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1 Summary

A new, high-order, conservative, and efficient method for conservation laws on
unstructured grids is developed. The concept of discontinuous and high-order
local representations to achieve conservation and high accuracy is utilized in a
manner similar to the Discontinuous Galerkin (DG)[1] and the Spectral Vol-
ume (SV)[2] methods, but while these methods are based on the integrated
forms of the equations, the new method is based on the differential form to
attain a simpler formulation and higher efficiency. Conventional unstructured
finite-difference (FD)[3] and finite-volume (FV)[4] methods require data re-
construction based on the least-squares formulation using neighboring point
or cell data. Since each unknown employs a different stencil, one must repeat
the least-squares inversion for every point or cell at each time step, or store
the inversion coefficients. In a high-order, three-dimensional computation, the
former would involve impractically large CPU time, while for the latter the
memory requirement becomes prohibitive. In addition, the finite-difference
method does not satisfy the integral conservation in general. By contrast, the
DG and SV methods employ a local, universal reconstruction of a given order
of accuracy in each cell in terms of internally defined conservative unknowns.
Since the solution is discontinuous across cell boundaries, a Riemann solver
1s necessary to evaluate boundary flux terms and maintain conservation. In
the DG method, a Galerkin finite-element method is employed to update the
nodal unknowns within each cell. This requires the inversion of a mass matrix,
and the use of quadratures of twice the order of accuracy of the reconstruction
to evaluate the surface integrals and additional volume integrals for non-linear
flux functions. In the SV method, the integral conservation law is used to up-
date volume averages over subcells defined by a geometrically similar partition
of each grid cell. As the order of accuracy increases, the partitioning for 3D
requires the introduction of a large number of parameters, whose optimization
to achieve convergence becomes increasingly more difficult. Also, the number
of interior facets required to subdivide non-planar faces, and the additional
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increase in the number o
putational cost greatly.

In the spectral difference {SD) method, the conservative unknowns in each
cell are the number of nodal values required to support a reconstruction of
a given order of accuracy. Their locations are chosen so that a quadrature
approximation for the volume integral exists at least to the same order of
accuracy. The fluxes are calculated at a different set of nodes, whose num-
ber will support a reconstruction of one order higher accuracy, since the flux

derivatives are used to update the conservative unknowns. They are located so
that guadrature spproximations for surface integrals over the cell houndaries
exist to a required order of accuracy. In addition, the locations of the conser-
vative nodes and the flux nodes must be such that the integral conservation
law is satisfied for the cell to the desired order of accuracy. If the nodes are
distributed in a geometrically similar manner for all cells, the discretizations
become universal, and can be expressed as the same weighted sums of the
products of the local metrics and fluxes. These metrics are constants for the
line, triangle, and tetrahedron elements, and can be computed analytically for
curved elements. We can also show that the number of flux nodes is far less
than the number of quadrature points in the SV method. Since all unknowns
are decoupled, no mass matrix inversion is required. The SD formulation for
the line element is a generalization of the multidomain spectral method[5]. Its

lateral and hevahedron elements
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2 The Spectral Difference Method

The most general form of a conservation law can be written as

Ou

ot
where the conservative variable u can be a scalar or a vector, and the general-
ized flux F can be a vector or tensor. The term V*F represents the divergence
or curl of F, depending on the physical definition of u. Integrating (1) over

cell 7, we obtain
5 M
= udV + / dS* F =0, (2)
ot /Vi ; Si,i

where V; is the volume of the cell 7, and 5 ; is the area of face [ for cell i. (In
2D, each face is actually a line.) Here M is the number of faces, which is one
more than the dimension D of the domain.

In each cell, the discrete unknowns are the values of u at quadrature points
for the volume integral over the cell. We denote these points, some of which
may lie on the cell faces, as r;;, and define u;; as u(r;;). The expansion of u
in the cell can be written in the cardinal form
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wi(r) = > Lya(r)us, (3)

=1

where L; ;(r) are the cardinal basis functions and N,, is the number of basis
functions required to support a desired degree of precision n of the reconstruc-
tion. We will use polynomials as an independent basis. The locations of r;;
then uniquely define the L, ;(r). In order to evaluate the surface integrals in
(2) efficiently, we discretize F' at points r ;, most or all of which are located
at quadrature points for those integrals. The expansion of F' in the cell can
also be writien in the cardinal form
Noss
Fi(r) = Z My i(r) Frs, (4)
k=1
where M, ;(r) are now the set of cardinal basis functions defined by rg; and
Fy; = F(rr:). We can satisfy (1) at points r;; by evaluating
Nps1
V % F(rjl) = Z VMlc.i(rj,i) * Fk‘,iv (5)
k=1
In order to evaluate Fy ;, uk; is required, which can be obtained directly from
(3) as
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To reduce the cost of this interpolation, some of points rj; may be chosen to
coincide with r; ;. If the points r;; and ry ; are distributed in a geometrically
similar manner for all cells and within each cell i the gradient of a function
is expressed in terms of its area vectors S! and volume V;, the coefficients in
(5) and (6) become universal, independent of cell i. There are only a few of
these coeficients, which can be calculated exactly and stored in advance. For
points ry ; in the interior of cell; Fi; = F(ux,). For those points ry ; located
on the cell faces, since u may be discontinuous, we must replace the flux F by
a Riemann flux.

In order to check the integral conservation law for the cell, we must show

that
Nn M
ViijV*F(rj,i) = ZSi *Zkak,i- (7)
J=1 {=1 k

Here w; are the volume quadrature weights at the points r;; and wi are
surface quadrature weights for face [, and for each face the summation is over
those points i ; located on that face. The total contribution from any interior
point Fy ; to the volume integral in Eq. (7)(righthandside term) must vanish.

From Egs. (5) and (6), we also see that the SD formulation is very similar
to that of the FD method for structured grids. The SD method thus retains the
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simplicity and computational efficiency of the structured FD method. How-
ever, the metric terms in the latter are evaluated by numerically differencing
the grid point coordinates. Since numerical grid generators are mostly only
second-order accurate, the overall accuracy of the solution can be severely
degraded if the grid is not sufficiently smooth. In contrast, the metric terms
in the SD method are computed exactly from the geometry of the grid, no
matter how it was generated. It thus retains its formal accuracy, even for very
unsmooth unstructured grids. Furthermore, in contrast to the FD method,

the integral conservation law is satisfied to the desired accuracy.

ot

3 Locations. of the Unknowns and Flux Points

The critical part of the SD method is the locations of the u points r;; and F
points rx ;, which are determined by symmetry groups associated with the cell
centroids, vertices, edges, and faces. All but the first contain arbitrary param-
eters that can be varied to obtain optimum solutions. The number of points
required for a reconstruction with a specified degree of precision is greater
than the minimum number of Gaussian quadrature points for that precision.
One can obtain greater efficiency by locating some v points to coincide with
F points: For F points on the vertices in 2D and edges and vertices in 3D,
more than one Riemann solver is necessary. For those formulations with ex-
pensive Riemann solvers, these points should be minimized. Another criterion
for the placement of v and F' points is that the reconstruction matrix is non-
singular. The final criterion is that integral conservation is satisfied within the
desired degree of precision. We can show that the number of ' points is far

less than the number of flux quadrature points in the SV method with the

same accuracy.

We first show some representative placements of u points (circles) and
F points (squares) that satisfy integral conservation, for various orders of
accuracy (which are one more than the degree of precision). Figures 1a and 1b
show the placements for line element with second and fifth order of accuracy,
and Figures 2a, 2b, and 2¢ show the placements for the triangular element with
first, second, and third order of accuracy, respectively. Here the u points are
placed at the Gaussian quadrature points, while the F points on the surface
are placed at Gauss-Lobatto points, except in Fig. 2a, where they are located
at the Gaussian points.

4 Numerical Results

We first show some one-dimensional convergence studies for the linear con-
vection equation. Plotted are L; (solid lines) an L, (dash lines) error norms
as functions of grid size for second to fifth order accurate methods. Figure 3a
(1D-G) shows the plots for the u points at the Gaussian quadrature points,
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(a) 2 order ' (b) 5" order

Fig. 1. Placement of unknowns and flux points for line element.
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Fig. 2. Placement of unknowns and flux points for triangular element.

while Figure 3b (1D-GL) shows the plots for the v points at the Gauss-Lobatto
quadrature points. Both exhibit the expected orders of accuracy. In Fig. 3¢
(2D) we show analogous plots for a plane wave propagating at 45 degree
through a square domain for second and third order accurate methods, using
the point placements in Figs. 2b and 2¢. The third example is the scattering
of a TM wave incident on a perfectly conducting circular cylinder. Figure
4 shows the unstructured grid consisting of 2024 triangular cells. The wave
propagates from the left to the right with the wave number equal to 3, based
on the radius of the cylinder. This gives approximately 6 cells per wavelength.
Contour plots for E, with the exact solution (solid lines) are shown in Figs. 5a,
5b, and 3c for first, second, and third order accurate methods, respectively. It
is seen that the first order solution is very dissipative with this grid resolution,
while the second and third order solutions show an excellent agreement with

the exact solution.
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Fig. 3. Error norms of various order of accuracy for line and triangular elements.

(a) 1°* order (b) 2™ order (¢) 3¢ order

Fig. 5. Contour plots of E; for a plane wave incident on a perfectly conducting
cylinder. (numerical solutions: color contours, exact solution: solid lines)




