0(t)) E A, =~o=0) where io = 0 is the infimum of I(z) in n. Let i
be the infimum of I(z) in AC Then i = 2/3, and the minimum oaf 3 is

attained by for

for

Thus

Now consider the same problem with boundary data

The infimum of I(z) in Q is still io = 0. The infimum of I(z) in AC n {1
is now i = 1, and i = 1 is assumed by all non decreasing AC functions z E (1
and by the discontinuous function defined by

for 

for

Thus

4. - Problems of optimization for multiple integrals and BV discontinuous
functions, v &#x3E; 1, by the use of Serrin’s functional

Let G be a bounded open subset of the t-space ~~ ~ , t = (t1, ... , For

every j - 1,..., v, let Ga denote the projection of G on the 
t~ - ( t 1 ~ ... ~ ... i t" ~ , and for any T E G~ let r, denote the straight

line t~ = T. Then, the intersection is the countable union of open disjoint
intervals ( a ~ , ,B$ ~ , = We say that a function f E L1(0) is

of bounded variation in the sense of Cesari in G (BV) ([5], 1936) and [10b])
if there exists a set E c G with E ~ = 0 such that, for every j = 1, ... , v and
for almost all T e Gj, the total variations Vjs = V(/( T), (a~ , ~9 ~ ), computed
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disregarding the values taken by f on E, are finite, is finite, and

~()~J~).
Let v &#x3E; 1, n &#x3E; 1, and let G c R" be a bounded open subset in the

= ( t ~ , ..., possessing the cone property at every point of its
boundary aG. Let A be a compact subset of the whose

projection on the t-space contains G.
We shall deal with vector valued functions z(t) = (z , ... , BV in

G, therefore possessing first order partial derivatives in the sense of distributions
which are measures J.1.ii, j = 1,..., 11, i = 1’...,n, and in addition also

generalized first order derivatives Dizi a.e. in G, as functions of class 
which are obtained as limits of incremental quotients when we disregard the
values taken by the functions in suitable sets E of measure zero in G. We may
need only a subset of such derivatives as follows.

For every i = 1, ... , n, let be a system of indices 1  j1  ...  j9  v,
let Dj zi, j E { j ~$, denote the corresponding system of first order partial
derivatives of the functions zi, and let N be their total number. Then by Dz
we denote the N-vector function Dz (t) = i = 1, ..., n), t E ~
(a.e.).

For every (t, z ) E A let Q(t, z) be a given subset Let M 
denote the set M (t, z, (t, z) E A, ~ ~ ~ (t, z) ~, and let fa (t, z, ~) be a

given real-valued function in M. We are interested in the multiple integral
problem of the calculus of variations with constraints on the derivatives

and possible Dirichlet type boundary conditions of the = 0(t), t E

(N’-’ - a.e.) on 
Again we introduce a Serrin type integral.
Let 11 be a class of admissible functions z (t) = (z~, ~ ~ ~ , zn), t E G, such

that

(i) z is BV in G;

To simplify notations, let AC, or AC(G), denote the class of functions
z(t) = ~z 1, ~ ~ ~ , Zn), t E G, whose components zi are of Sobolev class W I - I (G),
or, briefly, Beppo Levi functions.

For any element z E H let r(z) denote the class of all sequences (zk) of
elements zk in 0 with

(a) zk is AC in G;

(b) zk - z strongly in Li (G).
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If r(z) is empty we take = +00. If r(z) is not empty then we take

If the given problem has assigned Dirichlet type boundary conditions, say
-yz(t) (.)(v-1 - a.e.) on G, then let lr(z) denote the class of all
sequences (Zk) of elements zk in Q with

(a’) zk is AC in G and I(Zk) = 0 on 
- z strongly 

and

Then the Serrin integral defined by (2) could be denoted by ~* , and

obviously SC(z) J* (z) . By Anzellotti and Giaquinta’s theorem then 1(z) == 0
on 

- 

To state an existence theorem we introduce, as usual, the augmented sets
as follows:

Beside property (Q) we shall require on the z) another property,
or property ( -i5i ) . 

- -

We say that the ~t, z) ~ A, have property (ÊB) with respect
to z at the point (to, zo) E A provided, given any number a &#x3E; 0, there are

constants C &#x3E; 0, fJ &#x3E; 0 which depend on to, zo, a, such that for any set of

measurable vector functions ?I(t), z(t), ~(t), t E H, on a measurable subset H
of points t of G with

for

there are other measurable vector ~ ( t ) , t E H, such that

We denote by (F2) the same condition with z(t) = zo. These conditions are
inspired to analogous ones proposed by Rothe, Berkovitz, Browder (cfr. Cesari
[7], sect. 13). Conditions (Q) and (F) are sometimes called seminormality
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conditions (cfr. [7]). A weaker version of them, leading to some extensions of
the existence theorem, is discussed in [10c]. 

_

An existence theorem

Let us assume that

(i) A is compact and M is closed;
(ii) the sets ~ (t, z ~ are closed, convex, and satisfy properties (Q) and at

every point (t, z) e A;
(iii) z, ç) is bounded below and lower semicontinuous in (t, z, ç).

Also assume that the class {1 is nonempty and closed, and r (z) is nonempty
for at least one Then the functional 3 has an absolute minimum z in
0, z E BV in G [10b].

In other words, let i denote the infimum of I(z) for z c AC n 0, let 
denote any sequence of elements zk e with 2013~ i. Then there is at
least one element z e 0, z E BV, such that I ~z~  ~ (z) = t.

5. - The Weierstrass integral W

In [8ab] Cesari established a very general axiomatization concerning
extensions of Burkill’s integral on set functions. Let {7} be a family of subsets I
of a given topological space A, subsets that we call intervals. Let (D, ~&#x3E; ) denote
a net of finite systems D = ~ ~1, ~ .. , of nonoverlapping intervals. Cesari [8a]
introduced a concept of quasi-additivity for the set functions garanteeing the
existence of a limit, now called the Burkill-Cesari integral

About the non-linear integral over a variety T, Cesari
T

considered the set = F p (I)), where w (I) is a choice

function, i.e. I, and p is a set function. He proved [8a] that if T
is any continuous parametric mapping is quasi-additive and BV, then
also (D is quasi-additive and BV. In other words, the non-linear transformation
F preserves quasi-additivity and bounded variation. Then the integral W is
defined by the Burkill-Cesari process on the function (D, and is thus defined as
a Weierstrass-type integral

Later, many authors studied this integral, both in the parametric and in the
non-parametric case, for curves and for varieties, and framed in this theory
many of their properties (see [21 ] for a survey). Note that if F does not
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iepend on the variety, i.e., it is of the type F(q), then the sole concept of
quasi-additivity permits the extension of W over BV curves and surfaces, not
necessarily continuous nor Sobolev’s.

In the last years Brandi and Salvadori [2defg] have extended the definition
of W over BV curves or varieties, not necessarily continuous nor Sobolev’s, 

"

for complete integrands F ( p, q) .
First the term T(a;(7)), in the definition was replaced [2d] by

a set function P(I) whose values are in a metric space K, while is a

set function whose values are in a uniformly convex Banach space X, and F:
K x K --i E, with E real Banach space. In order to garantee the existence
of the integral W for BV transformations T, a condition on the pair of set
functions was proposed in [2d], which is of the quasi-additivity-type,
and was called r-quasi-additivity. This condition reduces to the quasi-additivity
on p when P is the usual set function T(w(l)) and T is continuous. In this
new situation, Brandi and Salvadori proved that, if (PV) is F-quasi-additive
and p is BV, then still = F(P(I), p(I)) is quasi-additive and BV. Thus
the integral is still defined by the Burkill-Cesari process on the set

function ~, and W(P, p) is still a Weierstrass-type integral even for ~’ only
BV, possibly discontinuous.

Note that the new condition on (P, p) is weaker than the couple of
assumptions: continuity on T and quasi-additivity on p. Moreover, it takes

advantage of the power of the quasi-additivity-type properties to extend I over
BV curves and varieties, for integrands of the type F(p, q), both in the parametric
and in the non-parametric case (see many applications in [2def]).

Even in this more general setting, the integral admits of a

Lebesgue-Stieltjes integral representation ([2d])

in terms of a vectorial measure p related to Sp, its total variation ||u||, , and
Radon-Nikodym derivative as in the previous work of Cesari [8b] in
Euclidean spaces, and in the successive extensions to abstract spaces, always
for continuous varieties T (see [21] for a survey).

In the non-parametric case (see [2e]) the is
T

transformed into a suitable parametric integral in the manner of Mc-Shane,
with the integrand F ~t, p; ~, q~ defined by ~’ ~t, p; ~, q) _ for i &#x3E; 0

and F (t, p ; 0, q) = lim F (t, p; l, q) . Then the set function (D becomes
l--&#x3E;0+

Thus, the existence result is still given in terms of r -quasi-additivity. Now



235

the representation of W (P, p) in terms of Lebesgue-Stieltjes integral becomes

Where p is the vectorial measure related to cp, v is the real measure related to
A and is the total variation of the measure 

Furthermore, in this non-parametric situation, a Tonelli-type inequality was
proved in [2e] relating W(P, p) to a corresponding Lebesgue-Stielties integral,
namely, .

where is a derivative of the Radon-Nikodym type, and the equality
sign holds if and only if the set function p is absolutely continuous with
respect to the set function A. If p is absolutely continuous with respect to A,

reduces to the usual Radon-Nikodym derivative In proving
this last result, as in the proof of the representation theorem, use was made
of a connection between the Burkill-Cesari process and the convergence of

martingales, a connection which was already made in previous papers (see [21]
and the quoted papers [2def]).

Finally in [2f] the authors dealt with the problem of the lower

semicontinuity for the integral W(P,(p), both in the parametric and in the

non-parametric case. A first abstract lower semicontinuity theorem was proved
in terms of a suitable global convergence on the sequence (pn defined in
the same spirit of the r-quasi additivity and therefore again inspired to Cesari’s
concept of quasi additivity. In a number of applications this convergence is

implied by the Li-convergence of equi BV varieties.
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