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1 Summary 

A new, high-order, conservative, and efficient method for conservation laws on 
unstructured grids is developed. The concept of discontinuous and high-order 
local representations to achieve conservation and high accuracy is utilized in a 
manner similar t o  the Discontinuous Galerkin (DG)[l] and the Spectral Vol- 
ume (SV)[2] methods, but while these methods are based on the integrated 
lorms of the equations, the new method is based oii the  &Eeiei$&l form to  
attain a simpler formulation and higher efficiency. Conventional unstructured 
ficite-diEerence (FD) [3] and finito-voh~e (FV) [4] =sthods require data re- 
construction based on the least-squares formulation using neighboring point 
or cell data. Since each unknown employs a different stencil, one must repeat 
the least-squares inversion for every point or cell at  each time step, or store 
the inversion coefficients. In a high-order, three-dimensional computation, the 
former would involve impractically large CPU time, while for the latter the 
memory requirement becomes prohibitive. In addition, the finite-difference 
method does not satisfy the integral conservation in general. By contrast, the 
DG and SV methods employ a local, universal reconstruction of a given order 
of accuracy in each cel! in t.erms of internally defined conservative unknowns. 
Since the solution is discontinuous across cell boundaries, a Riemann solver 
is necessary to  evaluate boundary flux terms and maintain conservation. In 
the DG method, a Galerkin finite-element method is employed to update the 
nodal unknowns within each cell. This requires the inversion of a mass matrix, 
and the use of quadratures of twice the order of accuracy of the reconstruction 
to  evaluate the surface integrals and additional volume integrals for non-linear 
flux functions. In the SV method, the integral conservation law is used to up- 
date volume averages over subcells defined by a geometrically similar partition 
of each grid cell. As the order of accuracy increases, the partitioning for 3D 
requires the introduction of a large number of parameters, whose optimization 
to achieve convergence becomes increasingly more difficult. Also, the number 
of interior facets required to  subdivide non-planar faces, and the additional 
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increase in the nuinbey of quadrature points ffir ea,& facet: 
put.ationa1 cost greatly 

In the spectral difference (SD) me:hod, t,he conservat,iye unknon-ns in each 
cell are the number of nodal values required to support a reconstruction of 
a given order of accuracy. Their locations are chosen so that a quadrature 
approximation for the volume integral exists at. least t.0 the same order of 
accuracy. The fluxes are calculated at a different set of nodes, whose num- 
ber u-ill support a reconstruction of one order higher accuracy: since the flux 
deriyatives are used to update the conservative unknowns. They are located so 

exist t o  a required order of accurac!;. In addition, the locations of the conser- 
vative nodes and t.he flux nodes must be such that the integral conservat.ion 
law is satisfied for the cell to  the desired order of accuracy. If the nodes are 
distributed in a geometrically similar manner fcr all cells, the discretizations 
become universa!, and can be expressed as the s a g e  weight.ed sums of the  
products of the local metrics and fluxes. These metrics are constants for the  
h e ,  triangie, and tetrahedron elements: and can be computed analjGcally for 
curved elexents. We can also shew that the  currber of flux codes is f x  less 
than the number of quadrature points in the SV method. Since all unknoa-ns 
are decoupled, no mass matrix inversion is required. The SD formulation for 
the line element is a generalization of the multidomain spectral method[5]. Its 
t e c s ~ r  przdUcts ca:: be -sed fcr quidri!zteril m d  hexihedror. elemer?ts. 
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2 The Spectral Difference Method 

The most general form of a conservation law can be u-ritt.en as 

d U  
- + B * F = 0 )  at 

where tlie conservative variable u can be a scalar or a vect,or, and the general- 
ized flux F can be a vector or tensor. The t,erm V * F  represents the divergence 
or curl of F, depending on t,he physical definition of 71, .  Integrat,ing (1) over 
cell 1:. we obtain 

where li, is the volume of the cell i , and Sl,i is the area of face 1 for cell i. (In 
2D, each face is actually a line.) Here A6 is the number of faces: which is one 
more than the dimension D of the domain. 

In each cell, the discrete unknowns are the  values of u. at quadrature points 
for the volume integral over the cell. We denote these points, some of which 
may lie on the cell faces. as r,;,, and define u,~.j., as u(rj , , ) .  The expansion of u 
in the cell can b e  writtell in tlie cardinal farm 
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where Lj,i(r) are t.he cardinal basis functions and AT, is the number of basis 
funct.ions required to support a desired degree of precision n of the reconstruc- 
tion. We Till use polynomials as an independent. basis. The locations of rj,i 
then uniquely define the Lj.i(r). In order to evaluate the surface integrals in 
(2) efficiently: we discretize F at points r k : i ,  most or all of which are located 
at quadrature points for those integrals. The expansion of F in the cell can 
ais0 be wrinen in xhe cardinai form 

where A4k,L(r )  are now the set of cardinal basis functions defined by r k . i  and 
Fk.i = F(rk. ,) .  We can satisfy (1) at points r j j  by evaluat.ing 

A', f 1 

V * F(r3.%) = V-M~~.~(rj,i) * Fk+. (5) 
k= 1 

In order to evaluate Fk,i, U k , i  is required, which can be obtained directlJr from 
( 3 )  as 

Ai, 

zi,k,i = T & ~ ~ . ~ ( r k , ? ) i i j , i .  (6 1 
j=1 

To reduce the cost of this interpolation, some of points r k , i  may be chosen t,o 
coincide with rj,i. If the points rj.i and T k , i  are distributed in a geometrically 
similar manner for all cells and within each cell i the gradient of a function 
is expressed in terms of its area vectors Sf and volume 5;; the coefficients in 
( 5 )  and (6) become universal, independent of cell i. There are only a few of 
these coefficients, which can be calculated exactly and stored in advance. For 
points rk . i  in the inberior of cell, FkZi = F(2~k. i ) .  For those points rk.;  located 
on the cell faces: since IL nziy 3e discontinuous, we must replace the fin F by 
a Riemann flux. 

In order to check the integral conservation law for the cell, we must show 
that 

j=1 1=1 k 

Here wj  are the volume quadrature weights at the points rj,i and Wk are 
surface quadrature weights for face I ,  and for each face the summation is over 
those points r k : i  located on that face. The total contribution from any interior 
point Fk.i to the volume integral in Eq. (i)(righthandside t,erm) must vanish. 

From' Eqs. (5) and (6), we also see t.hat the SD formulation is very similar 
to that of the FD method for struct.ured grids. The SD method thus retains the 
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ever, the metric t.erms in the latter are el7aluated by numerically differencing 
the grid point coordinates. Since numerical grid generat,ors are most,ly only 
second-order accurate, the overall accuracy of the solution can be severely 
degraded if the grid is not. sufficiently smooth. In contrast, t,he metric t.erms 
in the SD method are computed exactly from the geometry of the  grid. no 
matt,er how it was generat,ed. It thus retains its fornial accuracy, even for very 
unsinooth unstructured grids. Furthermore, in contrast to the FD method, 
the integral conservation law is satisfied to  the desired accuracy. 

3 Locations of the Unknowns and F l u  Points 

The critical part of t,he SD method is the locations of the u points rj,i and F 
points r k , i ,  which are determined by syametry groups associated with the cell 
centroids, vertices, edges, and fa.ces. ,411 but t,he first contain arbitrary param- 
eters that can be varied to obtain optimum soiutions. The number of points 
ieqiiired for a reconstruction xith a specified degree of precision is greater 
t.han the minimum number of Gaussian quadrature points for that  precision. 
One can obtain greater efficiency by locating some u points to coincide with 
F points For F points on the vertices in 2D and edges and vertices in 3D, 
more than m e  PLleix+nn soher  is necesssry Ex t h a e  fcrxulatisns nTith ex- 
pensive Riemann solvers, t.hese points should be minimiz,ed. -4not.her crit.erion 
for t,he p!acernent. of u and F points is that  t,he reconstruction matrix is non- 
singular. The final criterion is that integral conservation is satisfied within the 
desired degree of precision. TVe can show that the number of F points is far 
less than the number of flux quadrature points in the SV method with the 
same accuracy. 

TVe first show some representative placements of u points (circles) and 
F points (squares) that satisfy integral conservation, for various orders of 
accuracy (which are one more than the degree of precision). Figures l a  and l b  
show the placements for line element with second and fifth order of accuracy: 
and Figures 2a, 2b, and 2c show the placements for the triangular element with 
first, second, and third order of accuracy, respectively. Here the u. points are 
pla.ced at  the Gaussian quadrature points, while the F points on t,he surface 
are placed at Gauss-Lobatto points, except in Fig. 2a: where they are located 
at the Gaussian points. 

4 h-uinerical Results 

We first show some one-dimensional convergence st.udies for the linear con- 
vection equa.tion. Plotted are L1 (solid lines) an L, (dash lines) error norms 
as functions of grid size for second t,o fifth order accurate methods. Figure 3a 
(1D-G) shows the plots for the 21 points at the Gaussian quadrature points, 
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(a) ZrGd order (b) jth order 

Fig. 1. Placement of unknowns and flux points for line element. 

A n A 

Fig. 2. Placement of unknoums and flu points for triangular element 

xj,Thile Figure 3b / I  1LC-L) shc~>:s the plots fer the 1' poir).ts rt the G ~ ~ ~ ~ s - ~ c h ~ t t c  
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quadrature points. Both exhibit the expected orders of accuracy. In Fig. 3c 
(2D) we show analogous plots for a plane wave propagating at 43 degree 
through a square domain for second and third order accurate methods, using 
the point. placements in Figs. 2b and 2c. The third example is the scattering 
of a Th? wave incident on a perfectly conducting circular cylinder. Figure 
4 shows the unstructured grid consisting of 2024 triangular cells. The wave 
propagates from the left to  the right with the wave number equal to  5, based 
on the radius of the cylinder. This gives approximately 6 cells per wavelength. 
Contour plots for E, with the exa.ct solution (solid lines) are shown in Figs. 5a, 
5b, and 3c for first, second, and third order accurate methods, respectively. It 
is seen that the first order solut.ion is very dissipative with this grid resolution, 
while the second and third order solutions show an excellent agreement with 
t,he exact solution. 
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Fig. 4. Grid for a region exterior to a circular cylinder 

(a) 1"' order (b) 2"d order (c) 3'd order 

Fig. 5 .  Contour plots of E= for a plane wave incident on a perfectly conducting 
cylinder. (numerical solutions: color contours, exact solution: solid lines) 


